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Deformation Modeling for Nonrigid Motion Analysis
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Abstract—In our previous work, we used finite element models
to determine nonrigid motion parameters and recover unknown
local properties of objects given correspondence data recovered
with snakes or other tracking models. In this paper, we present
a novel multiscale approach to recovery of nonrigid motion
from sequences of registered intensity and range images. The
main idea of our approach is that a finite element (FEM) model
incorporating material properties of the object can naturally
handle both registration and deformation modeling using a single
model-driving strategy. The method includes a multiscale iterative
algorithm based on analysis of the undirected Hausdorff distance
to recover correspondences. The method is evaluated with respect
to speed and accuracy. Noise sensitivity issues are addressed.
Advantages of the proposed approach are demonstrated using
man-made elastic materials and human skin motion. Experiments
with regular grid features are used for performance comparison
with a conventional approach (separate snakes and FEM models).
It is shown, however, that the new method does not require a
sampling/correspondence template and can adapt the model to
available object features. Usefulness of the method is presented
not only in the context of tracking and motion analysis, but also
for a burn scar detection application.

Index Terms—Corresponding points, deformable models, Haus-
dorff distance, multiscalemethods, nonrigidmotion analysis, phys-
ically-based vision.

I. INTRODUCTION

NONRIGID motion analysis is comprised of a large body
of research directions and approaches. This is justified

considering the variety and complexity of motion. Successful
motion recovery is motivated by important applications
such as stereo processing, gesture and face recognition for
human–computer interaction, and medical imaging. Nonrigid
motion analysis includes establishing point correspondences
necessary for tracking, estimating motion and, finally, under-
standing the reasons why motion occurred in the observed way
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and not in any other possible way. Two of the major classes
of techniques for nonrigid motion analysis include snakes and
finite element models.
Snakes, or active contours (first introduced by Kass et al. [1]),

are energy-minimizing splines which can find and reliably track
salient image contours. Snakes are guided by both internal and
external energies. The internal energy is the part that depends on
intrinsic properties of the snake, such as its length or curvature,
and on the image forces that drive the snake toward the desired
image contours. The external energy depends on factors such as
image structure, and particular constraints the user has imposed.
Snakes have specific properties used for very precise tracking,
yet not related to material properties or the internal structure
of the object. Snakes continue to be the focus of many recent
models [2]–[6]. McEachen, II and Duncan [2] tracked feature
points over an entire cardiac cycle. Androutsos et al. [4] added
image gradient direction to the energy functional and applied it
to flow trace images. Yezzi et al. [7] unified the curve evolu-
tion approaches for active contours and the established energy
formulation. Gunn and Nixon [5] used two contours to search
the image space from both inside and outside of the target fea-
ture. Tagare [6] proposed a formulation that achieves reduction
in the search space by precomputing orthogonal curves to de-
form the template. Peterfreund [8] modified the active contour
model by applying velocity control for real-time tracking. Chan-
dran and Potty [9] developed a strategy to avoid local minimas
as a dynamic programming solution for snake energy minimiza-
tion. Amini et al. [10] applied coupled B-spline snake grids to
magnetic resonance images and validated results with a 3-D car-
diac motion model. Recent developments in deformable model
techniques are summarized in [11].
Unlike snakes, finite element models usually include material

properties of the object and precise understanding of its struc-
ture, but have no inherent way to track objects’ features. Finite
element models include knowledge of forces applied to the ob-
ject and can calculate response to these forces.
A variety of finite element models were proposed in the con-

text of vision research. Sclaroff and Pentland [12] used FEM to
obtain a parametric description of nonrigidmotion in terms of its
similarity to known extremal views. Young and Axel [13] built
a finite element model of the left ventricle to fit material points
tracked in biplanar views. Metaxas and Koh [14] used local
adaptive finite elements to represent three-dimensional (3-D)
shapes efficiently. Cohen and Cohen [15] presented a finite ele-
ment method to track a series of two-dimensional (2-D) slices of
heart ventricles and to make a 3-D reconstruction of the inside
surface of the ventricles. A finite element model that learns the
correct physical model of human lips by training from real data
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was proposed by Basu and Pentland [16]. Martin et al. [17] em-
ployed finite element computation of analytic modes describing
shape variation of structures within the human brain. Tsap et al.
[18], [19] used nonlinear finite element models to recover mo-
tion, material properties of nonrigid objects and resulting strain
distributions, and applied it to burn scar assessment and repeti-
tive stress injury analysis. Feature points used in finite element
analysis were tracked with snakes.
Therefore, to accomplish defined motion analysis goals, it is

