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ABSTRACT Cultured Myxococcota are predominantly aerobic soil inhabitants, charac-
terized by their highly coordinated predation and cellular differentiation capacities. Little
is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habi-
tats. We analyzed genomes representing one novel order (o__JAFGXQO01) and one novel
family (f__JAFGIBO1) in the Myxococcota from an anoxic freshwater spring (Zodletone
Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota
possess smaller genomes and a smaller number of genes encoding biosynthetic gene
clusters (BGCs), peptidases, one- and two-component signal transduction systems, and
transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to
predation and cellular differentiation revealed severely curtailed machineries, with the
notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer
membrane exchange receptor (TraA), and the majority of sporulation-specific and A-mo-
tility-specific genes. Further, machine learning approaches based on a set of 634 genes
informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota.
Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but
carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimila-
tory sulfate-reduction (in f_JAFGIBO1) for energy acquisition. We propose that predation
and cellular differentiation represent a niche adaptation strategy that evolved circa 500
million years ago (Mya) in response to the rise of soil as a distinct habitat on Earth.

IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage
that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-
dwelling microorganisms that are capable of predation and fruiting body formation.
However, multiple yet-uncultured lineages within the Myxococcota have been encoun-
tered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic
capabilities, physiological preferences, and capacity of social behavior of such lineages
remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis
of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured,
orders and families in the Myxococcota. The genomes appear to lack the characteristic
hallmarks for social behavior encountered in Myxococcota genomes and displayed a
significantly smaller genome size and a smaller number of genes encoding biosynthetic
gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such
perceived lack of social capacity was confirmed through detailed comparative genomic
analysis of 13 pathways associated with Myxococcota social behavior, as well as the imple-
mentation of machine learning approaches to predict social behavior based on genome
composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes,
utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy ac-
quisition. Our results highlight the broad patterns of metabolic diversity within the yet-
uncultured Myxococcota and suggest that the evolution of predation and fruiting body
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formation in the Myxococcota has occurred in response to soil formation as a distinct hab-
itat on Earth.

KEYWORDS fruiting body formation, genome resolved metagenomics, Myxobacteria,
predation

he “Myxobacteria” represent a phylogenetically coherent lineage within the domain

Bacteria (1). Originally assigned to the class Deltaproteobacteria (2, 3), they have recently
been recognized as a separate phylum (Myxococcota) based on phylogenomic assessment,
a proposal empirically supported by their distinct metabolic and structural characteristics (4).
The Myxococcota are highly social organisms, displaying specific behaviors (predation and
fruiting body formation) that require a high level of kin recognition, cell-to-cell communica-
tion, and intercellular coordination (5). Indeed, cellular differentiation in the Myxococcota
has aptly been described as the most successful foray for a prokaryotic organism into mul-
ticellularity (5).

Both predation and fruiting body formation processes involve differential gene activation
and expression in seemingly equivalent cells, leading to distinct cellular differentiation and dis-
parate fates in response to external environmental stimuli. As predators, model Myxococcota
utilize an epibiotic strategy, where swarms of motile cells surround and lyse prey cells via the
production of secondary metabolites and extracellular enzymes (6). Significant coordination of
motility and lytic agent production between individual cells has been proposed as a means to
enhance the efficiency of Myxococcota predator swarms (see reference 7 but also see refer-
ence 8). Cellular differentiation in the Myxococcota entails the formation of elaborate multicel-
lular structures (fruiting bodies) in response to nutrient depletion (9). The process involves cell
aggregation and subsequent differentiation of a subset of cells into resistant myxospores,
another subset into peripheral rods on the outside the fruiting body adapted to rapidly
respond to reappearing nutrients, and a third subset undergoing programmed cell death (9,
10).

An extensive body of literature, spanning decades, on the mechanistic basis of social
behavior in model Myxococcota is available (5, 6, 9, 11-13). Predation is enabled by two
types of gliding motility (individual adventurous [A] motility and cooperative social [S] mo-
tility), exopolysaccharide production, secretion of secondary metabolites and extracellular
enzymes (proteases and carbohydrate active enzymes [CAZymes]), and mechanisms for
kin/self-recognition and cheater elimination (5) (the latter is also important during aggre-
gation and fruiting body formation). Starvation-induced cellular differentiation is mediated
by four modules of highly interconnected and signal-responsive cascades of signal trans-
duction networks that act sequentially and cooperatively to coordinate and time aggrega-
tion, fruiting body formation, and sporulation (11). Simultaneously, a starvation-induced
stringent response prompts the production of extracellular signals (most importantly A-
signal, and C-signal) that activate a wide range of transcription factors to facilitate aggre-
gation, regulate the onset of sporulation, and complete the development process (11).

Most cultured Myxococcota, henceforth referred to as “model Myxococcota,” are aerobic
soil dwellers, known to inhabit the top layers of agricultural, forest, and even desert soils (14).
This strong niche preference pattern attests to the contribution of their unique capacities to
their success in soil ecosystems. The dual saprophytic/predatory capacities allow Myxococcota
to utilize live microbial cells as well as microbial, floral, and faunal detritus as food sources
(14). Their gliding motility allows them not only to get in close proximity with their prey,
but also to access their insoluble substrates in soils (14). Their social behavior allows the
sharing of resources (especially exoenzymes), enabling a more efficient process in which
higher enzymatic activity is achieved compared to individual cells (14). Fruiting body formation
guarantees long-term survival under adverse and highly fluctuating conditions in soil, as well
as faster recovery and propagation under more favorable circumstances.

