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Abstract 

 When, how, and why students use conceptual knowledge during math problem solving is 

not well understood. We propose that when solving routine problems, students are more likely to 

recruit conceptual knowledge if their procedural knowledge is weak than if it is strong, and that 

in this context metacognitive processes, specifically feelings of doubt, mediate interactions 

between procedural and conceptual knowledge. To test these hypotheses, in two studies (Ns = 64 

and 138), university students solved fraction and decimal arithmetic problems while thinking 

aloud; verbal protocols and written work were coded for overt uses of conceptual knowledge and 

displays of doubt. Consistent with the hypotheses, use of conceptual knowledge during 

calculation was not significantly positively associated with accuracy, but was positively 

associated with displays of doubt, which were negatively associated with accuracy. In Study 1, 

participants also explained solutions to rational arithmetic problems; using conceptual 

knowledge in this context was positively correlated with calculation accuracy, but only among 

participants who did not use conceptual knowledge during calculation, suggesting that the 

correlation did not reflect “online” effects of using conceptual knowledge. In Study 2, 

participants also completed a nonroutine problem solving task; displays of doubt on this task 

were positively associated with accuracy, suggesting that metacognitive processes play different 

roles when solving routine and nonroutine problems. We discuss implications of the results 

regarding interactions between procedural knowledge, conceptual knowledge, and metacognitive 

processes in math problem solving. 
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1. Introduction 

 Research on math cognition, learning, and development has traditionally distinguished 

between procedural and conceptual knowledge (Hiebert & Lefevre, 1986). Procedural 

knowledge refers to knowledge of procedures for solving problems, such as the step-by-step 

algorithms that children are taught in school. Conceptual knowledge is a multifaceted construct 

that includes knowledge of categories, relationships, principles, and representations. 

 Problems for which students have been taught and have practiced appropriate solution 

procedures, which we term “routine problems,” can in principle be solved using procedural 

knowledge alone. Yet, performance on routine problem solving tasks is correlated with 

individual differences in conceptual knowledge (Bailey, Hansen, & Jordan, 2017; Fuchs et al., 

2010; Hecht & Vagi, 2010; M. Schneider, Rittle-Johnson, & Star, 2011) and is improved by 

interventions that focus on conceptual knowledge (Fuchs et al., 2013; Fyfe, DeCaro, & Rittle-

Johnson, 2014; Rittle-Johnson, Siegler, & Alibali, 2001; Siegler & Ramani, 2009). These 

findings suggest that even when solving routine problems, at least some students use conceptual 

knowledge at least some of the time1. 

 This conclusion in turn suggests several questions. Which students use conceptual 

knowledge when solving routine problems? Under what circumstances do they do so? What 

mechanisms govern interactions between procedural and conceptual knowledge in this context? 

We propose two related hypotheses: that when solving routine problems, students are more likely 

to use conceptual knowledge (if they have it) when their procedural knowledge is weak than 

 
1 Students may also rely on procedural knowledge to help understand concepts and perform conceptual tasks (Rittle-

Johnson, 2017). Our focus on effects of conceptual knowledge on performance of procedural tasks in the present 

studies does not imply an absence of effects in the other direction. 



CONCEPTUAL, PROCEDURAL, METACOGNITION 

4 

 

when it is strong; and that in this context metacognitive processes, specifically feelings of doubt, 

mediate interactions between procedural and conceptual knowledge. 

 In the next two sections, we provide rationales for these hypotheses based on prior 

research regarding the roles of conceptual knowledge and metacognition in math problem 

solving. We also detail several empirical predictions implied by our hypotheses. Then, we 

discuss the domain in which we tested the predictions: fraction and decimal arithmetic. Last, we 

describe the present studies in more detail. 

1.1. Using Conceptual Knowledge During Problem Solving 

 One way in which students might use conceptual knowledge during problem solving is to 

help determine solution strategies (Rittle-Johnson, 2017). Specifically, when presented problems 

that cannot be solved through straightforward application of known procedures, students can use 

conceptual knowledge to adapt previously-learned procedures or invent new ones (Baroody, 

2003; Canobi, 2009; Hiebert & Lefevre, 1986; Perry, 1991; Shrager & Siegler, 1998). For 

example, in Rittle-Johnson and Alibali (1999), fourth and fifth graders who received a 

conceptual intervention regarding one type of math equivalence problem (a+b+c = a+__) 

subsequently invented strategies to solve different types of equivalence problems (e.g., a+b+c = 

d+__), whereas students who received a procedural intervention usually failed to do so. 

 The above function of conceptual knowledge has most often been emphasized in the 

context of nonroutine problems, but conceptual knowledge could play a similar role for routine 

problems when a student cannot remember an appropriate procedure or is unsure which of 

multiple candidate procedures is correct. To illustrate, a student asked to calculate 3/5+1/5 might 

wonder whether to pass the common denominator of the operands into the answer, yielding 4/5, 

or to add the denominators of the operands, yielding 4/10. A student who understands that 3/5 
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and 1/5 represent 3 parts and 1 part of a whole divided into 5 parts might use this understanding 

to reason that the former procedure is the correct one. 

 A second way in which conceptual knowledge might be used during problem solving is 

to detect errors (Ohlsson & Rees, 1991). Using inappropriate procedures, or incorrectly 

executing appropriate procedures, often leads to answers that violate conceptual constraints. For 

example, 3/5+1/5 = 4/10 violates the constraint that a sum of positive numbers is larger than the 

addends, because 4/10 < 3/5. If a student commits an error that violates a conceptual constraint, 

conceptual knowledge might enable the student to detect the error, which might in turn lead the 

student to correct their mistake and obtain a correct answer (Ohlsson, 1996; Siegler, Thompson, 

& Schneider, 2011). For example, consistent with the possibility of this mechanism, Wong and 

Odic (2021) recently demonstrated that adults can use their sense of numerical magnitudes—a 

form of conceptual knowledge—to make rapid, intuitive judgments about the direction of 

arithmetic errors. 

 In both of the mechanisms just described, conceptual knowledge becomes involved when 

procedural knowledge fails, such as when a student does not know or is uncertain of an 

appropriate procedure, or commits an error due to using an incorrect procedure or executing a 

procedure incorrectly. In contrast, a student who can confidently retrieve and correctly execute 

an appropriate procedure for a given problem may do so “on autopilot,” without using 

conceptual knowledge. Thus, we hypothesized that in the context of routine problems, use of 

conceptual knowledge is more likely when procedural knowledge is weak than when it is strong. 

 This hypothesis implies that relations between conceptual knowledge and performance on 

procedural tasks may be more complex than previously documented. If a student’s procedural 

knowledge relevant to a given problem is weak, the student may use conceptual knowledge to 
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compensate. However, in doing so, the student is unlikely to perform better than they would have 

if their procedural knowledge had been strong enough that they did not need to use conceptual 

knowledge. Thus, despite conceptual and procedural knowledge being positively correlated when 

assessed separately, we predicted that using conceptual knowledge when solving routine 

problems would not be positively associated with accuracy (Table 1, Prediction 1). 

Table 1. Predictions Tested in the Present Study. 

Number Prediction 

1 Use of conceptual knowledge will not be positively associated with accuracy when 

solving routine math problems 

2 Doubt will be positively associated with using conceptual knowledge when solving 

routine math problems 

3 Doubt will be negatively associated with accuracy when solving routine math problems 

 

1.2. Metacognitive Processes During Problem Solving 

 Like conceptual knowledge, metacognitive processes—that is, processes that regulate and 

monitor cognitive processes—are critical for solving math problems (Alibali, Brown, & 

Menendez, 2019; Crowley, Shrager, & Siegler, 1997; Garofalo & Lester, 1985). Successful 

problem solvers self-monitor more than less successful problem solvers do (Schoenfeld, 1992; 

Stillman & Galbraith, 1998), and individuals with stronger metacognitive knowledge perform 

better in math (Carr, Alexander, & Folds‐Bennett, 1994; Nelson & Fyfe, 2019; W. Schneider & 

Artelt, 2010). Further, metacognitive interventions can improve problem solving performance 

(e.g., Desoete et al., 2003; Hacker et al., 2019). 

