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Abstract

Rational numbers are represented by multiple notations: fractions, decimals, and
percentages. Whereas previous studies have investigated affordances of these notations for
representing different types of information (DeWolf, Bassok, & Holyoak, 2015; Tian,
Braithwaite, & Siegler, 2020), the present study investigated their affordances for solving
different types of arithmetic problems. We hypothesized that decimals afford addition better than
fractions do and that fractions afford multiplication better than decimals do. This hypothesis was
tested in two experiments with university students (Ns = 77 and 80). When solving fraction and
decimal arithmetic problems, participants converted addition problems from fraction to decimal
form more than vice versa, and converted multiplication problems from decimal to fraction form
more than vice versa, thus revealing preferences favoring decimals for addition and fractions for
multiplication. Accuracies paralleled these revealed preferences: Addition accuracy was higher
with decimals than fractions, whereas multiplication accuracy was higher with fractions than
decimals. Variations in notation preferences as a function of the types of operands involved (e.g.,
equal versus unequal denominator fractions) were more consistent with an explanation based on
adaptive strategy choice (Siegler, 1996) than with one based on semantic interpretations

associated with each notation.
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Introduction

Symbolic notations are essential to the practice and pedagogy of math. On the one hand,
they enable representation of mathematical information in a compact form. On the other hand,
they facilitate problem solving by enabling the use of symbol manipulation algorithms, such as
column addition and long division.

Rational numbers, unlike whole numbers, are commonly represented by multiple
symbolic notations: fractions, decimals, and percentages. These notations have existed in their
modern forms for over three hundred years (Cajori, 1928), and are pervasive across cultures,
languages, and geographic regions. These observations suggest that the three notations are not
redundant, but rather that each serves some functions uniquely well. What, then, are the
functions best served by different rational number notations?

Previous research has focused on identifying types of information that each notation is
best suited to represent. For example, fractions are preferred to decimals for representing ratios
between small discrete sets, whereas decimals are preferred to fractions for representing ratios
between continuous quantities (DeWolf et al., 2015; Tian et al., 2020). Further, when
representing a given type of ratio, accuracy is generally highest when using the notation that is
preferred for that type of ratio.

However, symbolic notations are used not only to represent information but also to solve
problems. Are different notations best suited for solving different types of problems? To address
this question, the present study investigated affordances of decimals and fractions for solving
arithmetic problems involving addition and multiplication. We tested several predictions relating
to the central hypothesis that decimals afford addition better than fractions do, whereas fractions

afford multiplication better than decimals do.
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Below, we review previous research on the suitability of different rational number
notations for representing different types of information. Next, we elaborate on our hypothesis
regarding affordances of different notations for solving different types of problems. Then, we
describe the present study in more detail.

Suitability of Rational Number Notations for Representing Different Information

A rational number is the quotient of two integers, termed numerator and denominator
(Rosen, 2012). Fractions, decimals, and percentages all allow the numerator to be any integer,
but differ in whether and how they constrain the denominator. Fractions allow the denominator
to be any nonzero integer, decimals require it to be a power of 10 (for example, the implied
denominator of 0.321 is 1000), and percentages require it to be 100. These formal differences
imply differences in the types of information that each notation is best suited to represent.

DeWolf et al. (2015) analyzed these differences from the perspective of semantic
alignment theory (Bassok, Chase, & Martin, 1998). They reasoned that each notation aligns most
naturally with situations possessing a conceptual structure similar to that of the notation.
Specifically, because fractions allow the numerator and denominator to vary freely, fractions
have a two-dimensional structure and therefore align well with ratios between cardinalities of
sets. Because decimals allow only the numerator to vary freely, decimals are one-dimensional
and therefore align well with the magnitudes of ratios between continuous masses.

Consistent with these hypotheses, DeWolf et al. (2015) found that university students
preferred using fractions to represent ratios between cardinalities of sets, but preferred using
decimals to represent ratios between continuous masses. Further, when judging the
correspondence between a given ratio and a given rational number, participants performed best

when the notation of the number (fraction or decimal) was the one preferred for the given type of
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ratio. Subsequent studies obtained similar findings in the U.S., Korea, and Russia (Lee, DeWolf,
Bassok, & Holyoak, 2016; Plummer, DeWolf, Bassok, Gordon, & Holyoak, 2017; Rapp, Bassok,
Dewolf, & Holyoak, 2015; Tyumeneva et al., 2017). Gray et al. (2017) found that performance
with percentages is similar to that with decimals, and concluded that the conceptual structure of
percentages, like that of decimals, is one-dimensional.

Tian et al. (2020) analyzed preferences among rational number notations from a different
theoretical perspective, the Strategy Choice Model (SCM; Siegler, 1996). Tian et al. (2020)
reasoned that different notations afford different procedures for performing a task, so choosing a
notation implies choosing the procedures afforded by that notation. Thus, notation choice can be
viewed as a form of strategy choice. According to the SCM, strategy choices depend in part on
the time and effort needed to execute each candidate strategy. Tian et al. (2020) accordingly
assumed that preferences among notations for representing a given ratio should reflect
differences in the time and effort required to represent the ratio with each notation.

Based on these assumptions, Tian et al. (2020) predicted that the preference for using
fractions to represent ratios between discrete sets should decrease as the sizes of the sets
increase, because determining the numerators and denominators of such ratios via counting
requires more time and effort when the sets are larger. They also predicted that percentages
should be preferred to decimals for representing ratios between large sets, and between
continuous masses, if precision beyond two significant digits is not required. The basis for this
prediction was that decimals, but not percentages, require a choice among implicit denominators
(e.g., 10, 100, 1000), which incurs effort. Both predictions were confirmed (Tian et al., 2020).

In the next section, we apply the two theoretical perspectives described above to analyze

affordances of fractions and decimals for solving different types of arithmetic problems.
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Affordances of Fractions and Decimals for Arithmetic

Arithmetic with rational numbers is exceptionally challenging, both with fractions
(Gabriel et al., 2013; Hansen et al., 2015; Hecht & Vagi, 2012; Mack, 1995; Newton, Willard, &
Teufel, 2014; Siegler & Pyke, 2013) and with decimals (Hiebert & Wearne, 1985; M. A. Hurst &
Cordes, 2018; Kouba et al., 1988; Lortie-Forgues & Siegler, 2017; Ren & Gunderson, 2021;
Rittle-Johnson, Star, & Durkin, 2009). Difficulties in this area often persist into adulthood (M.
Hurst & Cordes, 2016, 2018; Newton, 2008; Siegler & Lortie-Forgues, 2015). For example, 138
university students in Braithwaite and Sprague (2021) correctly answered only 82% of twelve
fraction and decimal addition and multiplication problems.

