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Abstract

Microbial communities inhabit spatial architectures that divide a global environment into
isolated or semi-isolated local environments, which leads to the partitioning of a microbial
community into a collection of local communities. Despite its ubiquity and great interest in
related processes, how and to what extent spatial partitioning affects the structures and dynamics
of microbial communities is poorly understood. Using modeling and quantitative experiments
with simple and complex microbial communities, we demonstrate that spatial partitioning
modulates the community dynamics by altering the local interaction types and global interaction
strength. Partitioning promotes the persistence of populations with negative interactions but
suppresses those with positive interactions. For a community consisting of populations with both
positive and negative interactions, an intermediate level of partitioning maximizes the overall
diversity of the community. Our results reveal a general mechanism underlying the maintenance

of microbial diversity and have implications for natural and engineered communities.
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Introduction

Microbial communities are critical to natural ecological processes, such as

3 4,5

biogeochemical cycling ', animal and human health >, and engineering applications
Microbial community structure, meaning species identities and their abundance, is a primary
feature that defines the functioning of microbial communities °. Along with internal factors, such
as growth rate, death rate, and interactions, external factors, such as ecological factors and
chemical environments also modulate microbial community structures '. However, our

knowledge is still limited regarding what factors impact microbial community structures in a

scalable and general manner and how they operate.

Survey-based studies of complex microbial communities using sequencing technologies
provide large amounts of high-quality data and empirical insights *° but causal and mechanistic
links are often missing between external factors and community structure '’. In contrast,
controlled assembly of a few species can provide mechanistic interpretations since specific

variables related to community structure can be manipulated. These studies have investigated the

10-1 14,1 16-1
1 0-13 1 15 1 68.

contributions of different factors that are biologica , chemica , or physica
However, how the learned insights scale up to more complex communities, where diverse
interaction types and higher-order interactions may be present, is difficult to test and remains

1
unclear .

Among these factors, spatial partitioning is ubiquitous yet mostly overlooked for
microbial communities. Spatial partitioning describes the physical separation of a community

into local communities. For example, the physical architectures of the gut '°, plant root *°, and
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all partition microbial communities into distinct local communities that are separated to
different extents (Fig. la). Due to the complexity of the physical architecture of microbial
communities, the partitioning can be mostly complete, such as the microbiota in two different
animals or the local microbial communities in two separate droplets. It can also be partial,

resulting from the cell mobility or dispersal across local environments '* or diffusion of signaling

. 1
molecules across local communities '°.

In the simplest case, where partitioning is complete, local environments each consists of
only a subset of all members and partitioning restricts interactions within local communities. In
general, spatial partitioning reduces the overall strength of interactions in the global microbial
communities and lowers the number of interacting species for each individual member *.
Moreover, the type of interactions experienced by a member can vary drastically depending on
the random assembly of local environment ». In other words, spatial partitioning can modulate
the dynamics of a microbial community by globally modulating the type and strength of
interactions experienced by each member. This emphasis on interactions, derived from studying
microbial communities, differs substantially from research in multicellular organisms, which
places much greater emphasis on dispersal between local communities, abiotic factors, and

neutral dynamics >*. Focusing on interactions therefore has potential to contribute to the

historically organismal-level study of spatial effects on local and global community diversity.

It is yet unclear whether the effect of spatial partitioning is highly system specific or
whether it follows general rules. Beyond the challenges of distilling causal mechanisms and

general rules, defining spatial partitioning in a relevant and quantitative manner is also
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challenging. To address this question and overcome these challenges, we first established a
theoretical framework to explain the mechanisms by which spatial partitioning affects
community structure. Based on the theoretical framework, we formed a hypothesis that spatial
partitioning reduces biodiversity for negative interaction dominated community and increases
biodiversity for positive interaction dominated community, and biodiversity peaks at an
intermediate partitioning level for communities with both positive and negative interactions. We
then tested our hypothesis using precisely controlled top-down experiments of simple
communities and scaled up to complex natural communities. The ability to control microbial
community structures through modulation of spatial partitioning can address a wide range of
challenges we face with natural and engineered microbial communities for ecological, medical,

and engineering purposes.
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Results

A theoretical framework to model spatial partitioning

Consider a microbial community residing in a global environment. In the absence of
partitioning, all interactions between members are retained. If the environment is divided into N
equal-sized local environments, the community members will be allocated to these local
environments. We simplify the process by assuming seeding follows a Poisson distribution
where the Poisson parameter A dictates the average number of cells in one local community (Fig.
1b). On average, the local communities have the same total number of cells subject to random
variations: the relative variation in this number increases as the total cell number in the overall
community decreases. The parameter N measures the level of partitioning: a larger N
corresponds to higher partitioning. We assume local communities are completely isolated from
each other; as such, no interactions, dispersal, or migration occur across different local
communities. For a sufficiently large &, some local communities will only have a subset of the
members in the overall community. As a result, some members will experience fewer
interactions in comparison with when they reside in an unpartitioned environment. With extreme
partitioning where each local environment contains at most one cell, all interactions between
members are eliminated. Thus, when interactions are considered, spatial partitioning, at its core,

blocks interactions across local communities.

After partitioning, each local community grows separately, and the ensemble of local
communities captures the global community dynamics (Fig. 1c). We model the temporal
dynamics of each local community using a set of ordinary differential equations (ODEs) (Fig.

1d), where 6 describes the intrinsic death rate of each species and f and y describe positive and
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negative effects of species on others, respectively (Fig. 1e). 1/ f is the density of a partner
species to reduce death rate (§) of this strain by 50%. When f increases, the positive interaction
strength is higher (i.e. lower density of partner species is required to halve the stress) and when y
increases, the negative interaction strength is higher (i.e. lower density of partner species is
required to reach the same death rate). Thus, we use strength of interactions to indicate the

magnitude of § and y.