necessary to achieve tracking similar or even better in quality
than can be done with snakes, and also examine additional as-
pects not readily obvious from images. These features can add to
the knowledge of the object (material properties, applied forces
and detailed structure of the object) when using a more natural
(with respect to objects’ properties) physically-based model,
such as a finite element model that can explain the deformation
process.
Most closely related works such as [20], [18], and [21] ac-

complished these goals using two separate models: snakes to
find tag positions in images and finite element models [18], [20]
(or similar physically-based models [21]) to compute deforma-
tion parameters (such as displacements) and strain distributions.
Although FEM models produced precise solutions in terms of
both displacements and strains, they utilized only information
at points where tag lines intersected.
Other related approaches included following works. Bajcsy

and Kovacic [22] proposed a multiresolution elastic matching
algorithm for medical applications. Contours of the brain atlas
and the CT (Computerized Tomography) image of the brain
from three different scales were matched in a coarse-to-fine
manner. The finest level solution was then used to incremen-
tally deform the model using elastic constraint equations. Chris-
tensen et al. [23] estimated probabilistic viscous fluid transfor-
mations to templates for neuroanatomy registration with indi-
vidual studies. More recently, Papademetris et al. [24] estimated
soft tissue deformations from sequences of left ventricular MR
images using a linear elastic model. The main difference in our
approach is having a true-physics-based model, integrating or
allowing us to recover true material properties of an object.
Recently, a number of hybrid approaches were developed. A

framework for combining complementary techniques (registra-
tion and deformable models) was proposed by Montagnat and
Delingette [25]. Another hybrid solution (2-D) based on modal
analysis, employed by Tao and Huang [26], blended finite-el-
ement-computed modes with template matching. Deformable
models with parameter functions capable of adequately ad-
dressing local shape variations were proposed by Park et al.
[27] and O’Donnell et al. [28]. A shape modeling approach
that used multiresilution transformations from local to global
models was introduced by Vemuri and Radisavljevic [29].
Again, the originality of the proposed combination includes
integration of true elastic properties in the model.
The approach proposed in this paper encompasses advan-

tages of both techniques in a single model-driving strategy.
Both detection/tracking and accurate object model estimation
are merged to provide a more comprehensive basis for nonrigid
motion analysis. We propose that FEM model can naturally
handle registration and modeling. Our model combines two

types of deformable models. Control points used for tracking
are also a part of a finite element model (that includes an
available knowledge of material properties). Therefore, not
only snake intersection points (as it often occurred), but also ad-
ditional tracked points are included in the model. Furthermore,
the method includes a multiscale scheme based on evaluation
of the undirected Hausdorff distance to speed up the process of
matching features between two frames since large deformations
are considered. This criteria is similar to work by Huttenlocher
[30] and Rucklidge [31]. However, in their approach, a set of
image pixels in next frame formed a new model. We perform
actual model transformation that simulates nonrigid motion of
the object.

A. Overview

Major contributions of this work can be described along the
following directions:
• combination of physically-based registration and defor-
mation modeling;

• integration of material, geometry and appearance proper-
ties into a single FEM model;

• multiscale approach to correspondence recovery.
The approach assumes that a sequence of registered intensity
and range images of a deforming elastic object with visible sur-
face features (such as a grid in Figs. 4 and 6 or irregular and
natural features in Section III-D), and a physically-based model
[Fig. 2(b)] are available (Section II-A). The main idea of our ap-
proach is that a finite element model can naturally handle both
registration and modeling using a single model-driving strategy.
Previously, snakes were often used to track intensity features
(grid lines in Figs. 4 and 6); recovered correspondences (for in-
stance, intersection points) were then incorporated into finite el-
ement models that computed deformation parameters. Both pro-
cesses were iterative: snakes by definition, and a nonlinear fi-
nite element solution as a number of linear approximating steps
(FEM iterations). This work combines both stages in a single
iterative process when the model tracks object features and re-
computes physical parameters at the same time (some initial re-
sults have previously appeared in [32]).
The second important aspect of the strategy is an efficient

data utilization. As much available data as necessary is used.
The model consists of a number of control points. The goal
is defined as a correct matching of control points with grid
points in the next frame. Matching occurs at different resolution
levels—using 9, 49, and 217 control points (Fig. 1). The multi-
level (multiscale) strategy is described in detail in Section II-C.
The matching task is similar for all scales: given the coordi-
nates of control points, find the Hausdorff distance (defined in
Section II-B) between the model and the image (next frame),
and use it to structure possible correspondences between con-
trol points and feature points in images (as discussed in Sec-
tion II-B). The selected set of correspondences drives deforma-
tion of the model.
Section III describes application of the proposed method to

motion analysis of man-made elastic materials, human skin, and
burn scar detection application. Objects with a grid are used for
comparisonwith a traditional technique utilizing active contours
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Fig. 1. Configuration of control points using three different scales.