The central hypothesis of the present study was that fractions and decimals each best
afford different arithmetic operations. Specifically, we hypothesized that decimals afford
addition better than fractions do, whereas fractions afford multiplication better than decimals do.
This hypothesis was motivated by both theoretical perspectives described in the previous
section—semantic alignment and strategy choice.

Taking a semantic alignment perspective, rational numbers have multiple semantic
interpretations: as measures, part-whole relations, ratios, quotients, and operators (Kieren, 1980).
The measure interpretation is related to addition, in that “the joining of two measures to find a
‘sum’ measure exhibits the vector additions aspect of rational numbers” (Kieren, 1980, p. 136).
Further, “using the metre as a [measurement] unit provides a natural entre to decimal notation”
(Kieren, 1980, p. 136). Thus, decimals and addition are naturally aligned via their associations
with measurement. In contrast, the quotient interpretation is closely related to multiplication
because quotients involve division, the inverse of multiplication. Fractions are also associated

with quotients, because the numerator and denominator of a fraction directly correspond to the



AFFORDANCES FOR ARITHMETIC 7

dividend and divisor of the corresponding quotient (i.e., a/b = a+b; Wu, 2008). Thus, fractions
and multiplication are naturally aligned via their associations with quotients. (See Dewolf, Son,
Bassok, & Holyoak, 2017 for empirical evidence of an association between fractions and
multiplication.)

Taking a strategy choice perspective, different notations afford different procedures, and
fast or easy procedures should be preferred to slow or effortful ones. To apply these assumptions
to the analysis of fraction and decimal arithmetic procedures, we assume that procedures
requiring one whole number arithmetic operation tend to be faster and easier than procedures
requiring multiple such operations. The basis for this assumption is that shifting between
different whole number operations, such as between addition and multiplication, requires
additional time and effort relative to repeating the same operation (Jersild, 1927).

First consider the standard procedures for adding fractions and decimals. To add fractions
with equal denominators one may simply add the numerators (e.g., 3/4+6/4 = 9/4), but to add
fractions with unequal denominators (e.g., 1/10+3/4), one must (1) convert the addends into
equivalent fractions with a common denominator (e.g., 1/10 = 2/20, 3/4 = 15/20), before (2)
adding the numerators (e.g., 2/20+15/20 = 17/20). Step 1 requires whole number multiplication,
and step 2 requires whole number addition. Adding decimals, in contrast, requires whole number
addition—to add the individual digits of the addends—but not multiplication (e.g., 0.1+0.25 =
0.35). Thus, other factors being equal, addition should be faster and/or easier in decimal than
fraction format.

Now consider the standard procedures for multiplying fractions and decimals. To
multiply fractions one may simply multiply their numerators and denominators (e.g., 3/10x1/4 =

3/40) , a procedure so intuitive that students often use it before being taught it (Byrnes & Wasik,
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1991). To multiply decimals (e.g., 0.3x0.75) one must (1) multiply as with whole numbers (e.g.,
3x75 = 225), then (2) place the decimal point so the answer has as many decimal digits as the
total number of decimal digits in the operands (e.g., 0.3 and 0.75 have one and two decimal
digits respectively, so the answer should have 1+2 = 3 decimal digits: 0.225). Step 1 requires
whole number multiplication; if neither operand is a whole number, step 2 requires addition—to
add the numbers of decimal digits in the operands. Thus, because fraction multiplication requires
only multiplication of whole numbers whereas decimal multiplication requires both
multiplication and addition of whole numbers, multiplication should be faster and/or easier in
fraction than decimal format.

The Present Study

Both theoretical perspectives discussed in the previous section implied that when
choosing to use either fractions or decimals to solve addition and multiplication problems,
individuals should prefer decimals for addition problems and fractions for multiplication
problems. To test this possibility, we leveraged the fact that adults sometimes convert fractions
to decimals or vice versa when solving fraction and decimal arithmetic problems (Braithwaite &
Sprague, 2021). We reasoned that converting from one notation to another reveals a preference
for the latter notation for the problem at hand.

However, spontaneous conversion between fractions and decimals during arithmetic
calculation is rare. For example, university students in Braithwaite and Sprague (2021) did so on
4-5% of trials. We therefore created contexts designed to encourage such conversions.

First, we presented problems in pairs involving the same arithmetic operation. In the
blocked condition, each pair included two fraction problems or two decimal problems, whereas

in the interleaved condition, each pair included one fraction problem and one decimal problem.
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We predicted that in the interleaved condition, conversion between notations would occur more
often than in the blocked condition (Prediction 1.1), and that addition problems would be
converted from fractions to decimals more often than vice versa, whereas the opposite would
occur for multiplication problems (Prediction 1.2).

Next, we presented mixed arithmetic problems involving one fraction operand and one
decimal operand. Solving these problems using a standard procedure requires either converting
the fraction operand into a decimal or vice versa. We predicted that conversions into decimals
would be more common on addition than multiplication problems and conversions into fractions
would be more common on multiplication than addition problems (Prediction 1.3).

The above predictions involve preferences, but our analysis of arithmetic procedures also
has implications for accuracy, because procedures that are relatively cognitively taxing—that is,
the fraction addition and decimal multiplication procedures—might also be relatively error-
prone. To test this possibility with apples-to-apples comparisons, we created matched pairs of
fraction and decimal problems involving the same arithmetic operation and very similar
operands', such as (3/10x1/4, 0.3x0.75). We predicted that on these comparable fraction and
decimal problems, addition accuracy would be higher with decimals than fractions, and
multiplication accuracy would be higher with fractions than decimals (Prediction 2.1).

A final prediction involved effects of our blocking/interleaving manipulation on
accuracy. Interleaving different types of problems during practice often improves learning
outcomes, but at the cost of reduced accuracy during practice (Rohrer & Taylor, 2007; Taylor &
Rohrer, 2010). However, we predicted that interleaved presentation in the present study would

yield higher accuracy than blocked presentation (Prediction 2.2). The rationale for this prediction

! We used similar operands rather than exactly equal operands to prevent participants from solving one of the
problems and then copying their answer to the other problem rather than separately solving both problems.
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was that interleaving would encourage conversion of problems into whichever notation best
affords the given arithmetic operation (Prediction 1.1), which would be associated with higher
accuracy for that operation (Prediction 2.1).

Table 1 summarizes the predictions that were tested in the present study. Predictions 1.1,
1.2, and 1.3 involve notation preferences, as revealed by cross-notation conversions, and
Predictions 2.1 and 2.2 involve accuracy.

Table 1. Predictions tested in the present study.

