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 2 

Abstract 20 

Microbial communities inhabit spatial architectures that divide a global environment into 21 

isolated or semi-isolated local environments, which leads to the partitioning of a microbial 22 

community into a collection of local communities.  Despite its ubiquity and great interest in 23 

related processes, how and to what extent spatial partitioning affects the structures and dynamics 24 

of microbial communities is poorly understood. Using modeling and quantitative experiments 25 

with simple and complex microbial communities, we demonstrate that spatial partitioning 26 

modulates the community dynamics by altering the local interaction types  and global interaction 27 

strength. Partitioning promotes the persistence of populations with negative interactions but 28 

suppresses those with positive interactions. For a community consisting of populations with both 29 

positive and negative interactions, an intermediate level of partitioning maximizes the overall 30 

diversity of the community. Our results reveal a general mechanism underlying the maintenance 31 

of microbial diversity and have implications for natural and engineered communities.  32 

 33 

 34 
  35 
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Introduction 36 

Microbial communities are critical to natural ecological processes, such as 37 

biogeochemical cycling 1, animal and human health 2,3, and engineering applications 4,5. 38 

Microbial community structure, meaning species identities and their abundance, is a primary 39 

feature that defines the functioning of microbial communities 6. Along with internal factors, such 40 

as growth rate, death rate, and interactions, external factors, such as ecological factors and 41 

chemical environments also modulate microbial community structures 7. However, our 42 

knowledge is still limited regarding what factors impact microbial community structures in a 43 

scalable and general manner and how they operate.  44 

 45 

Survey-based studies of complex microbial communities using sequencing technologies 46 

provide large amounts of high-quality data and empirical insights 8,9 but causal and mechanistic 47 

links are often missing between external factors and community structure 10. In contrast, 48 

controlled assembly of a few species can provide mechanistic interpretations since specific 49 

variables related to community structure can be manipulated. These studies have investigated the 50 

contributions of different factors that are biological 10-13, chemical 14,15, or physical 16-18. 51 

However, how the learned insights scale up to more complex communities, where diverse 52 

interaction types and higher-order interactions may be present, is difficult to test and remains 53 

unclear 10.  54 

 55 

Among these factors, spatial partitioning is ubiquitous yet mostly overlooked for 56 

microbial communities. Spatial partitioning describes the physical separation of a community 57 

into local communities. For example, the physical architectures of the gut 19, plant root 20, and 58 
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soil 21 all partition microbial communities into distinct local communities that are separated to 59 

different extents (Fig. 1a). Due to the complexity of the physical architecture of microbial 60 

communities, the partitioning can be mostly complete, such as the microbiota in two different 61 

animals or the local microbial communities in two separate droplets. It can also be partial, 62 

resulting from the cell mobility or dispersal across local environments 18 or diffusion of signaling 63 

molecules across local communities 16.  64 

 65 

In the simplest case, where partitioning is complete, local environments each consists of 66 

only a subset of all members and partitioning restricts interactions within local communities. In 67 

general, spatial partitioning reduces the overall strength of interactions in the global microbial 68 

communities and lowers the number of interacting species for each individual member 22. 69 

Moreover, the type of interactions experienced by a member can vary drastically depending on 70 

the random assembly of local environment 23. In other words, spatial partitioning can modulate 71 

the dynamics of a microbial community by globally modulating the type and strength of 72 

interactions experienced by each member. This emphasis on interactions, derived from studying 73 

microbial communities, differs substantially from research in multicellular organisms, which 74 

places much greater emphasis on dispersal between local communities, abiotic factors, and 75 

neutral dynamics 24. Focusing on interactions therefore has potential to contribute to the 76 

historically organismal-level study of spatial effects on local and global community diversity. 77 

 78 

It is yet unclear whether the effect of spatial partitioning is highly system specific or 79 

whether it follows general rules. Beyond the challenges of distilling causal mechanisms and 80 

general rules, defining spatial partitioning in a relevant and quantitative manner is also 81 
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challenging. To address this question and overcome these challenges, we first established a 82 

theoretical framework to explain the mechanisms by which spatial partitioning affects 83 

community structure. Based on the theoretical framework, we formed a hypothesis that spatial 84 

partitioning reduces biodiversity for negative interaction dominated community and increases 85 

biodiversity for positive interaction dominated community, and biodiversity peaks at an 86 

intermediate partitioning level for communities with both positive and negative interactions. We 87 

then tested our hypothesis using precisely controlled top-down experiments of simple 88 

communities and scaled up to complex natural communities. The ability to control microbial 89 

community structures through modulation of spatial partitioning can address a wide range of 90 

challenges we face with natural and engineered microbial communities for ecological, medical, 91 

and engineering purposes.  92 

  93 
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Results 94 

A theoretical framework to model spatial partitioning  95 

Consider a microbial community residing in a global environment. In the absence of 96 

partitioning, all interactions between members are retained. If the environment is divided into N 97 

equal-sized local environments, the community members will be allocated to these local 98 

environments. We simplify the process by assuming seeding follows a Poisson distribution 99 

where the Poisson parameter   dictates the average number of cells in one local community (Fig. 100 

1b). On average, the local communities have the same total number of cells subject to random 101 

variations: the relative variation in this number increases as the total cell number in the overall 102 

community decreases. The parameter N measures the level of partitioning: a larger N 103 

corresponds to higher partitioning. We assume local communities are completely isolated from 104 

each other; as such, no interactions, dispersal, or migration occur across different local 105 

communities.  For a sufficiently large N, some local communities will only have a subset of the 106 

members in the overall community. As a result, some members will experience fewer 107 

interactions in comparison with when they reside in an unpartitioned environment. With extreme 108 

partitioning where each local environment contains at most one cell, all interactions between 109 

members are eliminated. Thus, when interactions are considered, spatial partitioning, at its core, 110 

blocks interactions across local communities. 111 

 112 

After partitioning, each local community grows separately, and the ensemble of local 113 

communities captures the global community dynamics (Fig. 1c). We model the temporal 114 

dynamics of each local community using a set of ordinary differential equations (ODEs) (Fig. 115 