(a) (b) (c)

Fig. 2. (a) Region of interest. (b) Finite element model. (c) Threshold (T )
calculation.

and FEM separately. It is also shown (Section III-D) that the
proposed method does not need a grid and can take advantage
of the available irregular object features or even natural features
(in skin experiments). The last section summarizes the results
of this research.

II. DESCRIPTION OF THE METHOD

A. Data, Modeling, and Assumptions
Data acquisition, general modeling principles and necessary

assumptions are discussed first. Data sequences are acquired
using a K2T structured light range scanner. During acquisition,
registered intensity and range images of stretching elastic ob-
jects are taken (Figs. 4 and 6). Only part of the object (elastic
material or human arm) with the region of interest is consid-
ered. In first sets of experiments this region includes the grid
which is produced with a simple stamp and aids in producing
trackable features. Other sets of images contain irregular or even
natural features. Let us assume that grid is separated on the in-
tensity image (for instance, using thresholding) and the model
is aligned with it. Since the data was collected initially for a
different project which employed snakes, the stamp produced
overlapping lines (which allows us to compare results of both
approaches). For the purpose of this method they are not consid-
ered (a conventional method with snakes used original images
for the performance comparison). Of course, a fully automatic
method would require a different stamp. Hence, only the area
bound by outside grid lines is considered [Fig. 2(a)]. Therefore,
the finite element model used to describe it is local. It consists
of 3-D elastic shells with assigned corresponding material prop-
erties (properties of elastic materials are obtained by their me-
chanical testing; average skin properties are found in the recent
literature). Since the geometry of the stamp is known in advance,
it allows for the advance model construction necessary for the
success of the method [Fig. 2(b)]. Since in this research the em-
phasis is placed on multiscale use of control points rather than

on the finite element model itself, a current set of control points
(Fig. 1) from now on is referred to as our model. The method
assumes alignment with the first frame in the sequence and con-
sistency in point inter-relationships so that points do not overlap
(occlude) each other.

B. Undirected Hausdorff Distance as Dissimilarity Measure
Control points (which are also FEM nodes or keypoints) pro-

vide a natural way to locate corresponding points in the next
frame (model registration) and apply distances between them as
displacements (model deformation). Control points are guided
by the Hausdorff distance [30] between the model (fitted to
the current frame) and the next frame in the sequence

(1)
where is the forward distance (the distance from
the model to the image) and is the reverse dis-
tance.
To compute the forward distance, differences are identified

between each control point in the finite element model
and the nearest point in the next frame , and then the
largest distance is selected

(2)

where denotes some transformation that occurred as a result
of the motion or deformation, and is the Euclidean distance.
The resulting control point is, therefore, the furthest control
point from any range object point in . The reverse distance

is defined similarly.
The goal is to use the Hausdorff distance as a measure of

mismatch between the model and the object, and then to re-
duce such differences by applying displacements to the model.
This approach belongs to the class of reverse problems when
the results (displacements) are given instead of the cause (body
loads). Every time displacements are applied, a new configura-
tion of the model is recomputed. As opposed to tracking with
snakes (which is a separate physically-based model), the undi-
rected Hausdorff distance can be easily combined with a finite
element model. No separation into a motion-detection-oriented
model and an object-properties-oriented model is necessary. A
single physics-based model is used; it includes material infor-
mation and is driven by the multiscale analysis of possible cor-
respondences using the Hausdorff distance. Correspondence re-
covery at each step is followed by displacement calculations and
their application to the model. This represents a single iteration
of the method.

C. Multiscale Approach to Correspondence Analysis and
Model Deformation
Expected range of motion is addressed by the multiscale

approach to correspondence analysis and model deformation.
Larger motion necessitates the use of coarser alignment models
before finer aspects of object deformation are addressed.
Multiscale strategy discussed in this section is applicable to a
large object and motion domain; however, the number of scales
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is based on the magnitude of size or motion and, obviously,
may change for different objects.
Three scales (defined in terms of control points) are adopted

for the experiments:

1) ICA (initial coarse alignment, nine control points);
2) GGD (general global deformation, 49 control points);
3) CLD (complex local deformation, 217 control points).
Although model deformations start at the ICA scale (using

only nine control points), the initial distance estimation is done
at the GGD scale. This allows for more precise computation of
the undirected Hausdorff distance (or the partial distance [31]
for noisy sequences) used as a first threshold (an upper threshold
) employed by the method. The meaning of this threshold is

an estimate of the largest allowed motion in a given experiment
(later applied to control points).
The initial analysis used to determine possible correspon-

dences is performed at the ICA scale. Euclidean distances are
calculated (Fig. 3, box 4) between the closest model and image
points (if the forwardHausdorff distancewas larger), or between
the closest image and model points (if the reverse Hausdorff
distance was larger). These distances are sorted in decreasing
order (Fig. 3, box 5). is then applied (box 6) to weed out er-
roneous matches which are possible at any scale. However, at
coarse scales, displacements greater than are simply infea-
sible (by definition of the Hausdorff distance).
Another threshold (a lower threshold ) is then introduced

to deal with erroneous matches resulting in small displacements
(results of noise and incorrect matches). At each point we find
the slope of the tangent to the curve , where i is
the index of the correspondences sorted in decreasing order with
respect to resulting 3-D displacements .
When an absolute value of this slope (or function derivative
at a point) at least triples [see Fig. 2(c)], the corresponding
3-D displacement value is chosen automatically as threshold
(usually it increases 4–4.5 times). This threshold can also

be computed by using a second derivative or analysis of con-
secutive differences between (sorted) displacements. allows
for separation of displacements representing another group of
erroneous correspondences, namely, those with small displace-
ments, also addressing noise sensitivity issues. This group con-
tains a number of wrong matches, especially during the first few
method iterations [Fig. 2(c)].
Therefore, a sparse model is employed to select only 1 : 1 cor-

respondences and discard the rest. Of course, a number of po-
tentially useful correspondences are rejected during this step.
This does not matter since at this stage alignment that accounts
mostly for translation is more important. Finer model scales
process more data that explains nonrigid deformation of the ob-
ject. If threshold cannot be found, then the forwardHausdorff
distance (at the coarse scale only) is used to align the model uni-
formly with the next frame data. It is a good approximation of
translation between the frames for the considered subset of non-
rigid motion.
A change in scale occurs when a current scale no longer im-

proves the alignment. This means that all control points have
been assigned correspondences and there is no mismatch be-
tween them and the area of interest in the next frame (Fig. 3,

Fig. 3. Algorithm of the multiscale approach.

box 9). Therefore, increase in model scale at this point produces
possibility for improving tracking quality.
GGD (49 control points) and CLD (217 control points) scale

processing are similar to the coarse scale iterations, except that
is not needed. Since finer aspects of object motion are ana-

lyzed, concern for filtering out abnormally large displacements
is not justified.
TheGGDscale addresses effects of elasticmotion (stretching)

of the object. It results in a better alignment and accounts for
most nonrigid deformations. The CLD scale does not improve
tracking significantly if the force is distributed along some real
or imaginary line/surface rather than represented by a concen-
trated loading. In the latter case GCD processing alone cannot
account for more complex deformations of grid lines. The steps
applicable to all scales are shown in Fig. 3.
Themodel is displacement-driven;when correspondences are

established, displacements are calculated and applied to control
points of the model (box 7). The process is repeated during each
iteration. Again, in these experiments, the motion of the object
is elastic deformation. At any scale, the process can be summa-
rized as follows:

• Hausdorff distance is computed;
• for each control point, possible displacements are found
and applied;

• model is incremented accordingly;
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• process iterates until the difference between the model and
the object is minimal (for each frame).

III. EXPERIMENTAL RESULTS

This section presents an application of the proposed method
to motion analysis of man-made elastic materials and human
skin. Usefulness of the method is evaluated not only for tracking
and motion analysis, but also for a specific application to strain
analysis in the burn scar detection procedure.
The model used in experiments described below is local;

it covers only a part of the object with the region of interest
(the grid in Sections III-A–III-C and irregular features in
Section III-D). Second, the model is nonlinear, although an
iterative nature of the approach (multiple method iterations for
every deformation) allowed us to reach solutions in a single
FEM iteration every time. Thus, registration and deformation
analysis iterations are combined in a single process. The model
consists of thin elastic shell elements defined in a 3-D space
(a total of 324 elements and 361 nodes). The same mesh and
solution are used in all experiments described in this section.
Nonlinearity of materials is considered using multiple model
iterations (steps) for every deformation. For more details on
model-building, finite element calculation, implementation
using ANSYS [33] package and skin parameter selection
(material properties and thickness), please see [18]. Having
correct material properties in the model is a necessary condition
for this method to succeed; however, if precise values of certain
materials or tissues are not immediately available, they can also
be recovered with the same model as described in [19]. For
example, for the scar assessment application (Section III-C), it
is not currently feasible to obtain person-specific skin elasticity
and thickness precisely, and average properties are sufficient
for the strain map computation. Additional experiments show
that, varying Young’s modulus in the range specified by the
literature (see [18] for a literature review), namely from 10
to 100 kPa, does not change the relationship between the
scar elasticity and the elasticity of surrounding areas, which
is crucial for the strain distribution analysis. To test this, we
started from different values of Young’s modulus within this
range (if multiple areas were involved, then we multiplied their
respective Young’s modulus by a constant) and still ended
up with exactly the same strain maps [Fig. 9 was tested for
both approaches in (a) and (b)]. Therefore, we compute elastic
properties of burn scars relative to the surrounding areas. This
is a sufficient indication of the success of treatment required
by the medical community. Poisson’s ratio is set equal to 0.49
since most papers agree about it.

