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Abstract. Data in the form of ranking lists are frequently encoun-
tered, and combining ranking results from different sources can po-
tentially generate a better ranking list and help understand behaviors
of the rankers. Of interest here are the rank data under the follow-
ing settings: (i) covariate information available for the ranked enti-
ties; (ii) rankers of varying qualities or having different opinions; and
(iii) incomplete ranking lists for non-overlapping subgroups. We re-
view some key ideas built around the Thurstone model family by
researchers in the past few decades and provide a unifying approach
for Bayesian Analysis of Rank data with Covariates (BARC) and its
extensions in handling heterogeneous rankers. With this Bayesian
framework, we can study rankers’ varying quality, cluster rankers’
heterogeneous opinions, and measure the corresponding uncertain-
ties. To enable an efficient Bayesian inference, we advocate a parameter-
expanded Gibbs sampler to sample from the target posterior distri-
bution. The posterior samples also result in a Bayesian aggregated
ranking list, with credible intervals quantifying its uncertainty. We
investigate and compare performances of the proposed methods and
other rank aggregation methods in both simulation studies and two
real-data examples.

Key words and phrases: Thurstone model, rank aggregation, hetero-
geneous rankers, infinite mixture model, parameter-expanded data
augmentation.

Rank data are rather prevailing these days, and combining ranking results
from different sources is a common problem. Well-known rank aggregation
problems range from the election problem back in the 18th century (Borda,
1781) to search engine results aggregation in modern days (Dwork et al., 2001;
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Liu, 2009). In many cases, there are variations and complications associated
with rank data. Sometimes, there are relevant covariates of the ranked entities
while the ranking lists are highly incomplete. Also, the rankers are likely het-
erogeneous. Here, we illustrate the problem in detail using the following two
examples.

Example 1 (NFL Quarterback Ranking). During the National Football League
(NFL) season, experts from different websites, such as espn.com and nfl.com,
provide weekly ranking lists of players by position. For example, Table 1 shows
the ranking lists of the NFL starting quarterbacks from 13 experts in week 12
of season 2014. The ranking lists can help football fans better predict the per-
formance of the quarterbacks in the coming week and even place bets in online
fantasy sports games. After collecting ranking lists from the experts, most web-
sites aggregate them using arithmetic means. Besides rankings, some summary
statistics of the NFL players are also available online. For example, Table 2
shows the statistics of the ranked quarterbacks prior to week 12 of season 2014.
Not surprisingly, in addition to watching football games, the experts may also
use these summary statistics when ranking quarterbacks.

Table 1
Ranking lists of NFL starting quarterbacks from 13 different experts, as of week 12 in the 2014 season.

The first column shows the players’ names, and the remaining columns show the ranked positions of
these players from the 13 experts.

Player 1 2 3 4 5 6 7 8 9 10 11 12 13

Andrew Luck 1 1 1 3 3 1 1 1 1 1 1 1 1
Aaron Rodgers 2 3 4 2 1 2 3 3 2 2 3 4 3

Peyton Manning 3 2 5 4 2 3 2 2 3 4 4 2 2
Tom Brady 4 7 3 5 4 5 4 6 4 3 6 8 4
Tony Romo 9 5 6 1 5 4 5 4 5 5 7 6 6
Drew Brees 10 4 2 8 9 7 7 5 7 6 2 3 5

Ben Roethlisberger 6 8 7 7 7 6 6 10 6 7 5 7 7
Ryan Tannehill 5 6 13 6 11 8 8 7 9 9 8 5 8

Matthew Stafford 8 9 11 13 8 9 9 8 8 8 9 9 9
Mark Sanchez 22 10 9 9 16 10 10 9 10 10 12 12 12
Russell Wilson 12 13 17 10 10 12 11 12 11 12 11 14 15
Philip Rivers 7 14 15 20 6 17 17 11 16 15 14 10 10
Cam Newton 18 12 8 17 19 11 14 14 14 16 21 13 14
Eli Manning 17 – 18 19 14 19 12 13 12 13 16 23 11
Matt Ryan 21 17 19 15 20 15 15 15 13 11 20 21 13

Andy Dalton 15 – 14 – 17 14 16 20 15 14 19 22 16
Alex Smith 16 11 21 16 18 18 18 16 20 21 13 11 17

Colin Kaepernick 11 16 16 11 12 16 21 17 19 18 22 16 21
Joe Flacco 24 15 12 14 24 13 13 18 18 20 15 15 19
Jay Culter 13 18 10 12 13 21 19 19 17 17 23 20 18

Josh McCown 14 19 22 18 15 22 22 21 21 19 18 17 23
Drew Stanton 20 20 – 22 22 20 20 23 22 22 10 19 20

Teddy Bridgewater 23 21 20 21 23 23 23 22 23 24 17 18 22
Brian Hoyer 19 – – – 21 24 24 24 24 23 24 24 24

Source: fantasy.nfl.com/research/rankings, www.fantasypros.com/nfl/rankings/qb.php.

In Example 1, according to Table 1, most experts give very similar ranking
lists, with a few exceptions such as experts 1 and 5. Besides, some rankers do
not place the players in Table 1 on their top 24 lists, making the ranking lists
incomplete. Therefore, it is of interest to understand how the rankings may
be dependent of the available summary statistics (i.e., covariates), whether the
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Table 2
Relevant statistics of the ranked quarterbacks, prior to week 12 of the 2014 NFL season. From left to

right, the statistics stand for: number of games played; pass completion percentage; passing attempts per
game; average passing yards per attempt; touchdown percentage; intercept percentage; running attempts

per game; running yards per attempt; running first down percentage.

Player G Pct Att Avg Yds TD Int RAtt RAvg RYds R1st

Andrew Luck 11 63.40 42.20 7.80 331.00 6.30 2.20 4.20 4.20 17.50 30.40
Aaron Rodgers 11 66.70 31.10 8.60 268.80 8.80 0.90 2.50 6.40 16.20 50.00
Peyton Manning 11 68.10 40.20 8.00 323.50 7.70 2.00 1.50 -0.50 -0.70 0.00
Tom Brady 11 65.00 37.90 7.20 272.50 6.20 1.40 1.70 0.70 1.30 21.10
Tony Romo 10 68.80 29.50 8.50 251.90 7.50 2.00 1.50 2.50 3.70 20.00
Drew Brees 11 70.30 42.00 7.60 317.40 4.80 2.40 1.70 2.80 4.90 26.30
Ben Roethlisberger 11 68.30 37.50 7.90 297.30 5.80 1.50 1.90 1.10 2.10 19.00
Ryan Tannehill 11 66.10 35.40 6.60 234.70 5.10 2.10 3.70 6.70 25.10 36.60
Matthew Stafford 11 58.80 37.70 7.10 267.50 3.10 2.40 2.80 2.00 5.60 16.10
Mark Sanchez 4 62.30 36.50 8.10 296.80 4.80 4.10 3.50 0.60 2.00 7.10
Russell Wilson 11 63.60 28.50 7.10 202.70 4.50 1.60 7.60 7.70 58.50 45.20
Philip Rivers 11 68.30 33.00 7.80 257.70 6.10 2.50 2.50 2.50 6.40 25.00
Cam Newton 10 58.60 33.30 7.20 239.20 3.60 3.00 6.40 4.60 29.30 37.50
Eli Manning 11 62.30 36.90 7.00 257.50 5.20 3.00 0.80 3.80 3.10 33.30
Matt Ryan 11 65.10 38.50 7.20 278.70 4.50 2.10 1.60 4.30 7.10 33.30
Andy Dalton 11 62.40 30.70 7.10 219.40 3.60 3.00 3.80 2.50 9.50 33.30
Alex Smith 11 65.10 29.70 6.80 201.00 4.00 1.20 3.20 5.50 17.40 25.70
Colin Kaepernick 11 61.70 31.50 7.50 237.70 4.30 1.70 6.80 4.50 30.50 22.70
Joe Flacco 11 63.20 34.10 7.40 251.30 4.80 2.10 2.00 1.70 3.40 45.50
Jay Cutler 11 66.80 36.40 7.10 256.80 5.50 3.00 2.90 3.90 11.30 28.10
Josh McCown 6 60.40 30.30 7.40 225.00 3.80 4.40 2.70 5.80 15.30 50.00
Drew Stanton 6 53.60 25.20 7.10 178.20 3.30 2.00 3.00 2.00 6.00 22.20
Teddy Bridgewater 8 60.30 32.80 6.40 211.10 2.30 2.70 3.50 4.60 16.10 32.10
Brian Hoyer 11 55.90 33.20 7.80 260.40 3.00 2.20 1.80 0.90 1.50 20.00

Source: www.nfl.com/stats.

experts (i.e., rankers) are consistent in using these covariates when ranking
the players, and whether they (the rankers) have different qualities or different
opinions. Another goal is to obtain an aggregated ranking list of all players
taking into account the covariate information of the players and the potential
heterogeneity of the experts, which hopefully can improve the accuracy of rank
aggregation compared to the simple arithmetic means.

Example 2 (Orthodontics treatment evaluation ranking). In 2009, 69 or-
thodontics experts were invited by the School of Stomatology at Peking Univer-
sity to evaluate the post-treatment conditions of 108 medical cases (Song et al.,
2015). In order to make the evaluation easier for the experts, cases were divided
into 9 groups, each containing 12 cases. For each group of the cases, each expert
evaluated the conditions of all 12 cases and provided a within-group ranking
list, mostly based on their personal experiences and judgments of the cases’
teeth records. In the meantime, using each case’s plaster model, cephalomet-
ric radiograph, and photograph, the School of Stomatology located key points,
measured their distances and angles that are considered to be relevant features
for diagnosis, and summarized these features in terms of peer assessment rat-
ing (PAR) index (Richmond et al., 1992). Table 3 shows 15 of the 69 ranking
lists for two groups, and Table 4 shows the corresponding features for these
two groups.

Understanding how each orthodontist used the available covariates to arrive
at his/her rank list and how to form a consensus ranking are important issues

www.nfl.com/stats
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Table 3
Ranking lists for Groups A and H, two of the 9 groups in Example 2. The first column shows the groups

and indices for the cases, and the remaining columns show the within-group ranked positions of these
cases from 15 experts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A1 1 3 5 2 4 1 1 2 5 5 10 8 2 4 2
A2 11 5 10 9 9 12 9 7 11 12 4 7 5 6 5
A3 6 10 8 11 11 8 11 8 12 9 6 11 12 11 11
A4 3 2 4 3 1 4 2 10 1 6 8 2 1 1 1
A5 9 4 7 5 6 6 6 5 3 3 2 5 11 7 9
A6 10 9 3 6 5 11 5 9 6 7 3 1 6 8 7
A7 8 8 11 7 12 9 12 11 8 10 7 9 8 12 12
A8 4 1 1 4 3 2 4 4 2 1 1 6 3 2 6
A9 2 12 9 8 8 5 7 3 9 8 11 12 7 5 8

A10 7 11 6 10 10 7 8 6 7 11 9 3 10 9 4
A11 5 7 2 1 2 3 10 1 10 2 5 4 9 3 3
A12 12 6 12 12 7 10 3 12 4 4 12 10 4 10 10

H1 4 8 5 8 4 11 4 3 8 9 4 4 3 11 8
H2 1 2 4 5 2 7 2 2 1 2 1 1 2 2 1
H3 2 3 2 2 1 4 1 1 2 1 6 5 5 3 3
H4 3 4 3 4 3 3 3 4 3 4 7 7 1 1 2
H5 12 12 12 12 12 12 12 12 12 12 10 12 12 9 12
H6 6 5 1 1 6 2 7 5 7 3 5 3 7 4 6
H7 8 11 6 9 10 9 11 11 10 11 11 11 6 7 10
H8 11 6 8 3 7 1 6 6 6 6 8 8 4 8 9
H9 5 7 10 11 5 10 10 10 11 8 2 6 10 12 4

H10 10 9 9 7 9 5 5 7 5 7 12 9 11 5 7
H11 9 10 7 10 11 8 9 8 9 10 9 10 8 6 11
H12 7 1 11 6 8 6 8 9 4 5 3 2 9 10 5

in this example, because the average perception of experienced orthodontists is
considered the cornerstone of systems for the evaluation of orthodontic treat-
ment outcome as described in Song et al. (2014). However, Example 2 differs
from Example 1 and prevailing rank aggregation applications in that it con-
tains many “local” rankings among non-overlapping subgroups. Having been
demonstrated to be associated with ranking outcomes by Song et al. (2015),
the covariate information can not only help generating a consensus full rank-
ing list, but also potentially reveal inhomogeneity among these experts in their
ranking “qualities” as well as their way of using the covariates, (Liu et al., 2012;
Song et al., 2014). As shown in Table 3 and our later analysis, there are clearly
heterogeneous qualities or opinions among rankers. For example, the ranking
position of case A9 from the listed 15 experts in Table 3 ranges from 2 to 12.