1d), where   describes the intrinsic death rate of each species and   and   describe positive and 116 
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negative effects of species on others, respectively (Fig. 1e). 1/   is the density of a partner 117 

species to reduce death rate ( ) of this strain by 50%. When   increases, the positive interaction 118 

strength is higher (i.e. lower density of partner species is required to halve the stress) and when   119 

increases, the negative interaction strength is higher (i.e. lower density of partner species is 120 

required to reach the same death rate). Thus, we use strength of interactions to indicate the 121 

magnitude of   and  . 122 

 123 

In contrast to the classic general Lotka-Volterra (gLV) model formulations that can 124 

generate unbounded growth with some parameter ranges 25,26, our formulation generates bounded 125 

dynamics with the entire space of defined parameter domain (Fig. 1f, Supplementary Fig. 1). Our 126 

model only incorporate competition in the pairwise   term, instead of assuming all species have 127 

background negative interactions. Thus, our model formulation accounts for different types of 128 

negative interactions (including competition) explicitly. Note that our simulation condition 129 

implies that the interaction length scale is larger than or similar to the scale of the local 130 

environment and that the local communities are well-mixed. Another assumption is that the 131 

interaction logic and strengths are preserved regardless of the initial partitioning.   132 

 133 

Through its effect on local community membership at t = 0, the spatial partitioning level 134 

N modulates the growth of populations and the pooled global community structure after growth 135 

at     . This seeding and growth process capture the critical aspects of the temporal evolution 136 

of microbial communities in nature and in the laboratory setting. Examples include the 137 

inoculation and growth of communities in germ-free animal models 27, infant guts 28, cheese 138 
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microbiome 29, and so on. The pooling process is analogous to the mixing of samples when 139 

quantifying microbial communities in natural habitats.  140 

 141 

Emergence of biphasic dependence of biodiversity  142 

By varying N, we focus on examining how varying spatial partitioning affects 143 

biodiversity (Fig. 2a), which is a key parameter that influences community stability 30, function 144 

31, and evolution 32,33. Here we primarily use the inverse Simpson index (referred as Simpson 145 

index in the following texts) as the metric to serve as the proxy for effective number of members.   146 

                      
 

∑   
  

   
   

where    is the relative abundance of species   and the community has   number of species. The 147 

index reaches the maximum, which is  , when all species have the same relative abundance. 148 

Whereas the index reaches the minimum, which is 1, when only one species persists.  149 

 150 

Indeed, the same type of natural microbial community can reside in environments with 151 

different partitioning levels. Starting with two-member communities, when there is no 152 

interspecific interaction, spatial partitioning has no impact on final global community diversity 153 

and composition (Fig. 2b). However, increasing partitioning promotes the biodiversity of a 154 

pairwise community where one member suppresses the other, by shielding the suppressed strain 155 

from its suppressor (Fig. 2c, Extended Data Fig 1a). In contrast, increasing partitioning decreases 156 

the biodiversity a pairwise community when one member promotes the growth of the other. This 157 

is due to the partitioning of the dependent strain from its helper strain, which reduces its growth 158 

(Fig 2d, Extended Data Fig. 1b). This observation extends to communities with more populations 159 

that are dominated by either positive interactions or negative interactions (Extended Data Fig. 160 



 9 

1c). Even for a pairwise community, the degree by which partitioning affects biodiversity also 161 

depends on the strength of interactions (Supplementary Fig. 2). 162 

 163 

When communities have both competition and cooperation, simulations reveal a biphasic 164 

dependence of biodiversity on the partitioning level for a large range of relative prevalence 165 

between cooperation and competition (Fig. 2e). When there is a balance of positive and negative 166 

interactions, biphasic dependence emerges with increasing number of species in the community, 167 

increasing overall interaction strength, and increasing interaction connectedness (Fig. 2f-i). 168 

Reaching the steady state is not a requirement for biphasic dependence to occur, though the 169 

biphasic dependence becomes more pronounced when approaching the steady state (Extended 170 

Data Fig. 1d).  171 

 172 

The biphasic dependency can be explained from two aspects. One is the suboptimal 173 

biodiversity at both low or high partitioning levels, where the suppressed members or the 174 

dependent members have reduced growth or are unable to persist, respectively. The other aspect 175 

is that for each species, only a subset of initial local community compositions can enable its 176 

persistence (by excluding its competitors or providing its cooperators). Thus, increasing the 177 

number of unique local communities increases the chance for each species to persist in at least 178 

one local community. Since the highest count of unique local communities at    (Extended Data 179 

Fig. 1e) and the count of unique local community containing any species (Extended Data Fig. 1f) 180 

both peak at an intermediate partitioning level, the intermediate level can maintain the growth of 181 

the most species. Consistent with this notion, we find that indeed, the highest biodiversity 182 

overlaps with the highest diversity of local communities (Extended Data Fig. 1g). However, the 183 
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biphasic dependency cannot be explained by local community biodiversity because it decreases 184 

with increasing partitioning levels regardless of interaction types (Extended Data Fig. 2).  185 

 186 

 Robustness of the biphasic dependence 187 

So far, we have found that biphasic dependence arises when there is a balance of positive 188 

and negative interactions, including their magnitudes (Fig. 2). This behavior is widely applicable 189 

to a broad range of parameter settings (Supplementary Fig. 3). In nature, microbial communities 190 

often undergo successive mixing and partitioning. Our simulations indicate that, in the presence 191 

of intermittent mixing, the general impact of partitioning on biodiversity is similar to the case 192 

without mixing (Supplementary Fig. 4). That is, even when communities go through multiple 193 

cycles of partitioning, growth, and mixing, our conclusion holds. 194 

 195 

We then examined the robustness of our conclusion with respect to the model 196 

formulation. We tested a modified gLV model formulation. Compared with our original 197 

formulation, the standard gLV model can generate unbounded growth of the community. To 198 

avoid this situation, we introduced a carrying capacity to cap each species’ growth. The results 199 

are consistent with results from our base model formulation (Supplementary Fig. 5).   200 

 201 

To test the effects of temporal stochasticity, we used a stochastic differential equation 202 

model. With a moderate level of noise, the stochastic model generates qualitatively the same 203 

results as simulations without temporal stochasticity (Supplementary Fig. 6). To simulate the 204 

variation of size and the level of nutrient of local communities, we implemented a randomization 205 

of local community carrying capacity within each partitioning level. Even when the local 206 
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community carrying capacity has a normal distribution of sigma equals to 50% of mean, the 207 

results are qualitatively similar to the base simulation results (Supplementary Fig. 7). Taken 208 

together, these additional simulations demonstrate the robustness of the general conclusion as 209 

revealed by the base model simulation (Fig 2). 210 

 211 

Biphasic dependence with simple communities  212 

We use microtiter plates, each with 6, 24, 96, 384, or 1536 isolated wells, to implement 213 

various levels of spatial partitioning in experiments (Fig. 3a). In each experiment, we calibrated 214 

the initial density of each community such that the average number of cells in each local 215 

environment is ~0.5 at the highest partitioning level. We then allocated the same total volume of 216 

the same mixture of microbial community into different wells in each plate. After culturing for 217 