 We propose that during routine problem solving, metacognitive processes—specifically, 

feelings of uncertainty and feelings of error, which we refer to jointly as “doubt”—mediate 

interactions between procedural knowledge and conceptual knowledge. This may occur in at 
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least two ways, corresponding to the two mechanisms described in the previous section. First, 

when selecting a strategy to solve a problem, a student may feel doubt if no procedure is 

sufficiently activated in memory, or if multiple procedures are highly activated. This feeling of 

doubt could prompt use of conceptual knowledge to help generate or select an appropriate 

procedure. Second, if a student commits a procedural error and thereby generates an answer that 

violates a conceptual constraint, knowledge of the constraint may cause the student to doubt their 

answer (Fernandez Cruz, Arango-Muñoz, & Volz, 2016). This feeling of doubt could prompt the 

student to rerun or modify their procedure. 

 Our proposal implies that doubt and conceptual knowledge go hand in hand. Both occur 

in similar situations; doubt during strategy selection may trigger use of conceptual knowledge; 

and in the presence of an error, conceptual knowledge may generate doubt. These observations 

suggested a prediction: doubt should be positively associated with using conceptual knowledge 

when solving routine math problems (Table 1, Prediction 2).  

 A final implication of our proposal is that in the context of routine problems, doubt is a 

good indicator of weak procedural knowledge. Thus, doubt should be negatively associated with 

accuracy in this context (Table 1, Prediction 3). Though this prediction may seem 

uncontroversial, it is still worth testing, because confidence is not always well calibrated with 

accuracy in math (Nelson & Fyfe, 2019; Reder & Ritter, 1992). Further, the prediction does not 

apply for nonroutine problems, for which doubt might have a positive effect by prompting 

deliberate consideration of alternative strategies. We elaborate on this point in Study 2. 

1.3. Arithmetic with Fractions and Decimals 

 The present studies tested the predictions in Table 1 in the domain of rational number 

arithmetic. Knowledge of rational numbers is a critical foundation for more advanced math such 
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as algebra (Siegler et al., 2012). Yet, many students experience large and persistent difficulties in 

this area. Rational number arithmetic is particularly challenging, including fraction arithmetic 

(Hansen, Jordan, & Rodrigues, 2015; Hecht & Vagi, 2012; Mack, 1995; Siegler et al., 2011) and 

decimal arithmetic (Hiebert & Wearne, 1985; Hurst & Cordes, 2018b). For example, US sixth 

graders correctly solved only 46% of fraction arithmetic problems in Siegler and Pyke (2013), 

and only 57% of decimal arithmetic problems in Tian et al. (2021). 

 Difficulties with fraction and decimal arithmetic result in part from the large number of 

procedures that must be learned, the complexity of these procedures, and the ease of confusing 

the procedures with each other (Braithwaite, Pyke, & Siegler, 2017; Lortie-Forgues, Tian, & 

Siegler, 2015). Difficulties in this area also reflect lack of conceptual knowledge, without which 

students have little basis for choosing correct procedures over incorrect ones or for 

distinguishing between correct and incorrect answers (Siegler, Im, Schiller, Tian, & Braithwaite, 

2020). At least four types of conceptual knowledge are relevant in this domain. Because these 

types provided a framework for our analyses, we describe them in detail here. 

 First, magnitude knowledge refers to understanding that fractions and decimals have 

magnitudes that can be compared, ordered, and placed on a number line. Students could use 

magnitude knowledge to detect arithmetic errors that result in implausibly large or small answers 

(Siegler et al., 2011), as in the earlier example of rejecting 3/5+1/5 = 4/10 because 4/10 < 3/5. 

Consistent with this possibility, interventions that focus on fraction magnitude understanding 

have led to improvements in fraction arithmetic skill (Fuchs et al., 2013, 2021). 

 Second, fraction interpretation refers to semantic interpretations of fractions. Five such 

interpretations were proposed by Kieren (1980; see also Behr, Lesh, Post, & Silver, 1983): 

measurement, part-whole, quotient, ratio, and operator. Subsequent research explored learning 
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activities conducive to understanding these interpretations, such as splitting wholes into parts and 

recombining these parts (Braithwaite & Siegler, 2021; Martin et al., 2015; Steffe, 2004; Tzur, 

1999; Tzur & Hunt, 2015), and trajectories from less to more advanced interpretations (e.g., from 

part-whole to measurement, Wilkins & Norton, 2018). Meaningful interpretations of fractions 

could help students make sense of fraction arithmetic procedures. For example, 3/5+1/5 = 4/5 

makes sense when understood as splitting a whole into five equal parts, combining three of those 

parts, then adding another of the parts, yielding four of the parts. Consistent with this possibility, 

understanding of meaningful fraction interpretations, especially the part-whole and measurement 

interpretations, predicts fraction arithmetic skill (Gabriel et al., 2013; Hecht & Vagi, 2010). 

 Third, place value knowledge refers to understanding how the value of each digit in a 

decimal depends on its position relative to the decimal point and how the position of the decimal 

point affects the decimal’s magnitude. Place value concepts could help individuals understand 

decimal arithmetic procedures. For example, 4+.3 = 4.3, not 7 or .7, because digits representing 

different place values should not be added. Consistent with place value knowledge contributing 

to decimal arithmetic skill, an intervention that emphasized place value led to improvements in 

decimal arithmetic skill (Wearne & Hiebert, 1988), and interleaving lessons on decimal place 

value and decimal addition procedures led to greater improvement in decimal addition skill than 

teaching place value and addition in separate blocks (Rittle-Johnson & Koedinger, 2009). 

 Finally, cross-notation knowledge refers to knowledge of relations between fractions and 

decimals, such as knowing how to translate fractions into equivalent decimals and vice versa. 

Cross-notation knowledge could enable students to use knowledge of one notation to help solve 

problems in a different notation, such as solving 3+1/5 by reasoning that 1/5 = .2 so 3+1/5 = 3+.2 

= 3.2. Spontaneous cross-notation translation has previously been reported in the context of 
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number line estimation tasks (Siegler & Thompson, 2014; Siegler et al., 2011). Cross-notation 

knowledge was emphasized in Moss and Cases’s (1999) successful rational number intervention, 

and cross-notation knowledge predicts fraction and decimal affrithmetic accuracy when 

controlling for fraction and decimal magnitude knowledge (Braithwaite, McMullen, et al., in 

press). 

1.4. The Present Studies 

 In contrast to previous studies that have often assessed conceptual and procedural 

knowledge using separate tasks, the present studies investigated uses of conceptual knowledge in 

the context of a procedural task—fraction and decimal arithmetic calculation. Two studies were 

conducted to test the predictions in Table 1. Our approach to testing these predictions was 

identical in both studies and is described below. Distinctive aspects of each study are described 

in the Introductions thereof. 

 Both studies included a calculation task in which participants were asked to think aloud 

while solving fraction and decimal arithmetic problems. Displays of doubt were identified by 

analysis of think-aloud protocols and written work, as in some investigations of math problem 

solving (e.g., Schoenfeld, 1992; Stillman & Galbraith, 1998). We adopted this approach rather 

than eliciting retrospective confidence ratings (e.g., Fitzsimmons et al., 2020; Nelson & Fyfe, 

2019) because think-aloud protocols could reveal feelings of doubt that occurred throughout each 

trial, whereas retrospective confidence ratings might not detect doubts that were resolved during 

trials. For example, a participant who committed an error, then noticed and fixed it, might report 

high confidence in their solution, thus concealing the feeling of error experienced earlier.  