In contrast to the classic general Lotka-Volterra (gLV) model formulations that can

generate unbounded growth with some parameter ranges *>°

, our formulation generates bounded
dynamics with the entire space of defined parameter domain (Fig. 1f, Supplementary Fig. 1). Our
model only incorporate competition in the pairwise y term, instead of assuming all species have
background negative interactions. Thus, our model formulation accounts for different types of
negative interactions (including competition) explicitly. Note that our simulation condition
implies that the interaction length scale is larger than or similar to the scale of the local

environment and that the local communities are well-mixed. Another assumption is that the

interaction logic and strengths are preserved regardless of the initial partitioning.

Through its effect on local community membership at # = 0, the spatial partitioning level
N modulates the growth of populations and the pooled global community structure after growth
att = ty. This seeding and growth process capture the critical aspects of the temporal evolution
of microbial communities in nature and in the laboratory setting. Examples include the

. . .. . . 27 . 2
inoculation and growth of communities in germ-free animal models ', infant guts **, cheese
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microbiome “°, and so on. The pooling process is analogous to the mixing of samples when

quantifying microbial communities in natural habitats.

Emergence of biphasic dependence of biodiversity

By varying N, we focus on examining how varying spatial partitioning affects
biodiversity (Fig. 2a), which is a key parameter that influences community stability *°, function
31 and evolution ***. Here we primarily use the inverse Simpson index (referred as Simpson

index in the following texts) as the metric to serve as the proxy for effective number of members.

Inverse Simpson Index = <3;

2)
i=1Pi
where p; is the relative abundance of species i and the community has M number of species. The
index reaches the maximum, which is M, when all species have the same relative abundance.

Whereas the index reaches the minimum, which is 1, when only one species persists.

Indeed, the same type of natural microbial community can reside in environments with
different partitioning levels. Starting with two-member communities, when there is no
interspecific interaction, spatial partitioning has no impact on final global community diversity
and composition (Fig. 2b). However, increasing partitioning promotes the biodiversity of a
pairwise community where one member suppresses the other, by shielding the suppressed strain
from its suppressor (Fig. 2c, Extended Data Fig 1a). In contrast, increasing partitioning decreases
the biodiversity a pairwise community when one member promotes the growth of the other. This
is due to the partitioning of the dependent strain from its helper strain, which reduces its growth
(Fig 2d, Extended Data Fig. 1b). This observation extends to communities with more populations

that are dominated by either positive interactions or negative interactions (Extended Data Fig.
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Ic). Even for a pairwise community, the degree by which partitioning affects biodiversity also

depends on the strength of interactions (Supplementary Fig. 2).

When communities have both competition and cooperation, simulations reveal a biphasic
dependence of biodiversity on the partitioning level for a large range of relative prevalence
between cooperation and competition (Fig. 2e). When there is a balance of positive and negative
interactions, biphasic dependence emerges with increasing number of species in the community,
increasing overall interaction strength, and increasing interaction connectedness (Fig. 2f-i).
Reaching the steady state is not a requirement for biphasic dependence to occur, though the
biphasic dependence becomes more pronounced when approaching the steady state (Extended

Data Fig. 1d).

The biphasic dependency can be explained from two aspects. One is the suboptimal
biodiversity at both low or high partitioning levels, where the suppressed members or the
dependent members have reduced growth or are unable to persist, respectively. The other aspect
is that for each species, only a subset of initial local community compositions can enable its
persistence (by excluding its competitors or providing its cooperators). Thus, increasing the
number of unique local communities increases the chance for each species to persist in at least
one local community. Since the highest count of unique local communities at t, (Extended Data
Fig. 1e) and the count of unique local community containing any species (Extended Data Fig. 1f)
both peak at an intermediate partitioning level, the intermediate level can maintain the growth of
the most species. Consistent with this notion, we find that indeed, the highest biodiversity

overlaps with the highest diversity of local communities (Extended Data Fig. 1g). However, the
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biphasic dependency cannot be explained by local community biodiversity because it decreases

with increasing partitioning levels regardless of interaction types (Extended Data Fig. 2).

Robustness of the biphasic dependence

So far, we have found that biphasic dependence arises when there is a balance of positive
and negative interactions, including their magnitudes (Fig. 2). This behavior is widely applicable
to a broad range of parameter settings (Supplementary Fig. 3). In nature, microbial communities
often undergo successive mixing and partitioning. Our simulations indicate that, in the presence
of intermittent mixing, the general impact of partitioning on biodiversity is similar to the case
without mixing (Supplementary Fig. 4). That is, even when communities go through multiple

cycles of partitioning, growth, and mixing, our conclusion holds.

We then examined the robustness of our conclusion with respect to the model
formulation. We tested a modified gLV model formulation. Compared with our original
formulation, the standard gLV model can generate unbounded growth of the community. To
avoid this situation, we introduced a carrying capacity to cap each species’ growth. The results

are consistent with results from our base model formulation (Supplementary Fig. 5).

To test the effects of temporal stochasticity, we used a stochastic differential equation
model. With a moderate level of noise, the stochastic model generates qualitatively the same
results as simulations without temporal stochasticity (Supplementary Fig. 6). To simulate the
variation of size and the level of nutrient of local communities, we implemented a randomization

of local community carrying capacity within each partitioning level. Even when the local

10
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community carrying capacity has a normal distribution of sigma equals to 50% of mean, the
results are qualitatively similar to the base simulation results (Supplementary Fig. 7). Taken
together, these additional simulations demonstrate the robustness of the general conclusion as

revealed by the base model simulation (Fig 2).

Biphasic dependence with simple communities

We use microtiter plates, each with 6, 24, 96, 384, or 1536 isolated wells, to implement
various levels of spatial partitioning in experiments (Fig. 3a). In each experiment, we calibrated
the initial density of each community such that the average number of cells in each local
environment is ~0.5 at the highest partitioning level. We then allocated the same total volume of
the same mixture of microbial community into different wells in each plate. After culturing for

30 hours, we pooled all the wells in each plate to measure the global community structure.