There are mainly two types of methods dealing with rank data. The first type
tries to find an aggregated ranking list that is consistent with most input rank-
ings according to some criteria. For example, Borda (1781) aggregated rank-
ings based on the arithmetic mean of ranking positions, commonly known as
Borda count. Van Erp and Schomaker (2000) studied several variants of Borda
count. Dwork et al. (2001) proposed to aggregate rankings based on the station-
ary distributions of certain Markov chains, which are constructed heuristically
based on the ranking lists; and DeConde et al. (2006) and Lin (2010) extended
this approach to fit more complicated situations. Lin and Ding (2009) obtained
the aggregated ranking list by minimizing its total distance to all the input
ranking lists, an idea that can be traced back to the Mallows model (Mallows,
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Table 4
Eleven covariates measured based on peer assessment rating (PAR) index. From left to right, the statistics

stand for: Upper right segment; Upper anterior segment; Upper left segment; Lower right segment;
Lower anterior segment; Lower left segment; Right buccal occlusion; Left buccal occlusion; Overjet;

Overbit; Centerline.

Urs Uas Uls Lrs Las Lls Rbo Lbo Oj Ob Cl

A1 1.56 0.22 1.44 1.00 0.00 1.22 0.00 0.33 0.00 0.00 0.00
A2 1.33 0.22 1.00 0.33 0.00 0.33 0.00 0.33 0.00 0.33 0.00
A3 1.22 0.33 1.00 0.67 0.11 1.44 0.00 0.00 0.00 0.00 0.00
A4 0.00 0.00 0.11 1.78 0.22 1.89 0.33 0.67 0.00 0.00 0.00
A5 1.33 0.22 0.78 1.22 0.11 1.67 0.33 0.00 0.78 0.00 0.00
A6 1.11 0.56 1.78 0.89 0.22 0.89 0.67 1.00 0.78 0.00 0.00
A7 1.22 0.67 1.89 0.89 0.11 1.00 0.67 0.33 0.67 0.00 0.00
A8 1.44 0.22 1.56 0.89 0.22 0.56 2.00 2.00 0.00 0.00 0.00
A9 1.11 0.33 1.22 0.44 0.00 1.00 2.33 0.67 0.00 0.00 0.00

A10 0.67 0.11 0.89 0.11 0.00 0.00 0.67 1.00 0.00 0.67 0.00
A11 0.67 0.89 1.00 0.67 1.33 2.44 1.33 1.00 0.11 0.00 0.67
A12 0.67 0.11 0.22 1.00 0.00 0.56 0.33 1.33 0.00 0.33 0.00

H1 0.67 0.22 0.78 1.67 0.56 0.78 0.67 0.00 0.78 0.00 0.00
H2 1.56 0.56 0.22 0.44 0.00 0.11 0.00 0.67 0.00 0.00 0.00
H3 0.56 0.22 1.00 0.33 0.11 0.78 0.00 0.67 0.00 0.33 0.00
H4 0.56 0.22 0.67 0.44 0.11 0.44 0.67 1.00 0.00 0.00 0.00
H5 1.22 0.33 0.67 0.44 0.00 0.33 1.00 0.67 0.33 0.00 0.00
H6 0.56 0.11 1.33 1.22 0.00 1.33 1.00 0.67 0.22 0.00 0.00
H7 0.56 0.33 0.78 0.78 0.00 1.22 2.00 1.33 0.44 0.33 0.00
H8 0.78 0.22 1.56 0.89 0.00 0.33 1.67 2.00 0.00 0.00 0.00
H9 0.44 0.22 1.00 0.00 0.11 0.11 1.00 0.00 0.00 0.00 0.00

H10 1.11 0.33 1.78 0.22 0.22 0.33 1.33 1.67 0.00 0.00 0.00
H11 0.67 0.67 1.00 0.67 0.56 0.56 1.00 1.00 0.11 0.00 0.00
H12 1.22 0.78 1.00 0.33 0.33 0.67 1.00 0.67 0.56 0.00 0.00

1957). Recently, Vitelli et al. (2017) proposed an efficient MCMC approach to
conduct Bayesian inference for the Mallows model and its extension allowing
mixture heterogeneous subgroups of rankers, which naturally provides uncer-
tainty quantification for the resulting quantities of interest. Li et al. (2020) for-
mulated a different extension of the Mallows model and provided both new
theoretical results and an EM algorithm for the inference. To overcome the
computational difficulty and relax model assumptions, Švendová and Schimek
(2017) proposed an indirect inference approach that tries to minimize the dif-
ference between the empirical distribution functions of entities’ ranks and the
corresponding true ones, and used non-parametric bootstrap to quantify un-
certainty.

The second type builds statistical models to characterize the data generating
process of the rank data and uses the estimated models to generate the aggre-
gated ranking list (Block and Marschak, 1960; McFadden, 1980; Diaconis, 1988;
Critchlow et al., 1991; Marden, 1996; Alvo and Yu, 2014). The most popular
model for rank data is the Thurstone order statistics model, which includes
the Thurstone–Mosteller–Daniels (TMD) model (Thurstone, 1927; Mosteller,
1951; Daniels, 1950) and Plackett–Luce (PL) model (Bradley and Terry, 1952;
Luce, 1959; Plackett, 1975) as special cases. Together with variants and exten-
sions (Stern, 1990; Böckenholt, 1992; Walker and Ben-Akiva, 2002), the Thurston
model family has been successfully applied to a wide range of problems (e.g.,
Gormley and Murphy, 2006, 2008a; Johnson et al., 2002; Gray-Davies et al.,
2016). Briefly, the Thurstone model assumes that there is an underlying evalu-
ation score for each entity, whose noisy versions determine the rankings. In the
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TMD and PL models, the noises are assumed to follow the normal and Gumbel
distributions, respectively. The PL model can be equivalently viewed as a multi-
stage model that models the ranking process sequentially, where each entity has
a unique parameter representing its probability of being selected at each stage
up to a normalizing constant. A closely related literature to the development of
rank data analysis is the analysis of pairwise comparison data; see Bradley and
Terry (1952) and David (1963) for earlier development, Davidson and Farquhar
(1976) and Hastie and Tibshirani (1998) for applications, Luce (1959); Rao and
Kupper (1967); Plackett (1975); Agresti (1990) and Huang et al. (2006) for var-
ious extensions, and Hunter (2004); Guiver and Snelson (2009); Gormley and
Murphy (2009) and Caron and Doucet (2012) for efficient Bayesian computa-
tion.

Challenges arise in the analysis of ranking data when (a) rankers are of dif-
ferent qualities or belong to groups with different opinions; (b) covariate infor-
mation are available for either the rankers or the ranked entities or both; and (c)
there are incomplete ranking lists. Gormley and Murphy (2006, 2008b,a, 2010)
developed the finite mixture of PL models and Benter models (Benter, 1994) to
accommodate heterogeneous subgroups of rankers, where both the mixing pro-
portion and group-specific parameters can depend on the covariates of rankers.
Böckenholt (1993) introduced the finite mixture of Thurstone models to allow
for heterogeneous subgroups of rankers, with limited explorations; Yu (2000)
attempted to incorporate the covariate information for both ranked entities and
rankers; Johnson et al. (2002) examined qualities of several known subgroups
of rankers; and Lee et al. (2014) represented qualities of rankers by letting them
have different noise levels. See Böckenholt (2006) for a review of developments
in Thurstonian-based analysis with some further extensions. In the presence
of incomplete ranking lists, Ailon (2010); Xia and Conitzer (2011); Meila and
Chen (2012) and Liu et al. (2019) studied rank aggregation under various model
assumptions. Recently, Deng et al. (2014) proposed a Bayesian approach that
can distinguish high-quality rankers from low-quality ones, and Bhowmik and
Ghosh (2017) proposed a method that utilizes covariates of ranked entities to
assess qualities of all rankers. See also Badgeley et al. (2014); Li et al. (2017,
2018) for rank aggregation with application to genomic studies.

Although various Thurstonian models have been proposed in the past, their
inferences are mostly based on the maximum likelihood approach and the EM
algorithm (with a few exceptions). The way of quantifying uncertainties and
dealing with incomplete information has been limited. In this paper, we pro-
pose a unified framework built upon the classic Thurstone model family to deal
with incomplete ranking lists, to accommodate rankers with different qualities
or opinions, and to incorporate covariate information of ranked entities. In par-
ticular, we use the Dirichlet process prior for the mixture subgroups of rankers,
which can automatically determine the total number of mixture components.
Moreover, in addition to providing a full Bayesian inference procedure for pa-
rameter estimation of the proposed models, we also pay special attention to
rank aggregation and the uncertainty evaluation of the resulting aggregated
ranking lists.
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In this paper, we mainly focus on the TMD model and its extension to ac-
commodate various complications. The Thurstone-type model is probably one
of the most natural data generating model for rank data. It contains a rich
family of statistical models including both the TMD model and the PL model,
and is widely used in practice. We focus on the TMD model with Gaussian
errors since parametric Gaussian regression models are more intuitive and in-
terpretable, are easier to manipulate in terms of model development, and have
rich literature support. Similar extensions can be made for other Thurstone
models as well. The estimation for the TMD model is generally difficult due
to the complicated form of the likelihood function, especially when there are
a large number of ranked entities. To overcome the difficulty, Maydeu-Olivares
(1999) transformed the estimation problem to one involving mean and covari-
ance structures with dichotomous indicators, Yao and Böckenholt (1999) pro-
posed a Bayesian approach based on Gibbs sampler, and Johnson (2013) advo-
cated the JAGS software to implement the Bayesian posterior sampling. Our
new model is even more challenging than the classic Thurstone family of mod-
els because of its inclusion of new components for dealing with heterogeneous
rankers. We design an efficient parameter-expanded Gibbs sampler algorithm
(Liu and Wu, 1999), which facilitates group moves of the latent variables and
greatly improves the computational efficiency.

Our extension of the TMD model is similar in spirit to Gormley and Murphy
(2006, 2008b,a, 2010)’s extension of the PL model, but we allow infinite mixture
components using the Dirichlet process prior. Moreover, unlike the PL model,
the TMD model does not have a closed-form likelihood, and thus impose addi-
tional computational challenges. The rest of this article is organized as follows.
Sections 2 and 3 elaborate on our Bayesian models for rank data with covari-
ates. Section 4 provides details of our Markov Chain Monte Carlo (MCMC)
algorithms. Section 5 introduces multiple analysis tools using MCMC samples.
Section 6 displays simulation results to validate our approaches. Section 7 de-
scribes the two real-data applications using the proposed methods. Section 8
concludes with a short discussion.

Let U {1, 2, . . . , N} be the set of all entities in consideration, and N |U |
be the total number of entities in U . We use i1 � i2 to denote that entity i1
is ranked higher than entity i2. A ranking list is a set of non-contradictory
pairwise relations in U , which gives rise to an ordered preference list for entities
in U . We call a full ranking list if identifies all pairwise relations in U ,
otherwise a partial ranking list. When is a full ranking list, we can equivalently
write as i1 � i2 � . . . � iN for notational simplicity, and further define

i as the ranked position of an entity i ∈ U . Specifically, a higher ranked entity
has a smaller numbered position in the list, i.e. i1 < i2 if and only if
i1 � i2. For example, Tables 1 and 3 show the ranked positions of the entities
in each ranking list. Furthermore, for any vector z1, . . . , zN

> ∈ RN , we
use rank i1 � i2 � . . . � iN to denote the full ranking list of zi’s in a
decreasing order, i.e., zi1 ≥ . . . ≥ ziN .

