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Nature’s most powerful high-energy sources are capable of accelerating particles to high energy and
radiating it away on extremely short timescales, even shorter than the light crossing time of the system. It is
yet unclear what physical processes can produce such an efficient acceleration, despite the copious radiative
losses. By means of radiative particle-in-cell simulations, we show that magnetically dominated turbulence
in pair plasmas subject to strong synchrotron cooling generates a nonthermal particle spectrum with a hard
power-law range (slope p ∼ 1) within a few eddy turnover times. Low pitch-angle particles can
significantly exceed the nominal radiation-reaction limit, before abruptly cooling down. The particle
spectrum becomes even harder (p < 1) over time owing to particle cooling with an energy-dependent
pitch-angle anisotropy. The resulting synchrotron spectrum is hard (νFν ∝ νs with s ∼ 1). Our findings
have important implications for understanding the nonthermal emission from high-energy astrophysical
sources, most notably the prompt phase of gamma-ray bursts and gamma-ray flares from the Crab nebula.
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A variety of astrophysical sources, ranging from pulsar
wind nebulae to gamma-ray bursts (GRBs) and active
galactic nuclei, are capable of accelerating particles to
gamma-ray-emitting energies [1–3]. The high radiation
efficiency of these sources requires that the energy trans-
ferred to the particles must be carried away by radiation on
extremely short timescales, comparable or even shorter
than the light-crossing time of the system [1–3]. Under
these circumstances, the physical mechanism responsible
for particle acceleration has to compete with significant
radiative losses, and the physical origin of the observed
emission remains unclear.
Dissipation of the large reservoir of magnetic energy in the

aforementioned systems [4–7] provides a conceivable path
toward particle acceleration and copious radiative emission.
In view of the enormous scale separation between the
energy-carrying scale and the plasma kinetic scales, turbu-
lence is a natural candidate for converting the available
magnetic energy into particle kinetic energy [8,9]. In highly
magnetized turbulent plasmas with negligible radiative
losses, the interplay of magnetic reconnection [10–13] and
stochastic scattering off turbulent fluctuations [10,11,14,15]
has been shown to produce high-energy particles with robust
power-law distributions. However, power-law spectra might
be suppressed or steepened by strong radiative cooling, as
observed in simulations of turbulence with inverse Compton
scattering off external photons [13,16–18].
Numerous astrophysical sources (e.g., [19–21]) radiate a

large fraction of energy via the synchrotron mechanism,
which is usually the main radiative channel in magnetically
dominated plasmas. Under these conditions, heuristic

arguments suggested that turbulence would produce a
quasithermal electron energy distribution [22] or a steep
(p ≥ 2) nonthermal power law [23], but no first-principles
simulations have been conducted so far. Fully kinetic
simulations are necessary in order to capture the interplay
between particle acceleration, scattering, and cooling,
which enables us to self-consistently determine the result-
ing particle distribution. An assessment that takes into
account both energy and pitch angle of the particles is
essential for determining the resulting synchrotron emis-
sion and is required to obtain falsifiable, predictive models
of astrophysical high-energy sources.
In this Letter, we adopt a first-principles approach by

solving the kinetic plasma equations through the particle-
in-cell (PIC) method [24] using the PIC code TRISTAN-MP

[25,26]. We take into account the emission of radiation by
the particles via the inclusion of the radiation-reaction force
FRR in the particle equation of motion, which, in the
reduced Landau-Lifshitz form, is given by [27]

FRR ¼ 2

3
r20½ðEþ β × BÞ × Bþ ðβ · EÞE�

−
2

3
r20γ

2β½ðEþ β × BÞ2 − ðβ · EÞ2�; ð1Þ

where β indicates the dimensionless velocity of the particle,
γ is its Lorentz factor, E and B are the electric and magnetic
fields, and r0 ¼ e2=mec2 stands for the classical electron
radius. This expression for FRR gives accurate results
for parameters of interest where the classical description
of the particle motion is applicable, i.e., γB=BQED ≪ 1,
with BQED ¼ m2

ec4=eℏ ≃ 4.4 × 1013 G.
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We initialize a uniform electron-positron plasma with
total particle density n0 according to a Maxwell-Jüttner
distribution f0ðγÞ ¼ ½γ2β=θ0K2ð1=θ0Þ�e−γ=θ0 with dimen-
sionless temperature θ0 ¼ kBT0=mec2 ¼ 0.3. Here, T0 is
the initial plasma temperature, kB indicates the Boltzmann
constant, and K2ðxÞ is the modified Bessel function of the
second kind. The corresponding mean particle Lorentz
factor is γth0 ≃ 1.6. Turbulence develops from uncorrelated
magnetic field fluctuations initialized in the plane
perpendicular to a uniform mean magnetic field hBi ¼
B0ẑ (see Supplemental Material [28]). The initial magnetic
energy spectrum peaks near kp ¼ 8π=L, which defines the
energy-carrying scale l ¼ 2π=kp.
To capture the full turbulent cascade from macroscopic