30 hours, we pooled all the wells in each plate to measure the global community structure.  218 

 219 

We first investigated two pairwise synthetic communities, which use quorum sensing (QS) 220 

to mediate one-directional positive interaction or one-directional negative interaction. To 221 

implement the interactions, we used an engineered strain 1 that produces 3OC6HSL, which is a 222 

QS signal (Extended Data Fig. 3a). 3OC6HSL induces the expression of CcdB in strain 2 that 223 

results in cell death, forming the negative interaction (Extended Data Fig. 3b). 3OC6HSL 224 

induces the expression of CcdA which reduces the toxicity of CcdB that strain 3 produces, 225 

forming the positive interaction (Extended Data Fig. 3c). We designed each strain to have a 226 

different antibiotic resistance profile to use selection plating to quantify community composition. 227 

The circuit functions were validated using monocultures (Extended Data Fig. 3d) and 228 

interactions on agar plates (Extended Data Fig. 3e). Consistent with model predictions, 229 
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increasing spatial partitioning promoted the biodiversity of the negative-interaction pair (Fig. 3b, 230 

Extended Data Fig. 3f) but suppressed that of the positive-interaction pair (Fig. 3c, Extended 231 

Data Fig. 3g). Further details of these circuits are provided in Supplementary Table 1.  232 

 233 

Many studies have tested the assembly of a group of species by coculturing all 234 

assemblages of a certain number of species out of a larger set of species. This experimental setup 235 

provides an alternative implementation of spatial partitioning where the physical separation is 236 

controlled through controlled initial seeding (Extended Data Fig. 4a). Consistent with our 237 

simulation and experimental results, simple experimental communities dominated with negative 238 

interactions demonstrate increasing biodiversity with increasing spatial partitioning, whereas 239 

communities dominated by positive interactions show an opposite trend.  This is true for all 6 240 

types of pairwise interaction diversities (Extended Data Fig. 4b) and for larger communities 241 

(Extended Data Fig. 4c). Communities with both negative and positive interactions also reveal 242 

biphasic dependence of diversity on partitioning level (Extended Data Fig. 4d). Previous studies 243 

have demonstrated that partitioning decreases diversity for mutualistic pairs 11,34; partitioning 244 

increases diversity for two-directional negative interactions 35; partitioning increases 35 or 245 

decreases the diversity of a pair with both positive and negative interactions. Previously 246 

published results of multi-member microbial communities also follow the same general principle 247 

(Extended Data Fig. 5).  248 

 249 

Biphasic dependence with complex communities  250 

We next examined the applicability of our insights (Fig. 2) to much more complex 251 

experimental communities. To this end, we generated a collection of plasmid-barcoded Keio 252 
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strains 36 to enable quantification of the community dynamics by next-generation sequencing 253 

(Extended Data Fig. 6). We constructed a community of 47 Keio strains that are auxotrophs 254 

(Supplementary Table 2). The auxotrophic strains were selected based on their final density in 255 

the minimum medium (MOPS) versus rich medium (LB) presented in the original Keio strain 256 

publication and we obtained 47 strains that were successfully barcoded.  257 

 258 

These auxotrophs compete for the nutrient components other than the amino acids they 259 

provide to each other. Their positive interactions only emerge when these amino acids are absent. 260 

Therefore, increasing the concentrations of these amino acids attenuates the positive interactions, 261 

elevating the relative contribution of negative interactions (Fig 4a).  This modulation of the 262 

relative magnitude of positive and negative interactions by adjusting amino acid concentrations 263 

has been demonstrated in previous auxotrophic communities14,15. In our system, the positive 264 

interaction in the absence of exogenously added amino acids was verified by collective survival 265 

of the community (Extended Data Fig. 7a). We also measured the distribution of OD in each 266 

plate to verify that sufficient level of partitioning was achieved (initial density of ~0.5 cells per 267 

well in 1536 plate), and an increase of OD was observed with increasing amino acid 268 

concentration (Extended Data Fig. 7b). Sequencing results revealed an increasing diversity at 269 

high casamino acid concentration and a decreasing diversity at low concentration, and a biphasic 270 

dependence at an intermediate concentration (Fig. 4b, c).  271 

 272 

We also constructed one community consisting of 94 non-auxotrophic strains 273 

(Supplementary Table 3), where none of the strains overlap with the 47 auxotrophic strains. The 274 

culture medium was supplemented with 0.1% casamino acid, which is a typical casamino acid 275 
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concentration for M9 medium. The 0.1% [CA] also provides a direct comparison between the 276 

94-nonauxotrophic community and the first condition of the auxotrophic community. Since Keio 277 

strains are all derived from Escherichia coli K-12 strain BW25113 with single gene deletions, 278 

the strains share similar genetic backgrounds and metabolic pathways, leading to primarily 279 

competition for nutrition in the community. Indeed, we have found that increasing partitioning 280 

level overall promotes the diversity of the non-auxotroph community (Extended Data Fig. 7c).  281 

 282 

A previously-published dataset on natural groundwater bacterial communities also 283 

exhibits a biphasic dependence of biodiversity on partitioning 37. The community underwent 284 

serial dilutions in microtiter plates where one well represents a local community and there are 96 285 

local communities for each dilution level (Extended Data Fig. 8a). The samples were then 286 

cultured in the presence and absence of oxygen. There are three variables that change across 287 

serial dilution: partitioning level, average initial density, and down-sampling of the natural 288 

community. By accounting for both changes in initial density (Extended Data Fig. 8b) and down-289 

sampling (Extended Data Fig. 8c), we find that biodiversity indeed follows a biphasic 290 

dependence on partitioning level (Extended Data Fig. 8d). The biodiversity curves for anaerobic 291 

and aerobic conditions suggest that aerobic condition creates an environment that favors 292 

competition, which is consistent with the conclusions in the original publication (Extended Data 293 

Fig. 8e). Water content is another implementation of spatial partitioning that shows biphasic 294 

dependency of biodiversity for soil microbiomes at microscale level 21.  295 

 296 
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Responses of archetypes and multilevel partitioning 297 