As introduced in Examples 1 and 2, we also observe some covariates of
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ranked entities. Let i ∈ RL be the L dimensional covariate vector of ranked
entity i, and 1, 2, . . . , N

> ∈ RN×L be the covariate matrix for all N
entities. In the remaining discussion, for clarification, we use index 1 ≤ i ≤ N
for ranked entities and index 1 ≤ j ≤ M for rankers, with N and M denoting
the total numbers of ranked entities and rankers, respectively.

Suppose we have M full ranking lists 1, 2, . . . , M for entities in U {1, 2,
. . . , N}. Thurstone (1927) postulated that the ranking outcome j is determined
by N latent variables Zij’s for 1 ≤ i ≤ N, where Zij represents ranker j’s evalu-
ation score of the ith entity, and Zi1 j > Zi2 j if and only if i1 � i2 for ranker j. De-
fine j Z1j, . . . , ZNj

> as ranker j’s evaluations of all entities, and rank j
as the associated full ranking list based on j. Under the TMD model, j fol-
lows a multivariate Gaussian distribution with mean 1, . . . , N

′ repre-
senting the underlying true score of the ranked entities:

Zij i ij, ij ∼ N 0, 2 1 ≤ i ≤ N; 1 ≤ j ≤ M(2.1)

j rank j , 1 ≤ j ≤ M

where ij’s are mutually independently across all i and j. Because we only ob-
serve the ranking lists j, multiplying , by a constant or adding a constant
to all the i’s does not affect the likelihood function. Therefore, to ensure iden-
tifiability of the parameters, we fix 2 1 and impose the constraint that lies
in the space Θ { ∈ Rn : 1>N 0}, where 1N is an N dimensional vector
with all coordinates being 1.

Model (2.1) implies that the j’s are independent and identically distributed
(i.i.d.) conditional on . The likelihood function is then p 1, 2, . . . , M |
∏M

j 1 p j | with

p j |
∫

RN
p j | j, p j | d j(2.2) ∫

RN
1{rank Zj j} · 2 −N/2e−‖Zj−µ‖2/2d j.

The goals are to estimate the parameter and then generate an aggregated
ranking based on the estimated . A common approach is the maximum like-
lihood method, which is computationally challenging due to the integral in the
likelihood. Besides, it is also nontrivial to quantify the uncertainty of the result-
ing rank aggregation. We focus on the Bayesian approach, which is more con-
venient to incorporate prior information, to quantify estimation uncertainties,
and to utilize efficient MCMC algorithms including data augmentation (Tanner
and Wong, 1987) and parameter expansion strategies (Liu and Wu, 1999). With
a reasonable prior on the i’s, we can get the corresponding posterior means of

i’s, based on which we can generate an aggregated ranking list.
Recalling that is restricted to the space Θ, we define N N − N−11N1

>
N

as the projection matrix that maps any vector in RN to Θ, where N is an
N × N identity matrix and 1N is an N dimensional vector with all elements
being 1. We choose the prior of to be N

(
0, 2

N

)
. The intuition for choos-

ing this prior is that when ∼ N 0, 2
N , we have N ∈ Θ and N ∼
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N 0, 2
N . For computational convenience, it is equivalent to using the prior

∼ N 0, 2
N and considering the posterior mean of N ≡ − ¯1N ,

where ¯ n−1 ∑n
i 1 i. In other words, f 1 | 1, · · · , M f 2 − ¯1N |

1, · · · , M , where 1 ∼ N
(
0, 2

N

)
and 2 ∼ N 0, 2

N denote the
priors of . More generally, although we restrict to the parameter space Θ,
we only need to specify a prior for the unconstrained and make inference
based on the posterior distribution of − ¯1N . Therefore, in the following dis-
cussion, we relax the constraint that ∈ Θ, and emphasize that what matters
are the relative values of the i’s.

As in both examples, each ranked entity is associated with some covari-
ates that may be relevant to how the entity is perceived and thus ranked by
rankers. To incorporate the covariate information into model (2.1), we assume
that the score of each entity i depends linearly on the L-dimensional covariate
vector i, for i 1, . . . , N. To avoid being too restrictive, we allow the inter-
cept term for each entity to be different. In particular, we have the following
over-parameterized model:

i i
>
i , 1 ≤ i ≤ n

Zij i ij, ij ∼ N 0, 1 , 1 ≤ i ≤ N; 1 ≤ j ≤ M(2.3)

j rank j , 1 ≤ j ≤ M

where the ij’s are jointly independent across all i and j.
Model (2.3) is over-parameterized because is invariant if we add a constant

vector to and change i to i − >
i . However, the structure between and

, can help us construct some informative priors on , incorporating the
covariate information. Intuitively, entities with similar i’s should be close in
the underlying i’s. Such intuition is conformed by model (2.3) with suitable
priors on , , because similar entities will have higher correlation among
their i’s a priori. Model (2.3) can be helpful when the ranking information is
weak and incomplete, and the covariate information is strongly related to the
ranking mechanism. More generally, some covariates of the rankers may also
be available, and they can be similarly incorporated into the i’s in (2.3). For
example, with covariates j for each ranker j, we can model the evaluation score
of ranker j for entity i as Zij i

>
i

>
j i ij, similar to Yu (2000) and

Gormley and Murphy (2010). In this paper, we focus only on the covariates of
the ranked entities mainly due to our applications.

We further illustrate model (2.3) using the quarterback data in Example 1.
The unobserved variable Zij represents ranker j’s evaluation for the perfor-
mance of quarterback i. The expression i

>
i quantifies a hypothetically

universal underlying “score” of the quarterback, and each ranker evaluates it
with a personal variation modeled by ij. The linear term >

i can explain part
of their performance, but there are many aspects in a football game that cannot
be reflected through a linear combination of these summary statistics. The term

i can capture the remaining “random effect”. Without i, model (2.3) reduces
to a rank regression model in Johnson (2013), which can be too restrictive in
some applications.
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We set the prior , ≡ , where is N 0, 2
N and p

is N 0, 2
L , where N and L are N × N and L× L identity matrices, respec-

tively. The hyper-parameter and can reflect our prior belief on the rele-
vance of covariate information to ranking mechanism. Intuitively, the stronger
the belief on the role of covariates, the smaller the ratio 2/ 2 should be cho-
sen. The Bayesian procedure based on the generalized regression model (2.3)
is henceforth referred to as Bayesian Analysis of Rank data with Covariates
(BARC).

The PL model is another popular Thurstone model for rank data, and it dif-
fers from the TMD model described in Sections 2.2 and 2.3 in the distributional
assumption for the noises ij’s. In particular, the PL model assumes that all the
noises ij’s follow i.i.d. Gumbel distribution. Importantly, the probability of ob-
serving a rank list j under the parameter , which can be written as an integral
as in (2.2), now has an equivalent closed-form expression:

p j |
N

∏
i 1

exp
(

j i

)
∑N

i′ i exp
(

j i′
) .(2.4)

Therefore, compared to the TMD model, the PL model requires less compu-
tational cost, because the likelihood for the observed rankings has a closed-
form expression that does not involve any integral. Hunter (2004) proposed
a minorization-maximization (MM) algorithm for finding the MLE of the pa-
rameters, Guiver and Snelson (2009) worked out a Bayesian approach based
on a message-passing algorithm (Expectation-Propagation), Caron and Doucet
(2012) proposed simple Gibbs samplers for Bayesian inference, and Azari Soufi-
ani et al. (2013) proposed a class of generalized method-of-moments algorithms.
The covariate information can be similarly included as in (2.3), see, e.g., Haus-
man and Ruud (1987); Allison and Christakis (1994).

The performance of the TMD model and the PL model depend on the nature
of the data, and thus is generally case-by-case; see Azari Soufiani (2014, Chapter
2) for a simulation study. In this paper, we mainly focus on the TMD model,
and the implementation can be helpful for general noise distributions that may
not be easily integrated out.

In practice, the rankers in consideration may have different quality or reli-
ability. In these cases, it is of interest to distinguish high-quality rankers from
low-quality ones, and a weighted rank aggregation method is often preferred,
where each ranker j has a weight wj reflecting the quality of its ranking list.
However, it is generally difficult to design a proper weighting scheme in prac-
tice, especially when little or no prior knowledge of the rankers is available.
To deal with this difficulty, one can accommodate weighting through the vari-
ance parameters in the model, and infer them jointly with other parameters.
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More precisely, we model the ranker’s quality by the precision of the noise, i.e,
extending model (2.3) to the following weighted version:

i i
>
i , 1 ≤ i ≤ N

Zij i ij, ij ∼ N 0, w−1
j , 1 ≤ i ≤ N; 1 ≤ j ≤ M(3.1)

j rank j , 1 ≤ j ≤ M

where wj > 0 for all j and the ij’s are mutually independent across all i and j.
The prior for the wj’s can be any distribution with support on positive real

numbers, such as uniform and truncated chi-squared distributions. In the ab-
sence of covariates, Lee et al. (2014) considered model (3.1) and assumed that
the w1/2

j ’s are i.i.d. uniform on 0, 20 a priori. Here we consider a more restric-
tive choice where the weights take on only a few values, which can lead to a less
sticky MCMC sampler without compromising much precision in the rankers’
quality evaluation and the aggregated ranking list. Specifically, we restrict wj
to three values, 2, 1 and 0.5, standing for reliable, mediocre, and low-quality
rankers, respectively, with equal probabilities a priori, i.e.,

(3.2) P wj 0.5 P wj 1 P wj 2 1/3, 1 ≤ j ≤ M

and assume the wj’s are mutually independent across all j. We call the result-
ing rank analysis method the Bayesian Analysis of Rank data with entities’
Covariates and rankers’ (unknown) Weights (BARCW, henceforth).

All previously described models assume that the underlying score is uni-
versal to all rankers, which can sometimes be too restrictive. Böckenholt (1993)
and Gormley and Murphy (2006, 2008b,a) suggested that there are often several
categories of voters with very different political opinions in an election, and
subsequently a mixture model approach should be applied to cluster voters
into subgroups. Differing from BARCW, which studies differences in rankers’
reliability, this mixture model focuses on the heterogeneity in rankers’ opinions
while assuming that all rankers are equally reliable.

Böckenholt (1993) considered finite mixtures of TMD models. However, in
finite mixture models, a common issue is how to determine the number of
mixture components. Here we employ the Dirichlet process mixture model,
which overcomes this issue by using mixture distributions with countably infi-
nite number of components via a Dirichlet process prior (Antoniak, 1974; Fer-
guson, 1983). We first extend model (2.3) so that the underlying score of each
entity is ranker-specific:

(3.3)

j j j , 1 ≤ j ≤ M

j
j

j, j ∼ N 0, n , 1 ≤ j ≤ M

j rank
(

j
)

, 1 ≤ j ≤ M

where ∈ RN×L is the covariate matrix for all ranked entities, j represents
the underlying true score for ranker j, and j’s are mutually independent. We
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then assume that the j , j follow a distribution G that is drawn from a
Dirichlet process, i.e.,

j , j | G iid∼ G, G ∼ DP , G0 ,(3.4)

where G0 defines a baseline distribution on RN L, and is a concentration
parameter. For the ease of understanding, we can equivalently view model
(3.3)-(3.4) as the limit of the following finite mixture model with K components
when K → ∞:

〈k〉, 〈k〉 i.i.d.∼ G0, 1 ≤ k ≤ K
〈k〉 〈k〉 〈k〉, 1 ≤ k ≤ K

1, . . . , K ∼ Dir /K, . . . , /K ,

cj |
i.i.d.∼ Multinomial 1, . . . , K , 1 ≤ j ≤ M

j
〈cj〉 j, j ∼ N 0, n , 1 ≤ j ≤ M

j rank
(

j
)

, 1 ≤ j ≤ M

where the latent variable cj ∈ {1, 2, . . . , K} indicates the cluster allocation of
ranker j, and 〈k〉 corresponds to the common underlying score vector for
rankers in cluster k.