A. Application of the Method to Skin Motion Analysis:
A Closer Look at Scales and Iterations
This section presents application of themethod to skinmotion

analysis. The experiment presented in this section addresses our
current burn scar assessment research described in [18]. The
proposed method substitutes the two previously used separate
models such as snakes and FEM. In this section we use images
with the grid so that the new method can be compared with an
old approach. However, later in Section III-D it is shown that the

Fig. 4. Range and intensity images of skin motion.

TABLE I
SUMMARY OF ITERATIONS (BETWEEN TWO FRAMES IN FIG. 4)

AT DIFFERENT SCALES

proposed method does not need a grid and can take advantage
of the natural features (such as birthmarks).
One range and two intensity images of a region of skin being

stretched containing a burn scar are shown in Fig. 4. The range
image in Fig. 4(a) corresponds to the intensity image before
stretching [Fig. 4(b)]. The accuracy of range images allows esti-
mating true 3-D deformations. The presence of a burn scar con-
tributes to nonuniformity of elastic motion.
Control points of the generic grid model are manually aligned

with the first frame using both intensity and range data. Then the
method proceeds automatically using the available data, model
and the strategy described in Section II-C. All three defined
scales are used. Thresholds are determined using the undirected
Hausdorff distance ( ) and the jump in distances computed
between corresponding points ( ) similarly to Fig. 2(c). The
change in scales occurs when all such distances are equal to
zero. The solution required a total of seven method iterations.
Control points of the model are determined automatically and
moved as follows (although the grid is slightly rotated clock-
wise, for the simplicity of explanation we will refer to control
points as leftmost and rightmost as if grid lines were vertical):
• iteration 1—three leftmost control points moving toward
the left side of the grid (ICA scale);

• iteration 2—three rightmost control points moving toward
the right side of the grid (ICA scale);

• iteration 3—correspondences and motion for the re-
maining model points (ICA scale);

• iteration 4—motion of new topmost control points (GGD
scale);

• iteration 5—remaining correspondences responsible for
general deformation aspects (GGD scale);

• iteration 6—better approximation of the leftmost line
(CLD scale);

• iteration 7—other local deformation aspects (CLD scale).
Results are shown in Table I. Both iterations and scales are in-

cluded. The average real motion between feature points in two
frames is 10.253 mm. Of course, the motion is not uniform, it
is greater for the areas closer to the place where the force is ap-
plied. The average distance between control points in the model
and corresponding points of the grid is calculated for valida-
tion purposes. It is used to compute the average error (a ratio
of recovered and real motion of feature points). Performance of
the new method was compared to the traditional approach that
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Fig. 5. Results of the skin motion experiment. (a) Magnitude based vectors
representing motion of control points. (b) Results in terms of grid motion
between two frames.

Fig. 6. Range and intensity images of the elastic material during stretching.

uses a separate snake model to recover a sparse set of correspon-
dences (grid intersections) and a dense set using FEM model.
The new approach produced not only a lower final average error
(0.95% vs. 1.54%) with a smaller standard deviation (0.05%
versus 0.11%), but also a better execution time on a SunUltra-
SPARC 300MHz/512K cache/128MBRAM (24 s versus 1 min
7 s). Increase in efficiency is achieved by replacing two iterative
processes (snakes and nonlinear FEM solution both requiring
multiple iterations in two separate loops) with a merged iterative
process when the model tracks object features and recomputes
physical parameters (every step is a single FEM iteration for all
experiments described) at the same time.
The error is reduced because CLD scale better accounts for

a nonuniform grid line curvature near the stretching force. The
total motion of control points is shown in Fig. 5(a) using magni-
tude based vectors (CLD scale, last iteration). We can visualize
grid motion between frames by connecting control points at the
finest (CLD) scale [Fig. 5(b)].

B. Results of Motion and Structure Recovery of Elastic
Objects: Performance Analysis for Longer Sequences
Sequences of intensity and range images depicting the

stretching of an elastic material are utilized for experimental
performance assessment of the method. A sequence containing
seven intensity images and range images represents input to the
algorithm (only one range image is shown in Fig. 6) along with
a generic grid model fitted to the initial frame (Fig. 1).
The deformation is produced by incrementally increasing the

force causing it. The force is introduced in the second frame.

