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CONCEPTUAL, PROCEDURAL, METACOGNITION

Abstract

When, how, and why students use conceptual knowledge during math problem solving is
not well understood. We propose that when solving routine problems, students are more likely to
recruit conceptual knowledge if their procedural knowledge is weak than if it is strong, and that
in this context metacognitive processes, specifically feelings of doubt, mediate interactions
between procedural and conceptual knowledge. To test these hypotheses, in two studies (Vs = 64
and 138), university students solved fraction and decimal arithmetic problems while thinking
aloud; verbal protocols and written work were coded for overt uses of conceptual knowledge and
displays of doubt. Consistent with the hypotheses, use of conceptual knowledge during
calculation was not significantly positively associated with accuracy, but was positively
associated with displays of doubt, which were negatively associated with accuracy. In Study 1,
participants also explained solutions to rational arithmetic problems; using conceptual
knowledge in this context was positively correlated with calculation accuracy, but only among
participants who did not use conceptual knowledge during calculation, suggesting that the
correlation did not reflect “online” effects of using conceptual knowledge. In Study 2,
participants also completed a nonroutine problem solving task; displays of doubt on this task
were positively associated with accuracy, suggesting that metacognitive processes play different
roles when solving routine and nonroutine problems. We discuss implications of the results
regarding interactions between procedural knowledge, conceptual knowledge, and metacognitive

processes in math problem solving.
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1. Introduction

Research on math cognition, learning, and development has traditionally distinguished
between procedural and conceptual knowledge (Hiebert & Lefevre, 1986). Procedural
knowledge refers to knowledge of procedures for solving problems, such as the step-by-step
algorithms that children are taught in school. Conceptual knowledge is a multifaceted construct
that includes knowledge of categories, relationships, principles, and representations.

Problems for which students have been taught and have practiced appropriate solution
procedures, which we term “routine problems,” can in principle be solved using procedural
knowledge alone. Yet, performance on routine problem solving tasks is correlated with
individual differences in conceptual knowledge (Bailey, Hansen, & Jordan, 2017; Fuchs et al.,
2010; Hecht & Vagi, 2010; M. Schneider, Rittle-Johnson, & Star, 2011) and is improved by
interventions that focus on conceptual knowledge (Fuchs et al., 2013; Fyfe, DeCaro, & Rittle-
Johnson, 2014; Rittle-Johnson, Siegler, & Alibali, 2001; Siegler & Ramani, 2009). These
findings suggest that even when solving routine problems, at least some students use conceptual
knowledge at least some of the time'.

This conclusion in turn suggests several questions. Which students use conceptual
knowledge when solving routine problems? Under what circumstances do they do so? What
mechanisms govern interactions between procedural and conceptual knowledge in this context?
We propose two related hypotheses: that when solving routine problems, students are more likely

to use conceptual knowledge (if they have it) when their procedural knowledge is weak than

! Students may also rely on procedural knowledge to help understand concepts and perform conceptual tasks (Rittle-
Johnson, 2017). Our focus on effects of conceptual knowledge on performance of procedural tasks in the present
studies does not imply an absence of effects in the other direction.
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when it is strong; and that in this context metacognitive processes, specifically feelings of doubt,
mediate interactions between procedural and conceptual knowledge.

In the next two sections, we provide rationales for these hypotheses based on prior
research regarding the roles of conceptual knowledge and metacognition in math problem
solving. We also detail several empirical predictions implied by our hypotheses. Then, we
discuss the domain in which we tested the predictions: fraction and decimal arithmetic. Last, we
describe the present studies in more detail.

1.1. Using Conceptual Knowledge During Problem Solving

One way in which students might use conceptual knowledge during problem solving is to
help determine solution strategies (Rittle-Johnson, 2017). Specifically, when presented problems
that cannot be solved through straightforward application of known procedures, students can use
conceptual knowledge to adapt previously-learned procedures or invent new ones (Baroody,
2003; Canobi, 2009; Hiebert & Lefevre, 1986; Perry, 1991; Shrager & Siegler, 1998). For
example, in Rittle-Johnson and Alibali (1999), fourth and fifth graders who received a
conceptual intervention regarding one type of math equivalence problem (atb+c =a+ )
subsequently invented strategies to solve different types of equivalence problems (e.g., atb+c =
d+ ), whereas students who received a procedural intervention usually failed to do so.

The above function of conceptual knowledge has most often been emphasized in the
context of nonroutine problems, but conceptual knowledge could play a similar role for routine
problems when a student cannot remember an appropriate procedure or is unsure which of
multiple candidate procedures is correct. To illustrate, a student asked to calculate 3/5+1/5 might
wonder whether to pass the common denominator of the operands into the answer, yielding 4/5,

or to add the denominators of the operands, yielding 4/10. A student who understands that 3/5
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and 1/5 represent 3 parts and 1 part of a whole divided into 5 parts might use this understanding
to reason that the former procedure is the correct one.

A second way in which conceptual knowledge might be used during problem solving is
to detect errors (Ohlsson & Rees, 1991). Using inappropriate procedures, or incorrectly
executing appropriate procedures, often leads to answers that violate conceptual constraints. For
example, 3/5+1/5 = 4/10 violates the constraint that a sum of positive numbers is larger than the
addends, because 4/10 < 3/5. If a student commits an error that violates a conceptual constraint,
conceptual knowledge might enable the student to detect the error, which might in turn lead the
student to correct their mistake and obtain a correct answer (Ohlsson, 1996; Siegler, Thompson,
& Schneider, 2011). For example, consistent with the possibility of this mechanism, Wong and
Odic (2021) recently demonstrated that adults can use their sense of numerical magnitudes—a
form of conceptual knowledge—to make rapid, intuitive judgments about the direction of
arithmetic errors.

In both of the mechanisms just described, conceptual knowledge becomes involved when
procedural knowledge fails, such as when a student does not know or is uncertain of an
appropriate procedure, or commits an error due to using an incorrect procedure or executing a
procedure incorrectly. In contrast, a student who can confidently retrieve and correctly execute
an appropriate procedure for a given problem may do so “on autopilot,” without using
conceptual knowledge. Thus, we hypothesized that in the context of routine problems, use of
conceptual knowledge is more likely when procedural knowledge is weak than when it is strong.

This hypothesis implies that relations between conceptual knowledge and performance on
procedural tasks may be more complex than previously documented. If a student’s procedural

knowledge relevant to a given problem is weak, the student may use conceptual knowledge to
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compensate. However, in doing so, the student is unlikely to perform better than they would have
if their procedural knowledge had been strong enough that they did not need to use conceptual
knowledge. Thus, despite conceptual and procedural knowledge being positively correlated when
assessed separately, we predicted that using conceptual knowledge when solving routine

problems would not be positively associated with accuracy (Table 1, Prediction 1).

Table 1. Predictions Tested in the Present Study.

Number Prediction

1 Use of conceptual knowledge will not be positively associated with accuracy when
solving routine math problems

2 Doubt will be positively associated with using conceptual knowledge when solving
routine math problems

3 Doubt will be negatively associated with accuracy when solving routine math problems

1.2. Metacognitive Processes During Problem Solving

Like conceptual knowledge, metacognitive processes—that is, processes that regulate and
monitor cognitive processes—are critical for solving math problems (Alibali, Brown, &
Menendez, 2019; Crowley, Shrager, & Siegler, 1997; Garofalo & Lester, 1985). Successful
problem solvers self-monitor more than less successful problem solvers do (Schoenfeld, 1992;
Stillman & Galbraith, 1998), and individuals with stronger metacognitive knowledge perform

better in math (Carr, Alexander, & Folds-Bennett, 1994; Nelson & Fyfe, 2019; W. Schneider &

Artelt, 2010). Further, metacognitive interventions can improve problem solving performance
(e.g., Desoete et al., 2003; Hacker et al., 2019).

We propose that during routine problem solving, metacognitive processes—specifically,
feelings of uncertainty and feelings of error, which we refer to jointly as “doubt”—mediate

interactions between procedural knowledge and conceptual knowledge. This may occur in at
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least two ways, corresponding to the two mechanisms described in the previous section. First,
when selecting a strategy to solve a problem, a student may feel doubt if no procedure is
sufficiently activated in memory, or if multiple procedures are highly activated. This feeling of
doubt could prompt use of conceptual knowledge to help generate or select an appropriate
procedure. Second, if a student commits a procedural error and thereby generates an answer that
violates a conceptual constraint, knowledge of the constraint may cause the student to doubt their
answer (Fernandez Cruz, Arango-Mufioz, & Volz, 2016). This feeling of doubt could prompt the
student to rerun or modify their procedure.

Our proposal implies that doubt and conceptual knowledge go hand in hand. Both occur
in similar situations; doubt during strategy selection may trigger use of conceptual knowledge;
and in the presence of an error, conceptual knowledge may generate doubt. These observations
suggested a prediction: doubt should be positively associated with using conceptual knowledge
when solving routine math problems (Table 1, Prediction 2).

A final implication of our proposal is that in the context of routine problems, doubt is a
good indicator of weak procedural knowledge. Thus, doubt should be negatively associated with
accuracy in this context (Table 1, Prediction 3). Though this prediction may seem
uncontroversial, it is still worth testing, because confidence is not always well calibrated with
accuracy in math (Nelson & Fyfe, 2019; Reder & Ritter, 1992). Further, the prediction does not
apply for nonroutine problems, for which doubt might have a positive effect by prompting
deliberate consideration of alternative strategies. We elaborate on this point in Study 2.