We choose the baseline distribution G0 on RN L using two independent zero-
mean Gaussian distributions with covariances 2

N and 2
L, i.e., G0 ∼ N 0,

diag 2
N , 2

L . Section 4.4 provides more details on how the prior for these
parameters in the model might be set. Obviously, G0 is the same as the prior
distribution of , we use in the previous models, and the conjugacy be-
tween G0 and the distribution of j’s leads to a straightforward Gibbs sampler
(Neal, 1992; Liu, 1994; MacEachern, 1994). Parameter represents the degree
of concentration of G around G0 and is related to the number of distinct clus-
ters. According to the Pólya urn scheme representation of the Dirichlet process
(Blackwell and MacQueen, 1973), the expected number of clusters with in to-
tal M rankers is ∑M

j 1 / j − 1 a priori. We discuss the sensitivity of these
hyper-parameters in the simulation studies.

Under this Dirichlet process mixture model, we are interested in understand-
ing the heterogeneous opinions among rankers and rank aggregation within
each cluster as well as across all clusters. The aggregated ranking in each clus-
ter is determined by those j ’s with identical values. The aggregated rank-
ing list across all clusters depends on the underlying score of all rankers, i.e.,
M−1 ∑M

j 1
j . We regard this rank analysis method as BARCM, standing for

Bayesian Analysis of Rank data with Covariates of entities and Mixture of
rankers with different opinions. Furthermore, it is also straightforward to fur-
ther incorporate varying weights for all rankers as in BARCW using model
(3.1). To avoid being too lengthy, we skip the detailed description for the mix-
ture model with varying weights, and simply denote it as BARCMW, standing
for Bayesian Analysis of Rank data with Covariates of entities and Mixture of
rankers with different opinions and Weights.
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Models (2.1), (2.3), (3.1) and (3.3)-(3.4) can all be extended to cases where the
observations are partial ranking lists. Because we define a ranking list as a set
of non-contradictory pairwise relations among ranked entities, partial ranking
lists appear when any of the pairwise relations is missing. Thus, besides the
partial ranking list j 1 ≤ j ≤ M , we also observe the j’s that indicate which
pairwise relationship is missing. Under the latent variable models, we denote

j ' rank j if the partial ranking list j is consistent with the full ranking
list rank j . Our models, BARC, BARCW and BARCM, for the observed in-
dividual partial ranking lists are the same as in (2.1), (2.3), (3.1) and (3.3)-(3.4),
except that j rank j is replaced by j ' rank j . Let and denote
the parameters for missing indicators j’s and ranking lists j’s, respectively. We
can then write the likelihood of j, j as

p j, j | , , ∑
r:r' j

∫
RN

p j | r, j, , 1{r rank Zj }p j | , d j.

If the pairwise relations are missing at random, in the sense that p j | r, j, ,
p j | r̃, ˜ j, , for all possible r, j, r̃, ˜ j such that r rank j ' j

and r̃ rank ˜ j ' j, then the likelihood of j, j can be simplified as

p j, j | , , p j | j, ,
∫

RN
1{ j'rank Zj }p j | , d j

If further the priors for the parameters and are mutually independent, we
can ignore the j’s when conducting Bayesian inference for the parameter of
ranking mechanisms.

Here we give two additional remarks. First, we consider a special type of par-
tial list, the top-K list, from which we can observed only the top K entities in a
ranking list; see e.g., Schimek et al. (2015) for more detailed discussion. When
K is fixed, it is not difficult to see that the corresponding pairwise comparison
induced from a top-K list is missing at random. Second, we consider rank data
containing ties. Generally, under the Thurstone-type model with continuous er-
rors, the ranking list will have ties with zero probability. Practically, to mitigate
this issue, we may view observed ranking lists with ties as partial ranking lists.
More explicitly, we may treat ties as missing pairwise comparisons. However,
such missing is not at random, implying that treating the information contained
in “regarding the two entities as a tie” the same as “providing no comparisons
between the two entities” may incur a little information loss, though it may not
be of any practical importance.

The discussion above mainly focuses on the extension of the TMD model
with normal noise. Similar extension can also be made for the PL model with
Gumbel noise. Gormley and Murphy (2006) extended the PL model to allow
a finite mixture of PL models. They further extended the model to mixture of
experts, allowing the dependence of mixture probabilities on the ranker’s co-
variates (Gormley and Murphy, 2008b), as well as the dependence of ranking
mechanism on the ranker’s covariates (Gormley and Murphy, 2010). A unique
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feature of the PL model is that it can be viewed as a multistage model as in (2.4).
Benter (1994) extended this multistage model by allowing the probability ratios
of being top among remaining entities to vary across different stages. Intu-
itively, under Benter’s model, the choice of the top entity becomes increasingly
random along the stages, and an entity with a smaller i in (2.4) has a greater
probability to be ranked at a higher position. Gormley and Murphy (2008b,a)
also studied the extension of Benter’s model to mixture model and mixture of
experts. For these finite mixture models, the number of mixture components are
selected based on some information criteria such as BIC. Furthermore, Gorm-
ley and Murphy (2010) studied the choice of these models, including mixture
model and mixture of experts, also using some model selection criteria, and
illustrates how the ranker’s covariate information should be incorporated into
the PL model in practice. Recently, Liu et al. (2019) studied the PL mixture
model for partial ranking lists, and proposed MCMC-based computation tools.

Our discussion for the TMD model involves only the covariates of the ranked
entities, mostly due to our application. The covariate information of the rankers,
if available, can also be incorporated similarly as in Gormley and Murphy
(2010). Again, we focus mainly on the computation for the TMD model, which
can be useful for general noise distributions that are difficult to integrate out.

We advocate the use of Gibbs sampler with parameter expansion (Liu and
Wu, 1999) for Bayesian inference with general latent variable models, and in
particular the class of TMD-based models we introduced in the previous sec-
tions. The parameter-expansion idea has been applied to ordered data and rank
data analysis in previous studies (e.g., Liu and Wu, 1999; Hoff, 2009; Fong et al.,
2016). Here we provide a unified parameter-expanded Gibbs sampling algo-
rithm for the TMD model with rankers of varying qualities or heterogeneous
opinions. We start with model (2.3) and then generalize this MCMC strategy
to the extended models (3.1) and (3.3)-(3.4). We also provide an R package for
implementing the proposed Bayesian analysis, with detailed information rel-
egated to the Supplementary Material. For notational convenience, we define

1, . . . , M ∈ RN×M, T { j}M
j 1, N , ∈ RN× N L , and

Λ diag 2
N , 2

L ∈ R N L × N L .

The most computationally expensive part in our model is to sample all
the Zij’s from the truncated Gaussian distributions. Moreover, because and

, are intertwined together due to the posited regression model, they tend
to correlate highly, similar to the difficulty in the data augmentation method
for probit regression models (Albert and Chib, 1993).

To speed up the convergence of the MCMC algorithm, we follow Scheme 2 in
Liu and Wu (1999) and exploit a parameter-expanded data augmentation (PX-
DA) algorithm. In particular, we introduce a group scale transformation of the
“missing data” matrix , which contains the evaluation scores of all rankers for
all entities, indexed by a positive parameter , i.e., t ≡ / . For 1 ≤ i ≤ N
and 1 ≤ j ≤ M, let −j denote the evaluation scores of all rankers except ranker
j, and −i,j denote ranker j’s evaluation scores of all entities except entity i. The
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PX-DA algorithm updates the missing data and the expanded parameters
, , iteratively as follows:

(i) For j 1, . . . , M and i 1, . . . , N, draw [Zij | −i,j, −j, , ] from trun-
cated N i

′
i , 1 , where the truncation points are determined by −i,j

and j such that rank j ' j.
(ii) Draw ∼ p | ,T ∝ p t |J |H d , and then update to

be t . Here, |J | −NM is the Jacobian of scale transformation,
H d −1d is the Haar measure on a scale group up to a constant,
and

p t ∝
∫

p t | , p p d d ∝ exp
{
− S

2 2

}
,

is the marginal density of latent variables evaluated at t , where

S
M

∑
j 1

>
j j −

M

∑
j 1

M

∑
j′ 1

>
j Λ−1 M > −1 >

j′ .

We can derive that 2 ∼ S/ 2
NM.

(iii) Draw , ∼ p , | ∼ N , Σ , where

Λ−1 M > −1 >
M

∑
j 1

j and Σ Λ−1 M > −1.

Below we give some intuition on why the PX-DA algorithm improves effi-
ciency. Without Step (ii), the algorithm reduces to the standard Gibbs sampler,
which updates the missing data and parameters iteratively. The scale group
move of under the usual Gibbs sampler is slow due to both the Gibbs update
for in Step (i) and the high correlation between and , . To overcome
such difficulty, the PX-DA algorithm introduces a scale transformation of to
facilitate its group move based on its marginal conditional distribution with

, integrated out. Thus, together with Step (iii), PX-DA effectively achieves
the conditional sampling of , and a scale group move of jointly. To en-
sure the validity of the MCMC algorithm, the scale transformation parameter

has to be drawn from a carefully specified distribution, such that the move
is invariant under the target posterior distribution, i.e., t follows the same
distribution as the original under stationarity. To aid in understanding, we
provide a proof in the Supplementary Material that the specified distribution
of in Step (ii) satisfies this property.

Under model (3.1) for BARCW, the Gibbs step for , , | T , is very
similar to that for , , | T under model (2.3) for BARC, with details rele-
gated to the Supplementary Material. The additional step is to draw wj given
all other variables. For j 1, . . . , M, let −j be the weights associated with all
rankers except ranker j. We draw discrete random variable wj from the follow-
ing conditional posterior probability mass function:

p wj | , −j, , ,T ∝ p wj p | , , ∝ w
N
2
j e−wj‖Zj−α−Xβ‖2

2
/2.
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Under model (3.3)-(3.4), we first represent the parameters { j , j }M
j 1 by

a cluster allocation vector c1, . . . , cM and a set of cluster-wise parameters
{ 〈k〉, 〈k〉 : k ∈ {c1, . . . , cM}}, and then use an MCMC algorithm to sample

, 〈k〉, 〈k〉 ’s and 1, . . . , M .
We introduce Rk {m : cm k, 1 ≤ m ≤ M} to denote the set of

rankers that belong to cluster k given cluster allocation . Similarly, let −j be
the subvector of excluding the jth element, and Rk −j {m : cm k, m 6
j, 1 ≤ m ≤ M} be the set of rankers except j that belong to cluster k. Due to
the conjugacy between G0 and the distribution of j’s, we can integrate out
〈k〉, 〈k〉 ’s when sampling , and the Gibbs sampling of given follows

from Algorithm 3 in Neal (2000). Specifically, the Gibbs steps are as follows:

(1) For j 1, . . . , M, draw cj from

P
(

cj k | , −j ,T
)

∝ P
(
cj k | −j

) ∫
p
(

j | 〈k〉, 〈k〉
)

p
(
〈k〉, 〈k〉 | −j

)
d 〈k〉d 〈k〉

∝ P
(
cj k | −j

)
· exp

{
−1

2
h
(
{j} ∪Rk −j

) 1
2

h
(
Rk −j

)}
,

where P
(
cj | −j

)
has the following form:

P
(
cj k | −j

) |Rk −j |
M− 1

, if k ∈ {cm : m 6 j}

P
(
cj /∈ {cm : m 6 j} | −j

)
M− 1

,

and h · is defined as

h R ∑
m∈R

>
m m − ∑

m∈R
∑

m′∈R

>
m

(
Λ−1 |R| >

)−1 >
m′

log
∣∣∣Λ−1 |R| >

∣∣∣ ,

with | · | denoting the cardinality of a set or the determinant of a matrix.
(2) For each k ∈ {c1, . . . , cM}, we sample { j}j∈Rk c

, 〈k〉, 〈k〉 | T , using
Gibbs sampling steps similar to that for , , | T under the BARC
model; see the Supplementary Material for details.