Within each community, member species can be categorized in 8 archetypes based on 298 

fitness level and the interactions they receive (Extended Data Fig. 9a). Simulation of a 160-299 

species community (20 species of each archetype) with a random interaction network shows how 300 

each archetype responds to various partitioning levels (Extended Data Fig. 9b).  There are four 301 

types of responses (Extended Data Fig. 9c): flat, positive, negative, and biphasic. Flat curve 302 

corresponds to species receiving no interactions. Positive and negative curves correspond to 303 

species receiving negative and positive interactions, respectively, whereas biphasic curve 304 

corresponds to species receiving both types of interactions. Note the parallel between the 305 

response of individual archetypes and how the biodiversity of communities of one archetype 306 

changes across partitioning levels.  307 

 308 

The diversity of responses by different archetypes suggests that a single partitioning level 309 

cannot accommodate all species. Although there exists a level of partitioning that optimizes the 310 

biodiversity of microbial communities, this optimal biodiversity may not ensure the persistence 311 

of all species (Fig. 5a). Furthermore, without a priori characterization of the interactions within 312 

the community, the optimal partitioning level is unknown. To this end, we reasoned that a mixed 313 

partitioning level could ensure the maximum possibility for all species of any archetype to persist. 314 

Simulation results show that when more partitioning level are included, more species will be able 315 

to persist (Fig. 5b) and mixed partitioning level provides a robust strategy to maintain high 316 

community diversity (Extended Data Fig. 9d).  317 

 318 
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We tested this notion using cellulose sponges to create multi-level partitioning due to the 319 

wide distribution of pore sizes inside a sponge38 (Fig. 5c).  We used the same microbial 320 

community shown in Fig. 4 to test if submerging a sponge in the liquid culture with low initial 321 

cell density will increase the biodiversity of the final community compared with a shaken liquid 322 

culture. In addition, we used three casamino acid concentrations to test how well the sponge can 323 

maintain a higher biodiversity with different overall strengths of positive and negative 324 

interactions. Indeed, our results show that the global diversity of communities cultured in sponge 325 

was overall significantly higher than those grown in liquid culture (Fig. 5d).  326 

 327 

In nature, the physical architectures of microbial habitats indeed impose multiple levels 328 

of partitioning through interconnected local communities, varying sizes of local environments, 329 

and self-assembled local patches. Our results demonstrate a robust mechanism that can explain 330 

the high biodiversity observed in natural microbial communities. Following this mechanism, 331 

multi-level partitioning also facilitates the emergence of spatial heterogeneity and niche 332 

differentiation, which are key mechanisms that maintain biodiversity 39. Since spatial partitioning 333 

is important to maintaining the biodiversity of natural microbial communities, its disruption in 334 

laboratory cultures most likely reduces biodiversity of the community of interest. Gut and soil 335 

microbiome diversity may be better maintained with culturing methods implementing multi-level 336 

spatial partitioning.  337 

  338 
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Discussion  339 

Our study reveals a simple principle that dictates how spatial partitioning modulates 340 

microbial community structure through global modulation of interactions. Although spatial 341 

partitioning modulates the growth of populations receiving negative versus positive interactions 342 

in opposite directions, it is robust that complex communities with both negative and positive 343 

interactions reach the highest biodiversity at an intermediate partitioning level.  Previous studies 344 

that use precisely controlled assembly primarily focus on characterizing pairwise interactions, 345 

which limits the scalability of the experiments 23. In contrast, we leveraged seeding stochasticity 346 

and community-level interaction characteristics to demonstrate the robustness and scalability of 347 

this principle. Further, this community-level principle is the result of the collective response of 348 

single species in the community.  349 

 350 

For experimentalists, our study suggests the importance of the explicit consideration of 351 

physical arrangement of communities in experimental designs. For example, serial dilutions not 352 

only modulate the initial density of communities but also increase the spatial partitioning level of 353 

the community. Our study also suggests that to maintain the highest biodiversity of a natural 354 

community, beyond the design of chemical environment, the design of the physical environment 355 

is also crucial. For natural microbial communities that arise from complex spatial partitioning 356 

environments, spatial design of lab cultures can be especially important for maintaining their 357 

structure and biodiversity.  358 

 359 

Engineering of habitat by spatial partitioning can be an effective strategy to modulate and 360 

control microbial community structures. Beyond using microtiter plates, other engineering 361 
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methods can also be used to impose spatial partitioning that has not been fully tested yet, such as 362 

encapsulation 40 and inkjet printing 41. The modulation of community structure can happen at 363 

three levels. First the relative abundance of a single population can be modulated based on 364 

archetype. Second, the proportions of interactions can be modulated through increasing or 365 

decreasing partitioning. Third, the biodiversity can be modulated or maintained through the 366 

modulation of spatial partitioning level or a mixed level of partitioning. Beyond being a general 367 

and robust modulator, spatial partitioning, as a physical factor, is orthogonal to chemical and 368 

biological factors and can be used in parallel.  369 

 370 

The role of space in maintaining biodiversity is a central question beyond microbial 371 

ecology, as exemplified by classic Island Biogeography Theory 42, debate regarding the optimal 372 

design of biodiversity reserves 43,44, and the subsequent flowering of metacommunity ecology 373 

24,45,46. Many specific aspects of partitioning, such as nestedness 47, stochastic extinction 48, and 374 

migration rate 49 have been investigated. However, most studies largely overlook interactions, in 375 

particular cooperation. Our general principle of spatial partitioning accounts for both types of 376 

interactions, addressing a critical gap in our understanding of spatial mechanisms for the 377 

maintenance and promotion of biological diversity.  This helps to clarify the role of spatial 378 

mechanisms alongside temporal mechanisms of biodiversity maintenance and spatiotemporal 379 

mechanisms, such as the intermediate disturbance hypothesis50.  Finally, the insights presented 380 

here and offers a fresh perspective for interpreting, screening, and controlling microbial 381 

community structures and the relative abundance of individual population.  382 

 383 

  384 
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 409 

Figures legends and captions 410 

 411 
Fig. 1. Spatial partitioning and simulation framework 412 

a. Partitioning of microbial communities in natural habitats. The structures of natural 413 
habitats including colons, soil, and droplets prohibit global interactions by physically 414 
separating a global community into local communities that only contain subsets of the global 415 
populations.  416 

b. Depiction of the partitioning concept. At t0, a community of interest is sampled into 417 
completely isolated local environments. Because of partitioning, many local communities are 418 
subsets of the global community, where some populations and interactions are missing. We 419 
use the number of local communities (  ) to quantify the degree of partitioning. A 420 
partitioning of     is shown.  421 

c. The impact of spatial partitioning on local and pooled communities. Communities in 422 
each local environment grow independently and the final local community structures are 423 
quantified at tf. Local communities at tf are pooled to determine the final global community 424 
structure.  425 

d. Modeling growth of local communities. Each equation describes temporal dynamics a 426 
population (  ) by accounting for its logistic growth, positive interactions (by removing 427 
stress), and negative interactions.  428 

e. Three sets of model parameters. Stress ( ), positive interactions (  ), and negative 429 
interactions ( ) are shown in matrix forms. Fitness is equivalent to    .  430 

f. A typical temporal dynamic of a local community simulated using our model. The 431 
simulated time courses are bounded for any parameter combinations that satisfy: non-432 
negative initial condition (     at t0),         