Fig. 7. Magnitude based vectors representing motion of control points.

Fig. 8. Results in terms of grid motion between consecutive pairs of frames.

It changes from 1 newton (N) in the second frame to 3.5 N in
the last frame in 0.5 N increments. This sequence allows us to
investigate elastic motion in the intervals of material behavior
where it can be explained by an elastic model with some geo-
metric nonlinearities (solved in single FEM iterations per model
iterations in most cases since model iterations approximate a
deformation step incrementally). Material properties are com-
puted experimentally (using a conventional mechanical engi-
neering technique [19]) and included in the model. Magnitude
based vectors representing motion of control points are shown
in Fig. 7. Recovered grid motion for corresponding iterations is
displayed in Fig. 8.
Summary of results for all frames are displayed in Table II.

Results are shown per frame, for final method iterations only.
The proposed approach performs better than the conventional
(snake computation as a part of the traditional technique for this
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TABLE II
PERFORMANCE COMPARISON (PER FRAME, FOR FINAL ITERATIONS ONLY).
METHOD (1) IS A CONVENTIONAL APPROACH (SEPARATE SNAKE AND FINITE

ELEMENT MODELS) AND (2) DENOTES THE PROPOSED MULTISCALE
SINGLE-MODEL METHOD

TABLE III
PERFORMANCE COMPARISON FOR A NUMBER OF DIFFERENT EXPERIMENTS

INVOLVING ELASTIC STRETCHING

comparison used a fast greedy algorithm by Williams and Shah
[34]) for frames with more complex local deformations where
CLD scale or even finer scales are beneficial. Performance com-
parison for a number of different experiments (each uses a dif-
ferent sequence of intensity and range images) involving elastic
stretching is shown in Table III (experiments #1 and #2 are ones
presented in details in the previous and current subsections, re-
spectively). Standard deviation is also reported. It seems that
the proposed method has a lower standard deviation than a con-
ventional approach even for an experiment where is underper-
formed (however, it performed better than conventional in the
other four experiments). In some experiments, the new method
slightly increased the number of local errors (due to minor mis-
matches), but it more than compensated for this by reductions
in their magnitude.
The number of method iterations per frame differs; however,

it is on average between 5 and 8. Each method iteration takes
between 3 and 4 seconds on a UltraSPARC (300 MHz/512K
cache/128MBRAM). Therefore, solution requires less time (on
average 23 seconds) than the old approach (more than 1 min per
frame).
The reason why the number of method iterations varies, espe-

cially during the ICA step, can be explained with the following
observations. The motion seems more or less uniform across
all frames; however, analysis of displacements reveals that in
the first two frames the grid predominantly translates (since the
grid contains only a part of the stretching material), while the
remainder of frames contain mostly elastic motion (stretching).
Quantitatively it can be described as a ratio of displacements
between opposite grid points along the force direction. Ratios
close to 1 denote translation, ratios from 3 to 5 in our experi-
ments indicate stretching.
That is why if the next frame is the frame where the bandage

mostly translates (for instance, first frame), then the ICA part
of the method proceeds faster. This reduction in the number of
iterations facilitates the finding of almost all coarse scale corre-
spondences during the first iteration as opposed to 3–4 iterations
otherwise.

Fig. 9. Resulting strain distribution for the skin motion experiment computed
using (a) conventional approach and (b) proposed method. Nine levels of strain
are displayed in the grid area from the lowest (white) to the highest (black).

C. Applicational Effectiveness of the Method for Strain
Analysis
This section demonstrates applicational value of the outlined

method for strain analysis. The application addressed here is
the computation of human skin response to applied load that
reveals differences in underlying properties. For instance, it al-
lows for the detection of burn scars and estimation of their rel-
ative properties [18] which are very useful to physicians for
comparing and evaluating treatment options. Of course, accu-
racy of the structure and correspondence recovery is very im-
portant in such an application because it greatly influences re-
sulting strain distributions that pinpoint differences in proper-
ties. Strain is recovered after the last method iteration since these
differences are detected better using the entire range of motion.
Resulting displacements are computed as the differences in po-
sitions of control points between the first and the last iterations:

; ; . Strain is
then recovered throughout the surface of the model [18]. Scars
restrict the motion, and, therefore, the method is identifying
low strain areas (denoted as darker areas in Fig. 9). The legend
column on the right of strain distributions shows (top to bottom):
maximum displacement, minimum and maximum strain, and
strain gradation from the lowest to the highest. These results
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Fig. 10. (a) and (b) Intensity images of the elastic material before and after
deformation. Feature points are marked as small black circles, validation
points—as crosses; (c) range image (before motion); and (d) finite element
model (in terms of elements) fitted to the data. Feature points are identified.