Below we discuss the choice of variance parameters 2 and 2 for our Bayesian
model BARC in (2.3) and its extensions, as well as the concentration parameter

for the Dirichlet process in the mixture model. For both variance parame-
ters, we impose priors following scaled inverse chi-squared distributions with
parameters 2, and 2, , i.e., 2 / 2 and 2 / 2 follow chi squared
distributions with degrees of freedom and , respectively. For the concen-
tration parameter, we impose a Gamma prior with shape parameter a and rate
parameter b . The Gibbs update for 2 and 2 given and under BARC and
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BARCW, as well as that given 〈k〉’s and 〈k〉’s under BARCM and BARCMW,
are straightforward and still involve sampling from scaled inverse chi-squared
distributions. The Gibbs update for involves a two-step sampling from Beta
and mixture Gamma distributions as described in Escobar and West (1995). We
relegate the computation details to the Supplementary Material. The choice of
hyperparameters 2, , 2, and a , b are discussed in the simulation
studies.

Following the Bayesian computation in the previous section, we can ob-
tain MCMC samples from the posterior distribution of , under BARC
or BARCW, and from the posterior distribution of j , j ’s under BARCM.
Based on the posterior samples, we can then obtain the following results from
Bayesian inference.

Under BARC in (2.3) or BARCW in (3.1), we use the posterior means of i ≡
i

>
i ’s to generate the aggregated ranking list. Under BARCM in (3.3)–(3.4)

and BARCMW, we use the posterior means of M−1 ∑M
j 1

j
i M−1 ∑k |Rk | ·

〈k〉
i

>
i
〈k〉 ’s to generate the aggregated ranking list.

Most existing rank aggregation methods seek only one aggregated rank, but
ignore the uncertainty of the aggregation result. When we observe i � j in a
single aggregated ranking list, we cannot tell whether i is much better than
j or they are close. The Bayesian inference provides us a natural uncertainty
measure for the ranking result. Under BARC or BARCW, suppose we have
MCMC samples { s }S

s 1 from the posterior distribution p | 1, · · · , M . For
each sample s , we calculate a ranking list s rank s . We use s i to
denote the position of entity i in ranking list s , and define the 1− credible
interval for entity i’s rank as

L i , U i
[

2
i , 1− 2

i
]

,

where
2

i and 1− 2
i are the 2 th and 1− 2 th sample quantiles of { s i }S

s 1.
The construction of credible intervals for entities’ ranks under BARCM is very
similar, and thus omitted here.

In BARCW and BARCM, as well as their combination BARCMW, we aim to
learn the heterogeneity in rankers and subsequently improve and better under-
stand the rank aggregation results. Both methods deliver meaningful measures
to detect heterogeneous rankers.

In BARCW, we assume that all rankers share the same opinion and the sam-
ples from p | T measure the reliability of the input rankers. In BARCM, we
assume that there exist a few groups of rankers with different opinions, despite
all being reliable rankers. The MCMC samples from p | T estimate ranker
clusters with different opinions. The number of clusters is determined by the
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number of distinct values in cluster allocation . The opinion of rankers in clus-
ter k can be aggregated by the posterior means of 〈k〉

i
>
i
〈k〉’s. We compare

both methods later in simulation and application.

As discussed in Section 2.3, the interpretation of and is difficult due
to over-parameterization. However, noting that the i’s are modeled as i.i.d
Gaussian random variables with mean zero a priori, the posterior distribution
of still provides some meaningful information about the role of covariates in
the ranking mechanism. Intuitively, for each ranked entity i, ′

i can be viewed
as the part of the evaluation score i linearly explained by the covariates, and

i as the corresponding residual. The sign and magnitude of the coefficient
k for the kth covariate indicate the positive or negative role of covariates and

its strength in determining the ranking list. In practice, we can incorporate
nonlinear transformations of original covariates to allow for more flexible role
of covariates in explaining the ranking mechanism.

To compare the BARC-based methods with other rank aggregation methods,
we adopt the normalized Kendall tau distance (Kendall, 1938) between ranking
lists, which calculates the percentage of pairwise disagreements between two
ranking lists. To measure the clustering accuracy, we adopt the adjusted Rand
index (Rand, 1971), which calculates the percentage of pairwise clustering de-
cisions that are correct after adjusting for chance.

Recall that U is the set {1, . . . , N} of entities, and entity i has a true score
i. We generate i.i.d. covariate vectors i xi1, . . . , xip

>’s for the N ranked
entities from the multivariate Normal distribution with mean 0 and covariance
Cov xis, xit

|s−t| for 1 ≤ s, t ≤ p, and generate M full ranking lists { j}M
j 1

via the following model:

j rank j , j
i.i.d.∼ N , 2

N , 1 ≤ j ≤ M .(6.1)

We consider three different ways to generate the underlying true score vector
, depending on the role of covariates. In Scenario 1, the true difference be-

tween entities can be linearly explained by covariates. In Scenario 2, a linear
combination of covariates can partially explain the ranking. In Scenario 3, the
ranking mechanism is barely correlated with the covariates. That is,

1. i
>
i , where 3, 2,−1,−0.5 >, L 4, and 0.2.

2. i
>
i ‖ i‖2, where 3, 2, 1 >, L 3, and 0.5.

3. i ‖ i‖2, where L 4, and 0.5.

We then compare the performance of BARC with other rank aggregation
methods under varying noise levels for in (6.1). Fixing N 50 and M 10,
we tried five different values of ( 1, 5, 10, 20, 40). For each configuration,
we generated 100 simulated datasets. We applied Borda Count, Markov-Chain
based methods (MC1, MC2, MC3) (Dwork et al., 2001), Cross Entropy Monte
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Carlo based method (CEMC) (Lin and Ding, 2009), PL model, and our BARC
model with or without covariates. Specifically, Borda Count uses the arithmetic
means of the average ranking positions over all ranking lists, the Markov-Chain
based methods are based on the stationary distributions of Markov chains
whose transition matrices are constructed based on the ranking lists, the CEMC
approach tries to find the ranking list minimizing the average distance from all
ranking lists using a stochastic search method, and the PL model is as intro-
duced in Section 2.4. A brief review of the aforementioned methods can be
found in the Supplementary Material. When employing BARC and its exten-
sions, we input standardized covariates, fix the degrees of freedom for scaled
inverse chi-squared priors on both 2 and 2 to be 3, i.e., 3, and
consider three choices for the scale parameters 2, 2 : 12, 12 , 12, 102 and
102, 102 , denoted as BARC1, BARC2, BARC3 respectively. We also consider

BARC model without involving any covariates (denoted as BAR) and choose
hyperparameters 2 1 and 3.

Table 5 shows the (scaled) Kendall tau distances between the true rank and
the aggregated ranks produced by different methods, averaged over the 100
simulated datasets for each scenario and each noise level. Specifically, the 3rd
column for the Borda Count shows the Kendall tau distances between the es-
timated and true rank lists, averaged over the 100 replications, which serves
as the baseline. The remaining columns for other methods show the ratios of
their average Kendall tau distances over the corresponding values for the Borda
Count. First, from Table 5, our BARC models generally perform better than
other competing methods, especially in Scenarios 1 and 2 when certain linear
combination of covariates is relevant for ranking. Second, comparing the BARC
models with and without covariates in the last four columns of Table 5, utilizing
covariates can improve the precision of the rank aggregation when covariates
are useful as in Scenarios 1 and 2, and provide little harm on precision when
covariates are irrelevant as in Scenario 3. Third, comparing the BARC models
with different prior specification in the last three columns of Table 5, we find
that the results are robust to the choice of 2 but sensitive to the choice of 2,
which is related to the non-identifiability issue for and as discussed in
Section 2.3. Based on Table 5, we suggest to choose 2 1 and 2 102, which
can not only exploit the use of covariates when they are indeed relevant for
ranking but also provide robust rank aggregation even when these covariates
are irrelevant.

We then consider the role of covariates based on our BARC models. Figure 1
shows the box plots of the posterior means of the coefficients k’s over all 100
simulated data sets for each of the three scenarios at noise level 5. The re-
sults from the BARC models with different prior specifications are very similar.
Note that we fix the noise level of our BARC models at 1. It is expected that
the absolute scale of our estimated coefficient may be different from the truth,
even under Scenario 1 where the true score is indeed linear in the covariates.
However, the relative magnitudes and the signs of the estimated coefficients are
still informative in telling the importance of covariates for linearly explaining
the ranking mechanisms, as demonstrated in Figure 1.
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Table 5
Comparison between BARC and other ranking methods. The first and second columns indicate the

scenario and noise level for simulating the data. The 3rd column with parentheses shows the average
Kendall tau distances between estimated ranking lists and corresponding true ones using Borda Count,

and the remaining columns without parentheses show the corresponding values for different methods but
standardized by the one using Borda Count. Specifically, MC1–MC3 denote the three forms of

Markov-Chain based methods, CEMC denotes the Cross Entropy Monte Carlo based method (CEMC),
PL denotes the Plackett–Luce model, BAR denotes our BARC mode without using any covariate, and

BARC1–BARC3 denotes our BARC model using different priors.

Scenario σ Borda MC1 MC2 MC3 CEMC PL BAR BARC1 BARC2 BARC3

1 (0.026) 1.329 1.083 1.002 2.749 4.824 0.999 0.646 0.643 0.985
5 (0.124) 1.285 1.018 1.009 1.145 1.098 0.985 0.653 0.651 0.972

1 10 (0.216) 1.498 1.010 1.001 1.050 1.068 0.993 0.705 0.704 0.983
20 (0.327) 1.475 1.004 0.999 1.024 1.037 0.996 0.795 0.793 0.990
40 (0.408) 1.193 1.001 1.000 1.014 1.000 0.993 0.884 0.883 0.990

1 (0.028) 1.280 1.055 1.000 2.609 1.093 0.999 0.981 0.982 0.988
5 (0.117) 1.313 1.016 1.006 1.120 1.089 0.989 0.831 0.832 0.977

2 10 (0.200) 1.332 1.013 1.004 1.056 1.054 0.993 0.773 0.772 0.985
20 (0.299) 1.406 1.011 1.000 1.018 1.042 0.994 0.813 0.812 0.988
40 (0.388) 1.265 1.002 1.000 1.005 1.021 0.996 0.875 0.874 0.993

1 (0.046) 1.300 1.043 1.004 1.658 1.111 0.991 0.990 0.995 0.988
5 (0.186) 1.376 1.011 1.001 1.054 1.071 0.991 1.007 1.007 0.992

3 10 (0.270) 1.427 1.008 1.001 1.033 1.058 0.996 1.009 1.011 0.996
20 (0.369) 1.274 1.005 1.001 1.023 1.022 0.996 1.002 1.002 0.996
40 (0.421) 1.196 1.000 1.000 1.005 1.028 0.997 0.997 0.998 0.997

6.2 Computational gain from parameter expansion

Before we move on to more complex settings, we use Scenario 2 with noise
level σ = 0.1 to demonstrate the dramatic power of parameter expansion in
dealing with rank data. In particular, we fit the BARC model with σα fixed
at 1 and σβ fixed at 10 a priori. From Figure 2, Gibbs sampler with parameter
expansion reduces the auto-correlation in MCMC samples compared to regular
Gibbs sampler. We also note that the parameter expansion step takes about
the same amount of computational time as one conditional update of a simple
Gibbs sampler, which is negligible.

Here we also briefly study the computational cost of BARC, and in particular
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Fig 1: Box plots of the posterior samples of the coefficients βk’s for the standard-
ized covariates in Scenarios 1–3 under BARC with different prior specifications.
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Fig 2: Auto-correlation plots of MCMC samples for 1 in parameter expanded
Gibbs sampler and regular Gibbs sampler.

