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Trace element partitioning between olivine and melt in lunar basalts
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ABSTRACT

Mineral/melt partition coefficients have been widely used to provide insights into magmatic
processes. Olivine is one of the most abundant and important minerals in the lunar mantle and mare
basalts. Yet, no systematic olivine/melt partitioning data are available for lunar conditions. We report
trace element partition data between host mineral olivine and its melt inclusions in lunar basalts.
Equilibrium is evaluated using the Fe-Mg exchange coefficient, leading to the choice of melt inclusion-
host olivine pairs in lunar basalts 12040, 12009, 15016, 15647, and 74235. Partition coefficients of
21 elements (Li, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Y, Zr, Nb, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)
were measured. Except for Li, V, and Cr, these elements show no significant difference in olivine-melt
partitioning compared to the data for terrestrial samples. The partition coefficient of Li between olivine
and melt in some lunar basalts with low Mg# (Mg# < 0.75 in olivine, or <~0.5 in melt) is higher than
published data for terrestrial samples, which is attributed to the dependence of D;; on Mg# and the
lack of literature D;; data with low Mg#. The partition coefficient of V in lunar basalts is measured
to be 0.17 to 0.74, significantly higher than that in terrestrial basalts (0.003 to 0.21), which can be
explained by the lower oxygen fugacity in lunar basalts. The significantly higher Dy can explain why V
is less enriched in evolved lunar basalts than terrestrial basalts. The partition coefficient of Cr between
olivine and basalt melt in the Moon is 0.11 to 0.62, which is lower than those in terrestrial settings
by a factor of ~2. This is surprising because previous authors showed that Cr partition coefficient is
independent of fo,. A quasi-thermodynamically based model is developed to correlate Cr partition
coefficient to olivine and melt composition and f,,. The lower Cr partition coefficient between olivine
and basalt in the Moon can lead to more Cr enrichment in the lunar magma ocean, as well as more Cr
enrichment in mantle-derived basalts in the Moon. Hence, even though Cr is typically a compatible
element in terrestrial basalts, it is moderately incompatible in primitive lunar basalts, with a similar
degree of incompatibility as V based on partition coefficients in this work, as also evidenced by the
relatively constant V/Cr ratio 0f 0.039 + 0.011 in lunar basalts. The confirmation of constant V/Cr ratio
is important for constraining concentrations of Cr (slightly volatile and siderophile) and V (slightly
siderophile) in the bulk silicate Moon.
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INTRODUCTION

Mineral/melt partition coefficients have been widely used to
provide insights into magmatic processes. Olivine is one of the
most abundant and important minerals in the lunar mantle and
mare basalts. Olivine fractionation in the lunar magma ocean
(LMO) and during lunar basalt differentiation plays a significant
role in the evolution of the magma (Wood et al. 1970; Longhi
1977; Solomon and Longhi 1977; Snyder et al. 1992; Elardo et
al. 2011; Lin et al. 2017; Charlier et al. 2018; Rapp and Draper
2018). Olivine-melt partitioning also plays a role in controlling
the composition of mantle-derived basalts. Hence, quantifying
olivine-melt partitioning is critical to understanding and modeling
magma evolution of the LMO and lunar basalts.

Although numerous partitioning studies have been published
for olivine and basaltic melt, they show significant variability for
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most elements due to the wide range of compositions, conditions,
and methods involved. For example, the Ti partition coefficient
between olivine and melt varies by more than two orders of
magnitude, ranging from 0.0019 to 0.43 (Duke 1976; Rollinson
1993; McDade et al. 2003; Spandler and O’Neill 2010; Papike et
al. 2013; Laubier et al. 2014; Burnham and O’Neill 2016; Leitzke
et al. 2016). In addition, these studies often focus on terrestrial
samples and physicochemical conditions. Though lunar and ter-
restrial basalts share many similarities in terms of their chemical
composition, they are distinct in several aspects. Compared to
typical terrestrial basalts, lunar basalts have highly variable TiO,,
lower Al,O; and alkalis, and often higher FeO and Cr,0O; concentra-
tions. For example, terrestrial basalts rarely contain >5 wt% TiO,
in the melt due to Fe-Ti oxide saturation at ~1100 °C (Toplis and
Carroll 1995), whereas lunar basalts may contain up to 14 wt%
TiO,. Such compositional differences have been shown to affect
the physical properties of the melt, metal solubility in silicate melts
(Borisov et al. 2004), and mineral/melt partition coefficients of
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multiple elements (Xirouchakis et al. 2001; Dygert et al. 2013;
Leitzke et al. 2016). Another important difference between lunar
and terrestrial conditions that might affect elemental partitioning
behavior is the oxygen fugacity (fo,). The fo, has been estimated
to be approximately IW-1 for the lunar mantle and basalts (Sato
et al. 1973; Wadhwa 2008), but ~QFM for the terrestrial upper
mantle (O’Neill et al. 2018), representing a difference of over four
orders of magnitude. Therefore, partition coefficients for multi-
valent elements, such as V, Cr, Fe, and Ti, could be significantly
different under lunar conditions.

Chen et al. (2015) and Ni et al. (2017, 2019) have published
a data set of major element concentrations in melt inclusions and
their olivine hosts, as well as trace element data in melt inclusions
in several lunar basalts. In this study, we supplement the data of
Ni et al. (2019) with trace element measurements in olivine to
estimate their partition coefficients. We also examine new olivine-
melt inclusion pairs in lunar basalt 12009. Here we report partition
coefficients of 21 major and trace elements between olivine and
melt in lunar basalts and compare the obtained partition coeffi-
cients with published data for terrestrial conditions.

SAMPLES AND METHODS

General considerations

The compositions of a homogenized melt inclusion (MI) and its host olivine can
be used to estimate mineral/melt partition coefficients. A melt inclusion is a droplet of
melt that becomes trapped during mineral crystallization. At the time of entrapment,
ameltinclusion can be considered to be in equilibrium with the host mineral. If well-
preserved, coexisting host minerals and melt inclusions can be analyzed to estimate
partition coefficients (e.g., Nikogosian and Sobolev 1997; Thomas et al. 2002; Zajacz
and Halter 2007) and may have advantages over experimental methods. For example,
naturally occurring, coeval host mineral/melt inclusions reflect natural composition
and conditions and, therefore, can more accurately represent geological processes.

