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Abstract—Algorithmic bias is of increasing concern, both to
the research community, and society at large. Bias in AI is more
abstract and unintuitive than traditional forms of discrimination
and can be more difficult to detect and mitigate. A clear gap exists
in the current literature on evaluating the relative bias in the
performance of multi-class classifiers. In this work, we propose
two simple yet effective metrics, Combined Error Variance (CEV)
and Symmetric Distance Error (SDE), to quantitatively evaluate
the class-wise bias of two models in comparison to one another.
By evaluating the performance of these new metrics and by
demonstrating their practical application, we show that they can
be used to measure fairness as well as bias. These demonstrations
show that our metrics can address specific needs for measuring
bias in multi-class classification. Demonstration code is available
at https://github.com/gentry-atkinson/CEV SDE demo.git.

Index Terms—fairness, bias, model quality, model comparison

I. INTRODUCTION

Broad acceptance of the large-scale deployment of AI and
neural networks depends on the models’ perceived trustwor-
thiness and fairness. However, research on evaluating and
mitigating bias for neural networks in general and compressed
neural networks in particular is still in its infancy. Because
deep neural networks (DNNs) are “black box” learners, it
can be difficult to understand what correlations they have
learned from their training data, and how that affects the
downstream decisions that are made in the real world. Two
models may appear to have very similar performance when
only measured in terms of accuracy, precision, etc. but deeper
analysis can show uneven performance across many classes.
Moreover, when the number of tasks grows beyond one or
two, the difficulty in reasoning and quantifying trade-offs when
selecting or validating a model also grows.

Widely accepted and effective metrics for measuring the
bias of several neural networks against one another are still
missing. Issues of both fairness and bias, which will be
discussed as distinct but related phenomena in this paper, can
seriously degrade the trustworthiness of a machine learning
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Fig. 1: Google NGram Data [1] showing relative usage of
machine learning related terms over time. Deep learning has
quickly passed up the use of statistical terms like logistic
regression. Computer Vision tasks like Object Detection and
Image Recognition are growing at faster rates than Binary
Classification which fairness metrics can address.

model in real-world conditions. It is important to quantify the
performance of models in terms both of bias and fairness.
While there exists extensive work on AI fairness regarding
binary classification tasks [2]–[5], there is a shortage of
metrics extending these ideas to other machine learning tasks.978-1-6654-5408-7/22/$31.00 © 2020 IEEE
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Even though many researchers are interested in studying the
fairness of their models, we simply do not have the tools to
measure for many domains yet.

In fact, recent trends shown in Figure 1, are exacerbating the
divide with the majority of new research in neural networks
exploring topics outside of the reach of existing fairness and
bias metrics. While difficult to quantify exactly we see from
Google NGram data [1] since 2010, the focus of machine
learning is increasingly on multi-class classification and other
difficult to quantify tasks rather than binary classification,
revealing a need for metrics that can accommodate multi-class
tasks. Worse still, we appear to be at the edge of another
inflection point in AI where Large Language Models (LLMs)
and Foundational models [6] like GPT-3 [7] are ingesting the
entire corpus of human thoughts with limited supervision.

In this paper, we introduce two new metrics based on
simple principles, whose purpose is to quantify a change in
per-class bias between two or more models. These metrics
provide singular data points that are easier to consider than
the laborious checking of distributions of class-wise error
rates. We will discuss their intuition and their application for
comparing the relative performance of deep learning models,
and classifiers in general, in terms of bias and fairness. To
the best of our knowledge, these new metrics are distinct
from all existing methods in that they expose per-group, per-
class bias not neatly captured by other metrics, enabling the
examination of issues of fairness and bias in great depth. While
our proposed work is not a panacea for all emerging trends
in AI, we believe it represents a starting point to address the
current gap.

