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Abstract

Simultaneously finding multiple influential variables and controlling the false discovery rate
(FDR) for linear regression models is a fundamental problem with a long history. We here
propose the Gaussian Mirror (GM) method, which creates for each predictor variable a pair of
mirror variables by adding and subtracting a randomly generated Gaussian random variable, and
proceeds with a certain regression method, such as the ordinary least-square or the Lasso. The
mirror variables naturally lead to a test statistic highly effective for controlling the FDR. Under
a weak dependence assumption, we show that the FDR can be controlled at a user-specified
level asymptotically. It is shown that the GM method is more powerful than many existing
methods in selecting important variables, subject to the control of FDR especially under the
case when high correlations among the covariates exist. The R package is publicly available at
https://github.com/BioAlgs/GM.

1 Introduction

Linear regression, which dates back to the beginning of the 19th century, is one of the most important
statistical tools for practitioners. The theoretical research addressing various issues arising from big
data analyses has gained much attention in the last decade. One important problem is to determine
which covariates (aka “predictors”) are “useful” or “important” in a linear regression. In early days
(before 1970’s), people often rely on the t-test to assess the importance of each individual predictor
in a regression model, although the method is known to be problematic due to the existence of
highly multi-colinearity. A greedy stepwise regression method was later proposed in Efroymson
(1960) to alleviate some of the flaws. Good criterion, such as Akaike information criteria (AIC,
Akaike (1998)) and Bayesian information criteria (BIC, Schwarz (1978)), for directing its operation
were developed later. In recent years, due to the advance of data-generating technologies in both
science and industry, researchers discovered that various regularization based regression methods,
such as Lasso Tibshirani (1996), SCAD Fan and Li (2001), elastic NET (Zou and Hastie (2005))

and many others, are quite effective in dealing with high-dimensional data and selecting relevant
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covariates with certain guaranteed theoretical properties, such as the selection consistency and the
oracle property.

For the linear regression model, y = x181+- - -+, 3, +¢€, we are interested in testing p hypotheses
H;:B;=0,7=1,...,p, simultaneously and finding a statistical rule to decide which hypotheses
should be rejected. Let Sy € {1,2,---,p} be the set of variables with §; = 0, i.e., not in the true
model and let §1 = S§§. Let 5’1 be the set that is selected based on a statistical rule. The FDR,
quantifying the type I error for this statistical rule, is defined as
#{i|ie Sy ieS}

FDR =E[FDP|, where FDP = x
#llieSv

The task of controlling FDR at a designated level, say ¢, is very challenging from two aspects: (i)
the test statistic and the corresponding distribution under the null hypothesis is not easily available
for high dimensional problems; and (ii) the dependence structure of the covariates induces a complex
dependence structure among the estimated regression coefficients. A heuristic method based on
permutation tests was introduced by Chung and Romano (2016), but it fails to yield the correct
FDR control unless &7 is empty. Starting with the p-values based on the marginal regression, Fan
et al. (2012) proposed a novel way to estimate the false discovery propoption (FDP) when the test
statistic follows a multivariate normal distribution. However, the consideration of the marginal
regression deviates from the original purpose of the study in many cases.

Barber and Candes (2015) introduced an innovative approach, the knockoff filter, which provides
a provable FDR control for cases with arbitrary design matrices when p < n/2. When p < n < 2p,
they kept 2p — n predictors unchanged and constructed the knockoffs only for the remaining n — p
variables. It is guaranteed that the FDR can be controlled with a sacrifice of the power. By
introducing knockoffs, they obtained a test statistic that satisfies (i) the symmetric property under
the nulls, and (ii) independent signs under the nulls. The key of this method is to construct knockoff
variables X such that X preserves the correlation structure of the original X . To gain the power,
however, one wants to construct knockoffs such that X and X are as dissimilar as possible. When
the multi-colinearity between the predictors are high and dense, it leaves little room for one to
choose a good knockoff, resulting in a significant decrease in the power. As shown in Section 6,
when the correlation between the predictors are high and dense, the knockoffs can still control the
FDR, but at a high expense of the power loss.