1.3. Arithmetic with Fractions and Decimals
The present studies tested the predictions in Table 1 in the domain of rational number

arithmetic. Knowledge of rational numbers is a critical foundation for more advanced math such
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as algebra (Siegler et al., 2012). Yet, many students experience large and persistent difficulties in
this area. Rational number arithmetic is particularly challenging, including fraction arithmetic
(Hansen, Jordan, & Rodrigues, 2015; Hecht & Vagi, 2012; Mack, 1995; Siegler et al., 2011) and
decimal arithmetic (Hiebert & Wearne, 1985; Hurst & Cordes, 2018b). For example, US sixth
graders correctly solved only 46% of fraction arithmetic problems in Siegler and Pyke (2013),
and only 57% of decimal arithmetic problems in Tian et al. (2021).

Difficulties with fraction and decimal arithmetic result in part from the large number of
procedures that must be learned, the complexity of these procedures, and the ease of confusing
the procedures with each other (Braithwaite, Pyke, & Siegler, 2017; Lortie-Forgues, Tian, &
Siegler, 2015). Difficulties in this area also reflect lack of conceptual knowledge, without which
students have little basis for choosing correct procedures over incorrect ones or for
distinguishing between correct and incorrect answers (Siegler, Im, Schiller, Tian, & Braithwaite,
2020). At least four types of conceptual knowledge are relevant in this domain. Because these
types provided a framework for our analyses, we describe them in detail here.

First, magnitude knowledge refers to understanding that fractions and decimals have
magnitudes that can be compared, ordered, and placed on a number line. Students could use
magnitude knowledge to detect arithmetic errors that result in implausibly large or small answers
(Siegler et al., 2011), as in the earlier example of rejecting 3/5+1/5 = 4/10 because 4/10 < 3/5.
Consistent with this possibility, interventions that focus on fraction magnitude understanding
have led to improvements in fraction arithmetic skill (Fuchs et al., 2013, 2021).

Second, fraction interpretation refers to semantic interpretations of fractions. Five such
interpretations were proposed by Kieren (1980; see also Behr, Lesh, Post, & Silver, 1983):

measurement, part-whole, quotient, ratio, and operator. Subsequent research explored learning
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activities conducive to understanding these interpretations, such as splitting wholes into parts and
recombining these parts (Braithwaite & Siegler, 2021; Martin et al., 2015; Steffe, 2004; Tzur,
1999; Tzur & Hunt, 2015), and trajectories from less to more advanced interpretations (e.g., from
part-whole to measurement, Wilkins & Norton, 2018). Meaningful interpretations of fractions
could help students make sense of fraction arithmetic procedures. For example, 3/5+1/5 = 4/5
makes sense when understood as splitting a whole into five equal parts, combining three of those
parts, then adding another of the parts, yielding four of the parts. Consistent with this possibility,
understanding of meaningful fraction interpretations, especially the part-whole and measurement
interpretations, predicts fraction arithmetic skill (Gabriel et al., 2013; Hecht & Vagi, 2010).
Third, place value knowledge refers to understanding how the value of each digit in a
decimal depends on its position relative to the decimal point and how the position of the decimal
point affects the decimal’s magnitude. Place value concepts could help individuals understand
decimal arithmetic procedures. For example, 4+.3 = 4.3, not 7 or .7, because digits representing
different place values should not be added. Consistent with place value knowledge contributing
to decimal arithmetic skill, an intervention that emphasized place value led to improvements in
decimal arithmetic skill (Wearne & Hiebert, 1988), and interleaving lessons on decimal place
value and decimal addition procedures led to greater improvement in decimal addition skill than
teaching place value and addition in separate blocks (Rittle-Johnson & Koedinger, 2009).
Finally, cross-notation knowledge refers to knowledge of relations between fractions and
decimals, such as knowing how to translate fractions into equivalent decimals and vice versa.
Cross-notation knowledge could enable students to use knowledge of one notation to help solve
problems in a different notation, such as solving 3+1/5 by reasoning that 1/5 =.2 so 3+1/5 =3+.2

= 3.2. Spontaneous cross-notation translation has previously been reported in the context of
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number line estimation tasks (Siegler & Thompson, 2014; Siegler et al., 2011). Cross-notation
knowledge was emphasized in Moss and Cases’s (1999) successful rational number intervention,
and cross-notation knowledge predicts fraction and decimal affrithmetic accuracy when
controlling for fraction and decimal magnitude knowledge (Braithwaite, McMullen, et al., in
press).

1.4. The Present Studies

In contrast to previous studies that have often assessed conceptual and procedural
knowledge using separate tasks, the present studies investigated uses of conceptual knowledge in
the context of a procedural task—fraction and decimal arithmetic calculation. Two studies were
conducted to test the predictions in Table 1. Our approach to testing these predictions was
identical in both studies and is described below. Distinctive aspects of each study are described
in the Introductions thereof.

Both studies included a calculation task in which participants were asked to think aloud
while solving fraction and decimal arithmetic problems. Displays of doubt were identified by
analysis of think-aloud protocols and written work, as in some investigations of math problem
solving (e.g., Schoenfeld, 1992; Stillman & Galbraith, 1998). We adopted this approach rather
than eliciting retrospective confidence ratings (e.g., Fitzsimmons et al., 2020; Nelson & Fyfe,
2019) because think-aloud protocols could reveal feelings of doubt that occurred throughout each
trial, whereas retrospective confidence ratings might not detect doubts that were resolved during
trials. For example, a participant who committed an error, then noticed and fixed it, might report
high confidence in their solution, thus concealing the feeling of error experienced earlier.

We also relied on think-aloud protocols to assess use of conceptual knowledge on the

calculation task. According to a meta-analysis by Fox, Ericsson, and Best (2011), thinking aloud
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does not affect accuracy on cognitive tasks, whereas other verbal report procedures, such as
explaining, may have positive effects on accuracy. Further, explanations might omit details due
to forgetting or a desire to simplify. For example, a participant who used conceptual reasoning to
choose between two strategies, if asked to explain their solution, might report only the chosen
strategy, whereas think-aloud protocols would also reveal the reasoning that led to the choice.

Participants in both studies were university students. Rational numbers are not a focus of
math education in the US after sixth grade (CCSSI, 2010). However, many adults continue to
struggle with rational numbers (Fazio, DeWolf, & Siegler, 2016; Opfer & Devries, 2008; Sidney,
Thalluri, Buerke, & Thompson, 2019; Stigler, Givvin, & Thompson, 2010), including with
arithmetic (Hurst & Cordes, 2016, 2018a; Newton, 2008; Siegler & Lortie-Forgues, 2015). These
phenomena are concerning because knowledge of fractions and decimals is expected in many
university courses. Further, 68% of adults in the US use rational numbers in their jobs (Handel,
2016). These considerations informed our decision to focus on adults. We report a similar study
of children elsewhere (Braithwaite, Sprague, & Siegler, in press).
2. Study 1

In Study 1, after completing the calculation task, participants performed an explanation
task in which they generated explanations regarding fraction and decimal arithmetic procedures.
We expected that many participants who did not use conceptual knowledge when calculating
would display such knowledge when explaining. Such a result would permit us to exclude the
possibility that failure to use conceptual knowledge during calculation merely reflected
participants lacking relevant conceptual knowledge, being unable to verbalize such knowledge,

or being unable to use such knowledge to reason about rational number arithmetic.
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We further predicted that use of conceptual knowledge on the explanation task, unlike
use of conceptual knowledge on the calculation task, would be positively associated with
accuracy on the calculation task. Confirmation of this prediction would indicate that relations
between conceptual and procedural knowledge may differ depending on whether conceptual
knowledge is assessed via tasks designed to elicit such knowledge or in the context of tasks that
could be completed using only procedures.

2.1. Method
2.1.1. Participants

Participants were 64 undergraduate students (38 women, 26 men; 32 first year, 13 second
year, 18 third year or higher, 1 year not reported) from a mix of majors, the most common being
psychology (n = 26). Participants were recruited from the Psychology Department participant
pool at Florida State University (FSU) and received course credit for participation (participants
were offered alternative options for course credit). In the years Studies 1 and 2 were conducted,
students admitted to FSU had average SAT scores ranging from 1312 to 1325 and average ACT
scores ranging from 29 to 30. During these years, the participant pool was 79% White or
Caucasian, 10% Black or African-American, 4-6% Asian, and 5-7% other; across races, 22%
identified as Hispanic or Latino. Interviews were conducted by the two authors, a female
graduate student, and a female undergraduate researcher.

2.1.2. Tasks and Materials

Stimuli for the calculation task were 12 arithmetic problems including three fraction
addition problems (3/5+1/5, 3/5+1/4, 3+1/5), three fraction multiplication problems (3/5%1/5,
3/5%1/4, and 3x1/5), three decimal addition problems (12.3+5.6, 2.46+4.1, 5.61+23), and three

decimal multiplication problems (2.4x1.2, 2.3%0.13, 3.2x31).
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Stimuli for the explanation task were 12 other arithmetic problems, three for each of the
four problem types in the calculation task: fraction addition (2/3+1/4, 1/2+3/7, 2/5+1/6), fraction
multiplication (3/4x1/4, 5/6x1/6, 2/3x1/3), decimal addition (5.73+1.2, 6.15+2.1, 4.32+3.4), and
decimal multiplication (7.1x2.1, 5.1x3.1, 3.1x4.1).

2.1.3. Procedure

Participants first completed a training on thinking aloud, which followed a script adapted
from Fox et al. (2011). The script emphasized that participants were not to explain their thoughts
but only to report them. Participants practiced thinking aloud with several problems that did not
involve fractions or decimals (e.g., “How many months start with the letter ‘J°?”).

Participants then completed the calculation task. They were told to think aloud while
solving each problem and to do the problems as they would if they were not thinking aloud.
Fraction and decimal problems were presented in separate blocks, with the sequence of these
blocks counterbalanced. Within each block, problems were presented in one of four semi-random
orders, with addition and multiplication problems intermixed.