Number Prediction

1.1 Conversion from one notation to the other will be more common when fraction and decimal
problems are interleaved than when they are blocked

1.2 When fraction and decimal problems are interleaved, addition problems will be converted
from fractions to decimals more than vice versa, whereas multiplication problems will be
converted from decimals to fractions more than vice versa

1.3 On arithmetic problems with one decimal operand and one fraction operand, fractions will
be converted to decimals more often on addition than multiplication problems, whereas
decimals will be converted to fractions more often on multiplication than addition problems

2.1 On comparable fraction and decimal arithmetic problems, addition accuracy will be higher
with decimals than fractions, whereas multiplication accuracy will be higher with fractions
than decimals

2.2 Arithmetic accuracy will be higher when problems involving the same operation but
different notations are interleaved than when problems are blocked by notation

Experiment 1
Participants in Experiment 1 first completed the Traditional Arithmetic Task, which
involved addition and multiplication problems with either fraction or decimal operands but not
both. Problems were presented in either the blocked condition or the interleaved condition, as
described above. After completing the Traditional Arithmetic Task, participants completed the
Mixed Arithmetic Task, which involved addition and multiplication problems with one fraction

and one decimal operand. Written work on both tasks was analyzed to identify cases of
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converting fractions into decimals or vice versa, affording tests of Predictions 1.1, 1.2, and 1.3.
Predictions 2.1 and 2.2 were tested by analyzing accuracies on the Traditional Arithmetic Task.
Method

The experiment received approval from Florida State University Internal Review Board
(IRB), study title is “Investigating Adults' Understanding of Rational Numbers and Rational
Arithmetic” and the IRB approval ID is 00000429.
Participants

80 undergraduate students were recruited from a public university in the southeast US.
Students participated in exchange for course credit. Three participants were excluded from
analysis due to not completing either arithmetic task, leaving 77 participants, 39 in the blocked
condition and 38 in the interleaved condition. Six of these (4 in the blocked condition, 2 in the
interleaved condition) were excluded from analysis of the Mixed Arithmetic Task due to not
completing that task. Participants were predominantly freshmen or sophomores (n = 51) and
female (n = 55).
Materials

Traditional Arithmetic Task. Stimuli were 24 arithmetic problems, six for each
combination of two arithmetic operations, addition and multiplication, and two notations,
fraction and decimal (Table 2). The six fraction problems for each operation included two
problems for each of three types of operand pairs: two fractions with equal denominators (ED),
two fractions with unequal denominators (UD), and one whole number and one fraction (W-F).
Similarly, the six decimal problems for each operation included two problems for each of three
types of operand pairs: two decimals with equal numbers of decimal digits (EDD), two decimals

with unequal numbers of decimal digits (UDD), and one whole number and one decimal (W-D).
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The complexity of the problems was similar to those in a previous study of the same participant
population (Braithwaite & Sprague, 2021). Accuracy in that study averaged around 80%,
suggesting that such problems are appropriately difficult for this population.

Table 2. Stimuli for the Traditional Arithmetic Task.

Notation
Operation Operands Fraction Decimal
Addition ED/EDD 3/4+6/4 0.75+0.50
3/5+1/5 0.6+0.8
UD/UDD 4/5+1/4 0.8+0.75
1/10+3/4 0.1+0.25
W-F/W-D 3+1/5 3+0.6
2+3/4 2+0.25
Multiplication ED/EDD 4/5%1/5 0.8%0.6
3/4x5/4 0.75%0.25
UD/UDD 2/5x3/4 0.4x0.25
3/10x1/4 0.3x0.75
W-F/W-D 9%1/5 9%0.4
2x3/4 2x0.25

Note. Problems appearing in the same row were matched problems. ED = fractions with equal
denominators; EDD = decimals with equal numbers of decimal digits; UD = fractions with
unequal denominators; UDD = decimals with unequal numbers of decimal digits; W-F = a whole
number and a fraction; W-D = a whole number and a decimal.

Each fraction problem was matched with a decimal problem. Matched problems appear

in the same row of Table 2. In the interleaved condition, matched problems were presented
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together. To increase the likelihood that participants in that condition would convert one problem
into the notation of the matched problem, matched problems involved the same arithmetic
operation, the first operands in each matched pair were equal, and the second operands were
related by a small multiplicative factor. For example, in the matched pair (3/4+6/4, 0.75+0.50),
3/4 equals 0.75 and 6/4 is three times 0.50. Further, ED problems were matched with EDD
problems, UD problems with UDD problems, and W-F problems with W-D problems.

Mixed Arithmetic Task. Stimuli were 12 arithmetic problems with one fraction operand
and one decimal operand, six addition problems (1/2+0.4; 4/5+0.3; 1/5+0.6; 0.8+6/8;
0.95+18/20; 0.44+84/100) and six multiplication problems (3/5x0.5; 9/10x0.7; 3/5%0.7;
0.5%16/20; 0.6x4/10; 0.4%2/8). Within the six problems for each arithmetic operation, the first
operand was equally often a fraction or a decimal.

Other Tasks. Participants also completed a Conversion Task, which required converting
fractions into decimals or vice versa, and two executive function tasks: Alpha Span (a measure of
working memory; Craik, Bialystok, Gillingham, & Stuss, 2018), and Plus-Minus (a measure of
shifting; Jersild, 1927). Because these tasks did not relate to our main predictions, the tasks and
results from them are presented in the Supplementary Materials.

Procedure

Sessions were conducted in person and tasks were presented in paper-and-pencil format.
For all arithmetic problem solving tasks, participants were instructed to solve the problem
without using a calculator. Participants completed the tasks in a fixed order: Alpha Span, Plus-
Minus, Traditional Arithmetic, Conversion, Mixed Arithmetic. Participants were randomly
assigned to the blocked or interleaved condition, which differed only with respect to the

Traditional Arithmetic Task.
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In the Traditional Arithmetic Task, two problems were presented side-by-side on each
page. Participants read both problems aloud, then solved them in whichever order they preferred.
After solving both problems, they were asked which problem they solved first and why.

In the blocked condition, each problem was presented side-by-side with the other
problem involving the same notation, arithmetic operation, and type of operands. For example,
3/4+6/4 and 3/5+1/5 were presented together. All fraction problems were presented before all
decimal problems or vice versa, and within each notation, all addition problems were presented
before all multiplication problems or vice versa. Orders of presentation of notations and
operations were counterbalanced across participants.

In the interleaved condition, each problem was presented side-by-side with the matched
problem of the other notation. For example, 3/4+6/4 and 0.75+0.50 were presented together. All
addition problems were presented before all multiplication problems or vice versa, and the
problem appearing on the left side of the page was either always a fraction problem or always a
decimal problem. Which operation was presented first, and whether the problems on the left
were fraction or decimal problems, were counterbalanced across participants. In this experiment
and the next one, presenting problems in pairs precluded separately measuring how long
participants took to solve each problem.