This method, however, also has its disadvantages. The compositions of melt
inclusions can be affected during natural cooling, including post-entrapment crys-
tallization and diffusive exchange between the melt inclusion and the host crystal
as well as the magma surrounding the host crystal. Post-entrapment crystallization
of the host mineral into the melt inclusion as well as the crystallization of the melt
inclusion during cooling is supposed to be reversed (corrected for) by laboratory
homogenization, which was carried out for all melt inclusions in this study. Whether
homogenization reverses post-entrapment crystallization can be evaluated by whether
equilibrium is reached for Fe-Mg exchange between a given melt inclusion and its
host olivine. Diffusive exchange occurs during cooling between melt inclusions and
magma surrounding the host olivine or between the melt inclusion and olivine. The
extent of exchange depends on the cooling rate, diffusivity, and compatibility of the
element, size of the olivine host and melt inclusion, and residence time of the host
crystal in the magma. A significant diffusive exchange between a melt inclusion and
melt surrounding the host olivine would occur when the cooling rate is 1 to 2 °C/year
or lower (Gaetani and Watson 2000, 2002). All lunar samples investigated in this
work cooled at >10 °C/h (see “Sample description and preparation” section), which
is 4 to 5 orders of magnitude faster than 1 to 2 °C/year. Furthermore, most of the
samples reported here (except 12009) have been examined for volatile concentrations
(Ni et al. 2019), which showed, with the exception of H,O, preservation of rapidly
diffusing components, such as F, Cl, and S. Such observations indicate a negligible
diffusive exchange for the elements examined here, which, with the exception of Li,
diffuse more slowly than F (e.g., Zhang et al. 2010).

All melt inclusions studied in this work were crystalline. Naturally glassy melt
inclusions (such as those in 74220 studied by Hauri et al. (2011), Chen et al. (2015),
and Ni et al. (2019)] did not satisty our selection criterion. Therefore, homogenization
was needed. For homogenization experiments, it is difficult to completely restore
the MI composition to that at the time of entrapment (i.e., equilibrium). Therefore, a
criterion is needed to assess whether there is approximate equilibrium between the melt
inclusion and the host olivine. The Fe/Mg exchange coefficient Kp [= (FeO/MgO)qjivine/
(FeO/MgO),.] between olivine and basaltic melt was used to evaluate whether there
is approximate olivine-melt equilibrium.

Roeder and Emslie (1970) first showed that the Fe?'-Mg exchange coefficient
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between olivine and melt is independent of temperature and equals 0.30 + 0.03 at
equilibrium. This exchange coefficient has been widely used in equilibrium cal-
culations ever since (e.g., Langmuir et al. 1980). Longhi et al. (1978), using lunar
samples, reached a similar conclusion but noted decreasing K, with increasing TiO,.
Xirouchakis et al. (2001) further studied the effect of TiO, concentration in melt and
found that K}, can vary from 0.36 to 0.22 with a TiO, increase from <1 to 20 wt%.
From the data summarized in Xirouchakis et al. (2001), an equation showing this
dependence was fitted (Kp = —0.006668 x TiO, + 0.35) and used in this work. We
allowed a variation of £0.06 (~20% relative) in K}, from the calculated value in choos-
ing olivine-inclusion pairs thought to be in equilibrium. Using this criterion, we have
chosen previously investigated lunar samples 12040, 15016, 15647, and 74235 (Ni et
al. 2019) for trace element measurement in olivine. In addition, a new lunar sample
(12009) that we investigated also satisfied the criterion and was included in this study.

Sample description and preparation

Olivine-melt inclusion pairs in five lunar basalts, 12009, 12040, 15016, 15647,
and 74235, satisfy the criterion for equilibrium based on the apparent K, between
the host olivine and melt inclusion and were analyzed to obtain olivine-melt partition
coefficients. Among the five lunar samples, four (all except 12009) were examined for
volatiles in olivine-hosted melt inclusions by Ni et al. (2019). One sample (74235) is
a high-Ti basalt, and the other four samples are low-Ti basalts. A brief description of
each sample is presented here. Sample 12040 is an olivine basalt with millimeter-sized
crystals and ~2.6 wt% TiO,. Accumulation of olivine was inferred for the sample
(Newton et al. 1971). Sample 15016 is an olivine-normative basalt with ~2.3 wt%
TiO, and ~50 vol% vesicularity. Ca- or Fe-rich zonation in pyroxene indicates rapid
crystallization. Sample 15647 is an olivine basalt with sub-millimeter size crystals and
containing ~2.4 wt% TiO,. Sample 74235 is a fine-grained high-Ti basalt (~12.3 wt%
TiO,) containing skeletal phenocrysts of olivine, pyroxene, and ilmenite. Sample
12009 is a rapidly cooled low-Ti (3.3 wt% TiO,) olivine vitrophyre basalt with large
vesicles. More detailed descriptions of these samples can be found in The Lunar
Sample Compendium (https://curator.jsc.nasa.gov/lunar/lIsc/) and Ni et al. (2019).

Cooling rates of 74235, 12009, and 12040 have been estimated and are all greater
than 10 °C/h (Donaldson et al. 1975; Usselman et al. 1975; Walker et al. 1976). For
15016 and 15647, no cooling rate data are available. Based on the H,O/Ce ratio
vs. cooling rate relation in Ni et al. (2019), they should have quenched faster than
12040, meaning a cooling rate greater than 10 °C/h. Hence, all lunar samples we
studied cooled much more rapidly than 2 °C/year, with 12040 cooling the slowest,
and 15647 a close second.

The radii of the investigated melt inclusions range from 13 to 22.5 um (Table 1).
Grain sizes in crystalline melt inclusions are typically small, sub-micrometers to a
few micrometers for silicate minerals (Fig. 1 and Newton 1971), but there might
be larger metal or oxide mineral grains (brighter crystals in the lower right of
Fig. 1), and shrinkage bubbles.

Homogenization experiments were conducted at 1 bar at a temperature slightly
above the liquidus of the corresponding lunar rock. The olivine-hosted melt inclu-
sions in 12040, 15016, 15647, and 74235 were homogenized by Ni et al. (2019),
and those in sample 12009 were homogenized in this study following the procedures
in Chen et al. (2015) and Ni et al. (2017, 2019). An olivine grain from 12009 was
placed in a graphite crucible (drilled from purified 99.995% graphite rod ordered
from graphitestore.com) under continuous high-purity N, flow to maintain a reducing
environment, heated to 1240 to 1250 °C at one bar for 2 min, and quickly quenched
by immersing the crucible in water. The fo, in the crucible was measured to be be-
tween IW-1.9 and IW-2.6 (Ni et al. 2017). The reducing condition prevented olivine
oxidation but did not establish a new f, for the olivine-inclusion equilibrium due
to the short duration of the experiments. That is, the /5, condition is expected to be
unchanged from that during eruption and crystallization on the Moon. More detailed
description of the homogenization experiments may be found in Chen et al. (2015)
and Ni et al. (2017, 2019).