Finally, participants completed the explanation task. Trials involving the four problem
types (fraction addition, fraction multiplication, decimal addition, decimal multiplication) were
presented in separate blocks, with order of notations (fractions or decimals first) and operations
(addition or multiplication first) counterbalanced between participants. Within each of these
blocks, participants completed one Explain-Solution trial, one Explain-Error trial, and one
Explain-Algorithm trial, in that order. In Explain-Solution trials, participants were told to solve a
problem, then explain how they solved it and why their solution made sense. In Explain-Error
trials, participants were shown two solutions to a problem and were told that one was correct and

the other incorrect; they were then asked to say which solution was incorrect and why. In
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Explain-Algorithm trials, participants were shown a standard algorithm for solving the given
type of problem and a worked example illustrating the algorithm; they were then asked to
explain why a key step of the algorithm made sense.

All tasks were completed in paper and pencil format. Sessions were audio recorded. All
materials shown to participants and the scripts followed by experimenters for this study and
Study 2 are provided in the Supplementary Materials.

2.1.4. Coding

Each trial of the calculation task was coded for whether doubt was displayed. Doubt was
coded if the participant expressed uncertainty about how to do a problem, explicitly considered
multiple strategies, stated that their solution was likely to be incorrect, or crossed out, erased, or
modified their written work. These criteria were intended to include feelings of both uncertainty
and error, which were not coded separately due to the difficulty of distinguishing them.

Also, each trial of the calculation and explanation tasks was coded for whether
conceptual knowledge was overtly used. Use of conceptual knowledge was coded if the
participant displayed any of the types of conceptual knowledge detailed in the Introduction—
magnitude knowledge, fraction interpretation, place value knowledge, and cross-notation
knowledge—or displayed other types of knowledge that coders considered to be conceptual (this
occurred on 1% of calculation trials and 1% of explanation trials). Uses of conceptual knowledge
were not classified as correct or incorrect because they often were not clearly one or the other.
Explanations were not scored for quality, but only as displaying conceptual knowledge or not.

The guidelines used for coding doubt and use of conceptual knowledge, and examples of
trials that displayed each of the four types of conceptual knowledge listed above, are provided in

the Supplementary Materials. Each trial was coded separately by two coders, who coded the
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trials in several batches and met to discuss each batch before coding the next batch. On the
calculation task, the coders agreed whether doubt was displayed on 92% of trials, whether any
conceptual knowledge was used on 94% of trials, and which types of conceptual knowledge
were used (if any) on 94% of trials. On the explanation task, the coders agreed whether any
conceptual knowledge was used on 88% of trials and which types of conceptual knowledge were
used (if any) on 78% of trials. Disagreements were resolved through discussion.
2.2. Results

Table 2 displays descriptives and correlations for our main outcome measures.

Table 2. Descriptives and Correlations for Measures in Study 1.

Correlations
Mean (SD) 1B 1C 2
Calculation task
1A. Accuracy .80 (.17) -.35 ** -.07 36 **
1B. Doubt 21 (.12) 26 * -.03
1C. Conceptual knowledge use .12 (.16) A48 **

Explanation task

2. Conceptual knowledge use .60 (.22)

Note. “Accuracy” denotes proportion of trials correctly answered, “doubt” denotes proportion of
trials on which doubt was displayed, and “conceptual knowledge use” denotes proportion of
trials on which any conceptual knowledge was used; * indicates p < .05 and ** indicates p <.01.
Below, we report analyses testing the predictions in Table 1. These predictions were
tested using correlation analysis and mixed logistic regression. The correlation analyses tested

for between-subjects effects—for example, did participants who displayed doubt more often also

15



CONCEPTUAL, PROCEDURAL, METACOGNITION

use conceptual knowledge more often? The regressions tested for within-subjects effects—for
example, were participants more likely to use conceptual knowledge on calculation trials in
which they displayed doubt than on trials in which they did not, after accounting for between-
participant variation in use of conceptual knowledge? After reporting tests of the predictions in
Table 1, we report analyses regarding the explanation task and the types of conceptual
knowledge that were used in each task.

Here and in Study 2, analyses were conducted in R, using /me4 (Bates, Maechler, Bolker,
& Walker, 2013) and /merTest (Kuznetsova, Brockhoff, & Christensen, 2016) for regressions. In
the regressions, participant was a random effect; notation, arithmetic operation, and the notation
* operation interaction were included as fixed effects; and notation and operation were centered
(i.e., for notation, “fraction” and “decimal” were coded as -0.5 and 0.5, and for operation,
“addition” and “multiplication” were coded as -0.5 and 0.5). All significant effects (p <.05) are
reported.
2.2.1. Prediction 1: Use of conceptual knowledge will not be positively associated with

accuracy when solving routine math problems

No evidence was found for a positive correlation between use of conceptual knowledge
and accuracy on the calculation task, » =-.07, #(62) = -0.6, p = .56 (Table 2). To seek evidence
against such a positive correlation, we examined the one-tailed left 95% CI of the correlation
coefficient (Lakens, Scheel, & Isager, 2018), which was [-1, .14]. This result does not exclude
the correlation being positive, but indicates that it is likely either not positive or small.

The prediction was further tested using mixed logistic regression, with accuracy on each
trial of the calculation task as the dependent variable and use of conceptual knowledge on the

same trial as a predictor. Like the correlation analysis, the mixed logistic regression did not yield
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evidence for a positive effect of conceptual knowledge use on accuracy, B=-0.5,z=-14,p
=.15. Correct answers were advanced on 73% of trials in which conceptual knowledge was used
and on 81% of trials in which conceptual knowledge was not used.

The regression analysis also found an effect of operation, B =-2.0, z=-8.1, p <.001, and
a notation * operation interaction, B =-1.0, z =-2.1, p <.001. Participants were more accurate on
addition than multiplication problems (92% vs. 68%). This effect was larger for decimal
problems (93% vs. 60%) than for fraction problems (92% vs. 76%).

2.2.2. Prediction 2: Doubt will be positively associated with using conceptual knowledge
when solving routine math problems

As predicted, the frequency with which participants displayed doubt on the calculation
task was positively correlated with how often they displayed conceptual knowledge, r = .26,
#62)=2.1, p=.038 (Table 2). Similarly, mixed logistic regression found that the likelihood of
using conceptual knowledge was higher on trials in which doubt was displayed than when doubt
was not displayed (21% vs. 9%), B=1.0,z=3.1, p = .002.

Table 3 shows two examples of trials that illustrate relations between doubt and use of
conceptual knowledge. Both trials involved the problem 2.3%0.13. The participant in trial A felt
doubt about how to solve the problem and used conceptual knowledge to generate a strategy,
leading to an incorrect answer, which also elicited doubt. The participant in trial B felt doubt

about their answer and used conceptual knowledge to evaluate it, leading to a correct answer.
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Table 3. Two Participants’ Solutions for 2.3x0.13 in the Calculation Task in Study 1.

Trial Written Work

Think-Aloud Protocol

Code

A

20

Q oo <

Tol®)

oG

Lo

260
10000

= 65

Wow, there’s definitely a way to do this that I
don’t remember, so

So we get 2 here, let me do, let’s try 30 out of
100 times 1, huh, times 13 out of 100

13 times 30, that’s 10 times 3 which is 300,
plus 30 three more times, so 390

Over 100 times 100, add 0Os, 10,000 ...
0,0point39 ...
I’m gonna do this, times that by 2

This doesn’t make any sense, but we’re gonna
do 0 point0 7 8 ...

3times 3189, 3 times 21is 6
Uh, 0, 1 times 3 is 3, 1 times 2 is 2
Zeros, and, uh, 000, 9, 9, uh, 2

And then move the decimal, two times? Oh
wait, no, three times

So 0 point299

Yeah, cause it’s times, it’s smaller.

Doubt

Conceptual
(cross-notation)

Doubt

Doubt

Conceptual
(magnitude)

Note. Protocols have been edited for brevity; omissions are marked with ellipsis (...). “Code”

indicates codes that were assigned based on corresponding lines of the protocols.

The mixed logistic regression also found an effect of notation, B=1.0,z=3.9, p <.001,

indicating that participants displayed conceptual knowledge more often on decimal problems

than fraction problems (16% vs. 7%).

2.2.3. Prediction 3: Doubt will be negatively associated with accuracy when solving routine

math problems

Consistent with the prediction, how often participants displayed doubt on the calculation

task negatively predicted accuracy on that task, » = -.35, #(62) = -3.0, p = .004 (Table 2).
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Similarly, mixed logistic regression found that participants answered correctly less often when
they displayed doubt than when they did not (57% vs. 86%), B =-1.3,z=-5.2, p <.001. The
effect of arithmetic operation reported under Prediction 1 also appeared here, whereas the
notation * operation interaction reported there did not reach significance in this analysis.

2.2.4. Relations between the explanation and calculation tasks

Participants displayed conceptual knowledge much more often on the explanation task
than on the calculation task (60% vs. 12% of trials, Table 1). Of the 64 participants, 63 displayed
conceptual knowledge at least once on the explanation task, whereas only 37 did so at least once
on the calculation task. Thus, over half of participants had conceptual knowledge that they
revealed during explanation but did not overtly use during calculation.

As predicted, calculation accuracy was positively correlated with the proportion of
explanation trials on which participants used conceptual knowledge, » = .36, #62) = 3.0, p = .004
(Table 2). A possible interpretation of this correlation is that individuals with strong conceptual
knowledge used that knowledge to improve their performance on the calculation task, and
subsequently revealed that knowledge in their explanations. We reasoned that in this case, the
correlation should not appear among participants who never used conceptual knowledge on the
calculation task. However, within this group (n = 27), calculation accuracy was even more
strongly correlated with use of conceptual knowledge use on the explanation task, » = .47, #25) =
2.7, p = .014. In contrast, among participants who overtly used conceptual knowledge at least
once during calculation (n = 37), the correlation between calculation accuracy and use of
conceptual knowledge on the explanation task was not significant, » = .24, #35) = 1.5, p = .15.