However, while Myxococcota appear to be most successful and prevalent in soils, mem-
bers of this phylum have also been isolated from nonsoil habitats (e.g., Nannocystaceae
and Haliangiaceae from aerobic marine sediments [15, 16], and the facultative
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anaerobic Anaeromyxobacter from contaminated soils and sediments [17]). Further, multi-
ple amplicon-based diversity surveys have identified Myxococcota-affiliated sequences in
nonsoil habitats, many of which represent anoxic/hypoxic settings (18-24). Recently, the
implementation of genome-resolved metagenomic approaches has resulted in the recov-
ery of Myxococcota genomes from a wide range of nonsoil habitats, almost invariably con-
stituting a minor fraction of the population (25-30). Interestingly, many of these yet-uncul-
tured lineages identified using 16S rRNA gene amplicon or metagenomic surveys appear
to represent distinct novel, yet-uncultured lineages within the Myxococcota.

Given these observed strong niche adaptation patterns, as well as the predicted
correlation between Myxococcota predation and cellular differentiation capacities, and
successful propagation in soil, we hypothesized that novel, yet-uncultured Myxococcota
recovered from anaerobic nonsoil habitats will display distinct metabolic, physiological, and
lifestyle capacities compared to their soil counterparts. Here, we analyzed multiple genomes
representing two novel Myxococcota lineages recovered from the completely anoxic, sul-
fide-laden (8 to 10 mM) source sediment in Zodletone Spring, an anaerobic sulfide-and sul-
fur-rich spring in Oklahoma. We investigated the metabolic capacities, physiological prefer-
ences, structural features, and potential social behavior of these lineages and compared
their predicted capacities to model social aerobic Myxococcota. Our results suggest that non-
soil Myxococcota possess severely curtailed pathways for the typical social behavior of soil
Myxococcota, potentially utilize fermentation and/or sulfate reduction for energy generation
as opposed to aerobic respiration, and show preferences to polysaccharide and sugars,
rather than proteins and amino acids, as carbon and energy sources. We argue that such dif-
ferences provide important clues to the evolution of social behavior in the Myxococcota in
light of our understanding of the history of soil formation and oxygen accumulation in the
atmosphere.

RESULTS

Novel Myxococcota in Zodletone Spring sediments. Six genomes were recovered
from the anoxic black sediment sources (3 metagenome-assembled genomes [MAGs])
and the water column (3 MAGs) of Zodletone Spring, with estimated completion and con-
tamination percentages ranging from 89.08 to 96.01% and from 1.94 to 3.87%, respec-
tively. Phylogenomic analysis (Fig. 1), as well as amino acid identity (AAl) and relative evo-
lutionary divergence (RED) values (Table 1), placed these genomes into one novel order
(order JAFGXQO1; n = 5) and one novel family (family JAFGIBO1, order Polyangiales; n = 1)
within the class Polyangia. Intraorder AAl values assigned the five genomes in novel order
JAFGXQO1 to two families (novel families JAFGVOO01 and JAFGXQO1) and three genera
(novel genera JAFGVOO01, JAFGQNO1, and JAFGXQO01). Names were assigned based on the
assembly accession number of the most complete genome within each lineage (Table 1;
see Table ST in the supplemental material).

Comparative genomic analysis between Zodletone Myxococcota and model
Myxococcota. Comparative genomic analysis between Zodletone Myxococcota MAGs
and genomes of all described type species in the phylum Myxococcota (n = 27) was con-
ducted. These genomes belong to classes Myxococcia (n = 12), Polyangia (n = 12), and
Bradymonadia (n = 3), 20 of which exhibit the distinct social behavior of the Myxococcota
(5-9, 11-13, 15-17, 31). We utilized only genomes from type species to ensure the avail-
ability of experimental data regarding various aspects of their lifestyle. Compared to
model Myxococcota genomes (i.e., those shown to exhibit predation behavior and to form
fruiting bodies, n = 20); Zodletone genomes were significantly smaller (6.15 = 1.28 Mb
versus 11.44 = 2.52 Mb), with a lower gene count (5,129 = 1,005 versus 9.461 = 1,611)
and GC content (49.53 = 5.67 versus 69.68 = 1.74) (Student’s t test P < 0.00001) (Fig. 2).
Further, multiple additional differences were observed in gene families previously impli-
cated in mediating Myxococcota social lifestyle between Zodletone MAGs and genomes of
social Myxococcota. Extracellular proteolytic enzymes are crucial components of the preda-
tory machinery in Myxococcota, aiding in degrading prey-released proteins and/or inducing
prey lysis (6). Zodletone genomes carried a significantly lower number of proteases/pepti-
dases compared to model Myxococcota (58 * 3.4 versus 130 *+17) (Fig. 2; Table S2). Of note
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FIG 1 Phylogenomics of the Myxococcota, including novel lineages from Zodletone Spring. The maximum likelihood trees were constructed in RAXML (79)

using all Myxococcota genomes available from the GTDB r95 database based on the concatenated alignments of 120 housekeeping genes obtained from
GTDB-Tk (78). The tree was rooted (root not shown) with the two Bdellovibrionota genomes Halobacteriovorax marinus (GenBank assembly accession

(Continued on next page)
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is the absence of representatives of MEROPS family M15 (peptidoglycan endopeptidases)
specifically implicated in prey cell lysis (Table S2). Further, model Myxococcota also secrete a
plethora of secondary metabolites, such as pigments, siderophores, bacteriocins, and antibi-
otics, that attack and lyse their prey (6). Zodletone Myxococcota genomes encoded a signifi-
cantly lower number of biosynthetic gene clusters (BGCs, 8 = 3), mostly belonging to the
nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) type. By comparison,
model Myxococcota encoded a larger number of BGCs (38 = 16), belonging to a wider
range (NRPS, PKS, terpenes, siderophores, and phenazines) of BGC classes (Fig. 2; Table S3).