The homogenized melt inclusions are essentially glassy (Fig. 2), but oc-
casionally there are undissolved metal/sulfide/oxide grains. Silicate crystals of a
few micrometers in size or smaller can be dissolved in <10 s at the experimental
temperatures (Chen and Zhang 2008, 2009). Diffusion distance (Df)"? (here D is
diffusivity, not partition coefficient) in a MORB melt during olivine dissolution at
the experimental temperature for 2 min is 41 pm for MgO and 24 pum for the slower
diffusing SiO, and Al,O; using diffusivities in Chen and Zhang (2008). Diffusivities
in lunar basalts are higher than those in MORB by a factor of about 4 (Morgan et
al. 2006; Yu et al. 2016), meaning diffusion distances would be two times those in
MORB, which equate to approximately 82 um for MgO and 48 pum for SiO, and
Al O;. All melt inclusions in this study have radii smaller than 23 pm (Table 1).
Hence, diffusion is able to homogenize the melt inclusions in 2 min except for the
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TABLE 1. Trace element concentration (ppm) for olivine and MI with 10 error
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presence of larger grains of metal or oxide or sulfide.

After homogenization, the olivine crystals were polished to reveal
the enclosed melt inclusions (Fig. 2). The diameter of each melt inclu-
sion was measured and reported in Table 1. Major and trace element
concentrations in both melt inclusions and host mineral grains were
analyzed.

Major and trace element concentration
measurement

Major element analysis. Major element concentrations of melt
inclusions and host olivine grains were analyzed using a CAMECA
SX-100 electron microprobe (EMPA) at the University of Michigan.
Analyses were carried out using a 15 kV, 10 nA, and 5 pm defocused
beam in wavelength-dispersive spectrometry (WDS) mode. At least
five points were measured on the host olivine at locations adjacent to
each melt inclusion. Fewer data points were obtained for some melt
inclusions due to the limitation of their small sizes. Data are reported
in Table 2 (all tables are in an Excel file for easy use by readers in
Online Materials'). We only report olivine-melt inclusion pairs that
were considered to be approximately in equilibrium based on their
apparent Fe?*-Mg K, values.

Trace element concentrations in melt inclusions. Trace element
concentrations in melt inclusions were analyzed using secondary ion
mass spectrometry (SIMS) at the California Institute of Technology
using a Cameca IMS 7f- GEO. Trace element measurements for
sample 12009 were conducted in this study, while those for lunar
samples 12040, 15016, 15647, and 74235 are from Ni et al. (2019).
The analytical procedures are very similar and briefly described below.

Twenty-two trace elements (Li, Na, K, Sr, Y, Zr, Nb, Ba, La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and four transition
metal elements (V, Cr, Mn, Co) were analyzed in two separate sessions.
For the analyses of trace elements, a 10 to 13 nA O™ primary ion beam
was used to generate secondary ion signals for measurement. Sensi-
tivity factors were calculated using the internal standard of **Si based
on reported concentrations in NIST glass standard SRM 610 (Pearce
et al. 1997). Accuracy of the analyses was verified by measuring two
additional NIST standards (NIST 612 and NIST 614) and two MPI-
DING glass standards (GOR128-G and KL2-G). For the analyses of
transition metal elements, an 11 to 17 nA O™ primary ion beam was
used and a mass resolution power (MRP) of 5500 was applied to the
mass spectrometer to separate interferences from the target masses.

Most data on olivine-hosted melt inclusions are from Ni et al.
(2019), and the calibration curves are shown and discussed there.
Calibration curves for the transition metal elements for 12009 can be
found in Online Materials' Figure S5. Calculated concentrations in
standards in this work are compared with reference values (Jochum et al.
2005,2006, 2011) in Online Materials' Figure S6 and Online Materials'
Table S2. Nickel concentrations were also measured, but the measured
concentrations in some standards can differ from reference values by
more than a factor of 4. Hence, Ni data are not used.

Trace element concentrations in olivine. Trace element analyses
for all olivine crystals reported in this study were carried out using a
laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-
MS) system in the Element and Heavy Isotope Analytical Laboratories
at the University of Windsor. The instrumentation comprises a Photon
Machines Analyte Excite 193 nm, short (sub 4 ns) pulse width Ar-F
Excimer laser ablation system coupled with an Agilent 7900, fast scan-
ning quadrupole ICP-MS. For each LA-ICP-MS analysis, 30 s of gas
and instrument background were acquired with the laser off, followed
by 40 s ablation signal with the laser on. The laser was operated at a
pulse energy of 120 mJ and a repetition rate of 5 Hz, with 60% output
power. Three spot sizes, 50, 85, and 110 um, were applied depending
on the olivine crystal size.

Most trace elements are highly incompatible in olivine relative
to the coexisting silicate melt, thus leading to their extremely low
concentrations. The concentrations of Na, K, La, Ce, Pr, Nd, Sm, Eu,
Nb, Mo, and Sn in olivine were found to be below the detection limit.
Nonetheless, 18 trace elements (using isotopes of "Li, ¥Al, “Ti, *'V,
SZCI‘, M, SQCO, x9Y’ 9"Zr, %Nb, 157G, me, 163Dy, 165Ho, 166K, 169 Tm,
172YD, and '*Lu) were successfully measured, and their concentrations
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Ficure 1. BSE image of a crystalline melt inclusion in olivine
in lunar sample 12009 with a bubble (12009-OL1-MI1) without
homogenization.

with 1o errors are reported in Table 1. When possible, two isotopes per element (°Li
and "Li, “'Ti and #Ti, *>Cr and *Cr, *Ni and ®Ni, ®Zn and *Zn, *’Zr and *'Zr, Mo
and *Mo, '"°Sn, ""®Sn, and '"*Sn) were measured to check for reproducibility and
mass interferences.

NIST standards 610, 612, 614, and 616 plus three MPI-DING standards
(GOR128-G, GOR132-G, St-Hs-G) were used as external calibration standards.
The NIST standards are soda-lime silicate glasses doped with various concentration
levels of trace elements. NIST 610, 612, 614, and 616 are nominally doped with
approximately 500, 50, 1, and 0.02 ppm, respectively, of most trace elements. Since
all the aforementioned standards contain more than 1 wt% Al, a SRM 1830 glass with
alow-Al concentration (635 ppm, certified), similar to the olivine samples, was used
for LA-ICP-MS calibration. °Si was used as the internal calibration standard to cor-
rect for differences in the rate of ablation between the standards and olivine crystals.