Participants varied in mean number of words spoken per explanation trial (M = 110.8, SD

= 35.2). This number correlated with proportion of explanation trials coded as displaying
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conceptual knowledge, r = .54, 1(62) = 5.0, p <.001. Thus, apparent effects of conceptual
knowledge could be effects of verbosity. However, when controlling for number of words
spoken per explanation trial, the partial correlation between calculation accuracy and conceptual
knowledge use on the explanation task remained significant, » = .34, #(62) = 2.9, p = .006.
2.2.5. Types of conceptual knowledge used in each task

Table 4 shows the proportions of trials in each task in which participants displayed each
of the four types of conceptual knowledge on which our coding scheme was based. The most
used types of conceptual knowledge on the calculation task were cross-notation knowledge and
decimal place value knowledge. On the explanation task, magnitude knowledge and decimal
place value knowledge were displayed most often.
Table 4. Mean (SD) Proportions of Trials in Which Participants Displayed Each Type of

Conceptual Knowledge on Each Task in Study 1.

Type of Conceptual Knowledge

Task Magnitude Fraction Decimal place ~ Cross-notation
knowledge interpretation value knowledge
Calculation task .01 (.04) .00 (.01) .05 (.09) 05 (.11)
Explanation task 32 (.16) .09 (.11) .23 (.09) .05 (.10)
Low bin 22 (.12) .04 (.07) 21 (.09) .01 (.03)
High bin 43 (.13) A5 (11) .26 (.09) .09 (.13)

Note. “Low bin” and “High bin” denote participants whose use of conceptual knowledge on the
explanation task was < or > the median (58%), respectively.

To better understand relations between calculation accuracy and performance on the
explanation task, we correlated calculation accuracy separately with use of each type of

conceptual knowledge on the explanation task. Calculation accuracy was correlated with use of

20



CONCEPTUAL, PROCEDURAL, METACOGNITION

magnitude knowledge (r = .26, 1(62) = 2.1, p = .04) and fraction interpretation knowledge (
=.35,4(62)=2.9, p =.005), but not with use of decimal place value knowledge (»p = .19) or
cross-notation knowledge (p = .98), on the explanation task. Related, individual differences in
participants’ use of conceptual knowledge on the explanation task were largest with respect to
magnitude knowledge and fraction interpretations. This effect is shown in the bottom two rows
of Table 4: When participants were binned using a median split on proportion of explanation
trials in which they used any type of conceptual knowledge, the bins differed most with respect
to use of magnitude knowledge and fraction interpretations.

2.3. Discussion

The results lend support to our central hypotheses that when solving routine problems,
students are more likely to rely on conceptual knowledge when their relevant procedural
knowledge is weak than when it is strong, and that doubt mediates interactions between
conceptual and procedural knowledge in such situations. In Study 2, we attempted to replicate
these findings with a larger sample and preregistered analyses.

Consistent with previous research on relations between procedural and conceptual
knowledge, calculation accuracy was positively correlated with use of conceptual knowledge on
the explanation task. This correlation appeared only among participants who did not overtly use
conceptual knowledge during calculation, suggesting that it was not entirely driven by use of
conceptual knowledge during calculation. We elaborate on this point in the General Discussion.

Calculation accuracy was positively correlated with use of magnitude knowledge and
fraction interpretation knowledge on the explanation task, but these two types of conceptual
knowledge were rarely spontaneously used on the calculation task (Table 4). In contrast,

calculation accuracy was uncorrelated with use of decimal place value knowledge or cross-
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notation knowledge on the explanation task, but spontaneous uses of these two types of
conceptual knowledge on the calculation task were relatively common (Table 4). These results
suggest that the types of conceptual knowledge that students use most often when solving routine
problems may differ from the types of conceptual knowledge that are most helpful for
understanding calculation procedures. Future research should explore this possibility.

3. Study 2

Study 2 was conducted to replicate the main findings from the calculation task of Study 1
with a larger sample and preregistered design. As in Study 1, participants completed the
calculation task while thinking aloud, and trials were coded for displays of doubt and use of
conceptual knowledge. It was predicted that use of conceptual knowledge would not be
positively associated with accuracy, doubt would be positively associated with use of conceptual
knowledge, and accuracy would be negatively associated with doubt (Table 1).

Another goal of Study 2 was to investigate boundary conditions for the negative
associations between doubt and accuracy found in Study 1. To do so, we distinguished between
routine problems, like those in the calculation task, and nonroutine problems, meaning problems
for which one has not been taught appropriate solution procedures. We reasoned that when
solving nonroutine problems, a student who reflexively uses the first strategy that comes to mind,
and unreflectively accepts the output of that strategy as their final answer, might perform poorly.
In contrast, a student who deliberately considers alternative strategies, and evaluates their
solutions rather than accepting them without question, might perform well (Garofalo & Lester,
1985; Schoenfeld, 1992). Thus, for nonroutine problems, doubt about how to solve a problem or
about whether an initial solution is correct could be adaptive, rather than serving as a signal of

weak procedural knowledge as in the case of routine problems.
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To test this hypothesis, in Study 2, participants completed an extended version of the
Cognitive Reflection Task (CRT-Long; Frederick, 2005; Primi, Morsanyi, Chiesi, Donati, &
Hamilton, 2016). This task consists of math story problems? for which an apparently obvious
solution is incorrect. For example, “A bat and a ball cost $1.10 in total. The bat costs a dollar
more than the ball. How much does the ball cost?”” has an apparently obvious solution of $0.10,
but the correct answer is $0.05. Such problems are nonroutine because most university students
have not been taught procedures for solving them. Doubting the correctness of the apparently
obvious solutions seems especially critical for success on such problems. We therefore predicted
that on the CRT-Long, displays of doubt would be positively associated with accuracy.

Study 2 was preregistered at https://osf.i0/e9d63.

3.1. Method
3.1.1. Participants

Participants were 138 undergraduate students (99 women, 39 men; 56 first year, 33
second year, 49 third year or higher) whose most common major was psychology (n = 37).
Participants were recruited from the FSU Psychology participant pool, as in Study 1. They
received course credit or cash for participation. Interviews were conducted by five female
undergraduate students and two lab managers, one male and one female.

Power analysis conducted in G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007)
prior to data collection indicated that 126 was the minimum sample needed for 85% power to
detect correlations of doubt with conceptual knowledge use and accuracy equal to those found in

Study 1 (» = .26 and -.33). We recruited 140 participants to ensure 126 if up to 10% of them were

2 The CRT-long was devised as a measure of cognitive reflection rather than math ability. However, the problems in
the CRT-long all involve calculation with numbers, and performance on the CRT-long correlates with other
measures of numeracy (Primi et al., 2016). Thus, we refer to these problems as math problems.
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excluded. In fact, only two were excluded, leaving 138. However, 33 of these were excluded
from analyses involving the CRT-Long because they reported having seen three or more of the
problems in it before (n = 32) or did not complete that task (n = 1). Other data exclusions are
detailed in the Supplementary Materials. All exclusions followed our preregistered criteria.
3.1.2. Tasks and Materials

Stimuli for the calculation task were the 12 problems used for that task in Study 1.
Stimuli for the cognitive reflection task were the six problems in the CRT-Long (Primi et al.,
2016), which includes the three problems of the original CRT and three other problems with
similar structure to the original ones (the problems are provided in the Supplementary Materials).
3.1.3. Procedure

Due to the COVID-19 pandemic, sessions were conducted via video chat using Zoom,
and materials were presented using Qualtrics. Participants first were trained to think aloud using
a modified version of the script from Study 1. The main modifications were that participants
were instructed to say aloud anything they wrote, crossed out, or erased, and that participants
completed three additional practice trials that required writing. The instruction to say aloud
anything written, crossed out, or erased was repeated at the beginning of each task.

Next, participants completed the calculation task, followed by the CRT-Long. In the
calculation task, fraction and decimal problems were presented in blocks, with the sequence of
these blocks counterbalanced. Within each block, problems were presented in random order. In
the CRT-Long, problems were presented in a single block, within which their order was
randomized for each participant.

In both the calculation task and the CRT-Long, one problem appeared at a time.

Participants were told to read each problem aloud, then solve it while thinking aloud. After
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solving the problem, participants were asked to type their answer into a text box on screen and
present their written work to the webcam so the interviewer could take a screenshot. Then,
participants were asked “How confident are you that your solution is correct?”” Responses were
on a 5-point scale with endpoints labeled “Not confident at all” (1) and “Extremely confident”
(5). These confidence ratings were included so that we could compare our observation-based
measure of doubt to a metacognitive measure based on self-report.

After completing the CRT-Long, participants were asked which of the CRT-Long
problems they had seen before. Problems that participants reported having seen before (7% of
trials for the 105 participants included in analyses of this task) were excluded from analyses.
3.14. Coding

Calculation trials were coded for whether doubt and conceptual knowledge were
displayed according to the same criteria as in Study 1. Minor revisions were made to the coding
guidelines to address questions that arose while coding Study 1. The revised guidelines are
provided in the Supplementary Materials.

CRT-Long trials were also coded for whether doubt was displayed, using the same
criteria as on the calculation task—that is, doubt was coded for verbal expression of uncertainty;
consideration of multiple strategies; saying that a solution was likely wrong; or crossing out,
erasing, or modifying written work. CRT-Long trials were not coded for use of conceptual
knowledge due to the lack of a clear distinction between conceptual and procedural knowledge
on this task. For example, selecting appropriate procedures for routine calculation problems
might be possible using procedural knowledge alone, but selecting appropriate procedures for the

CRT-Long problems presumably requires both conceptual and procedural knowledge.
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Each trial was coded by two coders, and disagreements between them were resolved,
following the same procedure as in Study 1. On the calculation task, the coders agreed whether
doubt was displayed on 94% of trials, whether any conceptual knowledge was used on 94% of
trials, and which types of conceptual knowledge were used (if any) on 92% of trials. On the
CRT-Long, the coders agreed whether doubt was displayed on 88% of trials.