correspond to the skin motion experiment (Fig. 4). Fig. 9(a) is
obtained with a conventional approach (using separate snake
and finite element models, also applied to the available 3-D data
[18]). Strain recovered using the proposed method is shown in
Fig. 9(b). The resulting strain map is precise enough to iden-
tify abnormal areas such as scars (ground truth in the form of
scar outlines was provided by physicians). A conventional ap-
proach identified correctly 93.83% of the burn scar area; the
new method identified correctly 95.68% of the burn scar area.
Methods were compared using five burn scar image sequences.
The strain can also be used as an additional criteria to restrict
impossible modes of motion.

D. Motion Recovery From Irregular and Natural Features

This section extends the use of the proposed method to de-
forming objects with irregular surface features. These features
cannot be easily considered with a conventional approach. First,
another piece of an elastic material (considered initially in Sec-
tion III-B) is stretched (Fig. 10). Stretching is nonuniform af-
fecting the upper side of the bandage much more than the lower.
In this case model fitting procedure adapts the generic model

so that it fits the range data and identifies feature points (shown
as small circles). Validation points (shown as crosses) are not
used during the computation, the difference in their positions
before and after the motion is compared to model’s estimates
after the process completes. There is no single solution to model
fitting. The model is acceptable as long as it contains feature
points, uses adequate resolution to represent sensed data, and
avoids abrupt changes in the element sizes from very fine to
coarse (which can lead to ill-conditioning problems). Resolu-
tion scales and threshold selection techniques are the same as in
previous experiments. Results (shown in Fig. 11) include mag-
nitude based vectors representingmotion of all model points and
feature points only. The validation error is less than 3% for all
validation points (Table IV).

Fig. 11. Magnitude based vectors representing motion of (a) all model points
and (b) feature points only.

TABLE IV
MOTION ERROR FOR VALIDATION POINTS

Fig. 12. (a) and (b) Intensity and (c) range images of skin stretching.
(d) Motion tracking of feature points.

A similar experiments are conducted using natural features
instead of marked points. Fig. 12(a)–(c) show intensity and
range images of skin stretching. Note that there are no artificial
markings on the skin. In this case birthmarks are chosen as fea-
tures to include into the model (similarly to feature points in the
previous experiment) and to use for motion analysis [resulting
displacement fields for them are displayed in Fig. 10(d)]. Six
points are used for validation (the average error is 4.72%). The
error remains relatively small since physical model restricts im-
possible motions. The motion of internal nodes is constrained
by the elasticity, and, therefore, predictions at these nodes
reflect dynamic continuity. This shows that the method can
be extended to other applications and domains, and simplify
data acquisition and processing for many existing applications
(such as a burn scar assessment application briefly described
in Section III-C).

IV. DISCUSSION AND CONCLUSIONS

In this paper we presented a novel multiscale approach to re-
covery of nonrigid motion from sequences of registered inten-
sity and range images. Themain idea of our approach is that a fi-
nite element (FEM)model can naturally handle both registration
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and deformationmodeling using a singlemodel-driving strategy.
The method includes a multiscale iterative algorithm based on
analysis of the undirected Hausdorff distance to recover corre-
spondences. Our model can handle what previously was accom-
plished using two types of deformable models (snakes and finite
element models). Increase in efficiency is achieved by replacing
two separate iterative processes (snakes andnonlinear FEMsolu-
tion both requiringmultiple iterations in two independent loops)
with amerged iterative processwhen themodel tracks object fea-
tures and recomputes physical parameters (every step is a single
FEM iteration for all experiments described) at the same time.
Efficiency of the method can be further improved by pre-com-
puting the response of the model to all imposed displacements
[35]. Control points used for tracking are also a part of the fi-
nite element model containing knowledge of an object’s mate-
rial properties that can lead to better analysis of the deformation
process. Therefore, not only intersection points, but also addi-
tional tracked points are included in the model.
Such a model can explain observed motion effects (such

as displacements) as well as nonobservable aspects (such as
strains). Strain distributions reveal differences in material
properties which can account for motion abnormalities. A good
model incorporating available values of material properties is
a necessary condition for this approach to succeed. However,
it is possible to start with an approximate material information
(see Section III for discussion of such cases) and to improve it
during tracking (as shown in [19]).
The method includes a multiscale strategy based on evalua-