The remaining sections are organized as follows. In Sec-
tion II we will contextualize the field of fairness metrics and
their shortcomings as they relate to our considered problem
domain. In Section III we will define the intuition for our
metrics, and provide a mathematical definition. In Section IV
we will provide specific use cases as experiments we envision
the metrics will be used in, and how to reason about their
differences. Section V will discuss some limitations of our
metrics and how we might improve or extend them to other
domains.

II. BACKGROUND

Bias and fairness in machine learning have received increas-
ing attention in recent years. The advantages of algorithmic
decision-making can be very attractive to large organizations,
but there is a risk that the output of these algorithms can
be unfair [8]. Unfairness can have serious perceptual and
legal consequences for organizations who choose to rely on
machines to make important decisions [9]. This makes it
imperative that quantitative measures for bias and fairness in
machine learning be defined.

Bias, discrimination, and unfairness are terms that are often
used interchangeably but we would like to make a distinction
to better dissect the problem. We will refer to bias as meaning
the behavior of a machine learning model giving preference to
one characterization over another [10]. Or put simply, having
a lower error rate on one class than another. When discussing

fairness in this paper, we will be referring to group fairness,
which in general is concerned with outcomes for privileged
and unprivileged groups [5], where a group is a protected
feature of an instance from the training data characterizing the
instance in some way. Typically we do not want membership in
a group to affect the outcome of a prediction, e.g. considering
race or gender for ranking resumes or home loan applications.

There are other accepted definitions of fairness as well [8].
Individual fairness requires that a model give similar predic-
tions for similar individuals. Subgroup fairness, which uses
notions of both individual and group fairness by holding
some constraint over large collections of a subgroup. However,
group fairness is the most commonly measured by metrics of
fairness [8].

Both bias and unfairness can degrade the performance of
a model in ways that are not well captured by accuracy,
precision, and other measures of machine learning (ML) per-
formance. Biased and unfair models can perform very well on
biased or unfair data. A nuanced metric can reveal conditions
under which a model’s performance might be degraded by the
bias of the model or its training data. Many good metrics exist
for measuring the group or individual unfairness of a model,
but the focus has overwhelmingly been on tasks of supervised,
binary classification [9].

Substantial literature has emerged concerning algorithmic
bias, discrimination, and fairness. Mehrabi et al. conducted a
survey on bias and fairness in machine learning [8]. Mitchell et
al. explored how model cards can be used to provide details on
model performance across cultural, racial, and inter-sectional
groups and to inform when their usage is not well-suited
[11]. Gebru el al. proposed using datasheets as a standard
process for documenting datasets [12]. Amini et al. proposed
to mitigate algorithmic bias through re-sampling datasets by
learning latent features of images [13]. Wang et al. designed a
visual recognition benchmark for studying bias mitigation in
visual recognition. [14].

Other metrics of fairness have been described in recent
works [2]–[5] whose purpose is to measure unfairness in ma-
chine learning models. Measurements of fairness based on the
area under the receiver operating characteristic curve (AUC-
ROC) are described in [4] and expanded in [2]. These metrics
measure group-wise accuracy using AUC. Prediction Sensi-
tivity, described in [5] fills the need for a reliable measure of
individual fairness, as opposed to group fairness. A common
shortcoming of these metrics is that they focus predominately
on binary classification [9] and are not meaningful in tasks of
multi-class classification. Our proposed metrics are usable with
any number of classes. Additionally, few works have studied
how bias can present as unfairness and vice versa.

To the best of our knowledge, our work is among the
first to propose a single metric shown to express both bias
and unfairness when comparing two models. Other work has
extended the definition of Demographic Parity to include
multi-class classification [15] to provide a rule for optimal
classification under a restraint of Demographic Parity. Our
metrics are distinct from this previous work in that they pro-



vide a method for detecting issues of unfairness in class-wise
error rates rather than in overall accuracy. Mutli-calibration,
the distinguish-ability of multi-class predictions and ground
truth to down stream observers, is being re-investigated as
a measure of group fairness [16], but this is better seen as
a framework for tuning fair models rather than a metric for
assessing fairness.