   , and    
   . The time course shown 433 

is generated using a 10-population community, with an interaction matrix generated from: 434 
         ,        , and          .  435 

  436 
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 Fig. 2. An emerging biphasic dependence of biodiversity on partitioning level 437 
a. Overall framework of spatial partitioning. The number of local communities ( ) changes 438 

while the total initial cell number and total volume keeps constant.  439 

b. Simulations show that the partitioning level has no impact on the biodiversity of two 440 
populations with no interaction.        and        and all elements in the interaction 441 
matrix are zero. Data are presented as mean values +/- SD and the same applies to all the 442 
following panels and figures. Simulations were repeated 10 times (n=10) to calculate the 443 
mean and SD and the same with panel e-i. 444 

c. Simulations of a pairwise one-directional negative interaction show that increased 445 
partitioning reduces the negative impact from A on B that leads to higher relative 446 
abundance of B and an increased biodiversity.  447 

d. Simulations of a pairwise one-directional positive interaction show that increased 448 
partitioning reduces the positive impact from A on B and leads to decreased 449 
biodiversity.  450 

e. Biphasic response emerges with both positive and negative interactions in 20-member 451 
communities with 100% connectedness. The panel titles indicate the fraction of negative 452 
interactions among all interactions.   ,    , and     are sampled from uniform distributions of 453 

interval (0, 1.5), (0, 3), and (0, 0.8). The following panels share the same parameter setting 454 
while assuming 1:1 ratio of positive to negative interaction and varying the corresponding 455 
parameter and its specific value is indicated as panel titles. In panels e-i, grey dots represent 456 
the responses of a random interaction network, and the black dots are average response.  457 

f. Increasing number of species increases the amplitude of biphasic response.   458 

g. Increasing connectedness increases the amplitude of biphasic response.  459 

h. Increasing interaction strengths increases dynamic range of the response. Interaction 460 
strength is used as a multiplier to scale the range of interaction parameters in panel e.   461 

i. Biphasic dependence also emerges with intermediate ratio of positive and negative 462 
interaction strengths. The total interaction strength is held constant at 2. The ratio of 463 
maximum positive to maximum negative interaction strength ranges from 0.1 to 10.  464 
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Fig. 3. Experimental demonstration of the predicted principle with simple communities 465 

a. Spatial partitioning implemented with microtiter plates. The same starting cell culture was 466 
dispensed into wells of 6, 24, 96, 384, and 1536 plates. The total volume was constant across all 467 
plates and evenly distributed into all wells within the plate. After culturing, each plate was 468 
pooled to measure the overall community structure.  469 

b-c. Schematic of the one-directional negative (strain 1 and 2) and positive (strain 1 and 3) 470 
pairwise interaction. 471 

d. Increased biodiversity for pairwise negative interactions. The final community structures 472 
of are quantified by selection plating and CFU counting. Data are represented as mean values +/- 473 
SD and n=16. The same method applies to panel e. 10 nM of aTc and 100 mM of IPTG were used to 474 
control circuit functions, and the same with panel e. 475 

e. Decreased biodiversity for pairwise positive interactions. The QS signal from strain 1 476 
promotes the growth of the receiver strain 3 by inducing the production of CcdA, which is the 477 
antitoxin to CcdB.  Data are represented as mean values +/- SD and n=16. The slight increase in 478 
at low partitioning level was likely due to background-level negative interactions when the two 479 
strains compete for nutrition and space.  480 

f. Simulated results of experimental pairwise negative community response to partitioning. 481 
Both simulations have been run 10 times and the mean (black open circle and grey trace) and 482 
standard deviation (grey error bars) are shown. The negative interaction has  = [0,0],   = 483 
[0,0;0.7,0], and   = [0,0;0,0]. Data represented as mean values +/- SD with n=10 (the same 484 
applies to panel g) 485 

g. Simulated results of experimental pairwise positive community response to partitioning. 486 
The positive interaction is simulated using   = [0,1.1],   = [0,0.15;0.15,0], and   = [0,0;0.8,0].  487 

 488 
  489 
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 490 
Fig. 4. Biphasic dependence observed with complex communities.  491 
a. Schematic of a 47-member auxotroph community. The interactions in the community are 492 

modulated by the concentration of casamino acid. When the casamino acid concentration is 493 
low, the primary interaction is cooperation; when the concentration is high,  the primary 494 
interaction is competition.  495 

b. Partitioning experiment using an auxotrophic complex community. A selection of 496 
47 auxotrophic strains were identified from the Keio collection and barcoded for NGS 497 
quantification. Complex communities were developed and grown at five levels of 498 
partitioning and varying amino acid concentration for 30 hours. Decreasing amino acid 499 
concentration shifts communities from negative interaction dominated to positive interaction 500 
dominated while transitioning through a state where both negative and positive interactions 501 
are strong. The panel presents representative relative abundance of each strain at the end of 502 
the experiment, as measured by NGS, for a single biological replicate. 503 

c. Validation of the principle by a 47-member auxotroph community. Simpson index of 504 
communities demonstrates the effects of partitioning and amino acid concentration on 505 
population biodiversity. Each dark open circle represents the average among the 2 506 
sequencing runs of 3 biological replicates (grey dots). Error bars represent standard deviation 507 
of the 6 replicates (N=6) and error bar centers represent the means. One-sided t test was used 508 
to test against a null hypothesis of a 0 slope. Degrees of freedom of the three-piece models 509 
are 10, 16, and 10 and all other panels are 28. The p values are: 0.1%: 0.1078, 0.02%: 510 
0.0199, 0.005%: 0.0060 (left), 0.4980 (middle), 0.0168 (right); 0.001%: 0.0132, 0.0002%: 511 
0.2371. The asterisks indicate that the trends of data points enclosed by the corresponding 512 
brackets have p-values less than 0.05.  513 