Table 6
Run time (in seconds) of BARC with 100 Gibbs iterations for data from Scenario 2 under various values

of N, M, L

Number Numbers of rankers (M) and of covariates (L)
of entities M 30 M 100 M 500

(N) L 5 L 10 L 20 L 5 L 10 L 20 L 5 L 10 L 20

N 30 1.59 1.36 1.42 4.89 5.09 5.37 24.68 25.49 25.52
N 100 5.99 5.83 6.32 23.20 23.69 22.95 105.52 107.96 107.73
N 500 96.40 127.03 143.21 282.68 283.32 275.85 1012.75 1003.53 1044.60

its dependence on the number of entities N, number of rankers M and number
of covariates L. Table 6 shows the run times in seconds of BARC with 100
MCMC iterations for data from Scenario 2 in Section 6.1 with various values
of N, M, L , using a laptop with 2.9 GHz Intel Core i9. From Table 6, the
number of covariates L does not affect the run time much, but both the number
of entities N and number of rankers M affect the run time considerably. In
particular, the run time increases about linearly with M, and it increases faster
than linearly with N, which implies that the number of entities matters more
for the computational cost. The results are intuitive by noting that each Gibbs
update step of BARC mainly involves sampling NM truncated normal random
variables for j’s and an N L multivariate normal random vector for , .
In practice, we can parallelize the sampling for j’s into M machines, which
can reduce the run time of BARC.

We further explore how BARC performs for aggregating partial ranking lists,
where subgroups have no overlap with each other. This is a similar situation as
Example 2. We simulate data from Scenario 2 with N 80, M 10 and L 3.
We randomly divide these 80 entities into K 1, 2, 4, 8, 10, 16 subgroups, each
with size N/K. As K increases, the pairwise comparison information decreases.
For example, when K 16, we have only 5.06% of all pairwise comparisons
in a partial ranking list. Table 7 displays the Kendall tau distances between the
true and the aggregated ranking lists inferred by BARC models in different
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Table 7
BARC for partial ranking lists. The first column shows the numbers of non-overlapping subgroups of

equal sizes, under which we only observe ranks within each subgroup. The second to fifth columns show
the average Kendall tau distances between estimated ranking lists and corresponding true ones using

different forms of our BARC model. Specifically, BAR denotes our BARC mode without using any
covariate, and BARC1–BARC3 denotes our BARC model using different priors.

Number of subgroups BAR BARC1 BARC2 BARC3

1 0.120 0.101 0.101 0.117
2 0.127 0.101 0.100 0.126
4 0.136 0.103 0.103 0.135
8 0.162 0.112 0.112 0.144

10 0.173 0.111 0.111 0.146
16 0.203 0.117 0.117 0.154

cases. Specifically, we consider four Bayesian models BAR, BARC1, BARC2 and
BARC3, whose models and priors are defined the same as in Section 6.1. Table
7 shows that BARC is quite robust with respect to partial ranking lists when the
unobserved pairwise comparisons are missing completely at random and the
input ranking lists have moderate dependence on the available covariates, in
the sense that the precision of aggregated ranking lists is relatively stable when
the partial ranking lists become more and more incomplete, as demonstrated
by BARC1 and BARC2. In contrast, the BARC method without using covariates,
denoted by BAR in Table 7, is susceptible to missing information in the partial
lists. Specifically, when K 16, the average Kendall tau distance between true
and aggregated ranking lists using BAR increases by about 70%, while that
using BARC1 and BARC2 increases by about 15%.

We investigate the setting where the rankers have consistent opinions but
various qualities. The data are simulated from Scenarios 1–3 in Section 6.1 with
N 80 and M 10, except that the noise level in (6.1) is allowed to be
ranker-specific. Specifically, half of the rankers have noise level j 5 and
the remaining half have noise level j 40, which represent high-quality and
low-quality rankers respectively. Table 8 shows the (scaled) Kendall tau dis-

Table 8
Comparison between BARC and other ranking methods when there are rankers of varying qualities. The
first column shows the scenario for simulating the data. The second column with parentheses shows the
average Kendall tau distances between estimated ranking lists and corresponding true ones using Borda

Count, and the remaining columns without parentheses show the corresponding values for different
methods but standardized by the one using Borda Count. Specifically, MC1–MC3 denote the three forms
of Markov-Chain based methods, CEMC denotes the Cross Entropy Monte Carlo based method (CEMC),
PL denotes the Plackett–Luce model, BARC denotes our BARC mode, and BARCW denotes our BARCW

model.

Scenario Borda MC1 MC2 MC3 CEMC PL BARC BARCW

1 0.214 1.922 0.972 1.009 1.024 1.041 0.676 0.579
2 0.200 1.866 0.950 1.015 1.007 1.052 0.753 0.651
3 0.275 1.625 0.989 1.005 1.008 1.044 0.998 0.943

tances between the true rank and the aggregated ranks produced by different
methods, averaged over the 100 simulated datasets for each scenario, where
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the values for all methods other than Borda Count are standardized by the
corresponding values for Borda Count. Moreover, we use the same prior spec-
ification for BARC and BARCW models, i.e., τα = 1, τβ = 10 and να = νβ = 3.
From Table 8, BARC shows more precise rank aggregation than other meth-
ods under comparison, especially when the covariates can linearly explain the
underlying true scores for ranking. By exploring the varying qualities of the
rankers, BARCW further improves BARC, and the improvement increases with
the role of covariates for linearly explaining the ranking mechanisms. Figure
3(a) shows the box plots of the posterior means of the weights for high-quality
and low-quality rankers, separately. From Figure 3(a), the weights for rankers
with different qualities are well separated, and thus BARCW is able to identify
rankers of different qualities.
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(b) Section 6.5 (c) Section 6.6

Fig 3: Box plots of the posterior means of weights for certain subgroup of
rankers. Specifically, (a) shows the box plots for rankers with noise levels σj = 5
and σj = 40, respectively, over all simulations from Scenarios 1–3 in Section 6.4.
(b) shows the box plots for rankers in different clusters over all simulations
from Scenario I in Section 6.5. (c) shows the box plots for all rankers over all
simulations in Section 6.6 using models BARCW and BARCMW, respectively.

6.5 BARCM for rankers with heterogeneous opinions

In many applications, there can be multiple groups of rankers with differ-
ent opinions, despite all being reliable rankers. The Dirichlet process mixture
model (3.3)-(3.4) can be used to determine the total number of clusters and to
cluster the rankers. Here, we use simulations to test the sensitivity of BARCM to
hyperparameter settings in the Dirichlet process prior. In particular, following
the discussion in Section 4.4, we fix the degrees of freedom να and νβ at 3, and
study the sensitivity of BARCM to the scale hyperparameters τ2

α and τ2
β for the

variances σ2
α and σ2

β of latent variables and hyperparameters aγ and bγ for the
concentration parameter γ of the Dirichlet process. For the variances, we con-
sider two choices of (τα, τβ): (1, 10) and (10, 10). For the concentration param-
eter, we consider two choices of (aγ, bγ) suggested by Escobar and West (1995)
and Frühwirth-Schnatter and Malsiner-Walli (2019): (2, 4) and (1, 20), where
the latter implies a smaller number of clusters a priori; see Frühwirth-Schnatter
and Malsiner-Walli (2019) for more detailed discussion. The combination of
these choices results in four prior specifications for the BARCM model, and we
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denote them by BARCM1, BARCM2, BARCM3 and BARCM4 respectively, as
shown in Table 9.

We consider two simulation scenarios under the BARC model as in (2.3) but
with three mixture components. For each scenario, we have N entities evenly
divided into G non-overlapping subgroups, L covariates for each entity, and
M rankers who rank only entities within the same subgroup. The categories
of rankers are generated from a Multinomial distribution with probabilities
0.5, 0.3, 0.2 . The covariates i’s are generated from a multivariate Normal dis-

tribution with mean zero and pairwise covariances Cov xis, xit 0.2 |s−t|

for 1 ≤ s, t ≤ L, the coefficients are generated from 〈k〉 i.i.d.∼ N 0, 4 N and
〈k〉 i.i.d.∼ N 0, L for 1 ≤ k ≤ 3 , and the noise level is fixed at 1. In Scenario

I, we choose N 20, G 1, L 3 and M 100, i.e., each ranker provides a
full ranking list for all the entities. In Scenario II, we choose N 108, G 9,
L 11 and M 69, i.e., each ranker provides only a partial ranking list com-
paring units within the same subgroup of N/G 12 units. Scenario II mimics
the dataset in Example 2.

Table 9 shows the accuracy (measured by the adjusted Rand index) of the
maximum a posteriori (MAP) estimate of the clustering indicators and the pos-
terior expected number of clusters from the BARCM model with different hy-
perparameters, averaged over 100 simulated datasets. From Table 9, the results
are relatively robust with respect to different choices of priors, although a large
value of leads to a slight overestimation of the number of clusters. Intu-
itively, this may be due to the fact that a larger value of implies a larger
signal noise ratio, thus requesting more consistent rankings among rankers in
the same cluster and encouraging more clusters of rankers.

Table 9
Accuracy of the clustering assignments and posterior expected number of clusters under BARCM with

different prior specifications.

Scenario BARCM1 BARCM2 BARCM3 BARCM4

, , a , b (1, 10, 2, 4) (10, 10, 2, 4) (1, 10, 1, 20) (10, 10, 1, 20)

I Clustering accuracy 1.000 0.998 1.000 0.999
Expected # of clusters 3.000 3.007 3.001 2.991

II Clustering accuracy 0.998 0.973 0.998 0.972
Expected # of clusters 3.010 3.300 3.010 3.312

Here we also explore the performance of BARCW when there are indeed
mixture subgroups of rankers with different ranking opinions, i.e., using a
weighting strategy to construct a “consensus”. We fit the BARCW model un-
der the prior that 1, 10 and 1. Figure 3(b) shows the
box plots of the posterior means of weights for rankers in different clusters
over all 100 simulated data sets from Scenario I, which demonstrates that the
majority opinions are up-weighted by BARCW, while the other opinions are
down-weighted. This is intuitive and expected since BARCW assumes that all
rankers share the same opinion. As a result, BARCW reinforces the majority’s
opinion in rank aggregation. By studying rankers’ heterogeneity using either
BARCW or BARCM, we can better understand our ranking data even if we
seek only one aggregated ranking list.
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In contrast to the simulation with heterogeneous rankers, we also simulated
the BARC model under the homogeneous setting to verify the robustness of
BARCM and BARCW, as well as BARCMW. The simulation is the same as
Scenario I in Section 6.5 except that all rankers are from one component with
equal qualities. We fit the BARCW, BARCM and BARCMW models with hy-
perparameters 1, 10, 3, a 2 and b 4. The clustering
accuracy for BARCM and BARCMW averaged over all 100 simulated datasets
are, respectively, 0.99 and 1. Thus, both models classify the rankers into one
cluster, i.e., the rankers have consist opinions. Figure 3(c) shows the box plots
of the posterior means of weights for all rankers from BARCW and BARCMW
over all 100 simulated datasets. From Figure 3(c), all rankers have similar qual-
ities, which is consistent with the true data generation models.

Below we will analyze the two applications in Examples 1 and 2 using our
Bayesian models. Based on the simulation studies in Section 6, we set the hyper-
parameters for the Bayesian models to be 1, 10, 3, a 2
and b 4.

Ranking NFL quarterbacks is a classic case where experts’ ranking schemes
are clearly related to some performance statistics of the players in their games.
Information in Tables 1 and 2 enables us to generate aggregated lists using
both rank data and the covariate information, as shown in Table 10. For quar-
terbacks at the top and bottom of the list, these methods mostly agree with
each other. Besides only looking at the aggregated ranking lists, as suggested
in Section 5.1, it is important to investigate the uncertainty in rank aggregation,
which can help mitigate and explain the discrepancy across different methods.
Using BARCW as an example, Figure 4(a) shows the 95% credible intervals for
all quarterbacks’ ranked positions under BARCW. We can see that the interval
width is large for mediocre quarterbacks, which is exactly where a majority of
discrepancies occurred among different rankers and different rank aggregation
methods. The interval estimates of aggregated ranks can separate several elite
quarterbacks from the others. In practice, this may suggest an aggregated rank-
ing list with ties or a bucket order for several subgroups of entities, instead of
a full ranking list with considerable uncertainties; see, e.g., D’Ambrosio et al.
(2019), Kenkre et al. (2011) and Gionis et al. (2006) for related discussions.