In the Mixed Arithmetic Task, participants were told they could solve each problem using
decimals or fractions or in any other way they preferred and could write the answer in decimal or
fraction form. Addition and multiplication problems were interleaved. The arithmetic operation
of the first problem, and the notation of the first operand in the first problem, were

counterbalanced across participants.
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Coding and Analysis

To test the predictions regarding conversion between notations (Table 1, Predictions 1.1,
1.2, and 1.3), each trial of each arithmetic task was coded according to whether the participant
converted fractions into decimals, or vice versa, either while solving the problem or in their final
answer. To test the predictions regarding accuracy (Table 1, Predictions 2.1 and 2.2), responses
were coded as accurate if they were numerically correct, regardless of the notation in which the
responses were given. Analyses were conducted in R (R Core Team, 2020). Here and in the next
experiment, all significant effects are reported.
Transparency and Openness

We report all data exclusions (if any), all manipulations, and all measures in this
experiment and in Experiment 2. All data, analysis code, and research materials will be available
for public access on OSF Network upon acceptance of the manuscript

(https://osf.io/uzetx/?view_only=77¢68c31d453422ba2e68ec639e0dlce) .

Results
Traditional Arithmetic Task

Descriptive statistics for the Traditional Arithmetic Task are presented in Table 3.


https://osf.io/uzetx/?view_only=77e68c31d453422ba2e68ec639e0d1ce
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Table 3. Mean (SD) percent trials in which conversion occurred, and accuracy, on the Traditional

Arithmetic Task for each combination of operation, notation, and condition (Experiment 1).

Conversion Accuracy
Operation Notation Blocked Interleaved Blocked Interleaved
condition condition condition condition
Addition Fraction 2(7) 12 (23) 92 (18) 84 (29)
Addition Decimal 3(16) 1 (6) 94 (14) 92 (17)
Multiplication Fraction 7(21) 14 (26) 65 (40) 75 (33)
Multiplication Decimal 13 (29) 21 (33) 58 (33) 64 (32)

Cross-Notation Conversion. As predicted (Prediction 1.1), cross-notation conversion
was more common in the interleaved condition than in the blocked condition (12% vs. 6%). This
effect was significant in a mixed ANOVA with notation (fraction or decimal) and operation
(addition or multiplication) as within-subjects factors and condition (blocked or interleaved) as a

between-subjects factor, F(1, 75) =4.05, p =.048, qi =.02. Conversion occurred more often on
multiplication than addition trials (14% vs. 4%), F(1, 75)=29.00, p <.001, ni = .04. Further, a

notationxoperation interaction was found, such that conversion occurred more often on fraction
than decimal addition problems (7% vs. 2%), but occurred more often on decimal than fraction

multiplication problems (17% vs. 10%), F(1, 75) = 7.50, p = .008, ryi =.02.

Because Prediction 1.2 related specifically to the interleaved condition, conversion in that
condition was submitted to a separate ANOV A with operation and notation as within-subjects
factors. Consistent with Prediction 1.2, conversion in the interleaved condition was more
common on fraction than decimal addition problems (12% vs. 1%), but was more common on

decimal than fraction multiplication problems (21% vs. 14%), F(1, 37)="7.35, p =.010, '?5,
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=.04. Conversion in the interleaved condition was also more common on multiplication than

addition problems (18% vs. 7%), F(1,37)=19.92, p <.001, ni =.05.

Order of Solving Problems. As another test of our hypothesis regarding notation
preferences, we submitted the proportion of problem pairs in the interleaved condition on which
participants chose to solve the fraction problem before the decimal problem to ANOVA with
arithmetic operation as a within-subjects factor®. The fraction problem was solved first more
often on pairs involving multiplication than addition (64% vs. 45%), F(1,35) = 13.23, p <.001,

ni = .06, consistent with the preferences revealed in our analyses of conversion.

Accuracy. As predicted (Prediction 2.1), in the Traditional Arithmetic Task, addition
accuracy was higher with decimals than fractions (93% vs. 88%), whereas multiplication
accuracy was higher with fractions than decimals (70% vs. 61%). This notationxoperation

interaction was significant in an ANOVA on accuracy with condition as a between-subjects

factor and notation and operation as within-subjects factors, F(1, 75) = 8.39, p = .005, 7?%, .02.

This analysis also found an effect of operation, F(1, 75) = 62.65,p <.001, qg =.16, indicating

that accuracy was higher on addition than multiplication problems (90% vs. 65%).
Contrary to Prediction 2.2, accuracy did not differ between the blocked and interleaved
conditions (77% vs. 79%), p = .762. The only other effect found was a conditionxoperation

interaction, F(1, 75) =4.44, p =.038, ’73’ = .01, indicating that for addition problems, accuracy in

the blocked condition was higher than in the interleaved condition (93% vs. 88%), whereas the
opposite pattern appeared with the multiplication problems (70% vs. 62%). This unexpected

interaction was not replicated in Experiment 2, so we refrain from interpreting it.

2 Two participants were removed from the analysis due to missing data on which problem they chose first.
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Mixed Arithmetic Task

Descriptive statistics for the Mixed Arithmetic Task are presented in Table 4. As
predicted (Prediction 1.3), fraction-to-decimal conversion was more common on addition than
multiplication problems (52% vs. 38%), whereas decimal-to-fraction conversion was more
common on multiplication than addition problems (66% vs. 52%). One-way ANOV As with
conversion of fractions to decimals and conversion of decimals to fractions as the dependent
variables and arithmetic operation as a within-subjects factor revealed effects of operation for

fraction-to-decimal conversion, F(1, 70) =27.50, p <.001, ni = .03 and for decimal-to-fraction
conversion, F(1, 70) = 24.04, p <.001, ni =.03.

Table 4. Mean (SD) percent fraction-to-decimal conversion, percent decimal-to-fraction

conversion, and accuracy for each operation on the Mixed Arithmetic Task (Experiment 1).

Operation Fraction-to-decimal Decimal-to-fraction Accuracy
conversion conversion

Addition 52 (40) 52 (40) 79 (29)

Multiplication 38 (41) 66 (39) 63 (38)

Note. The sum of fraction-to-decimal conversion and decimal-to-fraction conversion exceeds
100% because both types of conversion sometimes occurred within the same trial.
Discussion

Revealed preferences between fractions and decimals for solving problems involving
different arithmetic operations were consistent with the hypothesis that fractions afford
multiplication better than decimals do, whereas decimals afford addition better than fractions do.
Further, accuracies on different problem types paralleled these revealed preferences. In

Experiment 2, we sought to replicate these key findings with a preregistered design.
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Cross-notation conversion on the Traditional Arithmetic Task occurred more often in the
interleaved than in the blocked condition, and conversion was most often in the direction of the
notation that was associated with higher accuracy for the problem at hand. However, accuracy on
the Traditional Arithmetic Task did not differ between conditions. This null finding might reflect
the fact that even in the interleaved condition, conversion between notations on the Traditional
Arithmetic Task was still rather rare (12% of trials). To address this possibility, in Experiment 2,
we attempted to strengthen the blocking-interleaving manipulation by instructing participants
explicitly to compare problems within each pair on the Traditional Arithmetic Task.