scales to kinetic scales, we adopt a periodic cubic box of
volume L3 consisting of 30723 cells of size Δx ¼ de0=3,
where de0 ¼ c=ωp0 indicates the initial plasma skin depth

and ωp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0e2=γth0m

p
is the relativistic plasma fre-

quency. We employ an average of eight computational
particles per cell. We have verified with smaller 3D
simulations that the discussed results are the same when
using up to 128 particles per cell.
The strength of initial fluctuating magnetic

energy relative to plasma enthalpy is quantified by
σδB ¼ δB2

rms0=4πn0w0mc2, where w0 ¼ γth0 þ θ0 is the
enthalpy per particle and δBrms0 ¼ hδB2ðt ¼ 0Þi1=2. We
consider strong turbulence with δBrms0 ¼ B0. The corre-
sponding total magnetization is σ ¼ σB0

þ σδB, with
σB0

¼ B2
0=4πn0w0mc2. Since we are interested in the

relativistic regime, we take σB0
¼ σδB ¼ 50, which yields

the Alfvén speed vA ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=ð1þ σÞp

≃ c.
The strength of the radiation-reaction force is para-

metrized by the Lorentz factor (γrad) for which the drag
force balances the accelerating force. For ultrarelativistic
particles (γ ≫ 1, β ≃ 1), the balance between the accel-
erating electric force Facc ¼ eE and the drag force induced
by synchrotron losses Fsync

RR ≃ ð2=3Þr20γ2B2 sin2 α (where B
is a fiducial magnetic field and α is the pitch angle
evaluated in the fluid frame) gives

γrad ¼
1

sin α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3βE
2

Bcl

B

r

; ð2Þ

where Bcl ¼ e=r20 ¼ m2
ec4=e3 is the critical classical mag-

netic field strength and βE ¼ E=B is the ratio between the
fiducial electric and magnetic fields.
Particles are strongly cooled if they radiate a significant

fraction of their energy in a timescale shorter than the
magnetic field dissipation timescale. Therefore, it is con-
venient to define the Lorentz factor γcool of a particle
that cools in a few (κ) outer-scale eddy turnover times,
i.e., τcoolðγcoolÞ ¼ κl=c. From the synchrotron cooling
timescale τcool ¼ γ=jdγ=dtj ¼ 3mec=ð2r20γB2 sin2 αÞ, one
can express γcool in terms of γrad as

γcool ¼
c
κl

γ2rad
ωLβE

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σB0

γth0w0
p de0

l
γ2rad
κβE

; ð3Þ

where ωL ¼ eB0=mc is the nonrelativistic Larmor fre-
quency. In this Letter, we are interested in the regime where
most particles are rapidly cooled, which is given by the
hierarchy γcool< γσ < γrad< γmax, where γmax ∼ eBl=mc2 ∼
ffiffiffiffiffiffiffi
σB0

p
γth0ðl=de0Þ is the Lorentz factor at which the particle

Larmor radius reaches the outer-eddy scale, while γσ ¼
γth0 þ σδBw0=2 ≃ 48.5 is the mean particle Lorentz
factor assuming complete turbulent field dissipation.
Therefore, here we present results from simulations
with γrad ∈ f75; 125; 200;∞g, where, in Eq. (2), we used
E ¼ 0.1δBrms0 as appropriate for fast magnetic reconnec-
tion [29,30] and sin2 α ¼ 2=3 as nominal value for an
isotropic pitch-angle distribution. Hence, γcoolðκ ¼ 1Þ ∈
f18; 50; 128;∞g, which allows us to compare different
cooling regimes.
In Fig. 1(a), we show the cell-averaged mean particle

Lorentz factor hγicell from the most strongly cooled

(a)

(b)