Later, the knockoff method has been extended to high dimensional (screening + knockoffs Barber
and Candes (2019)) and the model-X knockoff approach (Candes et al. (2018)). In the model-X
framework, Candes et al. (2018) discarded the linear assumption by considering the joint distribution
of the response Y and the predictors X. The goal is to find the Markov blanket, a minimal set &
such that Y is independent of all the others when conditioning on Xg. They proposed model-X



knockoffs that can control the FDR. However, this construction relies heavily on the assumption
that the distribution of X is completely known, which is generally unrealistic except for some
special scenarios. Barber et al. (2018) constructed a robust version of model-X knockoffs based on
the estimated joint distribution of (X7,...,X,). However, estimating the joint distribution in a
high-dimensional setting not only is very challenging even for the multivariate Gaussian case, but
also leads to inaccurate FDR controls. For the high dimensional data, an other line of work is the
post-selection inference which aims at doing inference conditional on the selection step Berk et al.
(2013); Lee et al. (2016). In Lee et al. (2016), the selection event of LASSO is shown to be an union
of polyhedra. Tibshirani et al. (2016) provides analogous results for forward stepwise regression and
least angle regression Taylor and Tibshirani (2018) extends these results to L; penalized likelihood
models including generalized regression model.

In this paper, we propose a method called Gaussian Mirror, which constructs the test statistic

locally or marginally. Namely, for each variable x;, we create a pair of “mirror variables”, xl =

x; + ¢jzj and x; = x; — ¢jz;, where ¢; is a scalar and z; ~ N(0,I,,). (azjﬂ:c;) can be vieived
as a special and quantifiable way of perturbing the variable. The perturbation is carefully chosen
according to an explicit formula of ¢; such that the test statistic we introduce has a symmetric
distribution around zero for the null variables. Under the high dimensional case, we proof the
symmetric property based on the post-selection theory. Based on this property, we can quantitatively
estimate the number of false positives and the FDP. To control the FDR, a data-driven threshold is
chosen such that the estimated FDP is no larger than g. By assuming weak dependence conditions
on the test statistic, we show that the proposed method controls FDR at ¢ level asymptotically.
Adding some perturbations not only helps weaken the dependence among the test statistics, but
also leads to conclusions that are stable to perturbations, as advocated in the stability framework of
Yu (2013).

The GM procedure calculates the mirror statistics by only perturbing one variable at a time.
This simple perturbation enjoys two advantages. First, comparing with the knockoffs and Model-X
knockoffs which double the size of the design matrix, we introduce the smallest perturbation to the
original design matrix, which can improve the power as shown in our numerical studies. Second,
the algorithms of calculating the mirror statistics for j = 1,...,p are completely separable, easily
parallelizable, and memory efficient. All of our numerical studies have been implemented using a
parallel computation architecture.

The construction of the GM statistics and selection procedure do not require any distributional
assumption on the design matrix X. In contrast to the model-X knockoffs based methods, the

GM design bypasses the difficulty of estimating the joint distribution of (X1,...,X,), thus is more

flexible in real applications such as GWAS studies where the covariates are types of single nucleotide



polymorphisms (SNPs) taking values in {0, 1, 2}.

In addition, practitioners often have a limited budget to verify the discoveries. For example,
if the budget only allows the scientist to do 100 validation tests, a natural question is how many
false discoveries (FDs) they expect to have in a top-100 list and whether statisticians can provide
an uncertainty measure for the estimated FDs. To address this practical problem, we provide an
estimate of the number of FDs in a given list based on the proposed mirror statistics and use the
nonparametric bootstrap method to give a confidence interval for the proposed estimate.