  514 



 24 

 515 
Fig. 5. Multilevel partitioning is a robust strategy to maintain community biodiversity  516 

a. Sub-optimal maintenance of diversity with a homogeneous partitioning level. We 517 
simulated the impact of spatial partitioning on a random 20-member community with both 518 
positive and negative interactions and non-archetypical species. The populations persist at 519 
different partitioning levels. Although an intermediate partitioning level maintains the 520 
highest diversity, it does not maintain all 20 species.  521 

b. Robust maintenance of diversity through mixed level of partitioning. With more 522 
partitioning levels included, the persistence of more species can be maintained. When all 5 523 
partitioning levels are included, all 20 species can be maintained. Instead of using any single 524 
partitioning level, a mixed level of partitioning allows most populations to persist.  525 

c. The cross-section of the cellulose sponge and experimental procedure. The pore size has 526 
a wide distribution that naturally creates multi-level partitioning for the global community. 527 
The sponge is then fit into an autoclavable culture tube. After autoclaving, the same initial 528 
cell culture as used in Fig. 4 is added to the tube and saturates the sponge.  529 

d. Multilevel partitioning to maintain biodiversity. Without prior knowledge of the 530 
interactions within a community, it is challenging to choose a single partitioning level that 531 
best maintain the community diversity. Multilevel partitioning can promote the chance for 532 
any archetype to thrive in the partitioning level it prefers. We cultured the Keio collection 533 
auxotroph community either as a homogeneous liquid culture (-) or with a sponge (+) that 534 
has varying pore sizes that provide a multilevel partitioning. Three amino acid concentrations 535 
(x axis labels) were tested, and all have shown an increase in community diversity with 536 
multilevel partitioning compared with liquid culture (no partitioning).  537 

  538 
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Methods  652 

Data availability  653 

Experimental data generated for this manuscript are provided as source data files, and deposited  to 654 
GitHub at: https://github.com/youlab/partitioning_NCB2021.  655 

 656 

Code availability  657 

The simulation and data-analysis codes used in this the study are deposited to GitHub at 658 
https://github.com/youlab/partitioning_NCB2021.  659 

 660 

QS-based and synthetic E. coli strains  661 

The strains are constructed from previously published strains and their antibiotic resistance are 662 
verified using antibiotic plates. Strain 1 is previously published as QS-CAT strain in 51. Strain 2 663 
is identical to the circuit of prey strain except that the CcdBs is replaced with the wild-type CcdB 664 
gene 52. Strain 3 is previously published in 11 as M2 in the synthetic mutualistic pair.  665 

 666 
Growth conditions  667 

M9 medium contained standard M9 salt (6.8 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, and 668 
0.5/L NaCl), 0.5% (w/v) glucose, 1 mM MgSO4, 0.1 mM CaCl2, 1 g/ml thiamine, and 0.1% 669 
(w/v) casamino acid. It was buffered with 0.1M of MOPS and adjusted to a pH of 7.0 with 670 
NaOH. The antibiotic concentrations used in this study to maintain the plasmids during overnight 671 
culture are: 100 g/ml chloramphenicol, 50 g/ml kanamycin, 100 g/ml ampicillin, and 50 672 
g/ml spectinomycin. The agar plates were made with 1.5% agar and standard Luria-Bertani (LB; 673 
Miller) broth, containing the same antibiotic concentrations. 674 
 675 
We grew the strains with M9 medium at 30oC for 8~12 hours from glycerol stocks to create 676 
overnight cultures. We then calibrate the OD of the overnight culture to 0.1 and mix each strain 677 
by equal ratio followed by 2x106fold dilution. This calibration and dilution procedure ensures a 678 
starting total cell concentration of 50~200 cells/ml. Each well contains 2.56 ml, 640 l, 160 l, 679 
40 l, and 10 l for 6, 24, 96, 384, and 1536 well plates, respectively. QS-based synthetic 680 
systems were cultured using M9 medium supplemented with aTc and IPTG but no antibiotics. 681 
The Keio strains were cultured with 100 g/ml chloramphenicol to maintain the barcoded 682 
plasmids. The Keio auxotroph strains were cultured in the same M9 medium except for the 683 
concentration of added casamino acid. The strains did not lose antibiotic resistances over the 684 
experiments. The plates were sealed using both AeraSeal (Excel Scientific) and Breathe‐Easy 685 
membrane (Diversified Biotech) and are covered by plastic lids. The microtiter plates were 686 
shaken at 225 rpm at 30 oC. for 24 hours for the QS-based strains. We cultured the regular Keio 687 
strains for 30 hours and auxotrophic Keio strains for 48 hours to reach sufficient cell density.  688 
 689 

https://github.com/youlab/partitioning_NCB2021
https://github.com/youlab/partitioning_NCB2021
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Quantifying community structure of QS-based communities 690 

After culturing, we pooled all wells within each microtiter plate and measured the OD of each 691 
pooled community. Each sample was diluted and plated on multiple types of antibiotic plates 692 
with 4 replicate plates. The antibiotic plates were cultured at 37oC overnight before CFU 693 
counting. Since each strain has a unique antibiotic resistance profile, all strains can be measured 694 
using the correct type of antibiotic plates.  For each pairwise community, the replicate plating 695 
gave 16 pairs (4x4) of measurements, which were used to determine community structure and 696 
biodiversity index. 697 
 698 
Construction of barcoded Keio strains 699 