Multi-group fairness can be as challenging as multi-class.
This is particularly true when the groups potentially overlap.
Recent work [17] has shown a method for producing a
Bayes-optimal group-wise classifier can be generated which
maximizes fairness when measured with fractional and convex
metrics.

III. PROPOSED METRICS FOR CLASS-WISE BIAS

We propose two new metrics, Combined Error Variance
(CEV) and Symmetric Distance Error (SDE)s. Both measure
changes in the class-wise false positive and false negative rates
of two models, and each has its own advantages which will
be explored in Section IV. When calculating both CEV and
SDE one model is used as the base and another model as the
alternative.

A. Combined Error Variance

The concept of the Combined Error Variance (CEV) metric
is to measure the tendency of DNNs to sacrifice performance
on one class for the benefit of others. CEV approximates the
variance of the change in False Negative Rate (FNR) and
change in False Positive Rate (FPR). It summarizes changes
in FNR/FPR away from the model’s average. Mathematically,
CEV is defined as follows.

δXie =
Xie − X̂ie

X̂ie

(1) δXµe =
1

n

n∑
i=0

(δXie) (2)

cev =
1

n

n∑
i=1

(dist((δXµpos, δXµneg), (δXipos, δXineg)))
2

(3)
Let Xie be a pair of values for the FPR and FNR for class

i of the comparison model and X̂ie be the original models
FPR/FNR pair, with e indicating either the false-positive or
false-negative rate. We first find the normalized change in
FPR/FNR, noted as δXie, by subtracting the error rates for
the two models from each other and dividing by the original.
The mean change δXµe is found by averaging the values of
δXie, keeping in mind that every δXie is the change in two
values FPR and FNR. The CEV is calculated by treating each
δXie as a point in a 2-dimensional space of FNR and FPR. The
square of the euclidean distances between each δXie and the
mean change represented by δXµe are summed and divided
by the total number of classes n. Euclidean distance has been
used as the distance measure in the results presented later, but
other distance measures could still be used.

B. Symmetric Distance Error

The principle of the Symmetric Distance Error (SDE) metric
is to measure another undesirable bias behavior that presents
in simple models. That is, a class with more training examples
or that has similar features to another class is more frequently
to be chosen by the model with limited capacity. To reflect
this biased behavior, SDE calculates how ”far away” from
balanced is the change in FPR/FNR for each single class error.
Intuitively, if we make a scatter plot with changes in FPR and
FNR as X and Y values, the diagonal line in that plot would be
a perfectly balanced change in FPR/FNR. Therefore, the SDE
can be calculated as the symmetric distance of each change to
that balance line.

d =
|a(x0) + b(y0)|√

a2 + b2
(4)

d =
|(1)(x0) + (−1)(y0)|√

(1)2 + (−1)2
=

|x0 − y0|√
2

(5)

For a line in the Cartesian plane described by the equation
ax + by + c = 0, the distance d from any point (x0, y0) can
be derived from the equation in 4. In our specific context, the
diagonal of the Cartesian plane (i.e. the balance line) is x = y
or x − y = 0 will represent an equal difference in FNR and
FPR between two models. Given any change of FNR and FPR
the symmetric distance of that change to the balance line can
be calculated as:

sde =
1

n

n∑
i=0

|δFNRi − δFPRi| (6)

Once the symmetric distance of each change is calculated,
the SDE of a model can be calculated as the mean absolute
change of normalized False Positive/ False Negative rates, with
the change being calculated as described in Equation 1. The√
2 has been omitted from the final equation as a constant

that has no effect on the meaning of the metric. This metric
will therefore reveal that one model or the other is more biased
toward false positives or false negatives in a class-wise fashion.