Experiment 2

Comparison highlights both differences and similarities between the items being
compared (Gentner, 1983; Loewenstein, Thompson, & Gentner, 2003; Markman & Gentner,
1993; Star et al., 2015). On this basis, we reasoned that comparing problems involving the same
operation but different notations, as in the interleaved condition of the Traditional Arithmetic
Task, could improve accuracy. Highlighting differences between such problems could enable
participants to notice that the standard procedure for one of the problems is easier than the
standard procedure for the other, and highlighting similarities could enable participants to notice
that the easier procedure could be used to solve both of the problems. For example, comparing
4/5+1/4 with 0.8+0.75 might lead one to notice that the standard procedure for adding decimals
is easier than that for adding fractions, and that the decimal addition procedure could be used to
solve 4/5+1/4 after converting it into decimal form (0.8+0.25). Consistent with this possibility,
comparing different solutions to algebra problems improves students’ accuracy and flexibility in

problem solving (Rittle-Johnson & Star, 2007).
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In Experiment 2, we tested modified versions of the interleaved and blocked versions of
the Traditional Arithmetic Task in which participants were instructed to compare the problems in
each pair before solving either of them. We expected that with this modification, Experiment 2
would replicate the main findings of Experiment 1 and would yield larger effects of condition on
cross-notation conversion on the Traditional Arithmetic Task than in Experiment 1. Accordingly,
we also expected to find the predicted effect of condition on accuracy that did not appear in
Experiment 1. Experiment 2 was preregistered at

https://osf.io/9sq5u?view_only=65b0a53912004002b7863acl1c5aa7fb.

Method
Participants

Our preregistered target sample size was 80. This target was powered to detect an effect
of condition on accuracy of d = 0.50 or larger. However, as described below, no such effect was
found. With respect to the predicted effects of operation and notation, post-hoc power analysis
with G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) indicated that a sample of 80 had at

least 80% power to detect effects of ry?) =0.043 or larger. All significant effects reported below

fell into this range.’

Due to a management error, over-recruitment occurred, leading to a sample of 98
participants. To be consistent with our preregistration, we created a limited sample consisting of
the first 80 participants completed. All planned analyses yielded the same significant effects
using data from either the limited sample or the full sample. Analyses of the limited sample are

reported below, and analyses of the full sample are reported in the Supplementary Materials.

3 We report generalized eta-squared below, but this effect size is not supported by G*Power. Thus, for the power
analysis described here, we calculated partial eta-squared for all effects that are reported in the Results.


https://osf.io/9sq5u?view_only=65b0a53912004002b7863ac11c5aa7fb
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The limited sample included 40 participants in the blocked condition and 40 in the
interleaved condition. Participants were predominantly freshmen or sophomores (n = 58).
Following our preregistered exclusion criteria, participants who did not complete a task or
skipped any questions in a task were excluded from analyses of that task, including one
participant for the Traditional Arithmetic task (in the blocked condition) and 25 participants for
the Mixed Arithmetic Task. A few additional participants were excluded from particular
analyses, as detailed in the Supplementary Materials.

Materials

Stimuli were the same as in Experiment 1, with three exceptions. First, in the Traditional
Arithmetic Task, in the blocked condition, 0.6x0.8 was presented instead of 0.8x0.6 due to a
programming error. Second, the Plus-Minus Task was omitted. Third, a survey of math attitudes
was included. Tasks were presented in the following order: Traditional Arithmetic Task,
Conversion Task, Mixed Arithmetic Task, Math Attitude Survey, and Alpha Span. Methods and
results for tasks other than the two arithmetic tasks are described in the Supplementary Materials.
Procedure

The procedure was the same as in Experiment 1, with the following exceptions. First, due
to the ongoing COVID-19 pandemic, interviews were conducted via Zoom rather than in person.
Materials were presented on Qualtrics, and participants were asked to use their own paper to
solve problems before typing in their answers. After each trial, participants showed their work to
the camera and the experimenter took a screenshot to use for coding cross-notation conversions.

Second, in the Traditional Arithmetic Task, after presenting each pair of problems and
before participants solved either of the problems, participants were asked which problem in the

pair was easier and why. They were then instructed to solve the easier problem, after which they
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were shown both problems again and asked, “What similarity do you see between these two
problems, if any?” and then “Is there any way the first problem you solved would be helpful for
solving the other problem?”. They then solved the second problem. When participants were
solving the problems, only the problem they were solving at the moment was visible.

Third, in the Traditional Arithmetic Task, for both the blocked and the interleaved
condition, the side where each problem was presented was counterbalanced across participants.
Coding and Analysis

Coding and analyses were the same as in Experiment 1. All reported analyses were
preregistered unless marked as exploratory, and all preregistered planned analyses are reported.
Preregistered exploratory analyses are reported in the Supplementary Material. We also reported
some additional data exclusion in the Supplementary Material.

Results
Traditional Arithmetic Task

Descriptive statistics for the Traditional Arithmetic Task are presented in Table 5.

Table 5. Mean (SD) percent trials in which conversion occurred, and accuracy, on the Traditional

Arithmetic Task for each combination of operation, notation, and condition (Experiment 2).

Conversion Accuracy
(n="117) (n=19)
Operation Notation Blocked Interleaved Blocked Interleaved
condition condition condition condition
Addition Fraction 5(19) 35 (34) 87 (26) 89 (24)
Addition Decimal 5@21) 6 (13) 95 (17) 96 (9)
Multiplication Fraction 7 (24) 15 (28) 79 (35) 74 (38)

Multiplication Decimal 17 (34) 38 (43) 69 (32) 71 (34)
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Cross-Notation Conversion. As predicted (Prediction 1.1), conversion on the
Traditional Arithmetic Task was more common in the interleaved condition than in the blocked
condition (23% vs. 9%). This difference of 14% was larger than the corresponding difference in
Experiment 1 (12% vs. 6%, a difference of 6%), suggesting that instructing participants to
compare problems may have increased cross-notation conversion in the interleaved condition.
This effect of condition was significant in an ANOVA on conversion with operation, notation,

and condition as factors, F(1, 75)=13.71, p <.001, nf} =.06.

