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Abstract—We present a methodology for calibrating multiple light source
locations in 3D from images. The procedure involves the use of a novel calibration
object that consists of three spheres at known relative positions. The process uses
intensity images to find the positions of the light sources. We conducted
experiments to locate light sources in 51 different positions in a laboratory setting.
Qur data shows that the vector from a point in the scene to a light source can be
measured to within 2.7 .4 ata .05 (6 percent relative) of its true direction and
within 0.13 .02mata .05 (9 percent relative) of its true magnitude compared to
empirically measured ground truth. Finally, we demonstrate how light source
information is used for color comection.

Index Terms—Light source calibration, constancy, color correction.
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1 INTRODUCTION

OUR motivation in this research is to use physics to improve our
understanding of the surfaces and objects we would like to reason
about. Traditionally, most work in computer vision is done
without correcting for illumination artifacts like shading, high-
lights and shadows, which limit effectiveness. For example,
intensity changes that result from surface shading are a major
problem for a segmentation algorithm. In one particular applica-
tion in which color segmentation is used to recognize psoriasis
discolorations on skin, the authors note: “...the cylindrical shape of
the limbs resulted in some difficulties in assessing involved skin
area [1].” These kinds of problems are due in part to the lack of
knowledge and control over the illumination source. It is intuitive
that correcting for variation of illumination would improve
segmentation, but the extent of improvement remains to be
demonstrated.

One class of work seeks to bypass the illumination calibration
problem by formulating illumination-invariant measures, e.g., [2],
[3]. In this paper, we adopt a more direct approach and estimate
the light source parameters. To enable us to correct for illumination
we present a novel strategy for calibrating light source direction and
location using specular spheres. To our knowledge, this is the first
work that presents a technique for calibrating the light source
geometry for a source that is near and uses real images. Possible
applications of these techniques include controlled scenarios such
as those observed in human-computer interaction using face and
gesture, teleconferencing, and medical applications such as
quantification of burn scars and skin cancer. The knowledge of
light source position can also be used in vision techniques such as
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shape-from-shading, photometric stereo, shape-from-shadows,
and shape-from-specularities.

2 RELATED WORK

Color constancy is a difficult problem, which is made apparent by
the number of theories and algorithms that have been conjectured
to solve it [4], [5], [6], [7], [8], [9], [10], [12]. Because the problem is
underconstrained, quite often researchers make assumptions about
the scene that are highly impractical. One common assumption is
that the scene is two-dimensional and evenly illuminated [5], [7],
[8], [9]. The Mondrian, for example, is a set of homogeneously-
colored surface patches arranged on a flat surface that is
sometimes used to validate color constancy methods. Even if such
large assumptions are made, the problem of color constancy is still
underconstrained since for n homogeneously-colored regions,
there are 3n knowns from a color image and 3 n 1 unknowns,
where the n regions are each described by three surface reflectance
coefficients and the light source color is described by three
parameters. This formulation is still a simplification of the ideal,
which is to obtain a finer sampling of the surface reflectance
function of each region and the spectral power distribution of the
illuminant, which would require the estimation of 30 or more
parameters per region and illuminant. The complexity of this
problem is exacerbated by the added complexity of variations in
intensity due to shading in real images. Through explicit
calibration of 3D light source position and estimation of surface
orientation such as surface normal estimation from a range image,
we can transform an image so that it appears uniformly
illuminated, factoring out intensity variation from shading. By
accounting for the added complexity introduced in real images, the
assumptions made to simplify color constancy that are criticized as
impractical can be made more reasonable.

Among previous works in light source calibration, Mancini and
Wolff triangulate the position of the light source given intensity
and range information for any illuminant position near the scene,
initially using surface normal estimation from a range image. The
position estimate is then refined using a shape-from-shading
technique [13]. The performance of this algorithm was shown on
synthetic images but not real ones. Other works in estimation of
light source direction has been in the context of shape from
shading, where a point source that is far away is assumed [14],
[15], [16], [17], [18], [19]. The assumption of an infinitely distant
light source is not practical for an indoor scene such as a laboratory
or production facility, where the direction from each point in the
image to the light source varies over the entire image.

3 METHODOLOGY

We can triangulate the positions of any number of light sources
that give rise to an image if we can place a pair of calibration
spheres in the scene which produce visible highlights for each light
source. Our strategy is to estimate the positions and surface
normals at the highlights in order to triangulate the illuminants.
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Fig. 1. Setup for light source position estimation. (a) Two spheres are placed in the
scene which exhibit specular reflections at points 5, and S: from the illuminant at
unknown point I captured in an image by a camera of known position at point C.
The surface normals to the sphere at the specularity points are denoted N, and
Na. The incoming and outgoing angles (which are equal by the law of reflection)
are labeled #, and #.. Note: for multiple light sources I,,1.,. .., I, this diagram
can be replicated n times.