Inclusions were avoided during LA-ICP-MS measurements both by position-
ing the laser spot away from visible inclusions and by assessing each spectrum
for evidence of compositional change in olivine. Calibration curves are shown in
Online Materials' Figures S1, S2, and S3 for beam diameters of 65, 85, and 110 um,
respectively. When there is significant scatter in the calibration curve for a given
element (e.g., Ge, Zn, and Sc in Online Materials' Figure S1), the calibration is
deemed unacceptable and elemental concentrations in samples are not calculated. The
concentrations in the standards obtained in this study are compared with reference

FiGURE 2. BSE image of a homogenized melt inclusion in olivine
in 12009 (12009-OL6-MI1).

values (GeoRem, Jochum et al. 2005, 2006, 2011) in Online Materials' Figure S4
and Online Materials' Table S2.

RESuLTS
Comparison of melt inclusion and whole rock composition

Melt inclusions in olivine crystals studied here have a range
of Si0, concentrations from 38.0 to 48.3 wt% and the Mg# range
of the host olivine is 0.45 to 0.74. Three samples (15016, 74235,
and 12009) have olivine Mg# (or Fo#) >0.70, while samples
12040 and 15647 with slower cooling rate have low-olivine Mg#
ranging from 0.45 to 0.57.

Major oxide concentrations in melt inclusions for 74235,
15016, and 12009 are generally consistent with the whole rock.
On the other hand, melt inclusions in 12040 are considerably
different in composition from the whole rock, especially in MgO
(4 to 6 wt% in Mls vs. ~16 wt% in whole rock, The Lunar Sample
Compendium), which is consistent with the accumulation of oliv-
ine in the whole rock of 12040 (e.g., Newton et al. 1971). The high

TABLE 2. Major element concentrations for olivine and melt inclusions (MIs) measured by EMPA

SiO, 10 TiO, 10 Al,O; 10 Cr,0; 1o FeO 10 MnO 1o MgO 10 Ca0 1o
74235 OL4  38.62187 0.19  0.139878 0.04 0.0552 0.04 0.241422 0.05  25.26317 0.10  0.290044 0.01 35.58591 0.30 0.284411 0.01
Mi 380 03 125 0.2 8.18 0.15 2216 026 0.31 0.02 6.53 034 995 024

WR  38.6-39.4 12.2-124 8.61-9.21 0.42-0.51 18.6-19.3 0.27-0.28 8.35-8.67 10.7-10.9
12040 OL36 33.15084 0.19  0.06642 0.04 0.02264 0.02 0.0547 0.03 44.43224 037 0.40438 0.02 20.28716 0.49 0.36754 0.03
Mi 463 0.2 3.08 0.14 842 0.25 253 0.1 0.27  0.00 434 035 942 022

WR  43.4-449 2.27-2.78 6.67-7.8 0.52-0.71 19.7-23 0.24-0.28 16.1-17.1 6.9-8.1
12040 OL41  35.5961 0.47 0.056333 0.03 0.0151 0.01 0.111633 0.05 36.6691 0.34 0.3527 0.02 27.70987 0.36 0.323667 0.02
Mi 46,5 0.2 3.68 0.00 10.60 0.17 20.3 0.0 023 0.03 594 027 11.10 0.03

WR  43.4-449 2.27-2.78 6.67-7.8 0.52-0.71 19.7-23 0.24-0.28 16.1-17.1 6.9-8.1
12009 OL6  38.73828 0.15 0.03714 0.01 0.03294 0.02 0.46298 0.02  23.98956 0.37 0.2173 0.02  36.96392 0.29 0.2882 0.01
Mi 458 0.2 34 0.1 10.4 0.2 173 0.3 7.7 0.4 1.7 02

WR 41-45.0 29-33 8.59-11 20-21.0 0.19-0.28 11.6-12.5 9.42-10
12009 OL11  38.3118 0.09  0.03456 0.03 0.04422 0.02 0.4592 0.04 23.7218 0.06 0.2418 0.01 36.87296 0.14  0.27576 0.01
Mi 474 048 346  0.20 103 036 0.65 0.05 174 043 024 0.02 720 057 115 0.16

WR 41-45.0 29-33 8.59-11 20-21.0 0.19-0.28 11.6-12.5 9.42-10
15016 OL10 37.92441 0.21  0.039171 0.01 0.029914 0.01 0319257 0.14  26.65424 040 0.274286 0.02  35.39361 0.34 0.313271 0.02
Mi 483 03 194 0.3 912 043 19.04 055 024 0.02 8.6 0.9 104 03

WR  43.8-443 2.1-3 8.17-8.8 16.5-23.0 0.26-0.33 1M1-11.7 9.06-10.9
15647 OL6 3432505 043  0.066575 0.01 0.011425 0.01 0.109575 0.04  44.0175 098 0.433675 0.03  20.60805 0.92  0.40915 0.04
Mi 4212 038 324  0.06 6.71 21.00 328 0.5 035 0.02 453 0.26 8.16 0.26

WR  44.4-46.2 2.35-3 7.86-9 22.2-23.9 0.26-0.29 10.0-10.5 8.8-9.67

Notes: The major element concentrations in melt inclusion for 74235-4, 12040-36, 12040-41, 15016-10, and 15647-6 are from Ni et al. (2019). OL, Ml, and WR represent
the concentration in olivine crystal, melt inclusion, and whole rock. Whole rock composition from The Lunar Sample Compendium is listed for comparison. Errors

(10) are reported based on the standard deviation of multiple measurements.
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FeO in olivine (36.7 and 44.4 wt%) indicates late crystallization
or re-equilibration during the relatively slow cooling process (The
Lunar Sample Compendium).

Another slowly cooled basalt, 15647, also contains high FeO
(43.9 wt%) in olivine. The melt inclusion investigated here is
enriched in FeO by ~10 wt% and depleted in MgO by ~5 wt%
and SiO, by ~3 wt% compared with the whole rock. The high-
FeO concentrations in both the olivine host and the melt inclusion
in sample 15647 indicate a more evolved composition than the
whole rock.

Partition coefficients between olivine and melt

Partition coefficients and associated errors (16) between oliv-
ine and lunar basalt are reported in Table 3. Errors are calculated
using the equation:

o5 (3)
X Y
(X and Y are the concentrations in the mineral and melt inclusion,
respectively). In general, Mg and Co behave compatibly in olivine.
Fe, Mn, and Li exhibit close to neutral compatibility. V and Cr are
moderately incompatible in olivine, while most other elements (Al,
Ca, Ti, Y, Zr, Nb, and REESs) are highly incompatible.