Predation in model soil Myxococcota is also associated with secretion of extracellular or
outer membrane CAZymes for targeting prey cell walls. While the overall numbers of
CAZymes encoded in Zodletone genomes were not significantly different from those
encountered in model soil Myxococcota genomes (Fig. 2), the CAZyme families were signifi-
cantly different between the two groups (Table S4). Specifically, model Myxococcota
genomes were enriched in two glycosyl hydrolase (GH) families, GH23 (peptidoglycan lyases,
consistent with their ability to target prey cell walls) and GH13 amylases (Student’s t test P <
0.02). Instead, Zodletone genomes were significantly (Student’s t test P < 0.02) enriched in GH
and polysaccharide lyase (PL) families targeting polysaccharide degradation, e.g,, GH12, GH5,
GH45, GH8, GH9 endoglucanases and cellobiohydrolases for cellulose degradation; GH10,
GH11 xylanases for hemicellulose backbone degradation, and GH43 and GH54 xylosidases for
hemicellulose side chain sugar removal; and PL1 and PL11 pectin/pectate/rhamnogalac-
turonan lyases for pectin degradation.

Finally, the collective social behavior in model soil Myxococcota is underpinned by
an expanded arsenal of transcriptional factors. These include signal transduction one-
component systems (OCS) (with a sensory domain and a response effector domain
present in the same gene) and two-component systems (TCS) (with a sensor histidine
kinase [HK], a partner response regulator [RR], and occasionally a phosphotransfer pro-
tein [PP]), as well as other transcriptional factors (TFs), including transcriptional regula-
tors (TRs), and alternative sigma factors (SFs) (32). Model soil Myxococcota genomes
encode 241 = 87 OCS genes, 329 = 95 TCS genes, and 127 = 56 TF genes. In contrast,
Zodletone Myxococcota genomes encoded significantly lower numbers of OCSs, TCSs,
and TFs (65 = 14, 198 = 58, and 69 * 18, respectively) (Student’s t test P < 0.05) (Fig.
2; Table S5). This pattern of curtailed transcription factor repertoire in Zodletone
genomes was pronounced in OCS and TCS systems (Fig. 2), specifically OCS families
AraC, ArsR, GntR, LysR, MarR, TetR, and Xre and TCS-RR belonging to the families CheY,
NarL, OmpR, and FrzZ (Table S5) (Student’s t test P < 0.05).

Comparative genomics analysis of predation and cellular differentiation
genes/pathways in the Myxococcota. We assessed the distribution patterns of path-
ways implicated in Myxococcota social behavior in Zodletone Myxococcota and com-
pared them to Myxococcus xanthus, the model myxobacterium extensively studied for
its social behavior, as well as to Anaeromyxobacter dehalogenes, Vulgatibacter incom-
ptus, and Labilithrix luteola. The latter three isolates share many genomic features with
social Myxococcota (large genome size, high GC content, large number of genes), but
lack predation and fruiting body formation capacities (33, 34). The following 13 pathways
were examined: 4 gene regulatory networks governing sporulation, aggregation, and fruit-
ing body formation; exopolysaccharide production genes; 2 extracellular signals production
gene clusters (A-signal and C-signal); aggregation, sporulation, and fruiting body formation
genes; chemosensory pathways; developmental timers; two motility gene clusters (A-motil-
ity and S-motility); and outer membrane exchange genes (Fig. 3 and Table 2; Table S6, sup-
plemental text). Detailed analysis of the distribution patterns of genes in these pathways, as

FIG 1 Legend (Continued)

number GCF_000210915.2) and Bdellovibrio bacteriovorus (GenBank assembly accession number GCF_000196175.1). The tree is wedged (shown as black
circles at the end of branches) to represent genus level taxonomy (g__), unless the number of available genomes per genus is less than 5, in which case
the family level (f__), or order level (o__) taxonomy is shown instead. The size of the wedge is proportional to the number of genomes. Bootstrap support
values based on 100 replicates are shown as triangles for nodes with >70% support. Class-level taxonomy is color-coded as shown in the legend. The track
around the tree represents the ecosystem classification of the habitat from which the genomes originated. Zodletone genomes are labeled in blue bold