3.1 Light Source Calibration

First, we would like to estimate the center positions of the
calibration spheres. Consider two spheres with centers located at
z,,Y,2 and =,,y,,z , separated by distance D and located
relatively near to and far from the camera, respectively. Let the
points u,v J—:‘,fgﬂ and u ,v fﬂ,f;l"':- in the image
plane be the perspective-projected locations of the two sphere
center points, where f is the focal length. We know the sphere radii
R and R a priori. Let us assume that the spheres project as
circles onto the image plane. This approximation is valid if the
spheres are far away from the camera relative to the deviation from
the optic axis. We will handle the most general case in the next
section. We can relate the sphere radii to the projected circle radii

r and r by r f% and r f% By substitution, the
3D coordinates of the sphere centers are given by z, &,

v R R u R u R v R
Y r’z(.‘ {‘_’mc T r Ty s Ye T

To obtain the z-coordinates, it is necessary to estimate the focal
length f. We can estimate this by using the known distance D
between the center points of two spheres:

R
,and z, {‘—

2 2
z, T, Yo Yo zZ, Z D.

By isolating the z, terms and substituting the z terms, we have

R? R?2\? 2 2
fz(r_g ,r_g) D2 I, I, : Yo Y. :

and solving for f, we get

Given the estimate of the focal length, we can estimate the
center of the spheres. Each point light source that lies in front of a
specular sphere will produce a visible highlight on its surface.
Next, we wish to estimate the positions of the specular highlights
that appear on each calibration sphere. The solution, given in [11],
is as follows: Let the known sphere center position be a,b,c and
the unknown highlight point be a,b,ec 7 4,5,k , where r is the
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known radius of the sphere. The vector of unknown direction
cosines for the line segment between the center of the sphere and
the highlight pointis i,j,k . Let u,v be the perspective projection
of the highlight on the image plane. Therefore, v f%2 and
v fifl.So,i whieliandj el We also know that
¢ 7 K 1,so substituting for i andj gives us:

1,.2 u2 ’r‘J2 f2 k2

E ue fa’

2ruuc fa wvwve [fb
ve fb% rf% 0.

We can solve this quadratic for two possible values of k. Given k,
the values of i and j are also determined. We choose the highlight
position from the two solutions by taking the root where the
k component is negative, or pointing toward the camera.

Once we have computed the locations of the highlights that a
light source creates on two spheres of known radius, we can
triangulate its position. The locations of the lightsource I, camera

C, and spheres are shown in Fig. 1. Points S, and S, are the
specularities on each sphere from the light source. Point C is also
the origin. We have the surface normals NV; and N at the points Sy
and S» because we have previously estimated the sphere’s center
and highlight positions. The normalized vector from the center to
the highlight is the normal. The angles ¢y and 6, are the angles
between the vectors V; and Cy and N» and Cz, respectively. We
first wish to find the direction of vector I (and Ig) We exploit the
fact that the angle of incidence is equal to the angle of reflection,
which is denoted by 6; (and 6,). We need to scale the vectors Nfl
and N, such that N, C, and N, C, are parallel to I and I,
respectively, or ayN; €, I, 0 and asN, C L 0.
Expanding the first equation, we have a; M L ¢ R oo
We evaluate the vector product to get

15 ﬁl fl sin 31 C:l E sin 291 0.

Therefore, a; 2 Gy cos 6, , and, similarly, as 2 Co cos By .
Finally, we triangulate the light source position I. Consider the
triangle in Fig. 2b, where the vertices are I and the two highlight
positions S; and S,. We know a priori the length of b, the distance
between points S; and S». We can compute ¢, opposite I; and 4,
opposite I by finding the angles between I; and S, S, and between
I, and S,5). Finally, the law of sines gives us I, %1—
similarly, I» b:"’ 2. When we rescale the vectors I; and I, to have
magnitudes I; and I, respectively, we have vectors from each
highlight point to the light source. The point I, where I; and I
come nearest to intersecting, may either be found by least-squares
estimation, or by computing the midpoint of the line segment of
minimum distance that connects the two rays, which is equivalent.

3.2 Implementation

We use calibration spheres that are specularly reflective on one
hemisphere and produce highlights for every light source in front
of them (from the camera’s perspective). The other hemisphere is
matte, allowing us to rotate the sphere in place with no translation.
The matte surface is painted very brightly relative to the image
background, simplifying sphere boundary segmentation. The
calibration object consists of three spheres (see Fig. 3). The two
front-most spheres are used to produce the highlights needed to
triangulate the illuminant positions. The third sphere is farther
away and used to estimate the focal length.