To examine whether the variation of partition coefficients is
mainly due to data scatter, such as measurement uncertainty or
disequilibrium, partition coefficients of different elements are
plotted vs. each other, and good correlations are found between
element pairs such as REE-Y, Y-Ti, Ca-Ti, Cr-Ca, and Li-Al
(Fig. 3). As a dominant major element in olivine, the Mg partition
coefficient has a narrow range (4.12 to 5.45). Hence, no obvious
correlation was found between Dy, and the partition coefficients
of any other element. There is excellent correlation among REE
and Y partition coefficients (Fig. 3a). Furthermore, the partition
coefficients of REE increase with D, and Dy; (Figs. 3b and 3c¢),
and the partition coefficients of V and Cr decrease with increasing
D¢, and Dy; (Figs. 3d and 3e). The partition coefficient of Al is

TABLE 2.—EXTENDED

Na,0 1o K,O 1o Total Mg# Ko
74235 OL4 100.4767 71.51734 0.209196
MI 0.32 0.02 0.060 0.003 344
WR 0.37-0.4 0.07-0.08
12040 OL36 98.80222 44.86974 0.375111
MI 0.36 0.02 0.09 0.01 234
WR 0.16-1.99 0.04-0.05
12040 OL41 100.8428 57.39281 0.386647
MI 0.460 0.004 0.10 0.01 342
WR 0.16-1.99 0.04-0.05
12009 OL6 100.7569 73.30917 0.286673
MI 0.24 0.02 0.05 0.01 96.5 441
WR 0.23-0.51 0.05-0.06
12009 OL11 99.95046 73.48023 0.267033
MI 0.27 0.02 0.06 0.004 98.5 425
WR 0.23-0.51 0.05-0.06
15016 OL10 100.9492 70.30001 0.340152
MI 0.24 0.02 0.03 0.01 44.6
WR 0.21-0.32 0.03-0.05
15647 OL6 99.95885 45.4907 0.294814
MI 0.24 0.02 0.08 0.01 19.7
WR 0.22-0.33 0.04-0.047
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negatively correlated with that of Li (Fig. 3f).

The correlations in Figure 3 indicate that, at least for the
elements shown, the variation of the partition coefficients is not
due to measurement uncertainty or disequilibrium. Specifically,
the good correlation between Dy ; and D, indicates that Dy; is not
significantly affected by disequilibrium due to post-entrapment
diffusion. The most likely cause for the variation is compositional
dependence. Hence, we examined the dependence of the partition
coefficients on melt composition by plotting D vs. various oxide
concentrations in the melt. The dependence of partition coefficients
on TiO, in the melt is not obvious, partially because there is only
one high-Ti basalt in our study. Some consistent trends between
the partition coefficients and oxide concentrations were observed
and are shown in Figure 4. For example, D, and Dy, increase with
FeO content of the melt (Figs. 4a and 4b), whereas Dy and D¢,
decrease with FeO content of the melt (Figs. 4c and 4d). Because
oxide concentrations in the limited number of melt inclusions in-
vestigated in this work are not independent of each other, it is not
possible to assess whether or not the partition coefficients depend
only on FeO. For example, D¢, appears to also decrease with CaO
or Al,O; concentration in the melt (Figs. 4e and 4f), which might
be an artifact due to the correlation between CaO and FeO and
between Al,O; and FeO in the melt.
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FiGurEe 3. Correlations between partition coefficients of selected
elements between olivine and melt in lunar basalts. Data are from this
study. Error bars are at 1o level. (Color online.)
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Co in olivine has more scatter than for other elements (Zn, Cu,
and Ni calibration curves show even more scatter and are deemed
unsatisfactory and were not used). Hence, we will not emphasize
the single point. Below, we examine the differences in Dy;, Dc,,
and Dy, between lunar and terrestrial basalts.

The partition coefficient of Li between olivine and basalt
is higher in some lunar samples than in terrestrial samples.
Dy; appears to increase with the Fa# [=Fe/(Fet+Mg) of olivine]
(Fig. 6a). Literature Dy; data are limited (Dunn and Sen 1994;
Brenan et al. 1998; Taura et al. 1998; McDade et al. 2003; Ottolini
et al. 2009; Dalou et al. 2012; Nielsen and Ustunisik 2019). Only
25 data points satisfy the following conditions: nominally dry,
<20% relative error on Li concentrations, containing >30 wt%
Si0,, and having both olivine and melt composition reported. All
these literature data values are for low-Fa# olivine (Fa# < 0.22 or
Fo#>0.78), whereas Dy; values in this work are for samples with
Fa# as high as 0.55, leading to higher D;; values in the Fe-rich
samples (Fig. 6a). One explanation for the increase of Dy ; with Fa#
is that the ionic radius of Li* (0.76 A in octahedral site, Shannon
1976) is more similar to that of high-spin Fe** (0.78 A) than to
Mg (0.72 A). We modeled the dependence of Dy; on temperature,
pressure, and composition and determined that the pressure effect
is insignificant. A rough fit is as follows:

InDy, =3.33+[~13457 +8216v/Fa# +51.9(Si0, + 2AL,0,)1/T (1)

where T is in Kelvin, and SiO, and Al,O; are in wt% in the melt
(i.e., 50 wt% SiO, means SiO, = 50 in the above equation, not
0.5). The above equation can reproduce InDy; data with a standard
deviation of 0.19 after excluding two outlier points (Fig. 6b). Based
on the above equation, Dy ; between olivine and melt increases with
Fa# in olivine and SiO, + 2AL,0; in the melt.

Chromium exists mainly in the form of Cr*" in terrestrial
basalts, but a significant fraction of Cr is Cr*" under the reducing
conditions in lunar glass and minerals (Schreiber and Haskin
1976; Sutton et al. 1993; Papike et al. 2005; Berry et al. 2006;
Bell etal. 2014; Simon and Sutton 2017). Considerable research
has been devoted to Cr partitioning under terrestrial and lunar
conditions, showing complicated Cr partitioning behavior be-
tween olivine and melt. Schreiber and Haskin (1976) determined
Cr partition coefficients in forsterite-anorthite-diopside and
forsterite-anorthite-silica systems with an fo, range of about 10
orders of magnitude and showed that D, between forsterite and
melt depends on temperature, composition, and fo,. D¢, data by
Mikouchi et al. (1994) and Gaetani and Grove (1997) in FeO-
bearing systems and a narrower fo, range showed no dependence
on fo,. Hanson and Jones (1998) reconciled these results by
proposing that Cr** partitioning was sensitive to composition,
whereas Cr** partitioning was highly sensitive to temperature.
Consequently, for a certain composition and temperature, the
Cr** partition coefficient is similar to that of Cr*, leading to
approximately constant D¢, with f,,. Mallmann and O’Neill
(2009) reported that for some melts that contain <1.7 wt% FeO
at 1300 °C, the Cr partition coefficient between olivine and
melt is roughly constant between QFM-10 and QFM+4. Yet,
our data show that the Cr partition coefficient between olivine
and melt in lunar basalts is significantly lower than that in ter-
restrial rocks. The significantly lower D¢, in lunar basalts than in

1525

terrestrial basalts must be due to differences in some combination
of composition, fo,, and temperature (Hanson and Jones 1998).