 We also relied on think-aloud protocols to assess use of conceptual knowledge on the 

calculation task. According to a meta-analysis by Fox, Ericsson, and Best (2011), thinking aloud 
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does not affect accuracy on cognitive tasks, whereas other verbal report procedures, such as 

explaining, may have positive effects on accuracy. Further, explanations might omit details due 

to forgetting or a desire to simplify. For example, a participant who used conceptual reasoning to 

choose between two strategies, if asked to explain their solution, might report only the chosen 

strategy, whereas think-aloud protocols would also reveal the reasoning that led to the choice. 

 Participants in both studies were university students. Rational numbers are not a focus of 

math education in the US after sixth grade (CCSSI, 2010). However, many adults continue to 

struggle with rational numbers (Fazio, DeWolf, & Siegler, 2016; Opfer & Devries, 2008; Sidney, 

Thalluri, Buerke, & Thompson, 2019; Stigler, Givvin, & Thompson, 2010), including with 

arithmetic (Hurst & Cordes, 2016, 2018a; Newton, 2008; Siegler & Lortie-Forgues, 2015). These 

phenomena are concerning because knowledge of fractions and decimals is expected in many 

university courses. Further, 68% of adults in the US use rational numbers in their jobs (Handel, 

2016). These considerations informed our decision to focus on adults. We report a similar study 

of children elsewhere (Braithwaite, Sprague, & Siegler, in press). 

2. Study 1 

 In Study 1, after completing the calculation task, participants performed an explanation 

task in which they generated explanations regarding fraction and decimal arithmetic procedures. 

We expected that many participants who did not use conceptual knowledge when calculating 

would display such knowledge when explaining. Such a result would permit us to exclude the 

possibility that failure to use conceptual knowledge during calculation merely reflected 

participants lacking relevant conceptual knowledge, being unable to verbalize such knowledge, 

or being unable to use such knowledge to reason about rational number arithmetic. 
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 We further predicted that use of conceptual knowledge on the explanation task, unlike 

use of conceptual knowledge on the calculation task, would be positively associated with 

accuracy on the calculation task. Confirmation of this prediction would indicate that relations 

between conceptual and procedural knowledge may differ depending on whether conceptual 

knowledge is assessed via tasks designed to elicit such knowledge or in the context of tasks that 

could be completed using only procedures.  

2.1. Method 

2.1.1. Participants 

 Participants were 64 undergraduate students (38 women, 26 men; 32 first year, 13 second 

year, 18 third year or higher, 1 year not reported) from a mix of majors, the most common being 

psychology (n = 26). Participants were recruited from the Psychology Department participant 

pool at Florida State University (FSU) and received course credit for participation (participants 

were offered alternative options for course credit). In the years Studies 1 and 2 were conducted, 

students admitted to FSU had average SAT scores ranging from 1312 to 1325 and average ACT 

scores ranging from 29 to 30. During these years, the participant pool was 79% White or 

Caucasian, 10% Black or African-American, 4-6% Asian, and 5-7% other; across races, 22% 

identified as Hispanic or Latino. Interviews were conducted by the two authors, a female 

graduate student, and a female undergraduate researcher. 

2.1.2. Tasks and Materials 

 Stimuli for the calculation task were 12 arithmetic problems including three fraction 

addition problems (3/5+1/5, 3/5+1/4, 3+1/5), three fraction multiplication problems (3/5×1/5, 

3/5×1/4, and 3×1/5), three decimal addition problems (12.3+5.6, 2.46+4.1, 5.61+23), and three 

decimal multiplication problems (2.4×1.2, 2.3×0.13, 3.2×31). 
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 Stimuli for the explanation task were 12 other arithmetic problems, three for each of the 

four problem types in the calculation task: fraction addition (2/3+1/4, 1/2+3/7, 2/5+1/6), fraction 

multiplication (3/4×1/4, 5/6×1/6, 2/3×1/3), decimal addition (5.73+1.2, 6.15+2.1, 4.32+3.4), and 

decimal multiplication (7.1×2.1, 5.1×3.1, 3.1×4.1). 

2.1.3. Procedure 

 Participants first completed a training on thinking aloud, which followed a script adapted 

from Fox et al. (2011). The script emphasized that participants were not to explain their thoughts 

but only to report them. Participants practiced thinking aloud with several problems that did not 

involve fractions or decimals (e.g., “How many months start with the letter ‘J’?”). 

 Participants then completed the calculation task. They were told to think aloud while 

solving each problem and to do the problems as they would if they were not thinking aloud. 

Fraction and decimal problems were presented in separate blocks, with the sequence of these 

blocks counterbalanced. Within each block, problems were presented in one of four semi-random 

orders, with addition and multiplication problems intermixed. 

 Finally, participants completed the explanation task. Trials involving the four problem 

types (fraction addition, fraction multiplication, decimal addition, decimal multiplication) were 

presented in separate blocks, with order of notations (fractions or decimals first) and operations 

(addition or multiplication first) counterbalanced between participants. Within each of these 

blocks, participants completed one Explain-Solution trial, one Explain-Error trial, and one 

Explain-Algorithm trial, in that order. In Explain-Solution trials, participants were told to solve a 

problem, then explain how they solved it and why their solution made sense. In Explain-Error 

trials, participants were shown two solutions to a problem and were told that one was correct and 

the other incorrect; they were then asked to say which solution was incorrect and why. In 
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Explain-Algorithm trials, participants were shown a standard algorithm for solving the given 

type of problem and a worked example illustrating the algorithm; they were then asked to 

explain why a key step of the algorithm made sense.  

 All tasks were completed in paper and pencil format. Sessions were audio recorded. All 

materials shown to participants and the scripts followed by experimenters for this study and 

Study 2 are provided in the Supplementary Materials. 

2.1.4. Coding 

 Each trial of the calculation task was coded for whether doubt was displayed. Doubt was 

coded if the participant expressed uncertainty about how to do a problem, explicitly considered 

multiple strategies, stated that their solution was likely to be incorrect, or crossed out, erased, or 

modified their written work. These criteria were intended to include feelings of both uncertainty 

and error, which were not coded separately due to the difficulty of distinguishing them. 

 Also, each trial of the calculation and explanation tasks was coded for whether 

conceptual knowledge was overtly used. Use of conceptual knowledge was coded if the 

participant displayed any of the types of conceptual knowledge detailed in the Introduction—

magnitude knowledge, fraction interpretation, place value knowledge, and cross-notation 

knowledge—or displayed other types of knowledge that coders considered to be conceptual (this 

occurred on 1% of calculation trials and 1% of explanation trials). Uses of conceptual knowledge 

were not classified as correct or incorrect because they often were not clearly one or the other. 

Explanations were not scored for quality, but only as displaying conceptual knowledge or not. 

 The guidelines used for coding doubt and use of conceptual knowledge, and examples of 

trials that displayed each of the four types of conceptual knowledge listed above, are provided in 

the Supplementary Materials. Each trial was coded separately by two coders, who coded the 
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trials in several batches and met to discuss each batch before coding the next batch. On the 

calculation task, the coders agreed whether doubt was displayed on 92% of trials, whether any 

conceptual knowledge was used on 94% of trials, and which types of conceptual knowledge 

were used (if any) on 94% of trials. On the explanation task, the coders agreed whether any 

conceptual knowledge was used on 88% of trials and which types of conceptual knowledge were 

used (if any) on 78% of trials. Disagreements were resolved through discussion.  

2.2. Results 

 Table 2 displays descriptives and correlations for our main outcome measures. 

Table 2. Descriptives and Correlations for Measures in Study 1. 

  Correlations 

 Mean (SD) 1B 1C 2 

Calculation task     

  1A. Accuracy .80 (.17) -.35 ** -.07 .36 ** 

  1B. Doubt .21 (.12)  .26 * -.03 

  1C. Conceptual knowledge use .12 (.16)   .48 ** 

Explanation task     

  2. Conceptual knowledge use .60 (.22)    

Note. “Accuracy” denotes proportion of trials correctly answered, “doubt” denotes proportion of 

trials on which doubt was displayed, and “conceptual knowledge use” denotes proportion of 

trials on which any conceptual knowledge was used; * indicates p < .05 and ** indicates p < .01. 