3.2. Results

Table 5 displays descriptives and correlations for our main outcome measures. As in
Study 1, the types of conceptual knowledge used most often on the calculation task were decimal
place value and cross-notation knowledge (8% and 4% of trials), followed by magnitude
knowledge and fraction interpretations (2% and 1% of trials). Doubt and confidence on the
calculation task were negatively correlated, providing some support for our measure of doubt.
On the CRT-Long, the correlation between doubt and confidence was also negative, but did not

reach significance.
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Table 5. Descriptives and Correlations for Measures in Study 2.

Correlations
Mean (SD) 1B 1C 1D 2A 2B 2C

Calculation task

1A. Accuracy 0.82(0.2) .65%**  -34** .05 37 ** 25 % 13

1B. Confidence 4.22 (0.67) -49 ** .09 31k 53 -.03

1C. Doubt 0.23 (0.18) 34 x* .09 -.09 37 **

1D. Conceptual knowledge use  0.14 (0.17) 33wk 20 * A2
CRT-Long

2A. Accuracy 0.31(0.29) 39wk 3D Kk

2B. Confidence 3.55(0.83) -.13

2C. Doubt 0.32 (0.23)

Note. “Accuracy” denotes proportion of trials correctly answered, “doubt” denotes proportion of

trials on which doubt was displayed, and “conceptual knowledge use” denotes proportion of

trials on which any conceptual knowledge was used; * indicates p < .05 and ** indicates p <.01.

Below, we report analyses of the calculation task, then analyses of the CRT-Long.

Accuracy, doubt, and conceptual knowledge use on the calculation task were analyzed as in

Study 1. Accuracy and doubt on the CRT-Long were analyzed as for the calculation task, except

that regression analyses of the CRT-Long did not include arithmetic operation or notation as

predictors. All reported analyses were preregistered unless marked as exploratory, and all

preregistered analyses are reported.
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3.2.1. Prediction 1: Use of conceptual knowledge will not be positively associated with
accuracy when solving routine math problems

The correlation between use of conceptual knowledge and accuracy on the calculation
task was not statistically significant, » = .05, #135) = 0.6, p = .57 (Table 5). As in Study 1, we
calculated the one-tailed left 95% CI of the correlation: [-1, .19] (this analysis was exploratory).
This result indicates that conceptual knowledge use and accuracy likely either are not positively
correlated or weakly positively correlated.

Similarly, in mixed logistic regression, the effect of conceptual knowledge use on
accuracy was not significant, 5= 0.2, z = 0.7, p = .48. Correct answers were about equally likely
on trials during which participants used or did not use conceptual knowledge (82% vs. 81%).

The regression also found an effect of arithmetic operation, B=-2.4,z=-11.7, p <.001,
and a notation * operation interaction, B =-2.1,z =-5.5, p <.001. As in Study 1, participants
were more accurate on addition than multiplication problems (93% vs. 70%), and this effect was
larger for decimal problems (95% vs. 64%) than for fraction problems (90% vs. 77%).

3.2.2. Prediction 2: Doubt will be positively associated with using conceptual knowledge
when solving routine math problems

As in Study 1, the frequency with which participants displayed doubt on the calculation
task was positively correlated with how often they used conceptual knowledge, » = .34, #(135) =
4.2, p <.001 (Table 5). Similarly, mixed logistic regression found an effect of doubt on use of
conceptual knowledge, B = 1.5,z = 6.9, p <.001, indicating that participants used conceptual
knowledge more often on trials during which they displayed doubt than when they did not (25%
vs. 10%). The analysis also found an effect of notation, B= 1.7,z = 8.4, p <.001, and a notation

* operation interaction, B =-0.8, z = -2.1, p = .036. Participants used conceptual knowledge more
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often on decimal problems than fraction problems (19% vs. 7%), and this difference was slightly
larger for addition (20% vs. 6%) than for multiplication (20% vs. 8%).
3.2.3. Prediction 3: Doubt will be negatively associated with accuracy when solving routine
math problems

Consistent with the prediction, how often participants displayed doubt on the calculation
task negatively predicted accuracy on that task, » =-.34, #(135) =-4.3, p <.001 (Table 5). Mixed
logistic regression with the same model structure as in Study 1 similarly found a negative effect
of doubt on accuracy, B =-1.2, z=-6.0, p <.001, indicating that participants answered correctly
less often when they displayed doubt than when they did not (62% vs. 88%). The effect of
arithmetic operation and the notation * operation interaction reported under Prediction 1 also
appeared in this analysis.
3.24. Doubt and accuracy on the CRT-Long

In contrast to the calculation task, on the CRT-Long, the frequency with which
participants displayed doubt was positively correlated with accuracy, » = .32, #(102) =3.4,p
=.001 (Table 5). Similarly, mixed logistic regression with accuracy on each trial as the
dependent variable, whether doubt was displayed as a fixed effect, and participant as a random
effect found an effect of doubt, B = 0.5, z=2.2, p = .028, indicating that participants answered
correctly more often on trials during which they displayed doubt than when they did not (39%
vs. 26%).
3.3. Discussion

Results of Study 2 were consistent with the main findings of Study 1. Replication of these
findings with an adequately powered sample increases confidence in their robustness. Further,

the positive relation between doubt and accuracy on the CRT-Long highlights boundary
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conditions for the negative relations found in both studies between doubt and accuracy on the
calculation task. Discussion of these central findings is deferred to the General Discussion.

The findings of Study 2 are informative regarding the validity of our measure of doubt.
Rather than assessing (as intended) operation of metacognitive processes relating to feelings of
uncertainty and error, this measure could have functioned as a proxy for other variables that are
negatively associated with calculation accuracy, such as weak procedural knowledge, high math
anxiety, or weak math self-efficacy. Such interpretations, however, would have difficulty
accounting for the positive associations found in Study 2 between doubt and accuracy on the
CRT-Long. In contrast, those associations are consistent with our interpretation of our measure
of doubt as an indicator of metacognitive processes.

Finally, participants’ poor performance on the CRT-Long is consistent with previous
studies of cognitive reflection by adults (Frederick, 2005; Primi et al., 2016). Interestingly,
although accuracy was much lower on the CRT-Long than on the calculation task (31% vs.
82%), expressions of doubt were only slightly more common (32% vs. 23%). Similarly,
correlations between confidence ratings and accuracy were much weaker on the CRT-Long than
on the calculation task (» = .39 vs. .65). These results dovetail with previous studies that have
found relatively weak calibration between confidence and accuracy on nonroutine or unfamiliar
problems (Nelson & Fyfe, 2019; Reder & Ritter, 1992).

4. General Discussion

The present studies investigated university students’ accuracy, use of conceptual
knowledge, and displays of doubt while solving routine calculation problems involving fraction
and decimal arithmetic; use of conceptual knowledge while explaining solutions to such

problems; and accuracy and displays of doubt while solving nonroutine problems for which
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apparently obvious answers were incorrect. Below, we discuss implications of the findings
regarding relations between procedural knowledge and conceptual knowledge, metacognitive
processes as mediators between conceptual and procedural knowledge, and differences between
routine and nonroutine problem solving.

4.1. Relations between procedural knowledge and conceptual knowledge

Many theories of routine problem solving in math assume that such problems are solved
using procedural knowledge alone (Anderson, 2005; Braithwaite et al., 2017; Brown &
VanLehn, 1980; Chen & Campbell, 2018; Rickard, 2005; for exceptions, see Ohlsson & Rees,
1991; Shrager & Siegler, 1998). For example, describing a cognitive model of children’s decimal
arithmetic calculation, Hiebert & Wearne (1985) stated, “Predictions of performance were made
without considering conceptual knowledge, and most of the predictions were verified. It appears
that students compute without calling on conceptual understandings” (p. 200).

However, on the calculation task of the present studies, participants used conceptual
knowledge to solve problems that they could, in principle, have solved using only procedures.
They did so on a small but not trivial proportion of trials (12% in Study 1 and 14% in Study 2).
Most participants (58% in Study 1 and 60% in Study 2) did so at least once. A complete theory
of adults’ fraction and decimal arithmetic, even one restricted to routine calculation, should
account for such uses of conceptual knowledge.

Use of conceptual knowledge on the calculation task was either not positively correlated
or weakly positively correlated with accuracy. This finding is consistent with our hypothesis that
in the context of routine calculation, students recruit conceptual knowledge mainly when their

procedural knowledge is weak. Such uses of conceptual knowledge might partially compensate
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for weak procedural knowledge, but might not lead to higher accuracy than that of students who
rely primarily on their knowledge of appropriate procedures for solving the problems at hand.

The above proposal assumes that when solving routine problems, students use procedures
when they can and concepts only when they must. Indeed, evidence suggests that students favor
procedures over concepts in many contexts. For example, in Perry (1991), fourth and fifth
graders displayed higher accuracy on transfer problems involving math equivalence following an
intervention that emphasized principles than after one that emphasized both principles and
procedures. Perry (1991) argued that students “may ignore the conceptually rich information
inherent in the principle when procedures are also provided” (p. 449). Similarly, McNeil (2007)
found that children’s generation of conceptually correct solutions to math equivalence problems
declined following formal instruction and practice in calculation procedures, suggesting that
procedural knowledge obtained from instruction “crowded out” conceptual understanding.
Finally, some models of simple whole number arithmetic assume that when children are
presented an arithmetic problem, they first attempt to retrieve the answer from memory
(analogous to using procedural knowledge) and only rely on counting-based backup strategies
(analogous to using conceptual knowledge) when retrieval fails (e.g., Siegler, 1988).