We first investigated two pairwise synthetic communities, which use quorum sensing (QS)
to mediate one-directional positive interaction or one-directional negative interaction. To
implement the interactions, we used an engineered strain 1 that produces 30C6HSL, which is a
QS signal (Extended Data Fig. 3a). 30C6HSL induces the expression of CcdB in strain 2 that
results in cell death, forming the negative interaction (Extended Data Fig. 3b). 30C6HSL
induces the expression of CcdA which reduces the toxicity of CcdB that strain 3 produces,
forming the positive interaction (Extended Data Fig. 3c). We designed each strain to have a
different antibiotic resistance profile to use selection plating to quantify community composition.
The circuit functions were validated using monocultures (Extended Data Fig. 3d) and

interactions on agar plates (Extended Data Fig. 3e). Consistent with model predictions,

11
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increasing spatial partitioning promoted the biodiversity of the negative-interaction pair (Fig. 3b,
Extended Data Fig. 3f) but suppressed that of the positive-interaction pair (Fig. 3c, Extended

Data Fig. 3g). Further details of these circuits are provided in Supplementary Table 1.

Many studies have tested the assembly of a group of species by coculturing all
assemblages of a certain number of species out of a larger set of species. This experimental setup
provides an alternative implementation of spatial partitioning where the physical separation is
controlled through controlled initial seeding (Extended Data Fig. 4a). Consistent with our
simulation and experimental results, simple experimental communities dominated with negative
interactions demonstrate increasing biodiversity with increasing spatial partitioning, whereas
communities dominated by positive interactions show an opposite trend. This is true for all 6
types of pairwise interaction diversities (Extended Data Fig. 4b) and for larger communities
(Extended Data Fig. 4c). Communities with both negative and positive interactions also reveal
biphasic dependence of diversity on partitioning level (Extended Data Fig. 4d). Previous studies
have demonstrated that partitioning decreases diversity for mutualistic pairs ''**; partitioning
increases diversity for two-directional negative interactions °; partitioning increases > or
decreases the diversity of a pair with both positive and negative interactions. Previously

published results of multi-member microbial communities also follow the same general principle

(Extended Data Fig. 5).

Biphasic dependence with complex communities
We next examined the applicability of our insights (Fig. 2) to much more complex

experimental communities. To this end, we generated a collection of plasmid-barcoded Keio

12
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strains *° to enable quantification of the community dynamics by next-generation sequencing
(Extended Data Fig. 6). We constructed a community of 47 Keio strains that are auxotrophs
(Supplementary Table 2). The auxotrophic strains were selected based on their final density in
the minimum medium (MOPS) versus rich medium (LB) presented in the original Keio strain

publication and we obtained 47 strains that were successfully barcoded.

These auxotrophs compete for the nutrient components other than the amino acids they
provide to each other. Their positive interactions only emerge when these amino acids are absent.
Therefore, increasing the concentrations of these amino acids attenuates the positive interactions,
elevating the relative contribution of negative interactions (Fig 4a). This modulation of the
relative magnitude of positive and negative interactions by adjusting amino acid concentrations

. . . ... 14.15
has been demonstrated in previous auxotrophic communities

. In our system, the positive
interaction in the absence of exogenously added amino acids was verified by collective survival
of the community (Extended Data Fig. 7a). We also measured the distribution of OD in each
plate to verify that sufficient level of partitioning was achieved (initial density of ~0.5 cells per
well in 1536 plate), and an increase of OD was observed with increasing amino acid
concentration (Extended Data Fig. 7b). Sequencing results revealed an increasing diversity at

high casamino acid concentration and a decreasing diversity at low concentration, and a biphasic

dependence at an intermediate concentration (Fig. 4b, c).

We also constructed one community consisting of 94 non-auxotrophic strains

(Supplementary Table 3), where none of the strains overlap with the 47 auxotrophic strains. The

culture medium was supplemented with 0.1% casamino acid, which is a typical casamino acid

13
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concentration for M9 medium. The 0.1% [CA] also provides a direct comparison between the
94-nonauxotrophic community and the first condition of the auxotrophic community. Since Keio
strains are all derived from Escherichia coli K-12 strain BW25113 with single gene deletions,
the strains share similar genetic backgrounds and metabolic pathways, leading to primarily
competition for nutrition in the community. Indeed, we have found that increasing partitioning

level overall promotes the diversity of the non-auxotroph community (Extended Data Fig. 7c).

A previously-published dataset on natural groundwater bacterial communities also
exhibits a biphasic dependence of biodiversity on partitioning *’. The community underwent
serial dilutions in microtiter plates where one well represents a local community and there are 96
local communities for each dilution level (Extended Data Fig. 8a). The samples were then
cultured in the presence and absence of oxygen. There are three variables that change across
serial dilution: partitioning level, average initial density, and down-sampling of the natural
community. By accounting for both changes in initial density (Extended Data Fig. 8b) and down-
sampling (Extended Data Fig. 8c), we find that biodiversity indeed follows a biphasic
dependence on partitioning level (Extended Data Fig. 8d). The biodiversity curves for anaerobic
and aerobic conditions suggest that aerobic condition creates an environment that favors
competition, which is consistent with the conclusions in the original publication (Extended Data
Fig. 8e). Water content is another implementation of spatial partitioning that shows biphasic

dependency of biodiversity for soil microbiomes at microscale level '

14
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Responses of archetypes and multilevel partitioning

Within each community, member species can be categorized in 8 archetypes based on
fitness level and the interactions they receive (Extended Data Fig. 9a). Simulation of a 160-
species community (20 species of each archetype) with a random interaction network shows how
each archetype responds to various partitioning levels (Extended Data Fig. 9b). There are four
types of responses (Extended Data Fig. 9c¢): flat, positive, negative, and biphasic. Flat curve
corresponds to species receiving no interactions. Positive and negative curves correspond to
species receiving negative and positive interactions, respectively, whereas biphasic curve
corresponds to species receiving both types of interactions. Note the parallel between the
response of individual archetypes and how the biodiversity of communities of one archetype

changes across partitioning levels.