All methods except BARCW, BARCM and BARCMW assume equal reliabil-
ity for all rankers. After analyzing the data using BARCW, we show in Figure
5(a) the box plots as well as the means of the posterior samples of the weights
for all rankers. Out of the 13 rankers, six are inferred to have significantly higher
quality than the others with a majority of their posterior samples of weights be-
ing greater than or equal to 1. The second ranker seems to have medium quality
with weight close to 1, while the remaining rankers all have weights close to
0.5. We further validate our weight estimation using the prediction accuracy
of the experts at the end of the season. Figure 5(b) plots this prediction accu-
racy against the posterior mean weight of each ranker resulting from BARCW,
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Table 10
NFL rank aggregation using different methods. The first column shows the players’ names, and the

remaining columns show their ranked positions using different methods. BARC, BARCW, BARCM and
BARCMW denote our Bayesian models for rank data, Borda denotes Borda Count, and MC3 denotes the

Markov-Chain based method.

Player BARC BARCW BARCM BARCMW Borda MC3

Andrew Luck 1 1 1 1 1 1
Aaron Rodgers 2 2 2 2 2 2
Peyton Manning 3 3 3 3 3 3
Tom Brady 4 4 4 4 4 4
Tony Romo 5 5 5 5 5 5
Drew Brees 6 6 6 6 6 6
Ben Roethlisberger 7 7 7 7 7 7
Ryan Tannehill 8 8 8 8 8 8
Matthew Stafford 9 9 9 9 9 9
Mark Sanchez 10 10 10 10 10 10
Russell Wilson 11 11 11 11 11 11
Philip Rivers 12 12 12 12 12 12
Cam Newton 13 13 13 13 13 13
Eli Manning 14 14 14 14 14 14
Matt Ryan 15 15 15 15 15 15
Joe Flacco 19 16 19 16 19 19
Alex Smith 17 17 17 17 17 17
Colin Kaepernick 16 18 16 18 16 16
Andy Dalton 20 19 20 19 20 20
Jay Cutler 18 20 18 20 18 18
Josh McCown 21 21 21 21 21 21
Drew Stanton 22 22 22 22 22 22
Teddy Bridgewater 23 23 23 23 23 23
Brian Hoyer 24 24 24 24 24 24

which shows that rankers with higher weights predicts more accurately on av-
erage, and the correlation between these two measures is quite high at 0.784.

Under either BARCM or BARCMW, the 13 rankers are clustered into sub-
groups with different ranking opinions. To avoid the impact of multimodal
posterior distributions, we run 100 MCMC chains with different random ini-
tial starts under either BARCM or BARCMW, and then choose the maximum a
posteriori (MAP) estimate (i.e., the one with the highest joint posterior density).
The resulting MAP estimates of clustering under both BARCM and BARCMW
suggest that all the 13 experts belong to the same cluster, strongly suggesting
that these experts share the same ranking opinion but have different qualities.
Consequently, BARCW seems to be the most appropriate model for this appli-
cation.

We further investigate the role of covariates in ranking these players. Fig-
ure 4(b) shows the posterior means and 95% posterior credible intervals for
the coefficients of the eleven standardized covariates listed in Table 2. TD and
Int, which stand for percentage of touchdowns and interceptions thrown when
attempting to pass, are the most significant covariates; touchdowns have a pos-
itive effect, while interceptions have a negative effect. Based on the football
common sense, touchdowns and interceptions can directly impact the result of
a game.
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Fig 4: (a) shows the credible intervals of the ranked position of the NFL quar-
terbacks under BARCW, and (b) shows the corresponding box plots of the pos-
terior samples of the coefficients l’s for the standardized covariates.
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Fig 5: (a) shows the box plots of the posterior samples of the weights for all
rankers under BARCW, and (b) plots the prediction accuracy against the pos-
terior mean of the weight for all rankers.

As mentioned in Section 1, the orthodontics data set contains 69 partial rank-
ing lists for each of the 9 groups of the orthodontic cases. With ranking lists
produced by a group of high-profile specialists, the rank aggregation prob-
lem emerges because the average perception of experienced orthodontists is
regarded as the cornerstone of systems for the evaluation of orthodontic treat-
ment outcome (Liu et al., 2012; Song et al., 2014, 2015). The covariates for these
cases are objective assessments on their teeth. It is quite difficult to aggregate
ranking lists of many non-overlapping subgroups, as covariates are the only
source of information available in bridging different groups. In addition, Table
3 shows that the rankers do have significantly different opinions.

Previously, Liu et al. (2012) and Song et al. (2014) assessed the reliability
and the overall consistency of these experienced orthodontists through sim-
ple statistics including Spearman’s correlation among these highly incomplete
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ranking lists within each subgroup of cases. To gain a deeper understanding
of these ranking lists, we first study the heterogeneity among rankers using
BARCM and BARCMW. To avoid the impact of multimodal posterior distribu-
tions, similar to Section 7.1, we run 100 MCMC chains with random initial starts
under either BARCM or BARCMW, and choose the one that gives rise to the
MAP estimate. Figure 6 shows the MAP estimates of the clusters, demonstrat-
ing that the 69 experts are clustered into 2 subgroups of sizes 45, 24 , and the
clustering of rankers using BARCM and BARCMW are quite consistent, with
only one individual (the 25th in Figure 6) clustered differently. Specifically, this
expert was estimated by BARCM and BARCMW to have 24% and 81% proba-
bilities, respectively, to be in the bigger cluster (red dots in Figure 6), indicating
a moderate amount of clustering uncertainty. See Supplementary Material for
posterior clustering probabilities for all the 69 experts. From Figure 6, about
45/69 65.2% of the experts share consistent opinions about the ranking of
the 108 patients, while the remaining experts rank the patients in a different
way. This implies that most discrepancy among the experts for ranking the pa-
tients should not be explained by the quality variations of the experts, but are
attributable to their different opinions.

10 20 30 40 50 60
ranker

BARCMW
BARCM

Fig 6: The MAP estimates of the clustering of the rankers under BARCM and
BARCMW.

Figure 7(a) shows the box plot of rankers’ weights resulting from BARCW
by their estimated clusters from BARCM. A majority of rankers in the larger
cluster are labeled as reliable rankers, and most rankers in the smaller cluster
are labeled as mediocre or low-quality rankers. This result is similar to our
simulation results in Section 6.5, i.e., in order to form a “consensus”, BARCW
down-weights the minority opinions when heterogeneous opinions exist.

We then study rank aggregation using our Bayesian models. The key to ag-
gregating these nine non-overlapping groups of patients is to figure out the
rank of patients’ orthodontics conditions using, but not overly relying on, the
covariates. Table 11 shows the top and bottom cases in aggregated ranking
lists using different models, as well as aggregated ranking lists for each cluster
under BARCM. Recall that BARCM aggregates opinions of the whole sample
by averaging over all clusters with their corresponding proportions. The re-
sults from BARCW and BARCM are quite consistent with each other although
they employ different assumptions. The Kendall tau distance between these
two aggregated lists is 0.043. Figure 7(b) shows the 95% credible intervals for
the ranked positions of the 108 cases, demonstrating that there is a substan-
tial amount of uncertainty in the aggregated ranking list, especially around the
middle of the ranking list.

Figure 8(a) shows the posterior means and 95% credible intervals of the co-
efficients l’s under BARC and BARCW, as well as the average coefficients
m−1 ∑m

j 1
j

l ’s under BARCM and BARCMW. Under these four models, the co-
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(a) Ranker’s weight (b) Rank interval

Fig 7: (a) shows the box plot of the posterior means of weights for rankers in
different clusters estimated by BARCM. (b) shows the 95% credible intervals of
the ranked positions of the cases under BARCM.

Table 11
The five cases that are considered to have the best and worst conditions based on rank aggregation. The

first column denotes the ranked position. The second to fifth columns show the top and bottom five cases
in the aggregated ranking lists from our Bayesian models for rank data. The last two columns show the
top and bottom five cases in the aggregated ranking lists for the two clusters of rankers estimated from

BARCM.

BARC BARCW BARCM BARCWM Cluster 1 Cluster 2

1 G7 G7 G7 G7 H2 G7
2 H2 E2 E2 E2 G7 E2
3 E2 H2 H2 H2 E2 A1
4 H3 H3 F8 F8 F8 E10
5 H4 H4 H3 H3 H3 E1

104 E6 D11 D11 D11 E6 D11
105 D11 E6 E6 E6 D11 E6
106 F10 F10 F10 F10 F10 F10
107 H5 H5 H5 F4 F4 H5
108 F4 F4 F4 H5 H5 F4

variates have very similar roles in determining the rank, and are crucial for po-
sitioning patients in those non-overlapping groups. In particular, among these
11 covariates, overjet, overbite and centerline all measure certain types of over-
all displacement, and are thus generally considered to have stronger negative
effect compared with the other local displacements in this study. This intuition
is further confirmed by our analysis results. Figure 8(b) shows the posterior
means and 95% credible intervals of the coefficients 〈k〉

l ’s for the two clusters
under BARCM. Rankers in clusters 1 and 2 differ by putting different signs on
the effect of left buccal occlusion.

Motivated by two examples we encountered in practice, we reviewed ex-
isting literature on the statistical inference of the Thurstone family models for
ranking data, which include the celebrated Thurstone-Mosteller-Daniels model,
the Plackett-Luce model, and their various extensions for handling more com-
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Fig 8: Posterior means and 95% probability intervals of the coefficients for stan-
dardized covariates in orthodontics data under the four Bayesian models and
for the two clusters under BARCM. Please refer Table 4 for the covariate infor-
mation.

plex structures and situations, such as when some covariates for the ranked
entities are observed and/or when the ranking lists may be composed of het-
erogeneous groups (or equivalently, the rankers may be clustered into different
opinion subgroups).

In addition, we described three novel model-based Bayesian rank analysis
methods (BARC, BARCW, BARCM), which are based on the TMD modeling
framework, unified and extended existing models and methods, and proposed
efficient MCMC algorithms for their needed computations. With the help of
covariates, our new methods can accommodate various types of input ranking
lists, including highly incomplete ones. Under the assumption of homogeneous
ranking opinion, BARCW learns the qualities of rankers from data, and over-
weights high-quality ones in rank aggregation. BARCM, on the other hand,
investigates the possibility of having heterogeneous opinion groups among the
rankers. All three methods evaluate the roles of covariates and generate ag-
gregated ranking lists with uncertainty measures. Our simulation studies and
real-data applications validate the importance of covariate information and the
estimation of rankers’ qualities as well as their heterogeneous opinions.

Our extension to the Thurstone model is similar in spirit to Vitelli et al.
(2017)’s extension of the Mallows model, another popular model for rank data,
but we additionally consider the incorporation of covariate information. Com-
paring the Thurstone and Mallows models, the former can be more general in
modeling the differences among entities. For example, any miss ordering of two
consecutive entities will have the same probability under the Mallows model
with Kendall tau distance, but its probability depends on the underlying true
score as well as the noise distribution under the Thurstone model. However,
the Mallows model can be more robust since the aggregated ranking list min-
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imizes certain average distance from all individual ranking lists, regardless of
the underlying data generating process. To make the Thurstone model more
robust to significant heterogeneity across individual ranking lists, it is of in-
terest to extend the Thurstone model to accommodate more heavy-tailed error
distributions, and to develop more efficient MCMC algorithms to deal with the
Thurstone mixture models.

In this paper we consider only the covariate information of the ranked enti-
ties. It is of interest to further incorporate covariate information of the rankers if
such data are available. Rankers’ covariates can be helpful for detecting rankers’
qualities and clustering rankers into subgroups with different opinions. We
leave this extension of BARC and BARCM for a future study.