C. Normalization

Both CEV and SDE may produce a large range of values
depending on the specific dataset, number of classes, and
performance of the models trained on that data. While not
strictly necessary, in order to make the outputs of our metrics
more interpretable, we follow a procedure for normalizing
their values based on a hypothetical ”worst performing” model
to give us a reference. To do this a set of predictions for all
test instances is produced at random with all classes being
equally likely, and the FPR/FNR of these random predictions
is calculated. The CEV and SDE of the random predictions is
generated relative to the original model. These are then used
as a divisor to normalize the other CEV and SDE values of
a group of models. Following this process, our metrics now
indicate a change in algorithmic bias relative to a random
predictor. Thus, a CEV value of 0.5 shows that the class-wise
bias of model 2 relative to model 1 has increased by 50% of
the change between model 1 and a random predictor.



TABLE I: Summary of datasets used in Section IV

Name # Train Instances Data Type # Classes

CIFAR100 60,000 Image 100
Titanic 891 Tabular 2
CelebA 202,599 Image+Annotations 40 binary attributes

TABLE II: Low resource ImageNet models from TIMM github
[18]. Top1/Top5, input image sizes, and parameter count listed.
Index corresponds to axis labels in Figure 2

index model top1 top5 img size params x106

0 efficientnet b2 80.608 95.310 288 9.11
1 efficientnet b1 78.792 94.342 256 7.79
2 efficientnet b1 pruned 78.242 93.832 240 6.33
3 mobilenetv3 large 100 miil 77.914 92.914 224 5.48
4 mobilenetv2 120d 77.294 93.502 224 5.83
5 mobilenetv3 large 100 75.768 92.540 224 5.48
6 mobilenetv3 rw 75.628 92.708 224 5.48
7 mobilenetv2 110d 75.052 92.180 224 4.52
8 pit ti distilled 224 74.536 92.096 224 5.10
9 deit tiny distilled patch16 224 74.504 91.890 224 5.91

10 mobilenetv2 100 72.978 91.016 224 3.50
11 resnet18 69.758 89.078 224 11.69

IV. EXAMPLE APPLICATIONS

We have explored several applications of CEV and SDE for
comparing the performance of two models. While we don’t
believe this list is exhaustive, in this section we illustrate
several scenarios where our proposed metrics can be used.
The datasets used in these demonstrations are summarized in
Table I. We group these applications into two categories:

1) We demonstrate using CEV/SDE in the context of
informing and selecting from any number of trained low
resource models to replace a higher capacity model.

2) Evaluating group fairness. We demonstrate how
CEV/SDE can be used to measure relative bias w.r.t pro-
tected groups. We also compare our results to existing
binary classification fairness metrics and demonstrate the
use of our metrics on multi-class data.

A. Model Selection

Bias is an important consideration when selecting a pre-
trained model from one of the dozens which are available
in many problem spaces. Here we see how one might use
CEV/SDE to detect and avoid a model more biased than
models of similar accuracy. For this example, we have selected
a set of models from the TIMM model repository [18] that
have between 3.5×106 and 11.7×106 parameters. Each model
has been pre-trained on the Imagenet dataset [19]. Table II
lists the specific models, their top1/top5 accuracy, image input
size, and number of parameters. We have constructed heat
maps of the CEV/SDE values by calculating the interaction
between each model and building an adjacency matrix. In both
Table II and Figure 2 we sort the models by Top-1 accuracy.
With our constructed matrices we can quickly observe that
mobilenetv3 large100 on row 5 column 5 stands out clearly
in the CEV/SDE matrices. We see that although the model
has comparable accuracy and parameters to mobilenetv3 rw
and mobilenetv2 110d, it is actually measured to have worse
trade-offs of FPR/FNR w.r.t to the tables best model in terms

TABLE III: Comparison of Error Rate Equality Differ-
ence(ERED) [4], Difference in Expected Value(DEV) [3], and
proposed CEV/SDE on the Titanic dataset [20]. CEV/SDE are
calculated w.r.t the whole dataset errors, and given protected
group. Values are averaged over 5 runs of train/test.