text with their GenBank assembly accession number.
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FIG 2 Comparative genomics of Zodletone novel Myxococcota genomes to the genomes of 27 type species belonging to the classes
Myxococcia, Polyangia, and Bradymonadia. The species and their GenBank assembly accession numbers are Anaeromyxobacter dehalogenans
2CP-1, GCF_000022145.1; Haliangium ochraceum DSM 14365, GCF_000024805.1; Plesiocystis pacifica SIR-1, GCF_000170895.1; Corallococcus
coralloides DSM 2259, GCF_000255295.1; Cystobacter fuscus DSM 2262, GCF_000335475.2; Hyalangium minutum, GCF_000737315.1;
Sandaracinus amylolyticus, GCF_000737325.1; Archangium gephyra, GCF_001027285.1; Chondromyces crocatus, GCF_001189295.1;
Vulgatibacter incomptus, GCF_001263175.1; Labilithrix luteola, GCF_001263205.1; Minicystis rosea, GCF_001931535.1; Melittangium boletus
DSM 14713, GCF_002305855.1; Nannocystis exedens, GCF_002343915.1; Bradymonas sediminis, GCF_003258315.1; Lujinxingia litoralis, GCF
_003260125.1; Polyangium fumosum, GCF_005144585.1; Persicimonas caeni, GCF_006517175.1; Myxococcus fulvus, GCF_007991095.1;
Pyxidicoccus fallax, GCF_012933655.1; Stigmatella aurantiaca, GCF_900109545.1; Vitiosangium, GCF_003044305.1; Aggregicoccus,
GCA_009659535.1; Pajaroellobacter abortibovis, GCF_001931505.1; Byssovorax cruenta, GCA_001312805.1; Enhygromyxa salina,
GCF_002994615.1; and Sorangium cellulosum B, GCF_000067165.1. Zodletone genomes are labeled in blue bold text with their
GenBank assembly accession number. Class-level taxonomy is color-coded as shown in the legend. The tracks underneath the tree show
the ecosystem classification of the habitat from which the genomes originated, the assembly genome size (gray bars), GC content (yellow
bars), total number of genes in the genome (cyan bars), and coding density (pink bars). The number of biosynthetic gene clusters (BGCs,
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well as a background on their known functions is presented in the text of the supplemental
material. Collectively, the analysis clearly demonstrates that social behavior pathways were
severely curtailed in Zodletone Myxococcota genomes (Table 2; Table S6, supplemental
text), where homologues of genes specific for the model Myxococcota social lifestyle (e.g.,
sporulation, extracellular signal production, motility, and outer membrane exchange) were
missing from Zodletone genomes. Specifically, the most notable deficiencies were (i) ab-
sence of homologues for extracellular signal production that control early events in aggrega-
tion (Table 2; Table S6, supplemental text), (i) absence of homologues for the two transcrip-
tion factors FruA and MrpC, which work cooperatively to control the start of sporulation
(35-37), although we acknowledge that this absence has also been noted outside the subor-
der Cystobacterineae (38), (iii) absence of homologues for sporulation-specific genes (11, 35,
37, 39, 40), motility-specific genes, and the outer membrane exchange receptor TraA, which
recognizes kin and allows membrane fusion (12). Such a pattern was also observed in the
genomes of Anaeromyxobacter dehalogenes, Labilithrix luteola, and Vulgatibacter incomptus,
all of which have been experimentally shown to lack the capacity to aggregate into mounds,
form fruiting bodies, or sporulate in pure culture. Further, for pathways with homologues
identified in Zodletone genomes, the majority of such homologues carried genes that are
widely distributed in bacterial genomes and not specific to the Myxococcota, e.g., transcrip-
tional response regulators, serine/threonine kinases, peptidase domains, guanylate cyclase
domains, chemotaxis-associated domains, or type IV pili.

Machine learning approaches suggest the absence of social behavior in Zodletone
Myxococcota. It is important to note that most of the physiological, mutational, and
transcriptomic studies of soil Myxococcota were conducted on the model organism M.
xanthus, (class Myxococcia), a relatively distant relative of Zodletone Myxococcota (class
Polyangia). Further, while genes for exopolysaccharide production, adventurous motility,
extracellular signal production, and sporulation are highly specific, a large proportion of
the gene regulatory network and developmental timing proteins governing aggregation,
sporulation, and fruiting body formation are homologues to signal transduction proteins
involved in various cellular processes in a wide swath of lineages and are hence universally
distributed within the bacterial world. Similarly, chemosensory network proteins in
Myxococcota are homologues to a wide range of chemotaxis proteins. Indeed, in the
genomes of the nonsocial Anaeromyxobacter dehalogenes, Labilithrix luteola, and Vulgatibacter
incomptus, homologues for the highly specific extracellular signal production and sporulation
genes were not identified, but homologues for chemosensory networks and gene regulatory
networks were found, attesting to the above-mentioned caveats with the approach.

Therefore, as a complementary approach, we employed a machine learning technique to
predict social behavior potential in Zodletone Myxococcota. The approach depends on first
identifying, from the initial set of all genes in the genomes, a group of genes with assigned
KEGG orthology (KO) numbers in the genomes of known social Myxococcota that are absent
from the genomes of known nonsocial Myxococcota. These candidate genes are then
used for model training using the random forest algorithm, and the constructed model is
then employed to predict the social behavior based on the genomic content of Zodletone
Myxococcota genomes. The occurrence pattern of the list of 634 KOs (see Data Set S1 in
the supplemental material) selected for model training predicted nonsocial behavior for
Zodletone Myxococcota lineages with a Matthew’s correlation coefficient of +1, confirm-
ing the patterns observed with the comparative genomics approach detailed above.