The diversity of responses by different archetypes suggests that a single partitioning level
cannot accommodate all species. Although there exists a level of partitioning that optimizes the
biodiversity of microbial communities, this optimal biodiversity may not ensure the persistence
of all species (Fig. 5a). Furthermore, without a priori characterization of the interactions within
the community, the optimal partitioning level is unknown. To this end, we reasoned that a mixed
partitioning level could ensure the maximum possibility for all species of any archetype to persist.
Simulation results show that when more partitioning level are included, more species will be able
to persist (Fig. 5b) and mixed partitioning level provides a robust strategy to maintain high

community diversity (Extended Data Fig. 9d).
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We tested this notion using cellulose sponges to create multi-level partitioning due to the
wide distribution of pore sizes inside a sponge™ (Fig. 5¢c). We used the same microbial
community shown in Fig. 4 to test if submerging a sponge in the liquid culture with low initial
cell density will increase the biodiversity of the final community compared with a shaken liquid
culture. In addition, we used three casamino acid concentrations to test how well the sponge can
maintain a higher biodiversity with different overall strengths of positive and negative
interactions. Indeed, our results show that the global diversity of communities cultured in sponge

was overall significantly higher than those grown in liquid culture (Fig. 5d).

In nature, the physical architectures of microbial habitats indeed impose multiple levels
of partitioning through interconnected local communities, varying sizes of local environments,
and self-assembled local patches. Our results demonstrate a robust mechanism that can explain
the high biodiversity observed in natural microbial communities. Following this mechanism,
multi-level partitioning also facilitates the emergence of spatial heterogeneity and niche
differentiation, which are key mechanisms that maintain biodiversity *. Since spatial partitioning
is important to maintaining the biodiversity of natural microbial communities, its disruption in
laboratory cultures most likely reduces biodiversity of the community of interest. Gut and soil
microbiome diversity may be better maintained with culturing methods implementing multi-level

spatial partitioning.
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Discussion

Our study reveals a simple principle that dictates how spatial partitioning modulates
microbial community structure through global modulation of interactions. Although spatial
partitioning modulates the growth of populations receiving negative versus positive interactions
in opposite directions, it is robust that complex communities with both negative and positive
interactions reach the highest biodiversity at an intermediate partitioning level. Previous studies
that use precisely controlled assembly primarily focus on characterizing pairwise interactions,
which limits the scalability of the experiments ». In contrast, we leveraged seeding stochasticity
and community-level interaction characteristics to demonstrate the robustness and scalability of
this principle. Further, this community-level principle is the result of the collective response of

single species in the community.

For experimentalists, our study suggests the importance of the explicit consideration of
physical arrangement of communities in experimental designs. For example, serial dilutions not
only modulate the initial density of communities but also increase the spatial partitioning level of
the community. Our study also suggests that to maintain the highest biodiversity of a natural
community, beyond the design of chemical environment, the design of the physical environment
is also crucial. For natural microbial communities that arise from complex spatial partitioning
environments, spatial design of lab cultures can be especially important for maintaining their

structure and biodiversity.

Engineering of habitat by spatial partitioning can be an effective strategy to modulate and

control microbial community structures. Beyond using microtiter plates, other engineering
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methods can also be used to impose spatial partitioning that has not been fully tested yet, such as
encapsulation *° and inkjet printing *'. The modulation of community structure can happen at
three levels. First the relative abundance of a single population can be modulated based on
archetype. Second, the proportions of interactions can be modulated through increasing or
decreasing partitioning. Third, the biodiversity can be modulated or maintained through the
modulation of spatial partitioning level or a mixed level of partitioning. Beyond being a general
and robust modulator, spatial partitioning, as a physical factor, is orthogonal to chemical and

biological factors and can be used in parallel.

The role of space in maintaining biodiversity is a central question beyond microbial
ecology, as exemplified by classic Island Biogeography Theory **, debate regarding the optimal

. .. . 43.44
design of biodiversity reserves **

, and the subsequent flowering of metacommunity ecology
249546 Many specific aspects of partitioning, such as nestedness *’, stochastic extinction **, and
migration rate *’ have been investigated. However, most studies largely overlook interactions, in
particular cooperation. Our general principle of spatial partitioning accounts for both types of
interactions, addressing a critical gap in our understanding of spatial mechanisms for the
maintenance and promotion of biological diversity. This helps to clarify the role of spatial
mechanisms alongside temporal mechanisms of biodiversity maintenance and spatiotemporal
mechanisms, such as the intermediate disturbance hypothesisso. Finally, the insights presented

here and offers a fresh perspective for interpreting, screening, and controlling microbial

community structures and the relative abundance of individual population.
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Figures legends and captions

Fig. 1. Spatial partitioning and simulation framework

a.

Partitioning of microbial communities in natural habitats. The structures of natural
habitats including colons, soil, and droplets prohibit global interactions by physically
separating a global community into local communities that only contain subsets of the global
populations.

Depiction of the partitioning concept. At t), a community of interest is sampled into
completely isolated local environments. Because of partitioning, many local communities are
subsets of the global community, where some populations and interactions are missing. We
use the number of local communities (N ) to quantify the degree of partitioning. A
partitioning of N = 5 is shown.

The impact of spatial partitioning on local and pooled communities. Communities in
each local environment grow independently and the final local community structures are
quantified at tr. Local communities at t¢ are pooled to determine the final global community
structure.