This research is supported in part by the NSF Grants DMS-1712714 and DMS-
1903139.
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Böckenholt, U. (1992). Thurstonian representation for partial ranking data. British Journal of
Mathematical and Statistical Psychology, 45(1):31–49.
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Supplementary Material for
“Bayesian Analysis of Rank Data with

Covariates and Heterogeneous Rankers”

Below we show the validity of parameter expanded Gibbs sampler under
BARC, and the validity under BARCW and BARCM follows by the same logic.
We use to denote the marginal posterior distribution of given all the ob-
served ranking lists T , i.e.,

p | T ∝ p p T | p 1{rank T }.

In order to show the validity of parameter expansion, it suffices to prove that
for any following the marginal posterior distribution , its transforma-
tion t also follows the same distribution , as long as is draw from the
distribution with density proportional to t |J | −1. The proof is as
follows.

By construction, the joint density of , is

p , p p | · t −nm−1∫
R

t −nm−1d
,

which immediately implies the joint density of , ≡ t , :

p , p , |J |−1 · t −1∫
R

t −nm−1d

t−1 ·
−1∫

R
t t−1 −nm−1d

.(A1)

Note that t t−1 / t−1 , where / . We can then simplify
the denominator in (A1) as∫

R
t t−1 −nm−1d

∫
R

t−1 / −nm−1d /

−nm
∫

R
t−1 · nm−1d ,

and thus further simplify p , as

p , ·
t−1 −1

−nm
∫

R
t−1 · nm−1d

·
t−1 nm−1∫

R
t−1 · nm−1d

.

Therefore, the marginal density of is

p ·
∫

R
t−1 nm−1d∫

R
t−1 · nm−1d

,

i.e., ≡ t follows the distribution with density .
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The Gibbs sampler with parameter expansion for BARC model is accom-
plished by iterating the following steps.

(1) For j 1, . . . , M and i 1, . . . , N, draw [Zij | −i,j, −j, , ] from trun-
cated N i

>
i , 1 , where the truncation points are determined by

−i,j and j such that rank j ' j.
(2) Draw ∼ S/ 2

NM
1/2 and then update to be / , where

S
M

∑
j 1

>
j j −

M

∑
j 1

M

∑
j′ 1

>
j Λ−1 M > −1 >

j′ .

(3) Draw , ∼ N , Σ , where

Σ >
M

∑
j 1

j and Σ Λ−1 M > −1.

(4) Draw 2 ∼ 2 ∑N
i 1

2
i / 2

N and 2 ∼ 2 ∑L
l 1

2
l / 2

L .

The Gibbs sampler with parameter expansion for BARCW model is accom-
plished by iterating the following steps.

(1) For i 1, . . . , N and j 1, . . . , M, draw [Zij | −i,j, −j, , ] from trun-
cated N i

>
i , w−1

j where the truncation points are determined by

−i,j and j such that rank j ' j.
(2) Draw ∼ S1/2/ NM and then update to be / , where

S
M

∑
j 1

wj
>
j j −

M

∑
j 1

M

∑
j′ 1

wjwj′
>
j

(
Λ−1

M

∑
m 1

wm
>

)−1
>

j′ .

(3) Draw , ∼ N , Σ , where

Σ >
m

∑
j 1

wj j, Σ

(
Λ−1

M

∑
j 1

wj
>

)−1

.

(4) For j 1, . . . , M, draw wj from a probability mass function proportional

to w
N
2
j e−wj‖Zj−α−Xβ‖2

2
/2.

(5) Draw 2 ∼ 2 ∑N
i 1

2
i / 2

N and 2 ∼ 2 ∑L
l 1

2
l / 2

L .

The Gibbs sampler with parameter expansion for BARCM model is accom-
plished by iterating the following steps.

(1) For each k ∈ {c1, . . . , cM}, draw k ∼ S1/2
k / N·|Rk c | and then update j

to be j/ k for j with cj k, where

Sk ∑
j∈Rk c

>
j j − ∑

j∈Rk c
∑

j′∈Rk c

>
j

(
Λ−1 |Rk | >

)−1 >
j′ .
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(2) For each k ∈ {c1, . . . , cM}, draw 〈k〉, 〈k〉 ∼ N k, Σk , where

k Σk
> ∑

j∈Rk c

j, and Σk

(
Λ−1 |Rk | >

)−1
.

(3) For i 1, . . . , N and j 1, . . . , M, draw [Zij | −i,j, −j, 〈cj〉, 〈cj〉] from

truncated N 〈cj〉
i

>
i
〈cj〉, 1 , where the truncation points are deter-

mined by −i,j and j such that rank j ' j.
(4) Let K {c1, c2, . . . , cM} be the set of cluster labels of all units, where
K does not contain replicable elements, and K |K| be the cardinal-
ity of the set K. Draw 2 ∼ 2 ∑k∈K ‖ 〈k〉‖2

2 / 2
KN , and 2 ∼

2 ∑k∈K ‖ 〈k〉‖2
2 / 2

KL . Then draw ∼ Beta 1, n , and from
a mixture Gamma distribution

Gamma a K, b − log 1− Gamma a K− 1, b − log ,

where the weight is defined as / 1 − a K − 1 /{N b −
log }.

(5) For j 1, . . . , M, draw cj from

P
(

cj k | , −j ,T
)

∝ P
(
cj k | −j

) ∫
p
(

j | 〈k〉, 〈k〉
)

p
(
〈k〉, 〈k〉 | −j

)
d 〈k〉d 〈k〉

∝ P
(
cj k | −j

)
· exp

{
−1

2
h
(
{j} ∪Rk −j

) 1
2

h
(
Rk −j

)}
,

where P
(
cj | −j

)
has the following form:

P
(
cj k | −j

) |Rk −j |
M− 1

, if k ∈ {cm : m 6 j}

P
(
cj /∈ {cm : m 6 j} | −j

)
M− 1

,

and h · is defined as

h R ∑
m∈R

>
m m − ∑

m∈R
∑

m′∈R

>
m

(
Λ−1 |R| >

)−1 >
m′

log
∣∣∣Λ−1 |R| >

∣∣∣ ,

with | · | denoting the cardinality of a set or the determinant of a matrix.

The Gibbs sampler with parameter expansion for BARCMW model is ac-
complished by iterating the following steps.

(1) For each k ∈ {c1, . . . , cM}, draw k ∼ S1/2
k / N·|Rk c | and then update j

to be j/ k for j with cj k, where

Sk ∑
j∈Rk c

wj
>
j j− ∑

j,j′∈Rk c

wjwj′
>
j

(
Λ−1 ∑

m∈Rk c

wm
>

)−1 >
j′ .
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(2) For each k ∈ {c1, . . . , cM}, draw 〈k〉, 〈k〉 ∼ N k, Σk , where

k Σk
> ∑

j∈Rk c

wj j, and Σk

(
Λ−1 ∑

j∈Rk c

wj
>

)−1
.

(3) For i 1, . . . , N and j 1, . . . , M, draw [Zij | −i,j, −j, 〈cj〉, 〈cj〉] from

truncated N 〈cj〉
i

>
i
〈cj〉, w−1

j , where the truncation points are deter-
mined by −i,j and j such that rank j ' j.

(4) For j 1, . . . , M, draw wj from a probability mass function proportional

to w
N
2
j e−wj

∥∥∥Zj−α
〈cj〉−Xβ〈cj〉

∥∥∥2

2
/2

.
(5) Let K {c1, c2, . . . , cM} be the set of cluster labels of all units, where
K does not contain replicable elements, and K |K| be the cardinal-
ity of the set K. Draw 2 ∼ 2 ∑k∈K ‖ 〈k〉‖2

2 / 2
KN , and 2 ∼

2 ∑k∈K ‖ 〈k〉‖2
2 / 2

KL . Then draw ∼ Beta 1, n , and from
a mixture Gamma distribution

Gamma a K, b − log 1− Gamma a K− 1, b − log ,

where the weight is defined as / 1 − a K − 1 /{N b −
log }.

(6) For j 1, . . . , M, draw cj from

P
(

cj k | , −j ,T
)

∝ P
(
cj k | −j

) ∫
p
(

j | 〈k〉, 〈k〉
)

p
(
〈k〉, 〈k〉 | −j

)
d 〈k〉d 〈k〉

∝ P
(
cj k | −j

)
· exp

{
−1

2
h
(
{j} ∪Rk −j

) 1
2

h
(
Rk −j

)}
,

where P
(
cj | −j

)
has the following form:

P
(
cj k | −j

) |Rk −j |
M− 1

, if k ∈ {cm : m 6 j}

P
(
cj /∈ {cm : m 6 j} | −j

)
M− 1

,

and h · is defined as

h R ∑
m∈R

wm
>
m m − ∑

m∈R
∑

m′∈R
wmwm′

>
m

(
Λ−1 ∑

j′∈R
wj′

>
)−1

>
m′

log

∣∣∣∣∣Λ−1 ∑
m∈R

wm
>

∣∣∣∣∣ ,

with | · | denoting the cardinality of a set or the determinant of a matrix.

We provide an R package BayesRankAnalysis for implementing the proposed
Bayesian models for rank data. A detailed description for installation and usage
of the package can be found on the website https://github.com/li-xinran/

BayesRankAnalysis.

https://github.com/li-xinran/BayesRankAnalysis
https://github.com/li-xinran/BayesRankAnalysis
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Rank aggregation methods based on summary statistics (e.g. average ranking
position) are easily understood and widely used. Suppose we have m full rank-
ing lists. Let { j i }1≤j≤m be the ranking positions of entity i received from all
m rankers. The Borda Count method aggregates ranks based on their arithmetic
mean, ∑m

j 1 j i /m.

Dwork et al. (2001) proposed three Markov Chain based methods (MC1,
MC2, MC3) to solve the rank aggregation problem. The basic idea behind these
methods is to construct a Markov chain with transition matrix P {pi1i2}i1,i2∈U ,
where pi1i2 is the transition probability from entity i1 to entity i2, based on the
pairwise comparison information from { 1, . . . , m}. For example, the transition
rule of MC2 is:

If the current state is i1 then the next state is chosen by first picking a list
uniformly from all the partial lists { 1, . . . , m} containing entity i1 then

picking an entity i2 uniformly from the set {i2 | i2 ≤ i1 }.

Then, the authors use the stationary distribution of this Markov chain to
generate the aggregated ranking list . Explicitly,

sort i ∈ U by i ↓ ,

where 1, . . . , |U| satisfies P , and the symbol ”↓” means that the
entities are sorted in descending order.

PL model assumes that a ranking list i1 � i2 � . . . � in is observed
with probability

P | i1

∑n
l 1 il

× i2

∑n
l 2 il

× · · · × i1

in−1 in

,

where i ∈ 0, 1 and ∑n
i 1 i 1. Each ranking list from { 1, . . . , m} fol-

lows the above distribution independently. We apply the classical Minorize-
Maximization (MM) algorithm for PL model estimation (Hunter, 2004).

Optimization-based rank aggregation methods are proposed to minimize the
average distance between a candidate list and each of the input lists, i.e.,

(A1) arg min
∈S U

d , 1, . . . , m

where S U represents all allowable rankings, and d · is either the average
Kendall tau distance or the average Spearman’s footrule distance. Lin and Ding
(2009) used a stochastic search method to optimize (A1) by adopting the cross
entropy Monte Carlo (CEMC) approach (Rubinstein and Kroese, 2004). In the
paper we use the CEMC approach based on the Kendall tau distance.
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Figure A1 shows the posterior probability of being in the bigger cluster (red
dots in Figure 6) for each expert under BARCM and BARCMW. From Figure
A1, the results from BARCM and BARCMW are mostly consistent, resulting
in similar MAP estimates for clustering. The only exception is the 25th ranker,
whose probabilities under the two models lie in different sides of 0.5, leading
to different MAP estimates for clustering.
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Fig A1: The posterior probability of being in the bigger cluster (red dots in
Figure 6) for each ranker under BARCM (black circle) and BARCMW (blue
triangle).
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