This ANOVA also found that participants converted between notations more often on

multiplication than addition problems (19% vs. 13%), F(1, 75) =7.60, p = .007, '?,% =.01. This
effect was qualified by an operationxnotation interaction, F(1, 75) = 34.55, p <.001, '?ﬁ = .07,

such that conversion occurred more often on fraction than decimal addition problems (21% vs.
5%) whereas conversion occurred more often on decimal than fraction multiplication problems
(28% vs. 11%). Finally, an operationxnotationxcondition interaction was found, F(1, 75) =

14.73, p <.001, '?5 = .03, indicating that the operationxnotation interaction, though directionally

similar in both conditions, was larger in the interleaved condition.

Although the operationxnotation interaction described above was consistent with
Prediction 1.2, our preregistered prediction pertained specifically to the interleaved condition. As
predicted, cross-notation conversion in the interleaved condition was more common on fraction
than decimal addition problems (35% vs. 6%), but was more common on decimal than fraction
multiplication problems (38% vs. 15%). ANOVA on conversion in the interleaved condition

found a notationxoperation interaction, F(1, 39) =34.97, p <.001, ni =.15.

Order of Solving Problems. In an exploratory analysis, we submitted the proportion of

matched problem pairs in the interleaved condition on which participants said that the fraction
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problem was easier than the decimal problem, and therefore solved the fraction problem first, to
ANOVA with arithmetic operation as a within-subjects factor. An effect of operation was found,

F(1,39)=77.81, p <.001, ni = .45. On multiplication trials, most participants (80%) said the

fraction problem was easier, whereas on addition trials, fewer than half (35%) said so.
Accuracy. As predicted (Prediction 2.1), in the Traditional Arithmetic Task, addition
accuracy was higher with decimals than fractions (96% vs. 88%), whereas multiplication
accuracy was higher with fractions than decimals (77% vs. 70%). This notationxoperation
interaction was significant in an ANOVA with notation and operation as within-participants

factors and condition as a between-participants factor, F(1, 77) =11.47, p =.001, ni =.02. This

analysis also found that accuracy was higher on addition than multiplication problems (92% vs.

73%), F(1,77)=30.31, p <.001, '?i =.10. Contrary to Prediction 2.2, accuracy did not differ

between the blocked and interleaved conditions (83% vs. 82%), p = .943.
Mixed Arithmetic Task

Descriptive statistics for the Mixed Arithmetic Task are presented in Table 6. As
predicted (Prediction 1.3), fraction-to-decimal conversion was more common on addition than
multiplication problems (56% vs. 35%), whereas decimal-to-fraction conversion was more
common on multiplication than addition problems (71% vs. 48%). Each of these effects was
significant in an ANOV A with arithmetic operation as a within-subjects factor, (1, 53) = 35.35,

p <.001, '?5 = .08 for fraction-to-decimal conversion and F(1, 53) = 40.64, p <.001, '?f, =.11 for

decimal-to-fraction conversion.



AFFORDANCES FOR ARITHMETIC 25

Table 6. Mean (SD) percent fraction-to-decimal conversion, percent decimal-to-fraction

conversion, and accuracy for each operation on the Mixed Arithmetic Task (Experiment 2).

Operation Fraction-to-decimal Decimal-to-fraction Accuracy
conversion conversion

Addition 56 (34) 48 (35) 80 (30)

Multiplication 35@37) 71 (34) 73 (35)

Note. The sum of fraction-to-decimal conversion and decimal-to-fraction conversion exceeds
100% because participants sometimes performed both types of conversion within a single trial.
Discussion

Experiment 2 replicated the key findings of Experiment 1 regarding both cross-notation
conversion and accuracy. Preregistered replication of these findings lends confidence in their
reliability. Discussion of these central findings is deferred to the General Discussion.

Instructing participants explicitly to compare problems on the Traditional Arithmetic
Task appears to have increased cross-notation conversion in the interleaved condition (23% in
Experiment 2 vs. 12% in Experiment 1). Although assessing effects of comparison was not a
goal of the present study, the findings echo those of previous research suggesting that
comparison is an effective method of encouraging students to make connections between related
problems (Gentner, 1983; Markman & Gentner, 1993; Rittle-Johnson & Star, 2007).

Nevertheless, as in Experiment 1, accuracy did not differ by condition. Interleaving was
hypothesized to improve accuracy by encouraging participants to convert a problem into the
notation associated with higher accuracy for the given arithmetic operation. The absence of such
an effect may reflect conversion occurring rarely even in the interleaved condition, conversion
sometimes occurring in the direction of lower accuracy (e.g., participants sometimes converted

multiplication problems from fraction to decimal form even though multiplication accuracy was
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lower in decimal than fraction form), effects of notation on accuracy for a given arithmetic
operation being relatively small; or a combination of these factors.
Exploratory Analyses

Effects of Operands on Cross-Notation Conversion

In both experiments, effects of notation and arithmetic operation on cross-notation
conversion in the interleaved condition appeared to vary depending on the types of operand pairs
(ED/EDD, UD/UDD, or W-F/W-D) appearing in matched problem pairs. Specifically, the
tendency to convert fractions to decimals more than vice versa for addition appeared attenuated
on ED/EDD pairs, and the tendency to convert decimals to fractions more than vice versa for
multiplication appeared attenuated on W-F/W-D pairs (Table 7). Although we did not predict
effects of operand type, we reasoned that such effects might be informative regarding the reasons
underlying notation preferences. Accordingly, we conducted exploratory analyses using pooled
data from the two experiments. (Separate analyses for each experiment yielded similar results,

and are reported in the Supplementary Materials.)
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Table 7. Mean (SD) percent trials in which conversion occurred for different operand pair types

on the Traditional Arithmetic Task in the interleaved condition.

Types of Operands in Matched Problem Pairs

Operation Notation ED/EDD UD/UDD W-F/W-D

Experiment 1

Addition Fraction 7(21) 13 (32) 16 (37)
Addition Decimal 1(8) 0(0) 3(16)
Multiplication Fraction 9(28) 9 (26) 22 (36)
Multiplication Decimal 29 (43) 20 (39) 16 (33)

Experiment 2

Addition Fraction 23 (39) 33 (47) 49 (45)

Addition Decimal 10 (28) 10 (30) 0(0)
Multiplication Fraction 9127 16 (33) 25 (44)
Multiplication Decimal 44 (47) 35 (47) 30 (46)

First, we submitted cross-notation conversion on addition trials in the interleaved
condition to ANOVA with experiment as a between-subjects factor and notation and operand
pair type as within-subjects factors. Conversion rates varied by operand pair type (ED/EDD:
10%, UD/UDD: 12%, W-F/W-D: 17%), F(2, 152) = 3.89, p = .023, ’73’ =.01. As expected,
conversion was more common on fraction than decimal addition problems (23% vs. 4%), F' (1,

76) =30.59, p <.001, ng =.10. Critically, this effect of notation was smaller on ED/EDD pairs

(15% vs. 6%) than on UD/UDD pairs (20% vs. 3%) or W-F/W-D pairs (33% vs. 1%), as

indicated by a notationxoperand pair type interaction, F(2, 152) = 6.58, p = .002, nf’ =.02.
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Further, conversion on addition problems was more frequent in experiment 2 than

experiment 1 (21% vs. 7%), F(1,76) = 14.40, p <.001, ni =.05. Experiment also interacted with
notation, F(1,76) = 6.26, p = 0.015, ni = 0.02, and with notationxoperand, F(2,152)=3.33, p=
0.038, 7?%, = 0.01. The latter interaction indicated that the notationxoperand interaction that was

found in both experiments was larger in experiment 2.