Modeling growth of local communities. Each equation describes temporal dynamics a
population (X;) by accounting for its logistic growth, positive interactions (by removing
stress), and negative interactions.

Three sets of model parameters. Stress (J), positive interactions (), and negative
interactions (y) are shown in matrix forms. Fitness is equivalent to 1 — §.

A typical temporal dynamic of a local community simulated using our model. The
simulated time courses are bounded for any parameter combinations that satisfy: non-
negative initial condition (X; = 0 at ty), §; = 0, )/;; = 0, and y;; = 0. The time course shown
is generated using a 10-population community, with an interaction matrix generated from:
6 €[0,1.5], 8 =10,5],and y € [0,0.5].
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Fig. 2. An emerging biphasic dependence of biodiversity on partitioning level

a.

Overall framework of spatial partitioning. The number of local communities (N) changes
while the total initial cell number and total volume keeps constant.

Simulations show that the partitioning level has no impact on the biodiversity of two
populations with no interaction. ; = 0.1 and 6, = 0.8 and all elements in the interaction
matrix are zero. Data are presented as mean values +/- SD and the same applies to all the
following panels and figures. Simulations were repeated 10 times (n=10) to calculate the
mean and SD and the same with panel e-i.

Simulations of a pairwise one-directional negative interaction show that increased
partitioning reduces the negative impact from A on B that leads to higher relative
abundance of B and an increased biodiversity.

Simulations of a pairwise one-directional positive interaction show that increased
partitioning reduces the positive impact from A on B and leads to decreased
biodiversity.

Biphasic response emerges with both positive and negative interactions in 20-member
communities with 100% connectedness. The panel titles indicate the fraction of negative
interactions among all interactions. &;, f;;, and y;; are sampled from uniform distributions of
interval (0, 1.5), (0, 3), and (0, 0.8). The following panels share the same parameter setting
while assuming 1:1 ratio of positive to negative interaction and varying the corresponding
parameter and its specific value is indicated as panel titles. In panels e-i, grey dots represent
the responses of a random interaction network, and the black dots are average response.

Increasing number of species increases the amplitude of biphasic response.
Increasing connectedness increases the amplitude of biphasic response.

Increasing interaction strengths increases dynamic range of the response. Interaction
strength is used as a multiplier to scale the range of interaction parameters in panel e.

Biphasic dependence also emerges with intermediate ratio of positive and negative
interaction strengths. The total interaction strength is held constant at 2. The ratio of
maximum positive to maximum negative interaction strength ranges from 0.1 to 10.
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Fig. 3. Experimental demonstration of the predicted principle with simple communities

a. Spatial partitioning implemented with microtiter plates. The same starting cell culture was
dispensed into wells of 6, 24, 96, 384, and 1536 plates. The total volume was constant across all
plates and evenly distributed into all wells within the plate. After culturing, each plate was
pooled to measure the overall community structure.

b-c. Schematic of the one-directional negative (strain 1 and 2) and positive (strain 1 and 3)
pairwise interaction.

d. Increased biodiversity for pairwise negative interactions. The final community structures
of are quantified by selection plating and CFU counting. Data are represented as mean values +/-
SD and n=16. The same method applies to panel e. 10 nM of aTc and 100 mM of IPTG were used to
control circuit functions, and the same with panel e.

e. Decreased biodiversity for pairwise positive interactions. The QS signal from strain 1
promotes the growth of the receiver strain 3 by inducing the production of CcdA, which is the
antitoxin to CcdB. Data are represented as mean values +/- SD and n=16. The slight increase in
at low partitioning level was likely due to background-level negative interactions when the two
strains compete for nutrition and space.

f. Simulated results of experimental pairwise negative community response to partitioning.
Both simulations have been run 10 times and the mean (black open circle and grey trace) and
standard deviation (grey error bars) are shown. The negative interaction has § = [0,0], y =
[0,0;0.7,0], and 8 = [0,0;0,0]. Data represented as mean values +/- SD with n=10 (the same
applies to panel g)

g. Simulated results of experimental pairwise positive community response to partitioning.
The positive interaction is simulated using 6 = [0,1.1], y =[0,0.15;0.15,0], and 8 = [0,0;0.8,0].
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Fig. 4. Biphasic dependence observed with complex communities.
a. Schematic of a 47-member auxotroph community. The interactions in the community are

modulated by the concentration of casamino acid. When the casamino acid concentration is
low, the primary interaction is cooperation; when the concentration is high, the primary
interaction is competition.

. Partitioning experiment using an auxotrophic complex community. A selection of

47 auxotrophic strains were identified from the Keio collection and barcoded for NGS
quantification. Complex communities were developed and grown at five levels of
partitioning and varying amino acid concentration for 30 hours. Decreasing amino acid
concentration shifts communities from negative interaction dominated to positive interaction
dominated while transitioning through a state where both negative and positive interactions
are strong. The panel presents representative relative abundance of each strain at the end of
the experiment, as measured by NGS, for a single biological replicate.

. Validation of the principle by a 47-member auxotroph community. Simpson index of

communities demonstrates the effects of partitioning and amino acid concentration on
population biodiversity. Each dark open circle represents the average among the 2
sequencing runs of 3 biological replicates (grey dots). Error bars represent standard deviation
of the 6 replicates (N=6) and error bar centers represent the means. One-sided t test was used
to test against a null hypothesis of a 0 slope. Degrees of freedom of the three-piece models
are 10, 16, and 10 and all other panels are 28. The p values are: 0.1%: 0.1078, 0.02%:
0.0199, 0.005%: 0.0060 (left), 0.4980 (middle), 0.0168 (right); 0.001%: 0.0132, 0.0002%:
0.2371. The asterisks indicate that the trends of data points enclosed by the corresponding
brackets have p-values less than 0.05.
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Fig. 5. Multilevel partitioning is a robust strategy to maintain community biodiversity

a.

b.