We modeled D¢, as a function of temperature, olivine and
melt composition, and f,,. The following criteria were used in
filtering literature D¢, data: (1) fo, values must be reported for
each D¢, value; (2) if Cr,O; concentration is measured by electron
microprobe, the Cr,O; concentration must be >0.10 wt% so that
it does not have too large an uncertainty; (3) the 1o uncertainty
must be <20% of the measured concentration; and (4) the chemical
composition must contain <5 wt% other oxides in addition to the
typical major oxides. Data sources are listed in Figure 7.

We first tried using an empirical linear model in which
InD, is assumed to be linearly dependent on 1000/7, P, logfo,,
(1 — Fo#,,)*/T, X/T (where X; is the cation mole fraction of Si,
Ti, Al, etc.), plus various multiplications of these terms. The
model is similar to but includes more complicated terms than
the model of Mallmann and O’Neill (2013) for V partitioning.
Unfortunately, this effort did not lead to satisfactory fits (e.g.,
mean error in reproducing InD¢, being <0.2) even with >14
parameters unless some coefficients were large positive and
negative values, leading to wide swings in the calculated InDc,,
which are indicative of overfitting.

We then tried to model D¢, as a function of temperature, pres-
sure, melt composition, and fo, using a quasi-thermodynamically
based formulation. In this formulation, D¢, is related to D¢,
Dero15 (CrO;s is not included for simplicity), and the equilibrium
constant K, for the homogeneous reaction of CrO(melt) + (1/4)
0, = CrO, s(melt) as follows (e.g., Mallmann and O’Neill 2009):

1/4
Dy + Doy, Ky S,

Cro hom.

InD,, =In :
“ 1 + Khomf(i;‘

@

Each of InD¢,o, InD¢0; 5, and Ky, is expressed as a linear
function of 1/T, P/T, Fo#/T, X/T in the melt, and X.X/T (e.g.,

10
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FIGURE 5. Partition coefficients between olivine and melt in lunar
basalt from this study (colored symbols) compared with literature data
at terrestrial conditions (gray vertical bars). Data and references can
be found in Table 3. The partition coefficients for terrestrial basalts are
selected from literature data based on the following criteria: experimental
data only, log fo, greater than QFM-2, and melt compositions with 2 to
20 wt% FeO,, >10 wt% Al,O;, and < 5 wt% TiO,. (Color online.)
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regular solution model would have X.X/T terms in the activ-
ity coefficients). Such a model requires nonlinear minimization
involving numerous terms, which was performed using MatLab.
The terms are added or removed based on the examination of fitting
results. However, by increasing the number of fitting parameters to
improve fitting precision, some fitting parameters would assume
large positive and negative values, leading to wide swings in the
calculated D¢, values. After much effort, we decided to adopt the
following less complicated model to avoid overfitting:

InDeo = ~2.92 + 41 698-Si-Mg/T (3a)
InDeyors = —4.52 + [5395 + 1338Fo# + 35299(Na + K)JT  (3b)
1Ko =—79.00 + [104330 + 126061 (Mg + Ca + Na + K)J'T (3¢)

where T'is temperature in kelvin, Si, Mg, Ca, Na, and K are cation
mole fractions of the melt, and Fo# = Mg/(Mg+Fe) in olivine.

Using Dc,0, Dcrors, and K, in Equations 3a, 3b, and 3¢ to
calculate InDc, in Equation 2, experimental InD, values can be
reproduced with a standard deviation of 0.20 InD units (Fig. 7)
after excluding 15 points. However, K., values based on the
fitting results parameters vary by 11 orders of magnitude over
the temperature and composition range of the literature data,
which may be unrealistic. Hence, even though InDc, values can
be roughly reproduced using the fit, the physical interpreta-
tion of the fitted Dc,0, Dco1s, and especially K, may not be
meaningful. Based on Equations 3a to 3c, the lower D, values
between olivine and melt in lunar basalts may be attributed to
lower Fo#, lower Si-Mg, and lower Mg(Na+K) than terrestrial
basalts. Hence, key experimental data to improve understanding
and modeling of Cr partition between olivine and melt appear to
be those with lower Fo# (down to at least 0.5, which also means
low-MgO concentration in the melt) and at a large range of fo,.

In addition to the above quasi-thermodynamically based
modeling, we also examined different substitution mechanisms
to explain the variation of the Cr partition coefficient but did not
arrive at satisfactory answers.

Vanadium partitioning has been evaluated systematically in
numerous studies and has been found to be insensitive to tem-

FIGURE 6. (a) 1

CHEN ET AL.: ELEMENT PARTITION BETWEEN OLIVINE AND MELT IN LUNAR BASALTS

05 f o
[ 7.
S oF C R
E Z vk
0.5 F > . 3
R P
= 1F ° .
= ot o
= [
S st 1
2F ]
25 [ 1 1 1 1 1 1
25 -2 -5 -1 -0.5 0 0.5 1

Measured InD,

Fi1GURE 7. Fit of Cr partition coefficient data using equation 2 with
parameters given in Equations 3a to 3c. Literature Cr partition data are
from EarthChem (Nielsen and Ustunisik 2019), Beattie (1994), Canil
(1998, 1999), Hanson and Jones (1998), Righter et al. (2004), Mallmann
and O’Neill (2009, 2013), Tuff and O’Neill (2010), Fellows and Canil
(2012), Davis et al. (2013), Bell et al. (2014), Fonseca et al. (2014), Liu
etal. (2014), and Leitzke et al. (2016). Fifteen data points are excluded,
including 7 points in Mallmann and O’Neill (2009), 3 in Fonseca et
al. (2014), 3 in Leitzke et al. (2016), and 2 points in Liu et al. (2014).
(Color online.)

perature or composition but to increase strongly with decreasing
Jo, (e.g., Canil 1997; Mallmann and O’Neill 2009, 2013; Papike
et al. 2013). Therefore, the partitioning of V has been used as an
important redox indicator (e.g., Canil and Fedortchouk 2001;
Shearer et al. 2006; Wood et al. 2008; Mallmann and O’Neill
2013). The V partition coefficient data for lunar samples range
from 0.17 to 0.74, with an average of ~0.43, and are systemati-
cally higher than the values of 0.003 to 0.21 reported for terrestrial
basalts (Table 3). This result is expected because lunar basalts are
much more reduced than terrestrial basalts. For example, XANES
measurements of lunar samples show that V in lunar basalts is pre-
dominantly in the form of V**, with up to 20% of V>* (Sutton et al.
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sources include: Dunn and
Sen (1994); Brenan et al. o
(1998); Taura et al. (1998);
McDade et al. (2003); : .