The positions of the specular regions on the spheres are
automatically determined from the image. Since the regions are
specular, they are by definition among the brightest in the image
because they reflect back most of the illumination they receive. It is

and,
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Fig. 2. (a) Geometry used to find the direction of the light source. N, is a unit vector parallel to SN. I, is estimated by I,

(b) Triangulating I, the light source position.

therefore possible to threshold out all the specular regions from the
intensity image. We find the maximum intensity value of the
image, set a threshold value to 90 percent of this value and use it to
threshold the image, producing a binary image where the
highlights are foreground regions. We use empirically set max-
imum (300) and minimum (25) size thresholds to choose only the
highlight regions from the set of foreground regions.

The next stage of the algorithm automatically determines the
correspondence between the specular regions. For each source of
illumination, one specular region on each of the two spheres is
created. We can determine which pairs of regions result from the
same illuminant by grouping the highlight regions into two sets by
their relative locations. For our implementation, it is sufficient to
determine whether they lie on the left or right half of the image,
since each sphere lies completely on one side of the image or the
other. We then sort the two sets of regions first by their horizontal
coordinates and then by their vertical coordinates, which effec-
tively pairs the highlight regions together according to light source
across the two sets. More sophisticated correspondence algorithms

Fig. 3. Light source calibration setup illuminated by three different light sources
simultaneously. The three spheres are specular on one side (shown on the front-
most two spheres) and Lambertian on the other (as shown on the rear-most
sphere). The 3D positions of the specularities visible on the surface are used to
triangulate for the light source positions.
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(b)

aiVy 2C, cos 8 .

Cy, where a,

might be used to match up the specular points in the general case
when the calibration spheres are not horizontally aligned.

We have thus far assumed that the radius of the circle in the
image is known. In order to know this, we must be able to find the
boundary of the circle in the image and accurately estimate the
ellipse that best fits it. The matte halves of the spheres used in our
experiments are painted bright gray for the two near to the camera
and near white for the third that is farther away. The farthest
sphere is painted brighter so that it will not appear darker than the
other two spheres, since the brightness of illumination diminishes
over distance. The mounting device for the three spheres was
painted matte black and placed on a table top covered in dull black
fabric in front of a black felt backdrop. This was an ideal setup to
threshold out the spheres from the background. To automatically
estimate the parameters of the ellipse in the image, the raw
greyscale image was binary thresholded, then edges were
computed with a Sobel operator, which in turn were input to
Maclaughlin’s Hough transform based ellipse finder [21].

4 EXPERIMENTAL RESULTS

4.1 Accuracy
A set of 17 images each with three illuminants in different
positions lighting the calibration object were captured. The 51
3D locations of the light sources in these images were empirically
measured and recorded as ground truth for comparison. For the
51 light source locations we used, the distance from the sphere
varied from 0.5 to 2.0 m, and the angle between the vector from the
sphere to the light source and from the sphere to the camera varied
from 10 to 55 , using the front, center point of the leftmost sphere
as a reference point. We express the calibration error as the
difference in the magnitude and direction of the actual vector from
the point in question to the light source, and the estimated light
source position vector. The ground truth light source locations
were empirically measured in 3D with respect to the walls and
floor of our lab with a measuring tape and a plumb bob (lead
weight on string) suspended from the object to be measured and
lowered until it touched the floor. Table 1 shows the results for the
light source calibration procedure.
Fig. 4 plots the variation of the errors with respect to the
distance of the light source from the scene. As expected, the error
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TABLE 1

Error in Calibrating Light Source Direction and Distance from a Point

in the Scene Measured over 51 Trials («

.05)

| ] Position estimation error ]

Mean magnitude error A3£.02m
Mean magnitude error (relative) 9%
Median magnitude error Al m
Median magnitude error (relative) %
Mean direction error 2.7£.4°
Mean direction error (relative) 6%

Light sources were placed over a range of 0.5 to 2.0 m distance and 10 fo 55
direction with respect to the optical axis.

0.6

S
=

=
a
.

Distance estimation error (m)

0.5 1 15 2
Illumination distance (m)

Fig. 4. Light source distance estimation error versus light source distance.

in magnitude of the light source vector with respect to the scene
increases with distance from the scene. The reason for this is
intuitive: the position of the illuminant must be triangulated from
the two highlight positions on the sphere, which were 0.11 m apart.
Like stereo imaging, triangulation is more accurate for positions
closer to the optic axis and nearer to the scene rather than farther,
or if the baseline distance between the calibration spheres is
increased. We supposed that the error in estimated distance would
also increase with respect to the angle between the light source
vector and the optical axis for the same reason, but there was no
apparent correlation. This may be because we were varying light
source distance and direction at the same time in this experiment
and the error with increasing distance outweighed the error with
increasing angle from the optical axis. The error in estimated
direction was not correlated with either distance of the light source
or the angle between the light source vector and the optical axis.