 Below, we report analyses testing the predictions in Table 1. These predictions were 

tested using correlation analysis and mixed logistic regression. The correlation analyses tested 

for between-subjects effects—for example, did participants who displayed doubt more often also 
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use conceptual knowledge more often? The regressions tested for within-subjects effects—for 

example, were participants more likely to use conceptual knowledge on calculation trials in 

which they displayed doubt than on trials in which they did not, after accounting for between-

participant variation in use of conceptual knowledge? After reporting tests of the predictions in 

Table 1, we report analyses regarding the explanation task and the types of conceptual 

knowledge that were used in each task. 

 Here and in Study 2, analyses were conducted in R, using lme4 (Bates, Maechler, Bolker, 

& Walker, 2013) and lmerTest (Kuznetsova, Brockhoff, & Christensen, 2016) for regressions. In 

the regressions, participant was a random effect; notation, arithmetic operation, and the notation 

* operation interaction were included as fixed effects; and notation and operation were centered 

(i.e., for notation, “fraction” and “decimal” were coded as -0.5 and 0.5, and for operation, 

“addition” and “multiplication” were coded as -0.5 and 0.5). All significant effects (p < .05) are 

reported. 

2.2.1. Prediction 1: Use of conceptual knowledge will not be positively associated with 

accuracy when solving routine math problems 

 No evidence was found for a positive correlation between use of conceptual knowledge 

and accuracy on the calculation task, r = -.07, t(62) = -0.6, p = .56 (Table 2). To seek evidence 

against such a positive correlation, we examined the one-tailed left 95% CI of the correlation 

coefficient (Lakens, Scheel, & Isager, 2018), which was [-1, .14]. This result does not exclude 

the correlation being positive, but indicates that it is likely either not positive or small. 

 The prediction was further tested using mixed logistic regression, with accuracy on each 

trial of the calculation task as the dependent variable and use of conceptual knowledge on the 

same trial as a predictor. Like  the correlation analysis, the mixed logistic regression did not yield 



CONCEPTUAL, PROCEDURAL, METACOGNITION 

17 

 

evidence for a positive effect of conceptual knowledge use on accuracy, B = -0.5, z = -1.4, p 

= .15. Correct answers were advanced on 73% of trials in which conceptual knowledge was used 

and on 81% of trials in which conceptual knowledge was not used. 

 The regression analysis also found an effect of operation, B = -2.0, z = -8.1, p < .001, and 

a notation * operation interaction, B = -1.0, z = -2.1, p < .001. Participants were more accurate on 

addition than multiplication problems (92% vs. 68%). This effect was larger for decimal 

problems (93% vs. 60%) than for fraction problems (92% vs. 76%). 

2.2.2. Prediction 2: Doubt will be positively associated with using conceptual knowledge 

when solving routine math problems 

 As predicted, the frequency with which participants displayed doubt on the calculation 

task was positively correlated with how often they displayed conceptual knowledge, r = .26, 

t(62) = 2.1, p = .038 (Table 2). Similarly, mixed logistic regression found that the likelihood of 

using conceptual knowledge was higher on trials in which doubt was displayed than when doubt 

was not displayed (21% vs. 9%), B = 1.0, z = 3.1, p = .002. 

 Table 3 shows two examples of trials that illustrate relations between doubt and use of 

conceptual knowledge. Both trials involved the problem 2.3×0.13. The participant in trial A felt 

doubt about how to solve the problem and used conceptual knowledge to generate a strategy, 

leading to an incorrect answer, which also elicited doubt. The participant in trial B felt doubt 

about their answer and used conceptual knowledge to evaluate it, leading to a correct answer. 
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Table 3. Two Participants’ Solutions for 2.3×0.13 in the Calculation Task in Study 1. 

Trial Written Work Think-Aloud Protocol Code 

A 

 

Wow, there’s definitely a way to do this that I 

don’t remember, so 

Doubt 

So we get 2 here, let me do, let’s try 30 out of 

100 times 1, huh, times 13 out of 100 

Conceptual 

(cross-notation) 

13 times 30, that’s 10 times 3 which is 300, 

plus 30 three more times, so 390 

 

Over 100 times 100, add 0s, 10,000 ...   

0, 0 point 3 9 ...   

I’m gonna do this, times that by 2  

This doesn’t make any sense, but we’re gonna 

do 0 point 0 7 8 ... 

Doubt 

B 

 

3 times 3 is 9, 3 times 2 is 6  

Uh, 0, 1 times 3 is 3, 1 times 2 is 2  

Zeros, and, uh, 0 0 0, 9, 9, uh, 2  

And then move the decimal, two times? Oh 

wait, no, three times 

Doubt 

So 0 point 2 9 9  

Yeah, cause it’s times, it’s smaller. Conceptual  

(magnitude) 

Note. Protocols have been edited for brevity; omissions are marked with ellipsis (...). “Code” 

indicates codes that were assigned based on corresponding lines of the protocols. 

 The mixed logistic regression also found an effect of notation, B = 1.0, z = 3.9, p < .001, 

indicating that participants displayed conceptual knowledge more often on decimal problems 

than fraction problems (16% vs. 7%). 

2.2.3. Prediction 3: Doubt will be negatively associated with accuracy when solving routine 

math problems 

 Consistent with the prediction, how often participants displayed doubt on the calculation 

task negatively predicted accuracy on that task, r = -.35, t(62) = -3.0, p = .004 (Table 2). 
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Similarly, mixed logistic regression found that participants answered correctly less often when 

they displayed doubt than when they did not (57% vs. 86%), B = -1.3, z = -5.2, p < .001. The 

effect of arithmetic operation reported under Prediction 1 also appeared here, whereas the 

notation * operation interaction reported there did not reach significance in this analysis. 

2.2.4. Relations between the explanation and calculation tasks 

 Participants displayed conceptual knowledge much more often on the explanation task 

than on the calculation task (60% vs. 12% of trials, Table 1). Of the 64 participants, 63 displayed 

conceptual knowledge at least once on the explanation task, whereas only 37 did so at least once 

on the calculation task. Thus, over half of participants had conceptual knowledge that they 

revealed during explanation but did not overtly use during calculation. 

 As predicted, calculation accuracy was positively correlated with the proportion of 

explanation trials on which participants used conceptual knowledge, r = .36, t(62) = 3.0, p = .004 

(Table 2). A possible interpretation of this correlation is that individuals with strong conceptual 

knowledge used that knowledge to improve their performance on the calculation task, and 

subsequently revealed that knowledge in their explanations. We reasoned that in this case, the 

correlation should not appear among participants who never used conceptual knowledge on the 

calculation task. However, within this group (n = 27), calculation accuracy was even more 

strongly correlated with use of conceptual knowledge use on the explanation task, r = .47, t(25) = 

2.7, p = .014. In contrast, among participants who overtly used conceptual knowledge at least 

once during calculation (n = 37), the correlation between calculation accuracy and use of 

conceptual knowledge on the explanation task was not significant, r = .24, t(35) = 1.5, p = .15.  

 Participants varied in mean number of words spoken per explanation trial (M = 110.8, SD 

= 35.2). This number correlated with proportion of explanation trials coded as displaying 
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conceptual knowledge, r = .54, t(62) = 5.0, p < .001. Thus, apparent effects of conceptual 

knowledge could be effects of verbosity. However, when controlling for number of words 

spoken per explanation trial, the partial correlation between calculation accuracy and conceptual 

knowledge use on the explanation task remained significant, r = .34, t(62) = 2.9, p = .006. 