] 15k * Literature| ]
1 = This work

Ottolini et al. (2009);
Dalouetal. (2012); Nielsen
and Ustunisik (2019).

2L °

Literature _ 2ok _
= This work ] ]

—1:1 line

X )T S B EPEPETEPN ENUPRPE EPEPPET B

Data with >20% relative
error in Li concentration
or with <10 wt% SiO, VFa#

are excluded. Two outlier

points are from Taura et al. (1998) and Dalou et al. (2012). (Color online.)
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2005; Karner et al. 2006). The dominant valence state in terrestrial
basalts, however, is V** (Papike et al. 2005), which explains the
difference in V partition coefficients between lunar and terrestrial
samples. The observed variation of V partition coefficient from
0.17 to 0.74 in lunar basalts can be explained by variations of
log fo,, from NNO-3.17 to NNO-5.86 (IW+1.5 to IW-1.2) accord-
ing to the relationship between Dy and logfo, of Canil (1997), or
from IW+1.5 to IW-1.8 using the model of Mallmann and O’Neill
(2009), which are roughly consistent with the estimated oxygen
fugacity for lunar basalts [ITW-2 to IW, (Sato et al. 1973; Wadhwa
2008)]. There may also be significant dependence of V partition
coefficient on melt composition, as recently modeled empirically
by Mallmann and O’Neill (2013). However, although the model by
Mallmann and O’Neill (2013) attempted to improve the model of
Mallmann and O’Neill (2009) by incorporating the compositional
dependence of Dy, it fails to reproduce the measured Dy, values in
this study by assuming a reasonable /o, for lunar basalts (from IW
to IW-2): the predicted Dy values would be too high by up to 1.5
orders of magnitude. This points to the limitations of empirical
modeling of the partition coefficient of V, which has multiple oxi-
dation states. Due to the difficulty in our modeling of Cr partition
coefficient, and because there are more potential oxidation states
for V, we did not attempt to model V partition coefficient using a
thermodynamically based formulation. Nonetheless, our data on
V partitioning are as expected.

Implications

The olivine-melt partition coefficients for lunar mare basalts
obtained in this study may be applied to investigate the effect of
olivine fractionation during lunar basaltic magma evolution and
shallow-level (low-pressure) lunar magma ocean evolution. In
addition, our data for olivine-melt partitioning can be combined
with partition data between other mantle minerals and melt to
quantify trace element behavior during lunar mantle partial melt-
ing and trace element concentration in primary mare basalts and
the lunar mantle.

Data for most elements in this study for lunar olivine-melt
partitioning are similar to those for terrestrial basalts. Hence, no
reconsideration is needed for relevant modeling for those elements.
However, Li, V, and Cr partition coefficients between olivine and
melt in lunar basalts are significantly different from those in ter-
restrial basalts. There are several consequences of this.

As shown in Figure 6a, Li becomes a compatible element
in olivine when the Fa# in olivine is >0.25, which roughly cor-
responds with a low Mg# < 0.47 in the melt using a K, value of
0.3. That is, in evolved basalt, Li is compatible in olivine relative
to melt. However, because the Li partition coefficient in pyroxenes
is smaller than that in olivine (Ottolini et al. 2009), the effect of the
increased compatibility of Li in olivine in evolved basalt does not
appear to result in a clear shift in Li behavior when lunar basalts
and terrestrial basalts are compared. Hence, it does not seem that
the slightly different Li partition coefficient results in significantly
different behavior between lunar basalts and terrestrial basalts.

The Cr partition coefficient between olivine and melt is smaller
in lunar basalts than in terrestrial basalts. Combined with the
observation that Cr partition coefficient between clinopyroxene
and melt and between orthopyroxene and melt decreases with
decreasing fo, (Canil 1999; Mallmann and O’Neill 2009), Cr is an
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incompatible element during lunar mantle partial melting and early
basalt evolution, which is opposite to it being strongly compat-
ible during terrestrial mantle partial melting and basalt evolution.
Therefore, Cr concentration in mantle-derived basalts is expected
to be high, and to become higher in evolved melts before oxide
minerals crystallize. That is, the higher Cr concentration in lunar
olivine than in terrestrial olivine (e.g., Steele and Smith 1975)
is not due to a larger Cr partition coefficient but to a higher Cr
concentration in the melt (Schreiber and Haskin 1976).

Figure 8 displays Cr vs. MgO and Cr vs. FeO in terrestrial and
lunar basalts. MgO is a compatible oxide and lower MgO concen-
tration typically means more evolved basalts. Cr concentrations in
lunar basalts are much higher than in terrestrial MORB and OIB,
as expected from its incompatibility in the lunar mantle and its
compatibility in the terrestrial mantle. Furthermore, in terrestrial
MORB and OIB, Cr shows a relatively simple positive (roughly
linearly) correlation with MgO, indicating that Cr is a compatible
element similar to MgO during terrestrial basalt evolution. On the
other hand, the Cr vs. MgO trend in lunar basalts is more com-
plicated: Cr concentration increases with decreasing MgO from
25 to ~11 wt%, and then decreases with further decreasing MgO.
Hence, Cr is incompatible when MgO concentration is above
11 wt% (primitive basalt) but becomes compatible when MgO
concentration is below 11 wt%. The trend of first increasing and
then decreasing Cr concentration as MgO decreases in lunar basalts
are similar to the FeO vs. MgO trend in terrestrial basalts (Grove
and Baker 1984) and might be controlled by the crystallization
of chromite and/or other oxide minerals. In Cr vs. FeO (Fig. 8b),
Cr is crudely positively correlated with FeO in lunar basalts
(Seifert and Ringwood 1988), with Cr being more incompatible
than FeO, indicating that Cr and Fe are both incompatible during
mafic silicate mineral fractionation and compatible in Fe-Ti oxides.
On the other hand, in terrestrial basalts, Cr concentration has a
maximum at approximately 9 wt% FeO in MORB and 12 wt%
FeO in OIB because starting from the maximum Cr concentration,
tholeiitic FeO enrichment is accompanied by Cr depletion (Cr is
compatible), and subsequent FeO depletion due to oxide crystal-
lization is also accompanied by Cr depletion.