C.

d.

Sub-optimal maintenance of diversity with a homogeneous partitioning level. We
simulated the impact of spatial partitioning on a random 20-member community with both
positive and negative interactions and non-archetypical species. The populations persist at
different partitioning levels. Although an intermediate partitioning level maintains the
highest diversity, it does not maintain all 20 species.

Robust maintenance of diversity through mixed level of partitioning. With more
partitioning levels included, the persistence of more species can be maintained. When all 5
partitioning levels are included, all 20 species can be maintained. Instead of using any single
partitioning level, a mixed level of partitioning allows most populations to persist.

The cross-section of the cellulose sponge and experimental procedure. The pore size has
a wide distribution that naturally creates multi-level partitioning for the global community.
The sponge is then fit into an autoclavable culture tube. After autoclaving, the same initial
cell culture as used in Fig. 4 is added to the tube and saturates the sponge.

Multilevel partitioning to maintain biodiversity. Without prior knowledge of the
interactions within a community, it is challenging to choose a single partitioning level that
best maintain the community diversity. Multilevel partitioning can promote the chance for
any archetype to thrive in the partitioning level it prefers. We cultured the Keio collection
auxotroph community either as a homogeneous liquid culture (-) or with a sponge (+) that
has varying pore sizes that provide a multilevel partitioning. Three amino acid concentrations
(x axis labels) were tested, and all have shown an increase in community diversity with
multilevel partitioning compared with liquid culture (no partitioning).
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Methods

Data availability

Experimental data generated for this manuscript are provided as source data files, and deposited to
GitHub at: https://github.com/youlab/partitioning NCB2021.

Code availability

The simulation and data-analysis codes used in this the study are deposited to GitHub at
https://github.com/youlab/partitioning NCB2021.

OS-based and synthetic E. coli strains

The strains are constructed from previously published strains and their antibiotic resistance are
verified using antibiotic plates. Strain 1 is previously published as QS-CAT strain in °'. Strain 2
is identical to the circuit of prey strain except that the CcdBs is replaced with the wild-type CcdB
gene >% Strain 3 is previously published in '' as M, in the synthetic mutualistic pair.

Growth conditions

M9 medium contained standard M9 salt (6.8 g/L. Na,HPO4, 3 g/L KH,PO,4, 1 g/l NH4CI, and
0.5/L NaCl), 0.5% (w/v) glucose, 1 mM MgSQOy, 0.1 mM CaCl,, 1 pg/ml thiamine, and 0.1%
(w/v) casamino acid. It was buffered with 0.IM of MOPS and adjusted to a pH of 7.0 with
NaOH. The antibiotic concentrations used in this study to maintain the plasmids during overnight
culture are: 100 pg/ml chloramphenicol, 50 pg/ml kanamycin, 100 pg/ml ampicillin, and 50
pg/ml spectinomycin. The agar plates were made with 1.5% agar and standard Luria-Bertani (LB;
Miller) broth, containing the same antibiotic concentrations.

We grew the strains with M9 medium at 30°C for 8~12 hours from glycerol stocks to create
overnight cultures. We then calibrate the OD of the overnight culture to 0.1 and mix each strain
by equal ratio followed by 2x10°fold dilution. This calibration and dilution procedure ensures a
starting total cell concentration of 50~200 cells/ml. Each well contains 2.56 ml, 640 ul, 160 pul,
40 pl, and 10 pl for 6, 24, 96, 384, and 1536 well plates, respectively. QS-based synthetic
systems were cultured using M9 medium supplemented with aTc and IPTG but no antibiotics.
The Keio strains were cultured with 100 pg/ml chloramphenicol to maintain the barcoded
plasmids. The Keio auxotroph strains were cultured in the same M9 medium except for the
concentration of added casamino acid. The strains did not lose antibiotic resistances over the
experiments. The plates were sealed using both AeraSeal (Excel Scientific) and Breathe-Easy
membrane (Diversified Biotech) and are covered by plastic lids. The microtiter plates were
shaken at 225 rpm at 30 °C. for 24 hours for the QS-based strains. We cultured the regular Keio
strains for 30 hours and auxotrophic Keio strains for 48 hours to reach sufficient cell density.
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Quantifying community structure of QS-based communities

After culturing, we pooled all wells within each microtiter plate and measured the OD of each
pooled community. Each sample was diluted and plated on multiple types of antibiotic plates
with 4 replicate plates. The antibiotic plates were cultured at 37°C overnight before CFU
counting. Since each strain has a unique antibiotic resistance profile, all strains can be measured
using the correct type of antibiotic plates. For each pairwise community, the replicate plating
gave 16 pairs (4x4) of measurements, which were used to determine community structure and
biodiversity index.

Construction of barcoded Keio strains

The 96 non-auxotrophic strains were selected randomly from the Keio collection. We identified
autotrophs by screen all Keio strains with OD in LB greater than 0.45 and OD in MOPS below
0.05. Among the total of 76 auxotroph strains that were screened, we randomly picked 47 to
construct the auxotrophic community.

A library of barcoded plasmids was generated using Gibson Assembly cloning. Briefly, a
plasmid vector backbone was generated by linearizing a plasmid vector (pl5A-GFP-
Carbenicillin, Extended Data Fig 6a) using PCR amplification (P1 and 2, Q5 MasterMix).
Using lower amount of template DNA (as low as 0.1 ng of DNA) reduced the background of
unmodified vectors downstream. The vectors were gel purified and underwent an overnight
restriction enzyme digested using NOTI and PVUI, based on manufacturer’s instructions, to
generate end that overlap two synthesized DNA fragments for Gibson Assembly.