(a)

Fig. 5. Image of a face before and after color correction.

1025

4.2 Color Correction

As stated in Section 1, our motivation for calibrating light sources
is to extract objective color from images. We can use known light
source positions and surface geometry to remove the shading on
surfaces which get darker in intensity as the angle between the
surface normal and the lighting direction increases. To compute
intrinsic surface color, we apply a correction factor to intensity
values based on the light source and surface normal direction. We
assume a Lambertian surface, where the reflected light varies
directly with the cosine of the angle ¢ between the direction of
incoming light and the normal of the surface at a given point. We
estimate the surface normal at each pixel using a range image and
the local least-squares planar fit. For every point in the image, the
intensity value is divided by cos # . Dividing the intensity values
by this directionality factor results in an image that is very close to
how the surface would appear if the entire surface were flat and
oriented perpendicularly with respect to the direction of illumina-
tion. Although there are other methods of color correction that do
not require knowledge of light source locations such as photo-
metric normalization, explicitly modeling light sources and surface
geometry allows us to correct color in a more physically objective
and comprehensive manner. For instance, in addition to shading
removal, we can use this information to correct for illumination
variation over distance from the source, correct for intensity
variation from perspective foreshortening, or identify the location
of possible specular highlights by testing for equal incoming and
outgoing angles of surface irradiance and radiance with respect to
the surface normal.

Fig. 5 shows a person’s face before and after color correction.
The face is illuminated by two tungsten lamps. One light was
positioned slightly to the left of the face (from the camera’s point of
view) about one meter away (measured from the center of the
rightmost calibration sphere), and the other was positioned far to
the right and about 1.5 meters away. In order to correct the color of
this image, we first identify the regions where each light will
contribute to the color image. In an area where both lights
contribute to color, the correction is computed for both lights.
However, in areas where just one light illuminates the surface,
only the appropriate correction is applied there. Overall, the color
correction procedure removes much of the shading and corrects for
the varying distance from the surface to the light. There is a
perceivable brightness difference between the regions of the face
that are singly illuminated and those that are doubly illuminated.
When corrected, the doubly illuminated regions are slightly
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Fig. 6. From left to right, histograms of the red, green, and blue bands of the original (above) and comected (below) face images (see Fig. 5), illustrating the reduction in

intensity variance from color correction.

darker. Since the correction procedure is, in effect, applied twice at
these areas, the error in the surface normal estimation from the
range data is also doubled, and this may account for the slight
difference in appearance. There are also several shadows in this
image, the most noticeable of which are on either side of the nose.
Fig. 6 shows the histograms of the original and corrected face
image, illustrating the reduction in the intensity variance.

One practical application of color correction is in the
objective measurement of burn scar color to assist in medical
diagnosis. Fig. 7 shows a person’s right cheek and neck with
burn scars. After color correction, the contrast of the scar area
is enhanced by the removal of shading and we armrive at a
more objective measurement of scar color. Fig. 8 shows the
histograms of the original and corrected burn scar image. For
this image, we could have achieved a similar contrast
enhancement by using histogram equalization. However, color
correction from light calibration has the advantage that it can
be performed across images taken at different times. Besides,
color correction gives us a more objective, absolute measure of

(@)

scar color. Histogram enhancement would just enhance the
subjective quality of the image.

5 CONCLUSIONS

We demonstrated a methodology for locating light source
positions using both range and intensity images and using only
intensity images. We introduced a novel calibration device
consisting of three specular spheres at known relative locations.
We conducted experiments using both variations of the technique,
to locate light sources in 51 different positions in a laboratory
setting. Our data confirms that the vector from a point in the scene
to a light source can be estimated to within 3 (6 percent) of its
true direction and 0.13 m (9 percent) of its true magnitude
compared to empirical ground truth. Furthermore, we demon-
strated how light source information can be used to extract
intrinsic surface color. Our future work will involve looking at
alternative methods of surface normal estimation and color
correction that also accounts for non-Lambertian reflection from
surfaces.

Fig. 7. Image of right side of neck and cheek with burn scars before and after color correction.
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Fig. 8. Histograms of the red, green, and blue bands of the original (above) and corrected (below) bum scar images, illustrating the increased contrast after color
comection.
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