Vanadium partition coefficient between olivine and melt is

higher in lunar settings than in terrestrial settings because of the
more reduced lunar conditions. Combined with increasing V
partition coefficients between other mafic minerals and melt as
fo, decreases (Mallmann and O’Neill 2009), V is expected to be
less incompatible during lunar basalt evolution than in terrestrial
basalt evolution. Figure 9 confirms this expectation. In terrestrial
basalts, V is highly incompatible in primitive basalts, whereas Mg
is compatible. Hence, V concentration increases steeply as MgO
concentration decreases (Fig. 9a, MORB and OIB trends). At lunar
conditions, however, V is incompatible when MgO is greater than
approximately 11 wt% (meaning that V concentration increases
as MgO concentration decreases), but less so than in terrestrial
basalts. At lower MgO, V in lunar basalts becomes compatible
and decreases as MgO decreases. Vanadium concentration in
lunar basalts when plotted against MgO also has a maximum at
~10 to 12 wt% MgO, which is similar to Cr. The positive trends
of V-FeO, for both terrestrial and lunar samples but with a lower
slope for lunar samples also indicate that V in terrestrial basalts
is much more incompatible than in lunar basalts.
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F1GURE 8. Cr concentration vs. MgO and Cr vs. FeO, in lunar basalts and terrestrial MORB and OIB (SiO, < 55 wt%). Lunar basalt data are
from Mare Basalt Database (https://www3.nd.edu/~cneal/lunar-1/), MORB data are from the compilation by Gale et al. (2013) and OIB data are

from GeoRoc. (Color online.)

The partition coefficients of V and Cr between olivine and melt
are similar in lunar basalts (0.17 to 0.74 for V vs. 0.11 to 0.62 for
Cr). However, in terrestrial basalts, the partition coefficient for
V is much smaller than that of Cr. Hence, olivine fractionation
would not significantly change the V/Cr ratio in the lunar magma
ocean or lunar basalts, but V/Cr ratio in terrestrial basalts would
increase significantly with olivine fractionation. The similarity
of V and Cr partition coefficients between olivine and melt in
lunar basalts apparently also applies to other mafic minerals in
lunar settings, which leads to a nearly constant V/Cr ratio in lunar
basalts (Seifert and Ringwood 1988). Figure 10 shows V vs. Cr
concentrations in lunar basalts and terrestrial MORB and OIB, and
indicates that V and Cr are positively correlated in lunar basalts
(Fig. 10a) with a nearly constant V/Cr ratio. Because some authors
argue that the constancy of an elemental ratio is best examined
by using a log-log concentration plot (Sims and DePaolo 1997,
Hofmann et al. 2020), we do so in Figure 10b. A slope of 1 in
the log-log plot means a constant V/Cr ratio. In Figure 10b, even
though there is much scatter (most of the very low V/Cr ratios are
from A11 samples, and most of the high V/Cr ratios are from A17
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samples), the slope from the simple linear fitting of log(V) vs.
log(Cr) is 0.956 + 0.037 (1o error), which is ~1. After removing
the outliers (outside 30), the average V/Cr slope in lunar basalts
is 0.039£0.011, which is in excellent agreement with the ratio of
0.038 obtained by Seifert and Ringwood (1988). The V/Cr ratio
in lunar basalts is not much different from the ratio in the bulk
silicate Earth (0.031; McDonough and Sun 1995). The depletion
of Cr (50% condensation temperature is 1296 K by Lodders 2003;
1291 K by Wood et al. 2019) in the Moon relative to V (condensa-
tion temperature is 1429 K by Lodders 2003; 1370 K by Wood et
al. 2019) is small, about 20% based on the ratios, which is within
the errors of the V/Cr ratios.

Because the data in Figure 10 reflect the involvement of not
only olivine but also other minerals, Figure 10 shows that V and
Cr have similar degrees of incompatibility not only in olivine, as
shown in this study, but also in other minerals in lunar basalts.
Because element pairs with nearly constant ratios are often used
to estimate the mantle composition (e.g., McDonough and Sun
1995; Salters and Stracke 2004; Hofmann et al. 2020) as well as
particular processes that might affect a given ratio (e.g., Cooper
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FIGURE 9. Vanadium concentration vs. MgO and FeO in lunar and terrestrial basalts. Data sources are the same as Figure 8. (Color online.)
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et al. 2012), the similar degree of incompatibility for V and Cr
provides a useful tool for examining lunar basalt evolution, as well
as the lunar mantle composition.

To conclude, partition coefficients between olivine and melt
in lunar basalts are measured for 21 elements. Most of our new
data are in good agreement with those in terrestrial basalts despite
the large differences in basalt composition and oxygen fugacity,
except for the partition coefficients of Li, V, and Cr. The slightly
higher Li partition coefficient between olivine and melt in lunar
basalts than in terrestrial basalts is largely due to the higher Fa# in
olivine in typical lunar basalts and does not seem to lead to clear
and consistent consequences in Li behavior during lunar basalt
evolution. The higher V partition coefficients in lunar basalts can
be readily explained by the lower oxidation state of lunar basalts
compared to terrestrial basalts. On the other hand, the smaller
partition coefficients of Cr in lunar basalts than in terrestrial basalts
seem to be due to compositional effects. Chromium behaves as an
incompatible element during crystal fractionation of lunar basalt
when MgO is >11 wt%, which is opposite to its compatibility
during terrestrial basalt evolution. Vanadium is less incompatible
during lunar basalt evolution than terrestrial basalt evolution. In ad-
dition, V and Cr have similar partition coefficients between mafic
minerals and basalt in the Moon, confirming the results by Seifert
and Ringwood (1988). Our new partition data can also explain:
(1) the much higher Cr concentration in high-FeO lunar basalts
than in terrestrial basalts; (2) the much lower V concentration in
evolved lunar basalts than in evolved terrestrial basalts; and (3)
the roughly constant V/Cr ratio of ~0.039 in lunar basalts (Seifert
and Ringwood 1988). The partition coefficients determined in this
study can be applied to model lunar magma evolution, to infer
melt composition from olivine composition, and to model partial
melting of the lunar mantle.
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