The 96 non-auxotrophic strains were selected randomly from the Keio collection. We identified 700 
autotrophs by screen all Keio strains with OD in LB greater than 0.45 and OD in MOPS below 701 
0.05. Among the total of 76 auxotroph strains that were screened, we randomly picked 47 to 702 
construct the auxotrophic community.  703 
 704 
A library of barcoded plasmids was generated using Gibson Assembly cloning. Briefly, a 705 
plasmid vector backbone was generated by linearizing a plasmid vector (p15A-GFP-706 
Carbenicillin, Extended Data Fig 6a) using PCR amplification (P1 and 2, Q5 MasterMix). 707 
Using lower amount of template DNA (as low as 0.1 ng of DNA) reduced the background of 708 
unmodified vectors downstream. The vectors were gel purified and underwent an overnight 709 
restriction enzyme digested using NOTI and PVUI, based on manufacturer’s instructions, to 710 
generate end that overlap two synthesized DNA fragments for Gibson Assembly.  711 
 712 
Sequences of the synthesized DNA fragments are provided below. Each part contains a 15-20 713 
base pair overlap with the plasmid vector (yellow) and with each other (red) for Gibson 714 
Assembly, one of the Illumina® adapter sequences in green (part 1 contains the i5 adapter and 715 
part 2 contains the i7 adapter sequence) and 18 random base pairs making up the barcode regions.   716 
 717 
Part 1:  718 
5’ -719 
GCCTCAGGGCCCGATAGTACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNN720 
NNNNNNNNNNNCCTCAGGGTCACTAGG -3’ 721 
Part 2: 722 
5’ -723 
CTCAGGGTCACTAGGNNNNNNNNNNNNNNNNNNAGATCGGAAGAGCACACGTCT724 
GAACTCCAGTCACGTGGGCCGCTTAATTAATTAATC -3’ 725 
 726 
Following Gibson Assembly cloning, the barcode DNA fragment was assembled into the vector 727 
backbone in the following structure: 728 
5’…GCCTCAGGGCCCGATAGTACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN729 
NNNNNNNNNNNNNNCCTCAGGGTCACTAGGGNNNNNNNNNNNNNNNNNNAGATCG730 
GAAGAGCACACGTCTGAACTCCAGTCACGTGGGCCGCTTAATTAATTAATC…3’ 731 
 732 



 30 

A library of barcoded plasmids was generated by transforming the Gibson Assembly reaction 733 
into electrically competent cells, allowing an overnight outgrowth of the transformed cells and 734 
harvesting the plasmid library by plasmid midiprep kit (Qiagen), based on the manufacturer’s 735 
instructions. Plasmids were then be transformed into target strains by chemical transformation 53. 736 
Barcoded strains were validated by colony PCR (Supplementary Table 4, Primers 3 and 4, Q5 737 
MasterMix). Following enzymatic clean-up, PCR products were sent for Sanger Sequencing to 738 
validate the barcode sequence of each strain.  739 
 740 
A collection of strains from the Keio collection were uniquely barcoded, including more than 94 741 
non-auxotroph strains and 47 auxotrophs. All barcoded strains were validated by sanger 742 
sequencing to contain a single unique barcode sequence. Sanger sequencing validation of all 743 
barcoded strains allowed for simplification of downstream data processing as all barcode 744 
sequences and associated strain identifies are known. The sequencing also allowed us to remove 745 
strains carrying duplicate or multiple barcodes as a result of double transformation.  746 
 747 
NGS library preparation 748 

Plasmid DNA was extracted from experimental samples by miniprep kit (Zymo Research), using 749 
the manufacturer’s instructions, or by boiling lysis of bacteria (95°C for 10 m in nuclease-free 750 
water). Extracted DNA was stored at -20°C until use in downstream NGS library preparation.   751 
Libraries for NGS sequencing were prepared using a two-step PCR protocol using NEBNext® 752 
Ultra™ II Q5® Master Mix. The first PCR step is composed of 2 PCR cycles and is used to 753 
extract barcode sequences from the vector backbones using primers that bind the conserved 754 
Illumina adapter sequences flanking either end of unique barcode sequences (Green in sequences 755 
above). In addition, unique molecular identifiers (UMIs) and dual sample indexes are introduced 756 
during this PCR protocol. Primer sequences are provided in Supplementary Table 4, where the 757 
10-base pair UMI sequence is represented as Y’s and the 8-base pair index sequences are 758 
represented as X’s in red. UMIs are used to uniquely label each template DNA molecular in the 759 
initial sample and allow for downstream correction for sequencing errors introduce by PCR 760 
amplification.  761 
 762 
PCR 1 conditions:  763 
Initial denature – 30 sec– 98°C 764 
2x PCR cycles 765 
10 sec – 98°C 766 
30 sec – 67°C 767 
20 sec – 72°C 768 
Final extension – 5 min 72 C 769 
Infinite Hold 4°C 770 
  771 
Following PCR 1, PCR clean-up and size selection were achieved using SPRIselect magnetic 772 
beads (Beckman Coulter). Two-step size selection was used (0.95X  supernatant saved 0.8X 773 
 DNA eluted from bead) based on the manufacturer’s instructions. The cleaned-up PCR 774 
products are then pooled together and amplified using a second round of PCR using the 775 
conditions described below.  776 
 777 
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PCR 2 conditions:  778 
Initial denature - 30s– 98°C 779 
20x PCR cycles 780 
10 sec – 98°C 781 
30 sec – 66°C 782 
20 sec – 72°C 783 
Final extension – 5 min 72 C 784 
Infinite Hold 4°C 785 
 786 
The product from PCR 2 was run on a 2% agarose gel for PCR clean-up and final validation of 787 
the library size. DNA was extracted and purified from the gel using the Zymoclean Gel DNA 788 
Recovery Kit, based on the manufacturer’s instructions. The cleaned PCR product is the final 789 
sequencing amplicon which is compatible for sequencing on standard Illumina sequencing 790 
platforms. The DNA libraries were sequenced using 151 base pair, paired-end reads either 791 
through a sequencing facility on an Illumina MiSeq or in house using an Illumina MiniSeq. The 792 
data collection was performed in either MiSeq Software Suite or MiniSeq Software Suite. For in 793 
house sequencing, DNA libraries were denatured, diluted and mixed with a Phi-X spike-in of 30% 794 
based on standard Illumina protocols for library preparation of 16S Library on the Illumina 795 
Miniseq Platform.  796 
 797 
Final NGS Library: 798 
AATGATACGGCGACCACCGAGATCTACACXXXXXXXXYYYYYYYYYYACACTCTTT799 
CCCTACACGACGCTCTTCCGATCTNNNNNNNNNNNNNNNNNNCCTCAGGGTCACTA800 
GGGNNNNNNNNNNNNNNNNNNGATCGGAAGAGCACACGTCTGAACTCCAGTCACA801 
XXXXXXXXATCTCGTATGCCGTCTTCTGCTTG  802 
Where N’s represent barcode sequences, X’s represent sample indexes and Y’s represent UMIs. 803 
 804 
Data analysis pipeline 805 