Structural features and metabolic capacities. Structurally, Zodletone Myxococcota
MAGs encoded determinants of Gram-negative cell walls (lipopolysaccharide [LPS] biosynthe-

FIG 2 Legend (Continued)
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purple), proteases (yellow), CAZymes (green), and transcription factors (blue) encoded in each genome are shown as a heatmap with the
color tones explained in the legend. Under the heatmaps, the two outermost tracks denote the presence (filled squares)/absence (empty
squares) of the Myxococcota typical social lifestyle as evidenced by experimental pure culture work (blue), and/or the machine learning
approach (green) we used for lifestyle prediction based on the informative set of KO numbers provided in Data Set S1. BGCs, biosynthetic
gene clusters; GH, glycosyl hydrolases; PL, polysaccharide lyases; CE, carbohydrate esterase; OCSs, one-component systems; TFs,
transcription factors; RR, response regulator; SF, sigma factor; TCSs, two-component systems; HK, histidine kinases; PP, phospho-relay

proteins.
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FIG 3 A cartoon depicting the 13 pathways associated with Myxococcota social lifestyle examined in detail in
this study. Myxococcus cells are shown as blue rods, while prey cells are depicted as gray cocci and rods.
Pathways active during nutrient availability are shown above the dotted line, while those induced by starvation
are shown below the dotted line. Each of the pathways is shown in bold text within a color-coded outline. The
same color code is used for the group of genes in each pathway and in Table S6. For each pathway, a pie
chart for the number of gene homologues identified in Zodletone genomes as a percentage of the total
number of genes in the pathway is shown in blue, while the percentage of gene homologues absent is shown
in orange. The size of the pie chart is proportional to the number of genes in each pathway and ranges from 1
(FruA module) to 35 (the aggregation/sporulation/fruiting body formation module). Arrowheads depict the
effect where activation is shown as triangular arrowheads, and inhibition is shown as horizontal line
arrowheads. FruA* denotes the active form of FruA. EPS, exopolysaccharide; OME, outer membrane exchange.

sis and G-peptidoglycan structure), motility (flagellar assembly and type IV pili), pigmentation
(carotenoid biosynthesis), chemotaxis, and rod shape (MreBCD and RodA). The genomes also
encoded type lll (partial) and type VI secretion systems. Such characteristics are similar to those
displayed by vegetative cells of cultured Myxococcota (Figure S1a, Table S7).

Genomic analysis predicted key differences in anabolic capacities between Zodletone
Myxococcota and cultured Myxococcota. Zodletone MAGs did not encode the capacity for
glycogen or trehalose biosynthesis, both of which are biosynthesized and used as storage
molecules by cultured Myxococcota and have been shown to be essential for sporulation
(41). Additionally, evidence for a glyoxylate shunt was missing from Zodletone MAGs.
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The glyoxylate shunt is employed by cultured Myxococcota to bypass CO, loss and NADH
production during the tricarboxylic acid (TCA) cycle and drive the metabolism toward oxaloac-
etate in preparation for gluconeogenesis (40). Further, key differences in levels of amino acid
auxotrophy were predicted, where Zodletone Myxococcota MAGs encoded capacities for bio-
synthesis of almost all amino acids, compared to the observed auxotrophy for branched-chain
amino acids (in 9 type species) and aromatic amino acids (in 5 type species) in cultured
Myxococcota (42, 43). Such a pattern reflects the dependence of cultured Myxococcota on pro-
teins and amino acids as substrates (and hence their ready availability for biosynthetic pur-
poses) as opposed to the lack of such capacity in Zodletone genomes, necessitating amino
acid biosynthesis from metabolic precursors. Finally, while cultured Myxococcota incorporate
sulfur from sulfate and organic sources (e.g., taurine, alkane sulfonate, and dimethyl sulfone in
6 type species) and incorporate N from ammonia and organic sources (e.g., urea in 11 type
species), such capacities for S or N incorporation from organic sources were not encoded in
Zodletone Myxococcota MAGs (Table S7). Additionally, order JAFGXQO01 genomes encoded
the capability to fix atmospheric nitrogen (Figure S1a, Table S7).

Genomic analysis also demonstrated multiple key differences in catabolic processes
(substrate utilization patterns, respiratory capacities, electron recycling pathways, and ATP
generation mechanisms) between Zodletone and model Myxococcota genomes. While most
model Myxococcota (with the exception of Sorangium cellulosum) rely on amino acids and
lipids as substrates and are poor carbohydrate consumers (41), Zodletone genomes encode
a much lower number of amino acid degradation pathways (only 9, compared to 15 in type
species), consistent with their observed limited proteolytic capabilities (Table S2). Instead,
Zodletone Myxococcota appear to possess a more extensive carbohydrate degradation
capacity (Table 3; Table S7, Fig. S1a), with pathways enabling the degradation of nine differ-
ent sugars, sugar alcohols, sugar amines, and uronic acids encoded in their genomes. This is
consistent with the possession of a wide range of polysaccharide-degrading CAZymes, as
described above (Table S4). Finally, Zodletone order JAFGXQO1 genomes encoded an
incomplete beta-oxidation pathway for long-chain fatty acid degradation (Table 3; Fig. S1a),
a pathway commonly occurring in cultured Myxococcota to enable fatty acid consumption
as the main carbon and energy source.