tion of the undirected Hausdorff distance which represents a re-
liable error function. Wrong matches occur by mapping control
points to nearby features, but they are corrected during subse-
quent iterations. This possible (yet insignificant) failure mode
still results in acceptable (in terms of accuracy) motion field
estimates (as shown during experiments). In a general case, a
number of scales is object- and motion-dependent, similarly to
other physically-based models. Choosing the number of control
points at the finest scale is a trade-off between the efficiency of
structure representation and effects of noise. (It has been found
experimentally that for our setup the scanning error is between
0.5 mm and 1 mm.)
Evenwith today’s range acquisition technology, many impor-

tant applications (for instance, burn scar assessment) can ben-
efit from the presented ideas. Recent availability of less expen-
sive, faster range data makes it a feasible source of information
for tracking. Triclops [36] color stereo vision system (manufac-
tured by Point Grey Research, Vancouver, BC, Canada) is used
to capture color and range sequences at a rate of several frames
per second. If some prior information is available (for instance,
if one is looking for human features or for material of certain
colors), then “selective” range processing increases the rate to
16 frames/s [37].
The registration part is based on an interpolation technique:

point correspondences are considered as imposed displacements
on the finite element model. This approach can be affected by
increased noise (which is not an issue in our experiments, but
could be a problem in new faster range scanners). The proposed
model is flexible so that a different correspondence finding ap-
proach (possibly based on an approximation scheme) can be in-

tegrated into the model. Also, such errors are local; they affect
somewhat only the node of origin and even to a lesser extent
nodes next to it (usually, nine out of 361 nodes), but have no ef-
fect on resulting strain distributions (Fig. 9). The difference in
the burn scar area identification due to such local errors is less
than 5% for all experiments.
The method was evaluated with respect to speed and accu-

racy. Noise sensitivity issues were addressed. Advantages of the
proposed approach were demonstrated using man-made elastic
materials and human skin motion. Experiments with regular
grid features were used for performance comparison with a con-
ventional approach (separate snakes and FEM models). It was
shown, however, that the new method does not require a sam-
pling/correspondence template and can adapt themodel to avail-
able object features. Usefulness of the method was presented
not only in the context of tracking and motion analysis, but also
for specific applications such as burn scar detection. This work
presents a significant step toward development of models that
can inherently handle multiple processing functions, currently
registration and deformation, and appearance in the near future.

APPENDIX
NONLINEAR FINITE ELEMENT COMPUTATION

The central concept of the FEM [38] is decomposition of a
complex object into simpler components called finite elements.
For each object, a mapping between the initial and deformed
states can be computed. Availability of material properties aids
such mapping resulting in a precise nonrigid motion tracking of
this object. The modulus of elasticity, or Young’s modulus, ,
is defined as , where is the stress change and
is the strain change [39]. The stress, , can be viewed as force
per unit area and the strain, , as changes of lengths per unit
length. Strain measures howmuch a material has deformed. The
Poisson’s Ratio, , is defined as the ratio of the magnitude of the
transverse strain to the magnitude of the axial strain.
General nonlinear deformation theory defines the displace-

ment field as a combination of rigid-body motions and pure
deformations. Former include translations and rotations. Their
main property is that the distance between any pair of mate-
rial points remains unchanged. Any quantity that measures the
change in length between the neighboring points is a measure
of pure deformation. Static nonlinear FEM problem can be ex-
pressed as

(3)

where both a matrix of stiffness coefficients and a force
vector depend on the displacement vector . Geometric
nonlinearities refer to the nonlinearities in the structure or com-
ponent due to the changing geometry as it deflects. The stiffness
changes because the shape changes and/or the material rotates.
Thematerial behaves elastically when the force exerted depends
only on how much the material has been deformed. In this work
we consider elastic stretching. We account for small geometric
nonlinearities and finite strains. The applied loads on a body
make it move (or deform) from the position to the position
. Hence, the displacement vector is

(4)
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The deformation gradient can be defined as

(5)

where deformation gradient includes the volume change, the ro-
tation and the shape change. The volume change at a point is

(6)

where denotes determinant of the matrix. The deformation
gradient can be separated into a rotation and a shape change
using the right polar decomposition theorem

(7)

where is the rotation matrix and is the right stretch
(shape change) matrix. Once a stretch matrix is known, a loga-
rithmic or Hencky strain measure is defined as

(8)

or, equivalently, through the spectral decomposition of

(9)

where are eigenvalues of (principal stretches) and
are eigenvectors of (principal directions). Hence, from (7)
the average rotation at a point can be calculated. Computation-
ally, incremental approximation (defined in [40]) is used by
the ANSYS [33] program utilized in this research for nonlinear
FEM calculation. Computationally, incremental approximation
is used [33] and increment of the deformation gradient at the
current time step is defined using the previous time step

(10)

For more details about the FE solution and implementation,
please refer to [18], [40].
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