2.2.5. Types of conceptual knowledge used in each task 

 Table 4 shows the proportions of trials in each task in which participants displayed each 

of the four types of conceptual knowledge on which our coding scheme was based. The most 

used types of conceptual knowledge on the calculation task were cross-notation knowledge and 

decimal place value knowledge. On the explanation task, magnitude knowledge and decimal 

place value knowledge were displayed most often. 

Table 4. Mean (SD) Proportions of Trials in Which Participants Displayed Each Type of 

Conceptual Knowledge on Each Task in Study 1. 

 Type of Conceptual Knowledge 

Task Magnitude 

knowledge 

Fraction 

interpretation 

Decimal place 

value 

Cross-notation 

knowledge 

Calculation task .01 (.04) .00 (.01) .05 (.09) .05 (.11) 

Explanation task .32 (.16) .09 (.11) .23 (.09) .05 (.10) 

Low bin .22 (.12) .04 (.07) .21 (.09) .01 (.03) 

High bin .43 (.13) .15 (.11) .26 (.09) .09 (.13) 

Note. “Low bin” and “High bin” denote participants whose use of conceptual knowledge on the 

explanation task was ≤ or > the median (58%), respectively. 

 To better understand relations between calculation accuracy and performance on the 

explanation task, we correlated calculation accuracy separately with use of each type of 

conceptual knowledge on the explanation task. Calculation accuracy was correlated with use of 
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magnitude knowledge (r = .26, t(62) = 2.1, p = .04) and fraction interpretation knowledge (r 

= .35, t(62) = 2.9, p = .005), but not with use of decimal place value knowledge (p = .19) or 

cross-notation knowledge (p = .98), on the explanation task. Related, individual differences in 

participants’ use of conceptual knowledge on the explanation task were largest with respect to 

magnitude knowledge and fraction interpretations. This effect is shown in the bottom two rows 

of Table 4: When participants were binned using a median split on proportion of explanation 

trials in which they used any type of conceptual knowledge, the bins differed most with respect 

to use of magnitude knowledge and fraction interpretations.  

2.3. Discussion 

 The results lend support to our central hypotheses that when solving routine problems, 

students are more likely to rely on conceptual knowledge when their relevant procedural 

knowledge is weak than when it is strong, and that doubt mediates interactions between 

conceptual and procedural knowledge in such situations. In Study 2, we attempted to replicate 

these findings with a larger sample and preregistered analyses. 

 Consistent with previous research on relations between procedural and conceptual 

knowledge, calculation accuracy was positively correlated with use of conceptual knowledge on 

the explanation task. This correlation appeared only among participants who did not overtly use 

conceptual knowledge during calculation, suggesting that it was not entirely driven by use of 

conceptual knowledge during calculation. We elaborate on this point in the General Discussion. 

 Calculation accuracy was positively correlated with use of magnitude knowledge and 

fraction interpretation knowledge on the explanation task, but these two types of conceptual 

knowledge were rarely spontaneously used on the calculation task (Table 4). In contrast, 

calculation accuracy was uncorrelated with use of decimal place value knowledge or cross-
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notation knowledge on the explanation task, but spontaneous uses of these two types of 

conceptual knowledge on the calculation task were relatively common (Table 4). These results 

suggest that the types of conceptual knowledge that students use most often when solving routine 

problems may differ from the types of conceptual knowledge that are most helpful for 

understanding calculation procedures. Future research should explore this possibility. 

3. Study 2 

 Study 2 was conducted to replicate the main findings from the calculation task of Study 1 

with a larger sample and preregistered design. As in Study 1, participants completed the 

calculation task while thinking aloud, and trials were coded for displays of doubt and use of 

conceptual knowledge. It was predicted that use of conceptual knowledge would not be 

positively associated with accuracy, doubt would be positively associated with use of conceptual 

knowledge, and accuracy would be negatively associated with doubt (Table 1).  

 Another goal of Study 2 was to investigate boundary conditions for the negative 

associations between doubt and accuracy found in Study 1. To do so, we distinguished between 

routine problems, like those in the calculation task, and nonroutine problems, meaning problems 

for which one has not been taught appropriate solution procedures. We reasoned that when 

solving nonroutine problems, a student who reflexively uses the first strategy that comes to mind, 

and unreflectively accepts the output of that strategy as their final answer, might perform poorly. 

In contrast, a student who deliberately considers alternative strategies, and evaluates their 

solutions rather than accepting them without question, might perform well (Garofalo & Lester, 

1985; Schoenfeld, 1992). Thus, for nonroutine problems, doubt about how to solve a problem or 

about whether an initial solution is correct could be adaptive, rather than serving as a signal of 

weak procedural knowledge as in the case of routine problems. 
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 To test this hypothesis, in Study 2, participants completed an extended version of the 

Cognitive Reflection Task (CRT-Long; Frederick, 2005; Primi, Morsanyi, Chiesi, Donati, & 

Hamilton, 2016). This task consists of math story problems2 for which an apparently obvious 

solution is incorrect. For example, “A bat and a ball cost $1.10 in total. The bat costs a dollar 

more than the ball. How much does the ball cost?” has an apparently obvious solution of $0.10, 

but the correct answer is $0.05. Such problems are nonroutine because most university students 

have not been taught procedures for solving them. Doubting the correctness of the apparently 

obvious solutions seems especially critical for success on such problems. We therefore predicted 

that on the CRT-Long, displays of doubt would be positively associated with accuracy. 

 Study 2 was preregistered at https://osf.io/e9d63. 

3.1. Method 

3.1.1. Participants 

 Participants were 138 undergraduate students (99 women, 39 men; 56 first year, 33 

second year, 49 third year or higher) whose most common major was psychology (n = 37). 

Participants were recruited from the FSU Psychology participant pool, as in Study 1. They 

received course credit or cash for participation. Interviews were conducted by five female 

undergraduate students and two lab managers, one male and one female. 

 Power analysis conducted in G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) 

prior to data collection indicated that 126 was the minimum sample needed for 85% power to 

detect correlations of doubt with conceptual knowledge use and accuracy equal to those found in 

Study 1 (r = .26 and -.33). We recruited 140 participants to ensure 126 if up to 10% of them were 

 
2 The CRT-long was devised as a measure of cognitive reflection rather than math ability. However, the problems in 

the CRT-long all involve calculation with numbers, and performance on the CRT-long correlates with other 

measures of numeracy (Primi et al., 2016). Thus, we refer to these problems as math problems. 

https://osf.io/e9d63


CONCEPTUAL, PROCEDURAL, METACOGNITION 

24 

 

excluded. In fact, only two were excluded, leaving 138. However, 33 of these were excluded 

from analyses involving the CRT-Long because they reported having seen three or more of the 

problems in it before (n = 32) or did not complete that task (n = 1). Other data exclusions are 

detailed in the Supplementary Materials. All exclusions followed our preregistered criteria. 

3.1.2. Tasks and Materials 

 Stimuli for the calculation task were the 12 problems used for that task in Study 1. 

Stimuli for the cognitive reflection task were the six problems in the CRT-Long (Primi et al., 

2016), which includes the three problems of the original CRT and three other problems with 

similar structure to the original ones (the problems are provided in the Supplementary Materials). 

3.1.3. Procedure 

 Due to the COVID-19 pandemic, sessions were conducted via video chat using Zoom, 

and materials were presented using Qualtrics. Participants first were trained to think aloud using 

a modified version of the script from Study 1. The main modifications were that participants 

were instructed to say aloud anything they wrote, crossed out, or erased, and that participants 

completed three additional practice trials that required writing. The instruction to say aloud 

anything written, crossed out, or erased was repeated at the beginning of each task. 

 Next, participants completed the calculation task, followed by the CRT-Long. In the 

calculation task, fraction and decimal problems were presented in blocks, with the sequence of 

these blocks counterbalanced. Within each block, problems were presented in random order. In 

the CRT-Long, problems were presented in a single block, within which their order was 

randomized for each participant. 

 In both the calculation task and the CRT-Long, one problem appeared at a time. 