Reads from NGS sequencing were analyzed using tools available on the open source, web-based 806 
platform, Galaxy (Galaxy version 20.05). Data analysis was simplified due to the fact that all 807 
sequencing reads are the same size, all barcode sequences are known a priori and forward and 808 
reverse reads are fully overlapping. Sequencing reads take the following format:  809 
Read 1: 810 
NNNNNNNNNNNNNNNNNNCCTCAGGGTCACTAGGNNNNNNNNNNNNNNNNNNAG811 
ATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXXXATCGCGGATGCCGGCT812 
TATGGTTGGGAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGG 813 
Read 2:  814 
NNNNNNNNNNNNNNNNNNCCTAGTGACCCTGAGGNNNNNNNNNNNNNNNNNNAG815 
ATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTTYYYYYYYYYYXXXXXXXXTTTAG816 
AAATACGTTGTACCCCTAACAATAAAAAAAAAAAAAGGGGGG 817 
Where N’s represent barcode sequences, X’s represent sample indexes and Y’s represent UMIs.  818 
Following quality control using FastQC software (Galaxy Version .72+galaxy1)54, pooled paired 819 
end reads were demultipelexed into different experimental conditions (Barcode Splitter Galaxy 820 
Version 1.0.155, Trim Sequences Galaxy Version 1.0.2+galaxy055, and FASTQ joiner Galaxy 821 
Version 2.0.1.1+galaxy0)56.  822 
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 823 
Next, paired end reads were merged using the software BBMerge. A high merge rate of 95% or 824 
above was achieved for all reads since forward and reverse reads are completely overlapping. 825 
Correction for PCR amplification error was performed on the Galaxy Platform using the 826 
following selection of tools: Sort Collection (Galaxy Version 1.0.0), FASTQ joiner (Galaxy 827 
Version .0.1.1+galaxy0)56, UMI-Tools extract and deduplicate (Galaxy Version 0.5.5.1)57, 828 
Bowtie2 (Galaxy Version .3.4.3+galaxy0)58,59, and Samtools fastx (Galaxy Version 829 
1.9+galaxy1)60.  830 
 831 
Finally, strain-specific barcodes were counting in each sample using a custom python script. Up 832 
to two mismatched base pairs were allow per barcode during barcode counting. This was 833 
selected as a reasonable number of mismatched bases that may result from PCR amplification 834 
error using Q5 high fidelity master mix and NGS sequencing error and considering that the 835 
minimum hamming distance between any two barcode sequences was 17 base pairs.  836 
 837 
Calibration and replicates 838 

Calibration samples were generated with barcoded strains prepared at known concentrations. As 839 
such, cultures were grown to a similar, low OD (0.3-0.4) and mixed at three different known 840 
ratios as well as one sample where all strains were mixed at an equal ratio (Extended Data Fig 841 
6b). Samples were prepared through the experimental workflow, NGS sequencing and data 842 
analysis. The resulting sequencing reads correlated with the expected relative sample 843 
concentrations (Extended Data Fig 6d) demonstrating the reliability of the barcode sequencing 844 
approach. Normalizing the number of sequencing reads in each of the mixed ratio samples by the 845 
number of reads counts obtain in the equal ratio sample for each respective barcode improved the 846 
correlation between known and expected barcode counts. This normalization likely corrects for 847 
differences in actual strain abundance at the time of sample preparation, (i.e. variations in ODs at 848 
sampling time and differences in OD values and actual cell numbers for samples with similar OD 849 
may vary depending on cell size, etc.). There was one outlier data point in the ‘ratio 2’ sample. 850 
This strain did not appear as an outlier in other samples and was present in technical replicate 851 
sequencing of the same biological sample. As such, this error was most likely a result of human 852 
error in sample and was not associated to a problem with PCR amplification of the species 853 
barcode sequence.  854 
 855 
Keio collection experiments 856 

The characterization of Keio auxotrophic community (Extended Data Fig 7a-b) was generated 857 
with an array of initial densities and varying the concentrations of casamino acids.  858 
The overnight monocultures of the 47 auxotrophic Keio strains were mixed by equal volume and 859 
calibrated to a cell density of 100 cells/ml. The medium is the same as the M9 medium described 860 
in section IV.2, except we adjusted the concentration of amino acid to 0%, 0.0002%, 0.001%, 861 
0.005%, 0.02%, and 0.1%. The 3 replicates were generated in two separate days. The distribution 862 
of OD of the end points are shown in Extended Data Fig 7b.  863 
 864 
The overnight monocultures of the 94 regular Keio strains were mixed by equal volume and 865 
calibrated to a cell density of 120 cells/ml, which is verified using CFU counting. M9 medium 866 
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was used (see section IV.2). 6, 24, 96, 384, and 1536 plates were used to create 5 levels of 867 
partitioning. All microtiter plates were shaken at 225 r.p.m. at 30oC for 30 hours. The OD of the 868 
pooled samples were 0.375, 0.320, 0.220, 0.294, 0.179 for 6, 24, 96, 384, 1536 well plates. The 869 
measurements of the biodiversity are shown in Extended Data Fig 7c. 870 
 871 
Sponge experiment 872 

We used kitchen sponge from Scotch Brite and cut the sponge into 3 pieces with dimensions of 873 
1.2 cm by 1.2 cm by 4cm. The sponges were sterilized in 15ml falcon tubes by autoclaving. We 874 
checked the sterilization of the sponges by adding LB growth medium to the sponge and shaken 875 
at 225rpm at 30 oC for 48 hours in a 15ml falcon tube. No cell growth was detected based on OD 876 
measurement.  877 
 878 
We mixed the 47 Keio auxotroph strains by equal volume in M9-glucose medium and diluted the 879 
mixture to a cell density of around 300/ml, which is verified by CFU counting. M9-glucose 880 
medium with no casamino acid contains standard M9 salt (6.8 g/L Na2HPO4, 3 g/L KH2PO4, 1 881 
g/L NH4Cl, and 0.5/L NaCl), 0.5% (w/v) glucose, 1 mM MgSO4, 0.1 mM CaCl2, 1 g/ml 882 
thiamine. The M9-glucose medium is buffered with 0.1M of MOPS and adjusted to a pH of 7.0 883 
with NaOH. We then created three variations of the M9 medium by adding 0.001%, 0.005%, and 884 
0.02% casamino acid. 7ml of cell culture was added to 15ml falcon tubes with or without sponge. 885 
The cell cultures were shaken for 20 hours at 30oC to enable the cells to reach a higher cell 886 
density, then the cell cultures were cultured at 30oC for another 14 hours. We first applied 887 
physical pressure to the sponge multiple times to mix the cell culture and then we collected the 888 
supernatant for downstream processing.  889 
 890 
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