All cultured Myxococcota (with the exception of the genus Anaeromyxobacter) are aero-
bic microorganisms. In contrast, Zodletone Myxococcota genomes lack key genes for aero-
bic respiration, specifically, homologues for either complex Il or alternative complex lll, and
lack homologues for the low-affinity cytochrome oxidase aa3. High-affinity cytochrome bd
ubiquinol oxidase is encoded in Zodletone genomes but could possibly be employed in
detoxification of trace amounts of O, that are present. Instead, the genomes encode genes
enabling the utilization of nitrite as a terminal electron acceptor via the cytochrome-linked
nitrite reductase NrfAH (Table 3; Fig. S1a). Further, the single genome representative of
novel family JAFGIBO1 encodes a full dissimilatory sulfate reduction machinery, including
sulfate adenylyltransferase (Sat; EC 2.7.7.4) for sulfate activation to APS, adenylylsulfate re-
ductase (AprAB; EC:1.8.99.2) for adenylyl sulfate reduction to sulfite, QmoABC for electron
transfer, dissimilatory sulfite reductase (DsrAB; EC:1.8.99.5) and its cosubstrate DsrC for dis-
similatory sulfite reduction to sulfide, and the sulfite reduction-associated membrane com-
plex DsrMKIJOP for linking cytoplasmic sulfite reduction to energy conservation (Table 3,
Fig. S1a). The JAFGIBO1 genome also encoded octaheme tetrathionate reductase (otr) and
thiosulfate reductase phsABC, suggesting the capability to utilize tetrathionate and thiosul-
fate as terminal electron acceptors in addition to sulfate (Fig. S1a). To our knowledge, sulfur
species respiration capability in the Myxococcota has not been reported and could possibly
be a reflection of the sulfur and sulfide-rich Zodletone Spring environment from which the
MAG was binned. Phylogenetically, JAFGIBOT DsrAB were most closely affiliated with DsrAB
sequences encountered in Acidobacteria genomes (Fig. S1b) (44).

Besides respiration, additional pathways for electron disposal were identified in Zodletone
Myxococcota genomes. These include fermentative processes for acetate, ethanol, and lactate
production from pyruvate (Table 3; Fig. S1a). In addition, the genomes encoded a full Wood
Ljungdahl pathway (WLP), probably acting as an electron sink mechanism for reoxidizing
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reduced ferredoxin, as previously noted in “Candidatus Bipolaricaulota” and Desulfobacterota
genomes (45, 46). Finally, a possible additional mechanism for ATP production in Zodletone
Myxococcota is the utilization of the Rhodobacter nitrogen fixation (RNF) complex for reoxidiz-
ing reduced ferredoxin at the expense of NAD, with the concomitant export of protons to the
periplasm, generating a proton motive force that can drive ATP production via oxidative phos-
phorylation via the encoded F-type ATP synthase. Consistent with encoding RNF complex
components, the genomes also encoded elements for electron carrier recycling, including the
cytoplasmic electron bifurcating mechanism, HydABC. Analysis of Myxococcota type species
genomes revealed the absence of RNF complex components, HydABC electron bifurcation
system, and the WLP, consistent with a strictly aerobic mode of metabolism.

DISCUSSION

Multiple notable differences were observed between Zodletone Myxococcota and soil
Myxococcota. Of these, the observed variation in GC content was most notable. Within the
Bacteria, GC content has been observed to be positively correlated with genome size (47),
temperature (48, 49), and salinity preferences (50). Further, higher GC content is associated
with aerobic life style (51). As such, we speculate that the notable difference in GC content
between Zodletone Myxococcota and soil Myxococcota could be a reflection of their smaller
genome size and aerobic lifestyle. In addition, it is possible that a lower rate of intragenic
recombination could be occurring in Zodletone Myxococcota, leading to a less pronounced
effect of GC-biased gene conversion on genome GC content (52) and a more pronounced
effect of spontaneous cytidine deamination on GC to AT mutations (53, 54), collectively lead-
ing to a reduction of genomic GC content over evolutionary times from a possible common
ancestor with higher GC content, as previously speculated (52).

Further, our comparative genomics and machine learning analyses revealed severely cur-
tailed machineries for predation and cellular differentiation in Zodletone Myxococcota (Fig. 2
and 3; Table 2; Table S6). Such a conclusion is in agreement with a recent study that predicted
the absence of predation potential in MAGs/single amplified genomes (SAGs) encompassing
most of the publicly available, yet-uncultured Myxococcota (4). As such, a clear delineation
exists between two phylogenetically and behaviorally distinct groups within the Myxococcota.
The first encompasses aerobic top soil dwellers in classes Myxococcia and Polyangia that are
characterized by possessing a highly sophisticated machinery enabling predation and cellular
differentiation behaviors. Few freshwater and marine strains possessing such capacities have
been reported, but their presence has been attributed to air and dust transport from neigh-
boring soils (15, 16). Members of this group were readily obtained in pure cultures. The
second group encompasses phylogenetically distinct families and orders within the
classes Myxococcia and Polyangia (including Zodletone MAGs), as well a few yet-uncul-
tured Myxococcota classes. These lineages are almost invariably encountered within nonsoil
habitats (e.g., freshwater, marine, host-associated, and engineered ecosystems) and appear
to lack the capacity for predation and social differentiation. Most of these lineages are cur-
rently uncultured, with the exception of members of the genus Anaeromyxobacter (55).