Our hypothesis that students are unlikely to recruit conceptual knowledge when their
procedural knowledge is strong applies only to routine problems. For nonroutine problems,
conceptual knowledge enables adaptation of learned procedures or generation of new ones
(Baroody, Feil, & Johnson, 2007; Perry, 1991; Rittle-Johnson & Alibali, 1999). For example, in
Rittle-Johnson and Alibali (1999), fourth and fifth graders who received a conceptual
intervention regarding math equivalence subsequently invented their own procedures for solving

equivalence problems of a type they had not seen before. Such uses of conceptual knowledge for
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nonroutine problems are likely to occur even among individuals with strong procedural
knowledge. We return to the distinction between routine and nonroutine problems in Section 4.3.

Conceptual knowledge use during explanation was positively correlated with calculation
accuracy (Study 1), consistent with relations that have previously been found between
conceptual knowledge of rational numbers and rational number arithmetic accuracy (Bailey et
al., 2017; Gabriel et al., 2013; Hecht & Vagi, 2010; Siegler & Pyke, 2013; Siegler et al., 2011).
The finding is also consistent with theoretical proposals that conceptual knowledge supports
procedural knowledge (e.g., Rittle-Johnson, 2017; Rittle-Johnson et al., 2015).

Conceptual knowledge could contribute to performance on procedural tasks through
either online or offline mechanisms. In an online mechanism, individuals use conceptual
knowledge while performing procedural tasks, for example to aid in strategy selection or error
detection, resulting in higher accuracy on the procedural tasks. In an offline mechanism,
conceptual knowledge facilitates acquisition of procedural knowledge, such as learning from
instruction or practice. In this case, conceptual knowledge could lead to improved accuracy on
procedural tasks without conceptual knowledge being used while performing those tasks.

If an online mechanism generated the correlation between calculation accuracy and use of
conceptual knowledge during explanation in Study 1, then that correlation should have appeared
primarily among individuals who used conceptual knowledge on the calculation task. However,
the opposite was true: the correlation appeared only among individuals who did not use
conceptual knowledge during calculation. This fact does not imply that online uses of conceptual
knowledge during calculation did not occur or that they were not helpful, but does suggest that
such uses of conceptual knowledge did not cause the correlation between conceptual knowledge

and calculation accuracy. This correlation appears more consistent with an offline mechanism.
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Online and offline effects are not mutually exclusive in principle. However, if we are
correct in proposing that students generally prefer procedures over concepts for solving routine
problems, then factors that facilitate procedure learning should also reduce reliance on concepts
in this context. Thus, strong conceptual knowledge could contribute to procedural proficiency
and thereby obviate the need to use conceptual knowledge during routine problem solving. This
possibility is analogous to how, in some theories of skill acquisition, declarative knowledge is
required for initial acquisition of procedures, but reliance on declarative knowledge during task
performance decreases as skills are increasingly automatized (Anderson, 2013).

4.2. Metacognitive processes as mediators between conceptual and procedural knowledge

Metacognitive processes are considered particularly important for solving complex,
nonroutine problems (Carr et al., 1994; Garofalo & Lester, 1985; W. Schneider & Artelt, 2010;
Schoenfeld, 1992). Although the calculation task in the present studies involved relatively simple
routine problems, participants displayed doubt on a small but not trivial proportion of trials of
that task (21% in Study 1, 23% in Study 2). Most participants (92% in Study 1, 88% in Study 2)
did so at least once. These displays of doubt demonstrate involvement of metacognitive
processes, including feelings of uncertainty and feelings of error, during routine problem solving.

Doubt was negatively associated with accuracy, and positively associated with overt use
of conceptual knowledge, on the calculation task. These results were predicted based on our
hypothesis that doubt mediates interactions between conceptual and procedural knowledge. As
proposed in the Introduction, such interactions may occur in at least two ways. First, failure to
retrieve an appropriate procedure or retrieval of multiple procedures may generate feelings of

uncertainty that trigger recruitment of conceptual knowledge. Second, conceptual knowledge
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may enable detection of errors, generating feelings of error that may lead students to rerun or
modify their solution procedures.

Correlations between doubt and use of conceptual knowledge were moderate (» = .26
and .34 in Studies 1 and 2), indicating that doubt and conceptual knowledge do not always go
together. Students might feel uncertain how to solve a problem but forge ahead with their best
guess without using conceptual knowledge because they lack relevant conceptual knowledge or
do not wish to think deeply. Feelings of error might occur for non-conceptual reasons, such as
the configuration of symbols on the page appearing unfamiliar. Thus, the proposed mechanisms
involving doubt and conceptual knowledge are only part of the whole picture.

Our proposal is similar to that of Crowley, Shrager, and Siegler (1997), who argued that
children’s problem solving involves a competition between fast associative processes, such as
fact retrieval and automatized procedures, and slower explicit reasoning based on conceptual
knowledge, which Crowley et al. (1997) called “metacognitive processes.” Associative processes
typically generate an initial answer, which is accepted if accompanied by high confidence;
otherwise, metacognitive processes may generate a solution. Thus, feelings of confidence
mediate between different processes in Crowley et al. (1997), as in the present proposal.
However, our proposal separates what Crowley et al. (1997) called “metacognitive processes”
into two parts, conceptual knowledge and metacognitive processes proper. These two parts
appear to be distinct, though related, as evidenced by the moderate positive correlations found in
the present studies between doubt and conceptual knowledge use on the calculation task.

Our proposal is also analogous to recent proposals in dual-process theories of reasoning
(Evans, 2019; Thompson, Prowse Turner, & Pennycook, 2011). For example, in the default-

interventionist model of Evans (2019), fast, intuitive Type 1 processes generate default responses
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that are accepted or revised by slow, reflective Type 2 processes. Initial intuitive responses are
accompanied by Feelings of Rightness (FoR); weaker FoRs lead to greater involvement by Type
2 processes. This modulation of Type 2 involvement is carried out by separate monitoring and
control processes, which Evans (2019) called “Type 3.” We propose that procedures, like Type 1
processes, are the default approach for solving routine problems; that conceptual knowledge, like
Type 2 processes, is most involved when one feels doubt (analogous to low FoR) about the
default response; and that metacognitive processes modulate the involvement of conceptual
knowledge as Type 3 processes modulate involvement of Type 2 processes.

Despite these similarities, our proposal diverges from that of Evans (2019) in several
ways. First, Type 1 processes are fast and do not use working memory, whereas execution of
mathematical procedures may be slow and require working memory. Second, Evans (2019)
describes Type 3 processes as unconscious, whereas in our proposal, metacognitive processes
may be conscious. Third, in Evans’ (2019) model, the flow of information among processes is
unidirectional: Type 1 processes generate FoRs, which feed into Type 3 processes, which govern
the effort devoted to Type 2 processing. In our proposal, information flows bidirectionally:
procedural knowledge can generate doubt leading to recruitment of conceptual knowledge, but
conceptual knowledge also can generate doubt leading to rerunning or modifying a procedure.
Future research should investigate both similarities and differences between interactions of Type
1 and 2 processes in reasoning and interactions of procedural and conceptual knowledge in math.
4.3. Routine and nonroutine problem solving

Study 2 found a positive correlation between participants’ accuracies on the rational
number arithmetic calculation task and the CRT-Long. This result points to commonalities

between routine and nonroutine problem solving in math. Several other studies have also found
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positive associations between performance on math assessments and on various versions of the
CRT (Primi et al., 2016; Sobkow, Olszewska, & Traczyk, 2020; Young & Shtulman, 2020).

However, the present findings suggest that metacognitive processes, specifically doubt,
serve different functions when solving routine and nonroutine problems. Doubt was negatively
associated with accuracy on the calculation task, but positively associated with accuracy on the
CRT-Long. To explain the former finding, we proposed that when solving routine problems such
as those in the calculation task, doubt often reflects weak procedural knowledge. However, for
nonroutine problems, such as those in the CRT-Long, procedural knowledge is inadequate by
definition (i.e., nonroutine problems by definition cannot be solved correctly merely by
straightforward application of learned procedures). In this context, overt displays of doubt may
signal a student recognizing that the solution is not obvious and consequently deciding
consciously to regulate and/or monitor the problem solving process. This approach might be
unnecessary when one is solving routine problems and has strong procedural knowledge, but is
likely adaptive when solving nonroutine problems.

The above proposal implies that metacognitive skills play a more causal role in
nonroutine than routine problem solving. In routine problem solving, a student with strong
procedural knowledge might perform well regardless of metacognitive skill; the direct cause of
error on such problems is likely to be weak procedural knowledge (though metacognitive skills
and conceptual knowledge might help students to cope with weak procedural knowledge). In
nonroutine problem solving, performance likely depends much more on whether and how well
students regulate and monitor their thinking (Carr et al., 1994; Garofalo & Lester, 1985; W.
Schneider & Artelt, 2010; Schoenfeld, 1992); the cause of error on such problems might often be

poor metacognitive skill. This hypothesis implies that individual differences in metacognitive
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skill should be more strongly correlated with differences in performance on nonroutine than
routine problems, and interventions that emphasize metacognitive skills (e.g., Desoete et al.,
2003; Hacker et al., 2019) should affect performance on nonroutine problems more than on
routine ones, a prediction worth testing in the future.

Finally, even among nonroutine problems, benefits of metacognitive skill are likely to
vary as a function of metacognitive and procedural demands. The problems on the CRT-Long
are metacognitively demanding, because they elicit strong but incorrect intuitions, but not very
procedurally demanding (for university students), because they require only simple calculations
such as $1.05 + $0.05 = $1.10. Metacognitive processes, such as feelings of doubt, might have
less effect on accuracy for nonroutine problems that are less metacognitively demanding and/or
more procedurally demanding than those on the CRT-Long.

4.4. Limitations

Unobserved variables could account for some or all of the correlations found in the
present studies. This limitation is partially addressed by the converging results obtained through
mixed logistic regressions, which tested for between-trial effects within participants.
Nevertheless, future research should test whether the relations found among accuracy, doubt, and
use of conceptual knowledge still appear when controlling for other aspects of individual
differences, such as executive function, fluid intelligence, verbal ability, and motivation.