Model Our Metrics Existing Metrics

- CEV SDE ERED DEV
- All→Men All→Women All→Men All→Women FPED FNED DIMS DIAMR

NN 0.013557 0.012737 0.115002 0.093218 0.548443 0.458016 -0.269742 0.288790
SVM 0.012089 0.000736 0.109744 0.027081 0.412500 0.593508 -0.067460 0.491071
GTB 0.000107 0.000941 0.010341 0.030619 0.458462 0.513932 -0.193700 0.364831

of accuracy efficientnet b2, and is no better or worse than
several of the next several models on our accuracy sorted list.
CEV and SDE have prevented us from making a poor selection
with relative ease. We find accuracy alone is a poor indicator
of model quality. For example mobilenetv3 large 100 (#5) has
significantly different per-class accuracy compared to models
with similar top-1 accuracy.

B. Fairness

Fairness is often defined as the ability of a model to classify
all groups within the testing data equally well. For example, a
model trained to recognize human faces should be equally
good at recognizing the faces regardless of demographic
traits (e.g race, gender, age). Unfortunately, unintentionally
biased data collected in real-world datasets and even train
methodologies can cause undesired performance in models.
Our metrics were developed specifically to measure the bias
of classifiers, but we will demonstrate they may also be used
for measuring fairness as well. Importantly, this methodology
allows the metrics to measure fairness in multi-class examples.

To measure bias with CEV or SDE, one model is compared
to another. This process can be adapted to measure fairness
by comparing a model’s performance on its test data to its
performance on a subset of its test instances. For this purpose,
we select from specific protected attributes and calculate bias
with respect to the groups. A large value in CEV or SDE
indicates that per-class bias is increased for one group in the
data, and that the model’s performance is lower for that group.

1) Binary Classification: To demonstrate measuring fair-
ness in binary classification, we trained several common
machine learning models on the Titanic dataset [20]: a shallow
neural network (NN), a support vector machined (SVM), and
a gradient tree boosting classifier (GTB). This dataset offers
information about Titanic passengers with the labels Survived
and Did Not Survive. The sex of each passenger is included
as a feature of each instance. Sex was excluded in the model
training and used later for group-wise fairness testing. These
metrics are presented along with the False Positive Equality
Difference(FPED), False Negative Equality Difference(FNED)
[4], Difference in Mean Scores(DIMS), and Difference in
Average Model Residuals(DIAMR) [3] in Table III.

The four metrics presented for comparison are all zero for
perfectly fair predictions. The relatively small value generated
for each of the eight metrics is an effect of the small size of
the dataset. The fact the FPED, FNED, DIMS, and DIAMR



Fig. 2: Change-in-Top1, normalized CEV, and normalized SDE adjacency matrices of models listed in Table II. Each entry
displays the given metric calculated for the columns model w.r.t the rows model. Reading the table row-wise you see trade
offs going from the row model to another. Reading the column you see the trade offs for other models going to the column
model. Higher values CEV/SDE (shown by darker cells) indicate moving towards a more biased model.

are not 0, shows that some unfairness has been learned by our
neural network. The differences in the CEV and SDE scores
moving from all data to men only, and all data to women only
also indicates biased and unfair performance by the classifier.
So we can confirm that in tasks of binary classification, our
new metrics conform to the established work in the field of
fairness. But as will be shown in Section IV-B2, CEV and
SDE are not limited to the analysis of binary labels.

2) Multi-Class Classification: We have claimed that CEV
and SDE can be used to measure fairness in multi-class
classification. We will now demonstrate that process using the
CelebA dataset [21]. This data contains several thousand im-
ages of celebrates and public figures with 40 binary attributes.
We have selected a subset of attributes representing hair color
to serve as training labels. We then trained a ResNet34 image
recognition model to identify the hair color of the image
subjects. From the remaining provided attributes, we have
identified several to serve as protected groups (“Attractive”,
“Male”, “Pale Skin”, “Young”). As these labels come from
what might be described as “privileged”, we also consider
subsets formed from the conjugate of these labels. It is worth
noting that the conjugate does not imply the opposite. For
example, the absence of a Pale Skin label does not explicitly
mean dark skin but would contain all of those examples.