Next, we submitted cross-notation conversion on multiplication trials in the interleaved
condition to ANOVA with the same factors as the previous analysis. Conversion was more
common on decimal than fraction multiplication problems (29% vs 14%), F(1,76) = 6.02, p

=.016, '?i =.03. As in the analysis of addition trials, the effect of notation was qualified by an

interaction with operand pair type, F(2, 152) = 13.46, Greenhouse-Geisser corrected p <.001,

'?i =.02. Conversion occurred about equally often on decimal and fraction multiplication

problems (21% vs. 23%) on W-D/W-F problem pairs, but was more common on decimal than
fraction problems for EDD/ED pairs (37% vs. 9%) and UDD/UD pairs (28% vs 13%).

The implications of these exploratory analyses are discussed in the General Discussion.
Effects of Cross-Notation Conversion on Accuracy

Additional analyses tested whether cross-notation conversion affected accuracy. Using
pooled data from both experiments, we submitted accuracy on each trial of the Traditional
Arithmetic Task to mixed logistic regression, with experiment (Experiment 1 = -1, Experiment 2
= 1), condition (blocked = -1, interleaved = 1), the interaction of experiment with condition, and
whether the participant converted notations (did not convert = 0, converted = 1) as fixed effects
and participant as a random effect. One regression was conducted for each problem type—
fraction addition, fraction multiplication, decimal addition, and decimal multiplication. An effect

of conversion was found for decimal multiplication problems, indicating that participants were
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more accurate when they converted such problems into fraction form than when they did not
(81% vs. 60%), estimate = 1.32, SE = 0.35, z = 3.80, p <.001. Thus, such cross-notation
conversions appear to have been adaptive. No effect of conversion on accuracy was found in the
other regressions, ps > .05.
Effect of Condition on Mixed Arithmetic Task Accuracy

To determine whether problem sequence in the Traditional Arithmetic Task affected
subsequent performance, using pooled data from both experiments, we submitted the accuracy
from the Mixed Arithmetic Task to a mixed ANOVA with experiment and condition as between-

subjects factors and operation as a within-subjects factor. A conditionxexperiment interaction

was found, F(1,121) =4.31, p = .040, '?i, = (.03, qualified by a conditionxexperimentxoperation
interaction, F(1,121) =4.23, p = .042, nf} = 0.01. Post-hoc #-tests comparing accuracies in the

two conditions separately for each operation in each experiment found that in Experiment 2,
accuracy on multiplication problems was higher in the blocked condition than the interleaved
condition (87% vs. 59%), #(285) = 5.92, p <.001. This effect runs counter to the benefits of
interleaving found in other studies, because it was not predicted and was not found in both
studies, we refrain from interpreting it. The only other effect found was higher accuracy on

addition than multiplication problems (80% vs. 67%), F(1,121) = 14.40, p <.001, '?,% =0.03.

General Discussion
Affordances of Fractions and Decimals for Arithmetic
Fractions, decimals, and percentages all represent rational numbers, but do so in different
ways that have different strengths and weaknesses. Recent research aimed at clarifying these
differences has focused on the types of information that each notation is best suited to represent.

For example, fractions are well suited for representing ratios between small discrete sets,
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whereas decimals are well suited for representing ratios between continuous quantities (DeWolf,
Bassok, & Holyoak, 2015; Gray, DeWolf, Bassok, et al., 2017; Tian, Braithwaite, & Siegler,
2020). The present study extended this line of work by investigating the affordances of fractions
and decimals for solving different types of arithmetic problems.

In both experiments, participants converted fractions to decimals more frequently than
vice versa on addition problems and converted decimals to fractions more frequently than vice
versa on multiplication problems. Accuracies paralleled these conversion patterns, with higher
accuracy on decimal than fraction addition problems and on fraction than decimal multiplication
problems. Together, these findings support our central hypothesis that fractions afford
multiplication better than decimals do, whereas decimals afford addition better than fractions do.

Our claim that fractions afford multiplication particularly well converges with findings of
DeWolf and colleagues (2017), who asked college students to evaluate equations involving
multiplication of a whole number by a fraction, such as 3 x 4/3 = 4. A priming effect was
observed such that performance was facilitated when successive trials involved structurally
inverse equations, such as 4 x 3/4 = 3 followed by 3 x 4/3 = 4. DeWolf et al. (2017) interpreted
the results to indicate that fractions facilitate reasoning about multiplicative relations. Decimals
were not included in DeWolf et al.’s (2017) stimuli, but our findings suggest that decimals are
not as well suited as fractions for performing tasks involving multiplication.

As for addition, difficulties adding fractions—especially fractions with unequal
denominators—are well-documented among both children (Siegler & Pyke, 2013; Siegler,
Thompson, & Schneider, 2011) and adults (Newton, 2008; Siegler & Lortie-Forgues, 2015). To
our knowledge, the present findings are the first evidence that decimals afford addition better

than fractions do. However, the assumption that addition is easier with fractions than decimals
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appears implicit in many math curricula. For example, the grade 4 and 5 teacher manuals of
Eureka Math (Great Minds, 2015) devote 395 pages to fraction addition and subtraction but only
37 pages to decimal addition and subtraction. The corresponding numbers in Houghton Mifflin
Harcourt’s Go Math! (Dixon, Adams, Larson, & Leiva, 2012) are 140 pages for fraction
addition/subtraction and 83 pages for decimal addition/subtraction. It is striking that despite
greater instructional resources being devoted to fraction addition, accuracy remained higher on
decimal addition in the present study.

Notation preferences and accuracy likely depend not only on arithmetic operation, but
also on other factors that affect the difficulty of solving a problem. We speculate that increasing
problem difficulty would tend to amplify differences between notations in the time or effort
required to solve the problems, resulting in even stronger notation preferences (and effects on
accuracy) than those observed in the present study. For example, most individuals would likely
strongly prefer to solve 0.425+0.375 rather than the equivalent fraction problem 17/40+9/24.
However, the notation preferences observed in the present study might be reduced or reversed
for problems that are more complex in the usually-preferred notation than in the other notation.
For example, despite decimals usually being preferred to fractions for addition, most individuals
would likely prefer to calculate 3/8+1/8 than the equivalent decimal problem 0.375+0.125.
Future research may clarify boundary conditions of the notation affordances for arithmetic
identified in the present study.