Participants were told to read each problem aloud, then solve it while thinking aloud. After 
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solving the problem, participants were asked to type their answer into a text box on screen and 

present their written work to the webcam so the interviewer could take a screenshot. Then, 

participants were asked “How confident are you that your solution is correct?” Responses were 

on a 5-point scale with endpoints labeled “Not confident at all” (1) and “Extremely confident” 

(5). These confidence ratings were included so that we could compare our observation-based 

measure of doubt to a metacognitive measure based on self-report. 

 After completing the CRT-Long, participants were asked which of the CRT-Long 

problems they had seen before. Problems that participants reported having seen before (7% of 

trials for the 105 participants included in analyses of this task) were excluded from analyses. 

3.1.4. Coding 

 Calculation trials were coded for whether doubt and conceptual knowledge were 

displayed according to the same criteria as in Study 1. Minor revisions were made to the coding 

guidelines to address questions that arose while coding Study 1. The revised guidelines are 

provided in the Supplementary Materials.  

 CRT-Long trials were also coded for whether doubt was displayed, using the same 

criteria as on the calculation task—that is, doubt was coded for verbal expression of uncertainty; 

consideration of multiple strategies; saying that a solution was likely wrong; or crossing out, 

erasing, or modifying written work. CRT-Long trials were not coded for use of conceptual 

knowledge due to the lack of a clear distinction between conceptual and procedural knowledge 

on this task. For example, selecting appropriate procedures for routine calculation problems 

might be possible using procedural knowledge alone, but selecting appropriate procedures for the 

CRT-Long problems presumably requires both conceptual and procedural knowledge. 
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 Each trial was coded by two coders, and disagreements between them were resolved, 

following the same procedure as in Study 1. On the calculation task, the coders agreed whether 

doubt was displayed on 94% of trials, whether any conceptual knowledge was used on 94% of 

trials, and which types of conceptual knowledge were used (if any) on 92% of trials. On the 

CRT-Long, the coders agreed whether doubt was displayed on 88% of trials. 

3.2. Results 

 Table 5 displays descriptives and correlations for our main outcome measures. As in 

Study 1, the types of conceptual knowledge used most often on the calculation task were decimal 

place value and cross-notation knowledge (8% and 4% of trials), followed by magnitude 

knowledge and fraction interpretations (2% and 1% of trials). Doubt and confidence on the 

calculation task were negatively correlated, providing some support for our measure of doubt. 

On the CRT-Long, the correlation between doubt and confidence was also negative, but did not 

reach significance.  
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Table 5. Descriptives and Correlations for Measures in Study 2. 

  Correlations 

 Mean (SD) 1B 1C 1D 2A 2B 2C 

Calculation task        

  1A. Accuracy 0.82 (0.2) .65 ** -.34 ** .05 .37 ** .25 * .13 

  1B. Confidence 4.22 (0.67)  -.49 ** .09 .31 ** .53 ** -.03 

  1C. Doubt 0.23 (0.18)   .34 ** .09 -.09 .37 ** 

  1D. Conceptual knowledge use 0.14 (0.17)    .33 ** .20 * .12 

CRT-Long        

  2A. Accuracy 0.31 (0.29)     .39 ** .32 ** 

  2B. Confidence 3.55 (0.83)      -.13 

  2C. Doubt 0.32 (0.23)       

Note. “Accuracy” denotes proportion of trials correctly answered, “doubt” denotes proportion of 

trials on which doubt was displayed, and “conceptual knowledge use” denotes proportion of 

trials on which any conceptual knowledge was used; * indicates p < .05 and ** indicates p < .01. 

 Below, we report analyses of the calculation task, then analyses of the CRT-Long. 

Accuracy, doubt, and conceptual knowledge use on the calculation task were analyzed as in 

Study 1. Accuracy and doubt on the CRT-Long were analyzed as for the calculation task, except 

that regression analyses of the CRT-Long did not include arithmetic operation or notation as 

predictors. All reported analyses were preregistered unless marked as exploratory, and all 

preregistered analyses are reported. 
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3.2.1. Prediction 1: Use of conceptual knowledge will not be positively associated with 

accuracy when solving routine math problems 

 The correlation between use of conceptual knowledge and accuracy on the calculation 

task was not statistically significant, r = .05, t(135) = 0.6, p = .57 (Table 5). As in Study 1, we 

calculated the one-tailed left 95% CI of the correlation: [-1, .19] (this analysis was exploratory). 

This result indicates that conceptual knowledge use and accuracy likely either are not positively 

correlated or weakly positively correlated. 

 Similarly, in mixed logistic regression, the effect of conceptual knowledge use on 

accuracy was not significant, B = 0.2, z = 0.7, p = .48. Correct answers were about equally likely 

on trials during which participants used or did not use conceptual knowledge (82% vs. 81%).  

 The regression also found an effect of arithmetic operation, B = -2.4, z = -11.7, p < .001, 

and a notation * operation interaction, B = -2.1, z = -5.5, p < .001. As in Study 1, participants 

were more accurate on addition than multiplication problems (93% vs. 70%), and this effect was 

larger for decimal problems (95% vs. 64%) than for fraction problems (90% vs. 77%). 

3.2.2. Prediction 2: Doubt will be positively associated with using conceptual knowledge 

when solving routine math problems 

 As in Study 1, the frequency with which participants displayed doubt on the calculation 

task was positively correlated with how often they used conceptual knowledge, r = .34, t(135) = 

4.2, p < .001 (Table 5). Similarly, mixed logistic regression found an effect of doubt on use of 

conceptual knowledge, B = 1.5, z = 6.9, p < .001, indicating that participants used conceptual 

knowledge more often on trials during which they displayed doubt than when they did not (25% 

vs. 10%). The analysis also found an effect of notation, B = 1.7, z = 8.4, p < .001, and a notation 

* operation interaction, B = -0.8, z = -2.1, p = .036. Participants used conceptual knowledge more 
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often on decimal problems than fraction problems (19% vs. 7%), and this difference was slightly 

larger for addition (20% vs. 6%) than for multiplication (20% vs. 8%). 

3.2.3. Prediction 3: Doubt will be negatively associated with accuracy when solving routine 

math problems 

 Consistent with the prediction, how often participants displayed doubt on the calculation 

task negatively predicted accuracy on that task, r = -.34, t(135) = -4.3, p < .001 (Table 5). Mixed 

logistic regression with the same model structure as in Study 1 similarly found a negative effect 

of doubt on accuracy, B = -1.2, z = -6.0, p < .001, indicating that participants answered correctly 

less often when they displayed doubt than when they did not (62% vs. 88%). The effect of 

arithmetic operation and the notation * operation interaction reported under Prediction 1 also 

appeared in this analysis. 

3.2.4. Doubt and accuracy on the CRT-Long 

 In contrast to the calculation task, on the CRT-Long, the frequency with which 

participants displayed doubt was positively correlated with accuracy, r = .32, t(102) = 3.4, p 

= .001 (Table 5). Similarly, mixed logistic regression with accuracy on each trial as the 

dependent variable, whether doubt was displayed as a fixed effect, and participant as a random 

effect found an effect of doubt, B = 0.5, z = 2.2, p = .028, indicating that participants answered 

correctly more often on trials during which they displayed doubt than when they did not (39% 

vs. 26%). 

3.3. Discussion 

 Results of Study 2 were consistent with the main findings of Study 1. Replication of these 

findings with an adequately powered sample increases confidence in their robustness. Further, 

the positive relation between doubt and accuracy on the CRT-Long highlights boundary 
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conditions for the negative relations found in both studies between doubt and accuracy on the 

calculation task. Discussion of these central findings is deferred to the General Discussion. 

 The findings of Study 2 are informative regarding the validity of our measure of doubt. 