The present studies relied on think-aloud protocols and written work to identify displays
of doubt and uses of conceptual knowledge. This approach has advantages (as described in the
Introduction), but could not detect feelings of doubt or uses of conceptual knowledge that did not

result in overt displays, for example because a participant was not verbally expressive or used
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conceptual knowledge unconsciously. Future research should test the robustness of the present

findings using a wider range of measures of doubt and conceptual knowledge.

4.5. Conclusion

Students used conceptual knowledge and displayed evidence of metacognitive processes
while performing routine calculations involving fractions and decimals. Thus, procedural
knowledge does not operate in a vaccuum; conceptual knowledge and metacognition are
sometimes involved even in apparently procedural tasks. Further, conceptual knowledge and
metacognition in math appear to be connected, like Type 2 and Type 3 processes in reasoning. It
is hoped that these findings will motivate the development of formal theories describing
mechanisms of interaction between conceptual and procedural knowledge and metacognition in
fraction and decimal arithmetic, and in other mathematical domains as well.

5. References

Alibali, M. W., Brown, S. A., & Menendez, D. (2019). Understanding Strategy Change:
Contextual, Individual, and Metacognitive Factors. Advances in Child Development and
Behavior (1st ed., Vol. 56). Elsevier Inc. https://doi.org/10.1016/bs.acdb.2018.11.004

Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive architecture.
Cognitive Science, 29(3), 313-341. https://doi.org/10.1207/s15516709c0g0000 22

Anderson, J. R. (2013). The Architecture of Cognition. Psychology Press.

Bailey, D. H., Hansen, N., & Jordan, N. C. (2017). The codevelopment of children’s fraction
arithmetic skill and fraction magnitude understanding. Journal of Educational Psychology,
109(4), 509-519. https://doi.org/10.1037/edu0000152

Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of

conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The

39



CONCEPTUAL, PROCEDURAL, METACOGNITION

Development of Arithmetic Concepts and Skills: Constructing Adaptive Expertise (pp. 1—
34). Mahwah, NJ: Erlbaum.

Baroody, A. J., Feil, Y., & Johnson, A. R. (2007). An alternative reconceptualization of
procedural and conceptual knowledge. Journal for Research in Mathematics Education,
38(2), 115-131. https://doi.org/10.2307/30034952

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2013). Ime4: Linear mixed-effects models
using Eigen and S4. Retrieved from http://cran.r-project.org/web/packages/Ime4/index.html

Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational Number Concepts. In
Acquisition of Mathematics Concepts and Processes (pp. 1-41).

Braithwaite, D. W., McMullen, J., & Hurst, M. A. (in press). Cross-notation knowledge of
rational numbers. Journal of Experimental Child Psychology.

Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A computational model of fraction
arithmetic. Psychological Review, 124(5), 603—625. https://doi.org/10.1037/rev0000072

Braithwaite, D. W., & Siegler, R. S. (2021). Putting fractions together. Journal of Educational
Psychology, 113(3), 556-571. https://doi.org/10.1037/edu0000477

Braithwaite, D. W., Sprague, L., & Siegler, R. S. (in press). Toward a unified theory of rational
number arithmetic. Journal of Experimental Psychology: Learning, Memory, and
Cognition.

Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural
skills. Cognitive Science, 4(4), 379-426. https://doi.org/10.1207/s15516709c0g0404 3

Canobi, K. H. (2009). Concept—procedure interactions in children’s addition and subtraction.
Journal of Experimental Child Psychology, 102(2), 131-149.

https://doi.org/10.1016/j.jecp.2008.07.008

40



CONCEPTUAL, PROCEDURAL, METACOGNITION

Carr, M., Alexander, J., & Folds-Bennett, T. (1994). Metacognition and mathematics strategy
use. Applied Cognitive Psychology, 8(6), 583—595. https://doi.org/10.1002/acp.2350080605

Chen, Y., & Campbell, J. I. D. (2018). “Compacted” procedures for adults’ simple addition: A
review and critique of the evidence. Psychonomic Bulletin & Review, 25(2), 739—753.
https://doi.org/10.3758/s13423-017-1328-2

Common Core State Standards Initiative. (2010). Common core state standards for mathematics.
Washington, D.C.: National Governors Association Center for Best Practices and the
Council of Chief State School Officers. Retrieved from http://www.corestandards.org/math

Crowley, K., Shrager, J., & Siegler, R. S. (1997). Strategy discovery as a competitive negotiation
between metacognitive and associative mechanisms. Developmental Review, 17, 462—489.
https://doi.org/10.1006/drev.1997.0442

Desoete, A., Roeyers, H., & De Clercq, A. (2003). Can offline metacognition enhance
mathematical problem solving? Journal of Educational Psychology, 95(1), 188-200.
https://doi.org/10.1037/0022-0663.95.1.188

Evans, J. S. B. T. (2019). Reflections on reflection: the nature and function of type 2 processes in
dual-process theories of reasoning. Thinking & Reasoning, 25(4), 383—415.
https://doi.org/10.1080/13546783.2019.1623071

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical
power analysis program for the social, behavioral, and biomedical sciences. Behavior
Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146

Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction
magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 42(1), 1-16. https://doi.org/10.1037/xIm0000153

41



CONCEPTUAL, PROCEDURAL, METACOGNITION

Fernandez Cruz, A. L., Arango-Muiioz, S., & Volz, K. G. (2016). Oops, scratch that! Monitoring
one’s own errors during mental calculation. Cognition, 146, 110—120.
https://doi.org/10.1016/j.cognition.2015.09.005

Fitzsimmons, C. J., Thompson, C. A., & Sidney, P. G. (2020). Confident or familiar? The role of
familiarity ratings in adults’ confidence judgments when estimating fraction magnitudes.
Metacognition and Learning, 15(2), 215-231. https://doi.org/10.1007/s11409-020-09225-9

Fox, M. C., Ericsson, K. A., & Best, R. (2011). Do procedures for verbal reporting of thinking
have to be reactive? A meta-analysis and recommendations for best reporting methods.
Psychological Bulletin, 137(2), 316-344. https://doi.org/10.1037/a0021663

Frederick, S. (2005). Cognitive Reflection and Decision Making. Journal of Economic
Perspectives, 19(4), 25-42. https://doi.org/10.1257/089533005775196732

Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., & Bryant, J. D. (2010).
The contributions of numerosity and domain-general abilities to school readiness. Child
Development, 81(5), 1520—1533. https://doi.org/10.1111/5.1467-8624.2010.01489.x

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., ...
Changas, P. (2013). Improving at-risk learners’ understanding of fractions. Journal of
Educational Psychology, 105(3), 683—700. https://doi.org/10.1037/a0032446

Fuchs, L. S., Wang, A. Y., Preacher, K. J., Malone, A. S., Fuchs, D., & Pachmayr, R. (2021).
Addressing challenging mathematics standards with at-risk learners: A randomized
controlled trial on the effects of fractions intervention at third grade. Exceptional Children,
87(2), 163—182. https://doi.org/10.1177/0014402920924846

Fyfe, E. R., DeCaro, M. S., & Rittle-Johnson, B. (2014). An alternative time for telling: When

conceptual instruction prior to problem solving improves mathematical knowledge. British

42



CONCEPTUAL, PROCEDURAL, METACOGNITION

Journal of Educational Psychology, 84(3), 502—519. https://doi.org/10.1111/bjep.12035

Gabriel, F. C., Coché, F., Szucs, D., Carette, V., Rey, B., & Content, A. (2013). A componential
view of children’s difficulties in learning fractions. Frontiers in Psychology, 4(715), 1-12.
https://doi.org/10.3389/fpsyg.2013.00715

Garofalo, J., & Lester, F. K. J. (1985). Metacognition, cognitive monitoring, and mathematical
performance. Journal for Research in Mathematics Education, 16(3), 163—176.
https://doi.org/10.5951/jresematheduc.16.3.0163

Hacker, D. J., Kiuhara, S. A., & Levin, J. R. (2019). A metacognitive intervention for teaching
fractions to students with or at-risk for learning disabilities in mathematics. ZDM, 51(4),
601-612. https://doi.org/10.1007/s11858-019-01040-0

Handel, M. J. (2016). What do people do at work? Journal for Labour Market Research, 49(2),
177-197. https://doi.org/10.1007/s12651-016-0213-1

Hansen, N., Jordan, N. C., & Rodrigues, J. (2015). Identifying learning difficulties with
fractions: A longitudinal study of student growth from third through sixth grade.
Contemporary Educational Psychology, 1-15.
https://doi.org/10.1016/j.cedpsych.2015.11.002

Hecht, S. A., & Vagi, K. J. (2010). Sources of group and individual differences in emerging
fraction skills. Journal of Educational Psychology, 102(4), 843—859.
https://doi.org/10.1037/a0019824

Hecht, S. A., & Vagi, K. J. (2012). Patterns of strengths and weaknesses in children’s knowledge
about fractions. Journal of Experimental Child Psychology, 111(2), 212-229.
https://doi.org/10.1016/j.jecp.2011.08.012

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An

43



CONCEPTUAL, PROCEDURAL, METACOGNITION

introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case
of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. Retrieved
from
https://www.taylorfrancis.com/books/e/9781136559761/chapters/10.4324%2F97802030635
38-6

Hiebert, J., & Wearne, D. (1985). A model of students’ decimal computation procedures.
Cognition and Instruction, 2(3), 175-205. https://doi.org/10.1080/07370008.1985.9648916

Hurst, M. A., & Cordes, S. (2016). Rational-number comparison across notation: Fractions,
decimals, and whole numbers. Journal of Experimental Psychology: Human Perception and
Performance, 42(2), 281-293. https://doi.org/10.1037/xhp0000140

Hurst, M. A., & Cordes, S. (2018a). A systematic investigation of the link between rational
number processing and algebra ability. British Journal of Psychology, 109(1), 99-117.
https://doi.org/10.1111/bjop.12244

Hurst, M. A., & Cordes, S. (2018b). Children’s understanding of fraction and decimal symbols
and the notation-specific relation to pre-algebra ability. Journal of Experimental Child
Psychology, 168, 32—48. https://doi.org/10.1016/j.jecp.2017.12.003

Kieren, T. E. (1980). The rational number construct--Its elements and mechanisms. In T. E.
Kieren (Ed.), Recent research on number learning (pp. 125-150). Columbus, OH:
Information Reference Center (ERIC/IRC), The Ohio State University. Retrieved from
https://eric.ed.gov/?1d=ED212463

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). ImerTest: Tests in Linear
Mixed Effects Models.