Sequences of the synthesized DNA fragments are provided below. Each part contains a 15-20
base pair overlap with the plasmid vector (yellow) and with each other (red) for Gibson
Assembly, one of the Illumina® adapter sequences in green (part 1 contains the i5 adapter and
part 2 contains the 17 adapter sequence) and 18 random base pairs making up the barcode regions.

Part 1:
GCCTCAGGGCCCGATAGTACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNN
NNNNNNNNNNNCCTCAGGGTCACTAGG -3’

Part 2:

5 -
CTCAGGGTCACTAGGNNNNNNNNNNNNNNNNNNAGATCGGAAGAGCACACGTCT
GAACTCCAGTCACGTGGGCCGCTTAATTAATTAATC -3

Following Gibson Assembly cloning, the barcode DNA fragment was assembled into the vector
backbone in the following structure:
5’...GCCTCAGGGCCCGATAGTACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN
NNNNNNNNNNNNNNCCTCAGGGTCACTAGGGNNNNNNNNNNNNNNNNNNAGATCG
GAAGAGCACACGTCTGAACTCCAGTCACGTGGGCCGCTTAATTAATTAATC...3’
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A library of barcoded plasmids was generated by transforming the Gibson Assembly reaction
into electrically competent cells, allowing an overnight outgrowth of the transformed cells and
harvesting the plasmid library by plasmid midiprep kit (Qiagen), based on the manufacturer’s
instructions. Plasmids were then be transformed into target strains by chemical transformation >>.
Barcoded strains were validated by colony PCR (Supplementary Table 4, Primers 3 and 4, Q5
MasterMix). Following enzymatic clean-up, PCR products were sent for Sanger Sequencing to
validate the barcode sequence of each strain.

A collection of strains from the Keio collection were uniquely barcoded, including more than 94
non-auxotroph strains and 47 auxotrophs. All barcoded strains were validated by sanger
sequencing to contain a single unique barcode sequence. Sanger sequencing validation of all
barcoded strains allowed for simplification of downstream data processing as all barcode
sequences and associated strain identifies are known. The sequencing also allowed us to remove
strains carrying duplicate or multiple barcodes as a result of double transformation.

NGS library preparation

Plasmid DNA was extracted from experimental samples by miniprep kit (Zymo Research), using
the manufacturer’s instructions, or by boiling lysis of bacteria (95°C for 10 m in nuclease-free
water). Extracted DNA was stored at -20°C until use in downstream NGS library preparation.
Libraries for NGS sequencing were prepared using a two-step PCR protocol using NEBNext®
Ultra™ II Q5® Master Mix. The first PCR step is composed of 2 PCR cycles and is used to
extract barcode sequences from the vector backbones using primers that bind the conserved
Illumina adapter sequences flanking either end of unique barcode sequences (Green in sequences
above). In addition, unique molecular identifiers (UMIs) and dual sample indexes are introduced
during this PCR protocol. Primer sequences are provided in Supplementary Table 4, where the
10-base pair UMI sequence is represented as Y’s and the 8-base pair index sequences are
represented as X’s in red. UMIs are used to uniquely label each template DNA molecular in the
initial sample and allow for downstream correction for sequencing errors introduce by PCR
amplification.

PCR 1 conditions:

Initial denature — 30 sec— 98°C
2x PCR cycles

10 sec — 98°C

30 sec — 67°C

20 sec — 72°C

Final extension — 5 min 72 C
Infinite Hold 4°C

Following PCR 1, PCR clean-up and size selection were achieved using SPRIselect magnetic
beads (Beckman Coulter). Two-step size selection was used (0.95X = supernatant saved = 0.8X
- DNA eluted from bead) based on the manufacturer’s instructions. The cleaned-up PCR
products are then pooled together and amplified using a second round of PCR using the
conditions described below.
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778  PCR 2 conditions:

779  Initial denature - 30s— 98°C

780  20x PCR cycles

781 10 sec —98°C

782 30 sec—66°C

783 20 sec—72°C

784  Final extension — 5 min 72 C

785  Infinite Hold 4°C

786

787  The product from PCR 2 was run on a 2% agarose gel for PCR clean-up and final validation of
788  the library size. DNA was extracted and purified from the gel using the Zymoclean Gel DNA
789  Recovery Kit, based on the manufacturer’s instructions. The cleaned PCR product is the final
790  sequencing amplicon which is compatible for sequencing on standard Illumina sequencing
791  platforms. The DNA libraries were sequenced using 151 base pair, paired-end reads either
792  through a sequencing facility on an Illumina MiSeq or in house using an Illumina MiniSeq. The
793  data collection was performed in either MiSeq Software Suite or MiniSeq Software Suite. For in
794  house sequencing, DNA libraries were denatured, diluted and mixed with a Phi-X spike-in of 30%
795  based on standard Illumina protocols for library preparation of 16S Library on the Illumina
796  Miniseq Platform.

797

798  Final NGS Library:

799  AATGATACGGCGACCACCGAGATCTACACXXXXXXXXYYYYYYYYYYACACTCTTT
800 CCCTACACGACGCTCTTCCGATCTNNNNNNNNNNNNNNNNNNCCTCAGGGTCACTA
801 GGGNNNNNNNNNNNNNNNNNNGATCGGAAGAGCACACGTCTGAACTCCAGTCACA
802 XXXXXXXXATCTCGTATGCCGTCTTCTGCTTG

803  Where N’s represent barcode sequences, X’s represent sample indexes and Y’s represent UMIs.

804
805  Data analysis pipeline

806  Reads from NGS sequencing were analyzed using tools available on the open source, web-based
807  platform, Galaxy (Galaxy version 20.05). Data analysis was simplified due to the fact that all
808  sequencing reads are the same size, all barcode sequences are known a priori and forward and
809  reverse reads are fully overlapping. Sequencing reads take the following format:

810 Read1:

811  NNNNNNNNNNNNNNNNNNCCTCAGGGTCACTAGGNNNNNNNNNNNNNNNNNNAG
812 ATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXXXATCGCGGATGCCGGCT
813 TATGGTTGGGAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGG

814  Read 2:

815 NNNNNNNNNNNNNNNNNNCCTAGTGACCCTGAGGNNNNNNNNNNNNNNNNNNAG
816 ATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTTYYYYYYYYYYXXXXXXXXTTTAG
817 AAATACGTTGTACCCCTAACAATAAAAAAAAAAAAAGGGGGG

818  Where N’s represent barcode sequences, X’s represent sample indexes and Y’s represent UMIs.
819  Following quality control using FastQC software (Galaxy Version .72+galaxy1)>, pooled paired
820  end reads were demultipelexed into different experimental conditions (Barcode Splitter Galaxy
821  Version 1.0.1°°, Trim Sequences Galaxy Version 1.0.2+galaxy0>’, and FASTQ joiner Galaxy
822  Version 2.0.1.1+galaxy0)°.
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Next, paired end reads were merged using the software BBMerge. A high merge rate of 95% or
above was achieved for all reads since forward and reverse reads are completely overlapping.
Correction for PCR amplification error was performed on the Galaxy Platform using the
following selection of tools: Sort Collection (Galaxy Version 1.0.0), FASTQ joiner (Galaxy
Version .0.1.1+galaxy0)’®, UMI-Tools extract and deduplicate (Galaxy Version 0.5.5.1)%,
Bowtie2 (Galaxy Version .3.4.3+galaxy0)*, and Samtools fastx (Galaxy Version
1.9+galaxy1)®.

Finally, strain-specific barcodes were counting in each sample using a custom python script. Up
to two mismatched base pairs were allow per barcode during barcode counting. This was
selected as a reasonable number of mismatched bases that may result from PCR amplification
error using Q5 high fidelity master mix and NGS sequencing error and considering that the
minimum hamming distance between any two barcode sequences was 17 base pairs.

Calibration and replicates

Calibration samples were generated with barcoded strains prepared at known concentrations. As
such, cultures were grown to a similar, low OD (0.3-0.4) and mixed at three different known
ratios as well as one sample where all strains were mixed at an equal ratio (Extended Data Fig
6b). Samples were prepared through the experimental workflow, NGS sequencing and data
analysis. The resulting sequencing reads correlated with the expected relative sample
concentrations (Extended Data Fig 6d) demonstrating the reliability of the barcode sequencing
approach. Normalizing the number of sequencing reads in each of the mixed ratio samples by the
number of reads counts obtain in the equal ratio sample for each respective barcode improved the
correlation between known and expected barcode counts. This normalization likely corrects for
differences in actual strain abundance at the time of sample preparation, (i.e. variations in ODs at
sampling time and differences in OD values and actual cell numbers for samples with similar OD
may vary depending on cell size, etc.). There was one outlier data point in the ‘ratio 2’ sample.
This strain did not appear as an outlier in other samples and was present in technical replicate
sequencing of the same biological sample. As such, this error was most likely a result of human
error in sample and was not associated to a problem with PCR amplification of the species
barcode sequence.

Keio collection experiments

The characterization of Keio auxotrophic community (Extended Data Fig 7a-b) was generated
with an array of initial densities and varying the concentrations of casamino acids.

The overnight monocultures of the 47 auxotrophic Keio strains were mixed by equal volume and
calibrated to a cell density of 100 cells/ml. The medium is the same as the M9 medium described
in section IV.2, except we adjusted the concentration of amino acid to 0%, 0.0002%, 0.001%,
0.005%, 0.02%, and 0.1%. The 3 replicates were generated in two separate days. The distribution
of OD of the end points are shown in Extended Data Fig 7b.

The overnight monocultures of the 94 regular Keio strains were mixed by equal volume and
calibrated to a cell density of 120 cells/ml, which is verified using CFU counting. M9 medium
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was used (see section IV.2). 6, 24, 96, 384, and 1536 plates were used to create 5 levels of
partitioning. All microtiter plates were shaken at 225 r.p.m. at 30°C for 30 hours. The OD of the
pooled samples were 0.375, 0.320, 0.220, 0.294, 0.179 for 6, 24, 96, 384, 1536 well plates. The
measurements of the biodiversity are shown in Extended Data Fig 7c.

Sponge experiment

We used kitchen sponge from Scotch Brite and cut the sponge into 3 pieces with dimensions of
1.2 cm by 1.2 cm by 4cm. The sponges were sterilized in 15ml falcon tubes by autoclaving. We
checked the sterilization of the sponges by adding LB growth medium to the sponge and shaken
at 225rpm at 30 °C for 48 hours in a 15ml falcon tube. No cell growth was detected based on OD
measurement.

We mixed the 47 Keio auxotroph strains by equal volume in M9-glucose medium and diluted the
mixture to a cell density of around 300/ml, which is verified by CFU counting. M9-glucose
medium with no casamino acid contains standard M9 salt (6.8 g/L Na,HPOy4, 3 g/L KH,POy, 1
g/l NH4Cl, and 0.5/L NaCl), 0.5% (w/v) glucose, | mM MgSO,4, 0.1 mM CaCl,, 1 pg/ml
thiamine. The M9-glucose medium is buffered with 0.1M of MOPS and adjusted to a pH of 7.0
with NaOH. We then created three variations of the M9 medium by adding 0.001%, 0.005%, and
0.02% casamino acid. 7ml of cell culture was added to 15ml falcon tubes with or without sponge.
The cell cultures were shaken for 20 hours at 30°C to enable the cells to reach a higher cell
density, then the cell cultures were cultured at 30°C for another 14 hours. We first applied
physical pressure to the sponge multiple times to mix the cell culture and then we collected the
supernatant for downstream processing.
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