We argue that such patterns could provide important clues about the evolution of social
behavior in the Myxococcota when considered in light of our understanding of the history
of soil formation and the rise of atmospheric oxygen in the atmosphere. Soil formation and
transition from barren crusts to current soil orders through organic matter deposition and
transformation has been enabled by the evolution of lichen associations, plant terrestriali-
zation, formation of mycorrhizal association, and subsequent colonization by soil micro-
fauna. All such processes are mediated by aerobic organisms (algae, fungi, plants, and
fauna) and hence were possible only after the accumulation of oxygen to levels compara-
ble to current values in the atmosphere (approximately 500 to 600 million years ago [Mya]
[56]). The formation of soil structures as a new and organic-rich habitat has certainly
spurred multiple evolutionary processes for enabling terrestrial adaptation within the mi-
crobial world. Various processes have been reported in multiple soil-prevalent lineages,
from CAZyme and BGC acquisition in the Acidobacteria (44, 57) to acquisition of stress tol-
erance, adherence, and regulatory genes in the ammonia-oxidizing archaea (58). Here, it
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appears that the development of predation and cellular differentiation machineries has
enabled the Myxococcota to assume an apex predator niche and imparted them with strong
survival capacities in soil, respectively. Indeed, as previously noted, the ecological success of
social Myxococcota in soils appears to be in stark contrast to the rarity and low relative abun-
dance of nonsocial Myxococcota in other habitats (59).

The evolution of beneficial trait(s) in a single lineage of Myxococcota in soil could be
propagated to the broader soil Myxococcota community through intraclade, habitat-specific
horizontal gene transfer (HGT), resulting in the observed checkered distribution pattern,
where social behavior is observed only in specific families within the classes Myxococcia and
Polyangia. HGT between closely related taxa is a well-established phenomenon (60) that has
been widely documented, e.g., in mediating the spread of antibiotic resistance in related clini-
cal strains (61, 62). The barrier for HGT within closely related taxa is predictably lower, given
the expected similarity in codon usage pattern, GC content, restriction enzyme machinery,
and overall genome architecture between donor and recipient strains. Similarly, physical prox-
imity in the same habitat is seen as a facilitator of genetic exchange through HGT (63-65).

In conclusion, our results strongly indicate that anaerobic Myxococcota do not possess
the capacity for typical social behavior and display distinct structural, anabolic, and catabolic
differences compared to model aerobic Myxococcota. We document their dependence on
fermentation and/or nitrite or sulfate reduction for energy generation, as well as their prefer-
ence for polysaccharide metabolism over protein, amino acids, and lipid metabolism. We fur-
ther propose that such differences strongly underscore the importance of niche differentia-
tion in shaping the evolutionary trajectory of the Myxococcota and suggest soil formation as
a strong driver for developing social behavior in this lineage.

MATERIALS AND METHODS

Site description and geochemistry. Zodletone Spring is located in the Anadarko Basin of western
Oklahoma (34.99562°N, 98.68895°W). The site geochemistry has been previously described in detail (66-68).
Briefly, at the spring source, sulfide and gaseous hydrocarbon-saturated waters are slowly (8 liters/min) ejected,
along with sediments that deposit at the source of the spring. High (8 to 10 mM) sulfide concentrations main-
tain complete anoxic conditions (oxygen levels, <0.1 M) in the spring sediments. Oxygen concentrations in
the 50-cm water column overlying the sediments vary from 2 to 4 wM at 2 mm above the source to complete
oxygen exposure on the top of the water column (66).

Sampling and nucleic acid extraction. The sampling and DNA extraction processes have been pre-
viously described in detail (45, 69). Briefly, 10 different sediment samples (=50 g each) were collected at
a 5-cm depth, as well as from the standing overlaid water in sterile containers. DNA was extracted from
0.5 g of source sediments from each replicate sample. For water samples, 10 liters of water was filtered
in 0.2-um sterile filters, and DNA was directly extracted from the filters. Extraction was conducted using
the DNeasy PowerSoil kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocols.

Metagenome sequencing, assembly, and binning. All extractions from sediment or water samples
were pooled, and the pooled DNA was used for the preparation of sequencing libraries using the Nextera XT
DNA library prep kit (lllumina, San Diego, CA, USA) as per the manufacturer’s instructions. DNA sequencing
was conducted using two lanes on the lllumina HiSeq 2500 platform and 150-bp paired-end technology for
each of the water and sediment samples using the services of a commercial provider (Novogene, Beijing,
China). Metagenomic sequencing of the sediments and water samples yielded 281 Gbp and 323 Gbp of raw
data, respectively. Reads were assessed for quality using FastQC, followed by quality filtering and trimming
using Trimmomatic v0.38 (70) using a sliding window size of 4 bases and a sliding window average minimum
quality of 15, a leading and trailing minimum quality of 3, and a minimum read length of 36. High-quality
reads were assembled into contigs using MEGAHIT v1.1.3 (71) with a minimum Kmer of 27, maximum kmer of
127, Kmer step of 10, and minimum contig length of 1,000 bp. Bowtie2 was used to calculate the percentage
of reads that assembled into contigs and the sequencing coverage for each contig. Contigs of >1 Kbp were
binned into draft metagenome-assembled genomes (MAGs) using MetaBAT (72) and MaxBin v2 (73), followed
by selection of the highest-quality bins using DasTool (74). CheckM (75) was used for the estimation of ge-
nome completeness, strain heterogeneity, and contamination by employing the lineage-specific workflow
(lineage_wf flag). Quality designation of draft genomes was based on the criteria set forth using MIMAGs
(Minimum Information about a Metagenome-Assembled Genome) (76).