Rather than assessing (as intended) operation of metacognitive processes relating to feelings of 

uncertainty and error, this measure could have functioned as a proxy for other variables that are 

negatively associated with calculation accuracy, such as weak procedural knowledge, high math 

anxiety, or weak math self-efficacy. Such interpretations, however, would have difficulty 

accounting for the positive associations found in Study 2 between doubt and accuracy on the 

CRT-Long. In contrast, those associations are consistent with our interpretation of our measure 

of doubt as an indicator of metacognitive processes. 

 Finally, participants’ poor performance on the CRT-Long is consistent with previous 

studies of cognitive reflection by adults (Frederick, 2005; Primi et al., 2016). Interestingly, 

although accuracy was much lower on the CRT-Long than on the calculation task (31% vs. 

82%), expressions of doubt were only slightly more common (32% vs. 23%). Similarly, 

correlations between confidence ratings and accuracy were much weaker on the CRT-Long than 

on the calculation task (r = .39 vs. .65). These results dovetail with previous studies that have 

found relatively weak calibration between confidence and accuracy on nonroutine or unfamiliar 

problems (Nelson & Fyfe, 2019; Reder & Ritter, 1992). 

4. General Discussion 

 The present studies investigated university students’ accuracy, use of conceptual 

knowledge, and displays of doubt while solving routine calculation problems involving fraction 

and decimal arithmetic; use of conceptual knowledge while explaining solutions to such 

problems; and accuracy and displays of doubt while solving nonroutine problems for which 
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apparently obvious answers were incorrect. Below, we discuss implications of the findings 

regarding relations between procedural knowledge and conceptual knowledge, metacognitive 

processes as mediators between conceptual and procedural knowledge, and differences between 

routine and nonroutine problem solving. 

4.1. Relations between procedural knowledge and conceptual knowledge 

 Many theories of routine problem solving in math assume that such problems are solved 

using procedural knowledge alone (Anderson, 2005; Braithwaite et al., 2017; Brown & 

VanLehn, 1980; Chen & Campbell, 2018; Rickard, 2005; for exceptions, see Ohlsson & Rees, 

1991; Shrager & Siegler, 1998). For example, describing a cognitive model of children’s decimal 

arithmetic calculation, Hiebert & Wearne (1985) stated, “Predictions of performance were made 

without considering conceptual knowledge, and most of the predictions were verified. It appears 

that students compute without calling on conceptual understandings” (p. 200). 

 However, on the calculation task of the present studies, participants used conceptual 

knowledge to solve problems that they could, in principle, have solved using only procedures. 

They did so on a small but not trivial proportion of trials (12% in Study 1 and 14% in Study 2). 

Most participants (58% in Study 1 and 60% in Study 2) did so at least once. A complete theory 

of adults’ fraction and decimal arithmetic, even one restricted to routine calculation, should 

account for such uses of conceptual knowledge. 

 Use of conceptual knowledge on the calculation task was either not positively correlated 

or weakly positively correlated with accuracy. This finding is consistent with our hypothesis that 

in the context of routine calculation, students recruit conceptual knowledge mainly when their 

procedural knowledge is weak. Such uses of conceptual knowledge might partially compensate 
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for weak procedural knowledge, but might not lead to higher accuracy than that of students who 

rely primarily on their knowledge of appropriate procedures for solving the problems at hand. 

 The above proposal assumes that when solving routine problems, students use procedures 

when they can and concepts only when they must. Indeed, evidence suggests that students favor 

procedures over concepts in many contexts. For example, in Perry (1991), fourth and fifth 

graders displayed higher accuracy on transfer problems involving math equivalence following an 

intervention that emphasized principles than after one that emphasized both principles and 

procedures. Perry (1991) argued that students “may ignore the conceptually rich information 

inherent in the principle when procedures are also provided” (p. 449). Similarly, McNeil (2007) 

found that children’s generation of conceptually correct solutions to math equivalence problems 

declined following formal instruction and practice in calculation procedures, suggesting that 

procedural knowledge obtained from instruction “crowded out” conceptual understanding. 

Finally, some models of simple whole number arithmetic assume that when children are 

presented an arithmetic problem, they first attempt to retrieve the answer from memory 

(analogous to using procedural knowledge) and only rely on counting-based backup strategies 

(analogous to using conceptual knowledge) when retrieval fails (e.g., Siegler, 1988). 

 Our hypothesis that students are unlikely to recruit conceptual knowledge when their 

procedural knowledge is strong applies only to routine problems. For nonroutine problems, 

conceptual knowledge enables adaptation of learned procedures or generation of new ones 

(Baroody, Feil, & Johnson, 2007; Perry, 1991; Rittle-Johnson & Alibali, 1999). For example, in 

Rittle-Johnson and Alibali (1999), fourth and fifth graders who received a conceptual 

intervention regarding math equivalence subsequently invented their own procedures for solving 

equivalence problems of a type they had not seen before. Such uses of conceptual knowledge for 
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nonroutine problems are likely to occur even among individuals with strong procedural 

knowledge. We return to the distinction between routine and nonroutine problems in Section 4.3. 

 Conceptual knowledge use during explanation was positively correlated with calculation 

accuracy (Study 1), consistent with relations that have previously been found between 

conceptual knowledge of rational numbers and rational number arithmetic accuracy (Bailey et 

al., 2017; Gabriel et al., 2013; Hecht & Vagi, 2010; Siegler & Pyke, 2013; Siegler et al., 2011). 

The finding is also consistent with theoretical proposals that conceptual knowledge supports 

procedural knowledge (e.g., Rittle-Johnson, 2017; Rittle-Johnson et al., 2015). 

 Conceptual knowledge could contribute to performance on procedural tasks through 

either online or offline mechanisms. In an online mechanism, individuals use conceptual 

knowledge while performing procedural tasks, for example to aid in strategy selection or error 

detection, resulting in higher accuracy on the procedural tasks. In an offline mechanism, 

conceptual knowledge facilitates acquisition of procedural knowledge, such as learning from 

instruction or practice. In this case, conceptual knowledge could lead to improved accuracy on 

procedural tasks without conceptual knowledge being used while performing those tasks. 

 If an online mechanism generated the correlation between calculation accuracy and use of 

conceptual knowledge during explanation in Study 1, then that correlation should have appeared 

primarily among individuals who used conceptual knowledge on the calculation task. However, 

the opposite was true: the correlation appeared only among individuals who did not use 

conceptual knowledge during calculation. This fact does not imply that online uses of conceptual 

knowledge during calculation did not occur or that they were not helpful, but does suggest that 

such uses of conceptual knowledge did not cause the correlation between conceptual knowledge 

and calculation accuracy. This correlation appears more consistent with an offline mechanism. 
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 Online and offline effects are not mutually exclusive in principle. However, if we are 

correct in proposing that students generally prefer procedures over concepts for solving routine 

problems, then factors that facilitate procedure learning should also reduce reliance on concepts 

in this context. Thus, strong conceptual knowledge could contribute to procedural proficiency 

and thereby obviate the need to use conceptual knowledge during routine problem solving. This 

possibility is analogous to how, in some theories of skill acquisition, declarative knowledge is 

required for initial acquisition of procedures, but reliance on declarative knowledge during task 

performance decreases as skills are increasingly automatized (Anderson, 2013). 

4.2. Metacognitive processes as mediators between conceptual and procedural knowledge 

 Metacognitive processes are considered particularly important for solving complex, 

nonroutine problems (Carr et al., 1994; Garofalo & Lester, 1985; W. Schneider & Artelt, 2010; 

Schoenfeld, 1992). Although the calculation task in the present studies involved relatively simple 

routine problems, participants displayed doubt on a small but not trivial proportion of trials of 

that task (21% in Study 1, 23% in Study 2). Most participants (92% in Study 1, 88% in Study 2) 

did so at least once. These displays of doubt demonstrate involvement of metacognitive 

processes, including feelings of uncertainty and feelings of error, during routine problem solving. 