FIG. 1. (a) 3D plot of hγicell from a simulation with γrad ¼ 75 at
t ∼ 2.5l=c, indicating that particle acceleration is highly localized
in space. (b) Power spectra for the turbulent magnetic field (blue)
and the electric field (red) at t ∼ 2.5l=c. Slopes k−5=3⊥ (dot-dashed
line) and k−6⊥ (dashed line) are shown for reference.
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simulation (γrad ¼ 75). Particle acceleration is highly local-
ized in space, which is a natural outcome of particle
acceleration at fast-reconnecting current sheets [10,11] that
form at different scales within the turbulence inertial range.
Figure 1(b) shows that the turbulent cascade exhibits an
extended inertial range with a magnetic power spectrum that
approximately follows PBðk⊥Þ ∝ k−5=3⊥ [31,32], where k⊥ ¼
ðk2x þ k2yÞ1=2 and a slightly shallower electric power spec-
trum PEðk⊥Þ. At kinetic scales (k⊥de0 ≳ 0.5), both spectra
steepen and approach PB;Eðk⊥Þ ∝ k−6⊥ (see also [16]).
A key outcome of the turbulent cascade is the generation

of a nonthermal particle spectrum with a hard power-law
range, as shown in Fig. 2. Figure 2(a) presents the time
evolution of the particle energy spectrum dN=dγ for
γrad ¼ 75. Since particle injection via magnetic reconnec-
tion [10,11] occurs on a timescale tacc ∼ γσ=ωLβE ≪ l=c,
the initial emergence of the power law dN=dγ ∝ γ−p with

p ∼ 1 for ct=l ∼ 2–3 is essentially unaffected by radiative
cooling. At the same time, a significant fraction (∼25%) of
the total kinetic energy is carried by particles having
γ > γrad [33]. Then, the subsequent evolution of the particle
spectrum (ct=l≳ 3) reveals that the injected population of
nonthermal particles becomes even harder (p < 1) as
particles cool down.
While the power-law slope p is not affected by radiative

cooling at early times (ct=l ¼ 2.5), the spectrum of the
cooled distributions at late times (ct=l ¼ 10) is markedly
different from the uncooled one (γrad ¼ ∞), as illustrated in
Fig. 2(b). For γrad ¼ ∞, a steeper power law extends from
γ ∼ 30 up to γ ∼ γmax, as a result of stochastic Fermi
acceleration [10–15]. In contrast, for strong cooling
(γrad ¼ 75, 125), a harder power law (with p ∼ 0.5) extends
from γ ∼ 30 down to γ ∼ γcoolðκ ¼ 10Þ. This hardening of
the cooled spectrum is in striking contrast with the standard
textbook relation dN=dγ ∝ γ−max½2;pþ1� (e.g., [38]) based
on the ansatz of isotropy for the velocity distribution of the
synchrotron-emitting particles.
Both effects—the late-time hardening of the particle

spectrum and the physics of particles exceeding γrad—can
be understood by realizing that particle acceleration and
cooling drive a significant energy-dependent anisotropy of
the particle pitch angle α. We show it in Fig. 3(a), where we
display the mean of sin2 α as a function of γ − 1. We
measured α and γ in the local E × B frame, as this yields a
straightforward evaluation of the synchrotron losses. We
find that hsin2 αi deviates significantly from the expected
mean of an isotropic distribution, hsin2 αi ¼ 2=3 (compare
with dotted line). In particular, at late times, hsin2 αi attains
a minimum in correspondence with the high end of the
cooled power law (γ ∼ 30) and approximately follows
hsin2 αi ∝ γ−1.3 at lower γ. [39]. From the analysis of the
trajectories of a subsample of ∼107 particles, we find that
sin α generally increases as the particles cool down. This is
illustrated in Fig. 3(b), where we show the evolution of
particles starting from a given ðγ − 1; sin2 αÞ bin in the
high-energy end of the nonthermal tail (see yellow square).
Contours of the probability density functions (at 1 standard
deviation) for the tracked particles show, indeed, that sinα
increases during cooling (cΔt=l ¼ 1, 2, 4). This statistical
outcome reflects the fact that synchrotron cooling is biased
toward cooling down those particles that get deflected to
higher sin α.
The energy-dependent pitch-angle anisotropy regulates

the evolution of the particle energy spectrum in view of
τcool ∝ ðγ sin2 αÞ−1. It is straightforward to show that, if we
take sin α ∝ γq in the range of interest of the power
law, γcool < γ < γσ , the cooled distribution of particles
injected via reconnection turns into the power law
dN=dγ ∝ γ−2ð1þqÞ, assuming monoenergetic injection.
Thus, if q < 0, the cooled particle spectrum becomes
harder than the common expectation for isotropic particles.