The results are contained in Figure 3 and Table IV. We find
that groups “Male” and “Pale Skin” have the highest Top-1
accuracy. However, we also find they have high levels of class
unfairness. Specifically for Male, our model is far less likely
to correctly identify Male as having Blond Hair, and more
likely to incorrectly guess they have Gray Hair. Meanwhile,
“Not Pale Skin” has lower accuracy, but the accuracy and
FPR/FNRs are much closer to the average of the model as
a whole. This is easily visible in Figure 3. This unevenness
is neatly captured by the corresponding CEV and SDE values
or the groups in our data.

V. DISCUSSION AND LIMITATIONS

As with any metric, it is also important to remember that
CEV and SDE are only meaningful in context. A higher value
for CEV indicates that the second model has a higher class-

TABLE IV: Protected Attributes performance metrics for
ResNet model trained on CelebA dataset.

Protected Attribute Top-1 CEV SDE Change in FPR Change in FNR

Full Test Set 0.9212
Attractive 0.9222 0.0015 0.0331 -31.0809 80.4380
Male 0.9225 0.1413 0.2205 12.8440 77.8003
Pale Skin 0.9224 0.0035 0.0465 -43.8572 -33.9335
Young 0.9215 0.0002 0.0082 -27.6765 150.5065
Not Attractive 0.9208 0.0034 0.0493 45.6423 6.8297
Not Male 0.9207 0.0053 0.0562 1.2762 47.2981
Not Pale Skin 0.9207 0.0000 0.0021 1.9565 1.4648
Not Young 0.9213 0.0035 0.0313 146.3057 0.2381

wise bias. A higher value for SDE indicates that the second
model is skewing towards false positives or false negatives.
Either behavior represents a degraded real-world performance
for a model in a way that may not be captured by accuracy
or precision, as demonstrated in Section IV.

Data that meaningfully describes the real world is often
multi-class. While it is true to that multi-class classification
can be re-framed as many binary classification problems, re-
framing a problem as 100 or 1,000 one-vs-each problems
would only serve to make reasoning about the implications
much more difficult. We believe CEV and SDE are applicable
to many real-world problems completely ignored by their
binary cousins.

CEV and SDE can be used to measure the fairness of a
machine learning model, but only group fairness. Individual
fairness, which is defined as the degree to which similar
individuals are classified similarly, is not measured in any of
the use cases presented in Section IV.

We have not found any consistent threshold that indicates by
itself that a model is or is not biased. Another important note
is that biased performance may be the result of algorithmic
bias, or it may be a reflection of biased data and CEV/SDE
alone cannot determine its source. Despite these limitations,
CEV and SDE reliably indicate that one model is more or less
biased than another. As concluded in [3], “Fairness metrics in
machine learning must be interpreted with a healthy dose of
human judgment.”

CEV and SDE are calculated w.r.t to some other classifier
and only classifiers. As such they are not suitable for every



Fig. 3: Change in FP/FN rate for protected subgroups of ResNet model trained on CelebA dataset. Change is calculated w.r.t
the to complete validation set

situation. However, we believe they provide a good start-
ing point for the community to begin to address measuring
more sophisticated machine learning tasks. Additionally, we
endeavor to extend the concepts of CEV/SDE to other tasks
(e.g. image segmentation), which are harder still to quantify.
We also believe our insights from CEV/SDE can be used to
create stand-alone metrics to measure bias and fairness without
making direct model comparisons.

VI. CONCLUSION

Unfairness is a persistent and difficult problem in machine
learning. Bias is more quantifiable but just as dangerous
to the reliable performance of machine learning models in
the real world. In this paper, we have introduced two new
metrics: CEV and SDE. These metrics can reliably reveal that
a model is more or less biased compared to another model.
We have also demonstrated that these new metrics can be used
to measure the fairness of a model used for classification.
Importantly, these metrics are meaningful when used with
multi-class data, even with a very large number of classes.
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