Genome classification. Taxonomic classifications followed the Genome Taxonomy Database (GTDB)
release r95 (77) and were carried out using the classify_workflow in GTDB-Tk v1.3.0 (78). Phylogenomic
analysis utilized the concatenated alignment of a set of 120 single-copy bacterial genes (77) generated
using GTDB-Tk. A maximum-likelihood phylogenomic tree was constructed in RAXML using the
PROTGAMMABLOSUM62 model and default parameters (79) and members of the Bdellovibrionota as
an outgroup. To further assign genomes to putative families and genera, average amino acid identity (AAl)
and shared gene content (SGC) were calculated using the AAI calculator (http://enve-omics.ce.gatech.eduy/).
The arbitrary AAI cutoffs used were 49%, 52%, 56%, and 68% for class, order, family, and genus, respectively
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(80, 81). Further, relative evolutionary divergence (RED) values, based on placement in the GTDB backbone
tree (available at https://data.gtdb.ecogenomic.org/releases/release95/95.0/), were used to confirm the novelty
of lineages to which the genomes are assigned. Values between 0.62 and 0.46 are indicative of a novel order,
and values between 0.62 and 0.77 are indicative of a novel family.

Annotation and genomic analysis. Protein-coding genes were predicted using Prodigal (82). GhostKOALA
(83) was used for the annotation of every predicted open reading frame in bins and to assign protein-coding
genes to KEGG orthologies (KOs), followed by metabolic pathway visualization in KEGG Mapper (84). In addition,
all genomes were queried with custom-built HMM profiles for alternate complex Il components and hydroge-
nases. To construct HMM profiles, a representative protein was queried against the KEGG gene database using
BLASTP, and hits with e Values of <1e % were downloaded, aligned, and used to construct an HMM profile
using the hmmbuild function of HMMER v3.1b2 (85). Hydrogenase HMIM profiles were built using alignments
downloaded from the Hydrogenase Database (HydDB) (86). The hmmscan function of HMMER (85) was used
with the constructed profiles and a thresholding option of -T 100 to scan the protein-coding genes for possible
hits. Further confirmation was achieved through phylogenetic assessment and tree-building procedures. The 5S,
165, and 23S rRNA sequences were identified using Barrnap 0.9 (https://github.com/tseemann/barrnap). tRNA
sequences were identified using tRNAscan-SE v2.0.6 (May 2020) (87). Genomes were mined for CRISPR and Cas
proteins using the CRISPRCasFinder (88). Proteases, peptidases, and protease inhibitors were identified using
BLASTP against the MEROPS database (89), while carbohydrate active enzymes (CAZymes) were identified by
searching all open reading frames (ORFs) from all genomes against the dbCAN hidden Markov models v9 (90)
(downloaded from the dbCAN Web server in September 2020). AntiSMASH 3.0 (91) was used with default param-
eters to predict biosynthetic gene clusters in the genomes. Metabolic reconstruction of reference Myxococcota
type species genomes was obtained from the KEGG genomes database (https://www.genome.jp/kegg/genome/)
and used for comparative genomics to Zodletone Myxococcota genomes.

Phylogenetic analysis of dissimilatory sulfite reductase DsrAB. Predicted dissimilatory sulfite reduc-
tase subunits A and B were compared to reference sequences for phylogenetic placement by first aligning them
to corresponding subunits from sulfate-reducing taxa using MAFFT (92). DsrA and DsrB alignments were concaten-
ated in Mega X (93) and used to construct maximum-likelihood phylogenetic trees using FastTree v 2.1.10 (94).

Machine learning approaches. The genomes of type species of cultured social (i.e., experimentally
verified to be involved in predation and observed to undergo cellular differentiation and fruiting body formation)
Myxococcota lineages (n = 24) and all cultured nonsocial Myxococcota lineages (n = 13) were downloaded from
GenBank (June 2021). Lineages were assigned their “social” status using prior culture-based observations (15-17,
31). Genomes were annotated with KO numbers using GhostKOALA (83) using default parameters, and gene
counts were assembled into a matrix. Informative KOs (n = 634) were selected using indicator analysis with the R
package indicspecies (95) using the multipattern function and were used to build a predictive model. Data were
then centered, scaled, and Box-Cox transformed using the R package caret (https.//topepo.github.io/caret/).
Random forest classification training was performed in Python 3 with the ensemble method of Scikit-learn v 0.24.1
(96). The data were randomly divided, with 75% of the data selected to serve as the training set and the remaining
25% reserved for model verification. Model training was performed with default parameters and 1,000 estimators.
The model successfully predicted the social behavior (with 100% accuracy) in the 25% data subset reserved for
model verification. Social abilities of novel Myxococcota lineages were then predicted using the constructed model.
Matthew’s correlation coefficient (97) was used to quantify classification accuracy. Including only pure cultures
genomes in our model with experimentally verified social behavior ensured that the model was accurately trained
on possession of social behavior rather than arbitrary genomic artifacts due to phylogenetic relatedness.

Data availability. The individual assembled Myxococcota MAGs analyzed in this study have been de-
posited at DDBJ/ENA/GenBank under the accession numbers JAFGVO000000000, JAFGQN000000000,
JAFGWT000000000, JAFGTB000000000, JAFGXQ000000000, and JAFGIBO00000000.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.04 MB.
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