Theoretical Explanations of Notation Affordances

Our central hypothesis that fractions afford multiplication and decimals afford addition

was motivated by two theoretical perspectives: semantic alignment (Bassok et al., 1998) and

strategy choice (Siegler, 1996). From the former perspective, fractions could be aligned with
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multiplication via division, and decimals could be aligned with addition via measurement.
Notation preferences for each arithmetic operation could reflect these semantic alignments. From
the latter perspective, notation preferences may be viewed in terms of strategy choice, in that
choosing a notation implies choosing the procedures afforded by that notation. From this
perspective, fractions are preferred for multiplication, and decimals for addition, because in each
case the preferred notation affords a quicker and/or easier procedure than does the other notation
(see Gray et al., 2006 for a similar perspective on strategy choice).

Both explanations were plausible a priori, but our results favor the explanation based on
strategy choice, for at least two reasons. First, this interpretation implies that accuracies should
parallel notation preferences, a prediction that was confirmed. In contrast, although semantic
alignments have clear implications for notation preferences, it is unclear whether or how such
alignments would impact accuracy on an arithmetic calculation task. Braithwaite and Sprague
(2021) recently found that when solving fraction and decimal arithmetic problems, university
students generally rely entirely on procedures and only rarely refer to semantic interpretations of
fractions and decimals.

Our exploratory analyses of conversion rates on problems involving different types of
operands also favor the strategy choice interpretation. If notation preferences for each arithmetic
operation reflected semantic alignments between notations and operations, then these preferences
should not differ based on the operands. To the contrary, however, preferences did vary
depending on the operands, and this variation was consistent with strategy choice considerations.
Adding fractions is easier when equal denominators are involved than in other cases
(Braithwaite, Pyke, & Siegler, 2017; Siegler & Pyke, 2013) because equal denominators obviate

the need to convert the addends to a common denominator. Correspondingly, the preference
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favoring decimals over fractions for addition was reduced when the fraction addition problems
involved ED operands. Similarly, multiplying decimals is easier when a whole number operand
is involved than in other cases (Braithwaite, Sprague, & Siegler, n.d.; Hiebert & Wearne, 1985)
because the presence of a whole number operand simplifies the placement of the decimal point in
the answer (i.e., the answer has the same number of decimal digits as the one decimal operand).
Correspondingly, the preference favoring fractions over decimals for multiplication was reduced
when the decimal multiplication problems involved W-D operands.

The notation preferences revealed in the present study were often larger than the effects
of notation on accuracy. For example, in the interleaved condition of the Traditional Arithmetic
Task of Experiment 2, cross-notation conversion was much more common on fraction than
decimal addition problems (35% vs. 6%), whereas accuracy was only slightly higher on decimal
than fraction addition problems (96% vs. 89%). Tian et al. (2020) and DeWolf et al. (2015)
similarly found notation preferences to be generally stronger than effects of notation on accuracy
when matching fractions or decimals to non-symbolic ratios. Notation preferences may be larger
than effects of notation on accuracy because notation preferences reflect not only the likelihood
of obtaining a correct answer with each notation, but also the time and effort required to solve a
problem using each notation, as in the SCM (Siegler, 1996).

However, the present findings may also have underestimated notation effects on accuracy
because our accuracy data are potentially polluted by cross-notation conversion. For example,
accuracies on fraction problems included trials in which individuals converted fractions into
decimals, and thus may differ from the accuracies that would be achieved if every fraction

problem was solved in fraction form. This possibility could be tested by assessing accuracy
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separately from preferences and requiring use of the given notation when assessing accuracy, as
in the choice/no-choice method (e.g., Lemaire & Lecacheur, 2002; Siegler & Lemaire, 1997).
Implications Regarding Representational Fluency

Representational fluency refers to “the ability to work within and translate among
representations” (Bieda & Nathan, 2009). Previous research on representational fluency has
emphasized its importance in algebra, for example when translating between equations, tables,
and graphs representing functions (Herman, 2007; Krawec, 2014; Nathan & Kim, 2007). The
present findings suggest that representational fluency may also be important in learning about
rational numbers. Specifically, the fact that different rational number notations are associated
with higher accuracy on different arithmetic problems suggests that students should perform
better on such problems if they are skilled at translating between notations and selecting the most
suitable notation for the problem at hand. Consistent with this possibility, Braithwaite et al.
(2022) recently found that accuracy comparing fractions versus decimals—a task that likely
involves translation between notations—predicted children’s fraction and decimal arithmetic
accuracy when controlling for accuracy on within-notation comparisons. Rational number
instruction could be enhanced by emphasizing representational fluency with different rational
number notations.
Implications Regarding Effects of Interleaving Versus Blocking

Interleaving similar fraction and decimal problems increased cross-notation conversions,
especially when interleaving was accompanied by an instruction to compare matched problems.
These findings suggest that interleaving helped participants to make connections between
problems. The absence of a positive effect of interleaving on accuracy could reflect beneficial

effects of interleaving on conversions being counteracted by negative effects of interleaving on
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performance, as found in previous studies (Rohrer et al., 2020; Rohrer & Taylor, 2007; Taylor &
Rohrer, 2010). Alternatively or additionally, the absence of an interleaving benefit could reflect
positive effects of blocking, which have previously been found in categorization studies
involving low within-category similarity (Carvalho & Goldstone, 2014). In the present study,
blocking could have highlighted similarities between problems involving the same notation and
operation, making the use of correct solution strategies mutually reinforcing within each pair of
problems.

Interleaved sequence often improves learning outcomes despite negative effects on
practice accuracy (Rohrer et al., 2020; Rohrer & Taylor, 2007; Taylor & Rohrer, 2010). Thus, in
the context of an intervention (unlike the present study, which provided no instruction or
feedback), interleaving fraction and decimal arithmetic problems during practice may improve
learning despite the absence of an immediate performance benefit. This possibility seems worth
investigating in the future.

Conclusion

Different rational number notations differentially afford not only representing different
types of information, but also solving different types of problems. Fractions are preferred to
decimals for multiplication, whereas decimals are preferred to fractions for addition. These
preferences are adaptive, in the sense of favoring the notation that is associated with less
complex solution procedures and higher accuracy for the problem at hand. Thus, the theoretical
perspective of adaptive strategy choice (Siegler, 1996) provides valuable insights regarding

preferences among symbolic representations in math.
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