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for Psychological

44



CONCEPTUAL, PROCEDURAL, METACOGNITION

Research: A Tutorial. Advances in Methods and Practices in Psychological Science, 1(2),
259-269. https://doi.org/10.1177/2515245918770963

Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal
arithmetic so difficult? Developmental Review, 38, 201-221.
https://doi.org/10.1016/;.dr.2015.07.008

Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on
informal knowledge. Journal for Research in Mathematics Education, 26(5), 422—441.
https://doi.org/10.2307/749431

Martin, T., Petrick Smith, C., Forsgren, N., Aghababyan, A., Janisiewicz, P., & Baker, S. (2015).
Learning fractions by splitting: Using learning analytics to illuminate the development of
mathematical understanding. Journal of the Learning Sciences, 24(4), 593—-637.
https://doi.org/10.1080/10508406.2015.1078244

McNeil, N. M. (2007). U-shaped development in math: 7-year-olds outperform 9-year-olds on
equivalence problems. Developmental Psychology, 43(3), 687—695.
https://doi.org/10.1037/0012-1649.43.3.687

Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: A
new model and an experimental curriculum. Journal for Research in Mathematics
Education, 30(2), 122. https://doi.org/10.2307/749607

Nelson, L. J., & Fyfe, E. R. (2019). Metacognitive monitoring and help-seeking decisions on
mathematical equivalence problems. Metacognition and Learning, 14(2), 167-187.
https://doi.org/10.1007/s11409-019-09203-w

Newton, K. J. (2008). An extensive analysis of preservice elementary teachers’ knowledge of

fractions. American Educational Research Journal, 45(4), 1080—1110. https://doi.org/DOL

45



CONCEPTUAL, PROCEDURAL, METACOGNITION

10.3102/0002831208320851

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103(2), 241-262.
https://doi.org/10.1037/0033-295X.103.2.241

Ohlsson, S., & Rees, E. (1991). The function of conceptual understanding in the learning of
arithmetic procedures. Cognition and Instruction, 8(2), 103—179.
https://doi.org/10.1207/s1532690xci0802 1

Opfer, J. E., & Devries, J. M. (2008). Representational change and magnitude estimation: Why
young children can make more accurate salary comparisons than adults. Cognition, 108(3),
843-849. https://doi.org/10.1016/j.cognition.2008.05.003

Perry, M. (1991). Learning and transfer: Instructional conditions and conceptual change.
Cognitive Development, 6(4), 449-468. https://doi.org/10.1016/0885-2014(91)90049-]

Primi, C., Morsanyi, K., Chiesi, F., Donati, M. A., & Hamilton, J. (2016). The development and
testing of a new version of the Cognitive Reflection Test applying Item Response Theory
(IRT). Journal of Behavioral Decision Making, 29(5), 453-469.
https://doi.org/10.1002/bdm.1883

Reder, L. M., & Ritter, F. E. (1992). What determines initial feeling of knowing? Familiarity
with question terms, not with the answer. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 18(3), 435—451. https://doi.org/10.1037/0278-7393.18.3.435

Rickard, T. C. (2005). A revised identical elements model of arithmetic fact representation.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 250-257.
https://doi.org/10.1037/0278-7393.31.2.250

Rittle-Johnson, B. (2017). Developing mathematics knowledge. Child Development

Perspectives, 11(3), 184—190. https://doi.org/10.1111/cdep.12229

46



CONCEPTUAL, PROCEDURAL, METACOGNITION

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of
mathematics: Does one lead to the other? Journal of Educational Psychology, 91(1), 175—
189. https://doi.org/10.1037/0022-0663.91.1.175

Rittle-Johnson, B., & Koedinger, K. R. (2009). Iterating between lessons on concepts and
procedures can improve mathematics knowledge. The British Journal of Educational
Psychology, 79(3), 483—500. https://doi.org/10.1348/000709908X398106

Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional
relations between procedural and conceptual knowledge of mathematics. Educational
Psychology Review, 27(4), 587-597. https://doi.org/10.1007/s10648-015-9302-x

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual
understanding and procedural skill in mathematics: An iterative process. Journal of
Educational Psychology, 93(2), 346-362. https://doi.org/10.1037/0022-0663.93.2.346

Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge,
procedural knowledge, and procedural flexibility in two samples differing in prior
knowledge. Developmental Psychology, 47(6), 1525-1538.
https://doi.org/10.1037/a0024997

Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM, 42(2),
149-161. https://doi.org/10.1007/s11858-010-0240-2

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition,
and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on
mathematics teaching and learning (pp. 334-370). New York, NY: MacMillan.

Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy

discoveries. Psychological Science, 9(5), 405—410. https://doi.org/10.1111/1467-

47



CONCEPTUAL, PROCEDURAL, METACOGNITION

9280.00076

Sidney, P. G. G., Thalluri, R., Buerke, M. L. L., & Thompson, C. A. A. (2019). Who uses more
strategies? Linking mathematics anxiety to adults’ strategy variability and performance on
fraction magnitude tasks. Thinking & Reasoning, 25(1), 94—131.
https://doi.org/10.1080/13546783.2018.1475303

Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill.
Journal of Experimental Psychology: General, 117(3), 258-275.
https://doi.org/10.1037/0096-3445.117.3.258

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., ...
Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological
Science, 23(7), 691-697. https://doi.org/10.1177/0956797612440101

Siegler, R. S., Im, S., Schiller, L. K., Tian, J., & Braithwaite, D. W. (2020). The sleep of reason
produces monsters: How and when biased input shaped mathematics learning. Annual
Review of Developmental Psychology, 2, 413—435. https://doi.org/10.1146/annurev-
devpsych-041620-031544

Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic.
Journal of Educational Psychology, 107(3), 909-918. https://doi.org/10.1037/edu0000025

Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding
of fractions. Developmental Psychology, 49(10), 1994-2004.
https://doi.org/10.1037/a0031200

Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular
ones—improves low-income preschoolers’ numerical understanding. Journal of

Educational Psychology, 101(3), 545. https://doi.org/10.1037/a0014239

48



CONCEPTUAL, PROCEDURAL, METACOGNITION

Siegler, R. S., & Thompson, C. A. (2014). Numerical landmarks are useful--except when they’re
not. Journal of Experimental Child Psychology, 120, 39-58.
https://doi.org/10.1016/j.jecp.2013.11.014

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number
and fractions development. Cognitive Psychology, 62(4), 273-296.
https://doi.org/10.1016/j.cogpsych.2011.03.001

Sobkow, A., Olszewska, A., & Traczyk, J. (2020). Multiple numeric competencies predict
decision outcomes beyond fluid intelligence and cognitive reflection. Intelligence, 80,
101452. https://doi.org/10.1016/J.INTELL.2020.101452

Steffe, L. P. (2004). On the construction of learning trajectories of children: The case of
commensurate fractions. Mathematical Thinking and Learning, 6(2), 129—162.
https://doi.org/10.1207/s15327833mtl0602_4

Stigler, J., Givvin, K., & Thompson, A. (2010). What community college developmental
mathematics students understand about mathematics. MathAMATYC Educator, 1(3), 4-16.
https://doi.org/10.1016/j.learninstruc.2014.03.002

Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections:
metacognitive characteristics of secondary students. Educational Studies in Mathematics,
36(2), 157-194. https://doi.org/10.1023/A:1003246329257

Thompson, V. A., Prowse Turner, J. A., & Pennycook, G. (2011). Intuition, reason, and
metacognition. Cognitive Psychology, 63(3), 107-140.
https://doi.org/10.1016/j.cogpsych.2011.06.001

Tian, J., Braithwaite, D. W., & Siegler, R. S. (2021). Distributions of textbook problems predict

student learning: Data from decimal arithmetic. Journal of Educational Psychology, 113(3),

49



CONCEPTUAL, PROCEDURAL, METACOGNITION

516-529. https://doi.org/10.1037/edu0000618

Tzur, R. (1999). An integrated study of children’s contruction of improper fractions and the
teacher’s role in promoting that learning. Journal for Research in Mathematics Education,
30(4), 390-416. https://doi.org/10.2307/749707

Tzur, R., & Hunt, J. (2015). Iteration: Unit Fraction Knowledge and the French Fry Tasks.
Teaching Children Mathematics, 22(3), 148. https://doi.org/10.5951/teacchilmath.22.3.0148

Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction:
Testing a local theory using decimal numbers. Journal for Research in Mathematics
Education, 19(5), 371-384. https://doi.org/10.2307/749172

Wilkins, J. L. M., & Norton, A. (2018). Learning progression toward a measurement concept of
fractions. International Journal of STEM Education, 5(1), 27.
https://doi.org/10.1186/s40594-018-0119-2

Wong, H., & Odic, D. (2021). The intuitive number sense contributes to symbolic equation error
detection abilities. Journal of Experimental Psychology: Learning, Memory, and Cognition,
47(1), 1-10. https://doi.org/10.1037/xIm0000803

Young, A. G., & Shtulman, A. (2020). Children’s cognitive reflection predicts conceptual
understanding in science and mathematics. Psychological Science, 31(11), 1396-1408.

https://doi.org/10.1177/0956797620954449

50