(a)

(b)

FIG. 2. (a) Time evolution of the particle energy distribution
separated in two time intervals for the simulation in Fig. 1.
(b) Particle energy distributions at ct=l ¼ 2.5 (solid lines) and
ct=l ¼ 10 (dot-dashed lines) for simulations with γrad ∈
f75; 125; 200;∞g.
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Pitch-angle anisotropy also explains why some particles
exceed γrad. To illustrate this effect, in Fig. 4(a) we show the
Lorentz factor evolution of ten representative particles that
reach high energies for nonradiative (top panel) and
radiative (bottom panel) turbulence. In nonradiative turbu-
lence, stochastic acceleration following injection can drive
particles up to γ ∼ γmax [10–15,40]. Stochastic acceleration
is suppressed in the fast-cooling regime, but particles can
still reach γ ≫ γrad by being accelerated with sinα ≪ 1,
thus beating the otherwise rapid losses. When particles
reach γ ≫ γrad, after a scattering event increases their pitch
angle, they abruptly radiate away most of their energy in a
fraction of gyroperiod since τcoolðγ ≫ γradÞ ≪ γrad=ðωLβEÞ
for sin α ∼ 1. Figure 4(b) shows the distribution
fðj cos αj; γÞ with respect to j cos αj and γ evaluated in
the local E × B frame, normalized such thatR
1
0 fðj cos αj; γÞdðj cos αjÞ ¼ 1. While most high-energy
particles have cos α ∼ 0 in nonradiative turbulence (left
panel), the distribution is strongly peaked at j cos αj ∼ 1 in
the radiative regime (right panel), as particles with
cos α ∼ 0 would necessarily be cooled down when γ > γrad.
We finally calculate the angle-integrated synchrotron

spectrum [38,41]. Figure 5(a) shows the time evolution of
the energy flux νFν for γrad ¼ 75. At low frequencies, the

synchrotron spectrum is the usual νFν ∝ ν4=3. At higher
frequencies, we find νFν ∝ ν0.8 up to νpeak ∼ νrad ∼ γ2radνL,
where νL ¼ ωL=2π. A significant fraction (∼35%) of
radiative power is emitted above νrad at ct=l ¼ 2.5 (the
time of peak luminosity). At later times, the high-
energy end of the synchrotron spectrum recedes to lower
frequencies as particles lose their energy and further
particle acceleration fades, since most of the turbulent
magnetic energy has already been dissipated. Figure 5(b)
shows the synchrotron spectrum at peak luminosity for
different degrees of radiative cooling. The spectral slope
below νpeak is consistently hard and essentially unaffected
by cooling.
In summary, we have demonstrated that radiative rela-

tivistic plasma turbulence is a viable mechanism for fast
particle acceleration and emission, which self-consistently
generates nonthermal particle spectra with a hard power-
law range. Particle acceleration can beat synchrotron losses

(a)

(b)

FIG. 4. (a) Evolution of the Lorentz factor for ten representative
particles that attain γ > 3γσ during their evolution for γrad ¼ ∞
(top) and γrad ¼ 75 (bottom). (b) Particle distributions as a function
of j cos αj and γ evaluated in the local E × B frame in the time
range 2 < ct=l < 6 for γrad ¼ ∞ (left) and γrad ¼ 75 (right).

(a)

(b)

FIG. 3. (a) hsin2 αi as a function of the particle kinetic
energy evaluated in the local E × B frame, at ct=l ¼ 2.5 (solid
lines) and ct=l ¼ 10 (dot-dashed lines) for simulations with
γrad ∈ f75; 125; 200;∞g. (b) From the γrad ¼ 75 simulation,
contours of the probability density functions (at 1 standard
deviation) for particles starting in a selected ðγ − 1; sin2 αÞ bin
at t0 ¼ 3l=c (yellow) and followed after cΔt=l ¼ 1 (red),
cΔt=l ¼ 2 (green), and cΔt=l ¼ 4 (blue).

PHYSICAL REVIEW LETTERS 127, 255102 (2021)

255102-4



by occurring at small pitch angles. Consequently, particles
can significantly exceed the nominal radiation-reaction
limit before abruptly cooling down after pitch-angle scat-
tering. The anisotropy of the pitch-angle distribution,
which is energy dependent, also controls the evolution
of the particle energy spectrum, which is much harder than
would otherwise be for an isotropic distribution. The
turbulent energy cascade produces a power-law synchro-
tron spectrum νFν ∝ νs with s ∼ 1 up to the synchrotron
peak, with a significant fraction of radiative power tem-
porarily emitted above the nominal radiation-reaction limit.
These results have important implications for the origin of
the nonthermal synchrotron emission from high-energy
astrophysical sources, in particular, for the prompt phase of
GRBs, where s ∼ 1 below νpeak is often inferred from the
observations [2], and gamma-ray flares from the Crab
nebula, where significant radiation is emitted beyond the
synchrotron burn-off limit [1].
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