 Doubt was negatively associated with accuracy, and positively associated with overt use 

of conceptual knowledge, on the calculation task. These results were predicted based on our 

hypothesis that doubt mediates interactions between conceptual and procedural knowledge. As 

proposed in the Introduction, such interactions may occur in at least two ways. First, failure to 

retrieve an appropriate procedure or retrieval of multiple procedures may generate feelings of 

uncertainty that trigger recruitment of conceptual knowledge. Second, conceptual knowledge 
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may enable detection of errors, generating feelings of error that may lead students to rerun or 

modify their solution procedures. 

 Correlations between doubt and use of conceptual knowledge were moderate (r = .26 

and .34 in Studies 1 and 2), indicating that doubt and conceptual knowledge do not always go 

together. Students might feel uncertain how to solve a problem but forge ahead with their best 

guess without using conceptual knowledge because they lack relevant conceptual knowledge or 

do not wish to think deeply. Feelings of error might occur for non-conceptual reasons, such as 

the configuration of symbols on the page appearing unfamiliar. Thus, the proposed mechanisms 

involving doubt and conceptual knowledge are only part of the whole picture. 

 Our proposal is similar to that of Crowley, Shrager, and Siegler (1997), who argued that 

children’s problem solving involves a competition between fast associative processes, such as 

fact retrieval and automatized procedures, and slower explicit reasoning based on conceptual 

knowledge, which Crowley et al. (1997) called “metacognitive processes.” Associative processes 

typically generate an initial answer, which is accepted if accompanied by high confidence; 

otherwise, metacognitive processes may generate a solution. Thus, feelings of confidence 

mediate between different processes in Crowley et al. (1997), as in the present proposal. 

However, our proposal separates what Crowley et al. (1997) called “metacognitive processes” 

into two parts, conceptual knowledge and metacognitive processes proper. These two parts 

appear to be distinct, though related, as evidenced by the moderate positive correlations found in 

the present studies between doubt and conceptual knowledge use on the calculation task. 

 Our proposal is also analogous to recent proposals in dual-process theories of reasoning 

(Evans, 2019; Thompson, Prowse Turner, & Pennycook, 2011). For example, in the default-

interventionist model of Evans (2019), fast, intuitive Type 1 processes generate default responses 
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that are accepted or revised by slow, reflective Type 2 processes. Initial intuitive responses are 

accompanied by Feelings of Rightness (FoR); weaker FoRs lead to greater involvement by Type 

2 processes. This modulation of Type 2 involvement is carried out by separate monitoring and 

control processes, which Evans (2019) called “Type 3.” We propose that procedures, like Type 1 

processes, are the default approach for solving routine problems; that conceptual knowledge, like 

Type 2 processes, is most involved when one feels doubt (analogous to low FoR) about the 

default response; and that metacognitive processes modulate the involvement of conceptual 

knowledge as Type 3 processes modulate involvement of Type 2 processes.  

 Despite these similarities, our proposal diverges from that of Evans (2019) in several 

ways. First, Type 1 processes are fast and do not use working memory, whereas execution of 

mathematical procedures may be slow and require working memory. Second, Evans (2019) 

describes Type 3 processes as unconscious, whereas in our proposal, metacognitive processes 

may be conscious. Third, in Evans’ (2019) model, the flow of information among processes is 

unidirectional: Type 1 processes generate FoRs, which feed into Type 3 processes, which govern 

the effort devoted to Type 2 processing. In our proposal, information flows bidirectionally: 

procedural knowledge can generate doubt leading to recruitment of conceptual knowledge, but 

conceptual knowledge also can generate doubt leading to rerunning or modifying a procedure. 

Future research should investigate both similarities and differences between interactions of Type 

1 and 2 processes in reasoning and interactions of procedural and conceptual knowledge in math. 

4.3. Routine and nonroutine problem solving 

 Study 2 found a positive correlation between participants’ accuracies on the rational 

number arithmetic calculation task and the CRT-Long. This result points to commonalities 

between routine and nonroutine problem solving in math. Several other studies have also found 
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positive associations between performance on math assessments and on various versions of the 

CRT (Primi et al., 2016; Sobkow, Olszewska, & Traczyk, 2020; Young & Shtulman, 2020). 

 However, the present findings suggest that metacognitive processes, specifically doubt, 

serve different functions when solving routine and nonroutine problems. Doubt was negatively 

associated with accuracy on the calculation task, but positively associated with accuracy on the 

CRT-Long. To explain the former finding, we proposed that when solving routine problems such 

as those in the calculation task, doubt often reflects weak procedural knowledge. However, for 

nonroutine problems, such as those in the CRT-Long, procedural knowledge is inadequate by 

definition (i.e., nonroutine problems by definition cannot be solved correctly merely by 

straightforward application of learned procedures). In this context, overt displays of doubt may 

signal a student recognizing that the solution is not obvious and consequently deciding 

consciously to regulate and/or monitor the problem solving process. This approach might be 

unnecessary when one is solving routine problems and has strong procedural knowledge, but is 

likely adaptive when solving nonroutine problems. 

 The above proposal implies that metacognitive skills play a more causal role in 

nonroutine than routine problem solving. In routine problem solving, a student with strong 

procedural knowledge might perform well regardless of metacognitive skill; the direct cause of 

error on such problems is likely to be weak procedural knowledge (though metacognitive skills 

and conceptual knowledge might help students to cope with weak procedural knowledge). In 

nonroutine problem solving, performance likely depends much more on whether and how well 

students regulate and monitor their thinking (Carr et al., 1994; Garofalo & Lester, 1985; W. 

Schneider & Artelt, 2010; Schoenfeld, 1992); the cause of error on such problems might often be 

poor metacognitive skill. This hypothesis implies that individual differences in metacognitive 
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skill should be more strongly correlated with differences in performance on nonroutine than 

routine problems, and interventions that emphasize metacognitive skills (e.g., Desoete et al., 

2003; Hacker et al., 2019) should affect performance on nonroutine problems more than on 

routine ones, a prediction worth testing in the future. 

 Finally, even among nonroutine problems, benefits of metacognitive skill are likely to 

vary as a function of metacognitive and procedural demands. The problems on the CRT-Long 

are metacognitively demanding, because they elicit strong but incorrect intuitions, but not very 

procedurally demanding (for university students), because they require only simple calculations 

such as $1.05 + $0.05 = $1.10. Metacognitive processes, such as feelings of doubt, might have 

less effect on accuracy for nonroutine problems that are less metacognitively demanding and/or 

more procedurally demanding than those on the CRT-Long. 

4.4. Limitations 

 Unobserved variables could account for some or all of the correlations found in the 

present studies. This limitation is partially addressed by the converging results obtained through 

mixed logistic regressions, which tested for between-trial effects within participants. 

Nevertheless, future research should test whether the relations found among accuracy, doubt, and 

use of conceptual knowledge still appear when controlling for other aspects of individual 

differences, such as executive function, fluid intelligence, verbal ability, and motivation. 

 The present studies relied on think-aloud protocols and written work to identify displays 

of doubt and uses of conceptual knowledge. This approach has advantages (as described in the 

Introduction), but could not detect feelings of doubt or uses of conceptual knowledge that did not 

result in overt displays, for example because a participant was not verbally expressive or used 
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conceptual knowledge unconsciously. Future research should test the robustness of the present 

findings using a wider range of measures of doubt and conceptual knowledge. 

4.5. Conclusion 

 Students used conceptual knowledge and displayed evidence of metacognitive processes 

while performing routine calculations involving fractions and decimals. Thus, procedural 

knowledge does not operate in a vaccuum; conceptual knowledge and metacognition are 

sometimes involved even in apparently procedural tasks. Further, conceptual knowledge and 

metacognition in math appear to be connected, like Type 2 and Type 3 processes in reasoning. It 

is hoped that these findings will motivate the development of formal theories describing 

mechanisms of interaction between conceptual and procedural knowledge and metacognition in 

fraction and decimal arithmetic, and in other mathematical domains as well. 
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