The paper is organized as follows. In Section 2, we propose the general GM idea and a GM
algorithm for the ordinary least squares (OLS) estimation in low-dimensional cases (p < n). In
Section 3, we employ the post-selection adjustment strategy and extend the GM construction for
Lasso, which handles cases with p > n at ease. In Section 4, we develop theoretical properties of
the GM procedure. In Section 5, we introduce an estimator of the number of false discoveries and
build its confidence interval using non-parametric bootstrap. In Section 6, we provide numerical

evidences showing the advantage of GM to its competitors via simulations and real data analysis.

Notation: To ease the readability, we summarize some notations used frequently in this paper.
Let X be the design matrix. Without loss of generality, we assume that X is normalized so that
Lll@j|la =1for j =1,...,n. Let ; be the j-th column of X and let X_; be the submatrix of X
with the j-th column removed. Denote X7 = (:I:;r, z;, X_;), where az;r =x;j+¢zj, T, =Tj— 5z,
zj ~ N(0,1I,), and ¢; is a scalar. Let B be the vector coefficient and let B_; be the subvector
with the j-th entry removed. Let 3/ = (B;-L, Bj_, ,BIj)T, where B;-L and Bj_ denote the coeflicients
of the mirror variable pair, and let 37 be the corresponding estimator. Let So = {j : 8; = 0} and

S1 ={j : B; # 0}. Let ¢ be the designated FDR level to be controlled.

2 The Gaussian Mirror Methodology for OLS

2.1 The Gaussian mirror

Suppose the data are generated from the following linear regression model

y=XpB+e, (1)
where y € R" is the response vector, X = (x1,---,x,) € R™? is the design matrix, and € =
(€1,...,€,) is a vector of i.i.d. Gaussian white noise with variance o?. We begin with the low

dimensional case with n < p and focus on the OLS estimator. The high-dimensional setting with
p > n is deferred to the next section. As shown in Figure 1, we construct the j-th Gaussian Mirror

- i + o) with 2+ — 2, + ¢, — i
by replacing x; with a pair of variables (ar:j ) I ) with X =T+ ¢z and x; =T — ¢z, where



zj is an independently simulated Gaussian random vector with mean 0 and covariance I,, and c; is

a QI’Q]QY’ ‘X7h'.lf‘]’1 AQT\DT\AQ nn Y QY]A > -

GM;

Figure 1: Flowchart of the j-th Gaussian Mirror.

Clearly, at the population level we have ,B;T = ﬂj_ =0if j € Sy, i.e., for variables in the null set;

and ﬂj = ﬁ; = B;j/2if j € Si. Let GM; be the design matrix with the j-th Gaussian mirror, i.e.,

GM; = X7 = (2], X)) = (2 + ¢z, 5 — ¢jzj, X ;). (2)

Then we rewrite model in (1) as y = X737 + e. We estimate the regression coefficients by the
following least squares,
B = argmin |[ly - X/8|13. (3)
BI=(8] .85 B-5)
We have B;r and B; are both unbiased estimates. We construct the mirror statistics for the j-th
variable as
M; = 8]+ B; | - 1BF — 85 . (4)

The mirror statistics has two parts: the first part reflects the importance of the j-th predictor;
and the second part captures the noise cancellation effect. Intuitively, for a relevant variable
j € S1, the coefficients Bj(or B;r) and B; (or Bj_) tend to be close to each other so as to cancel
out the noise effect, which results in a relatively large value of M;. Based on this observation,
we regard variable x; as “significant” when M; > t for some threshold ¢ > 0. If j € Sp, we
choose c; appropriately such that M follows a symmetric distribution with respect to zero, i.e.,
P(M; > s) = P(M; < —s), Vs. Consequently, the number of false positive #{j € So|M; > t}
approximately equals #{j € So | M; < —t}.

In practice, we do not know the underlying active set ;. Thus, we use #{j | M; < —t} as an

estimate of the number of false positives, which can be shown to be a slightly over-estimation under



certain conditions, and use
Iy #{j | Mj < _t}

FDPU) = 20T, = v

()

as an estimate of the FDP. For any designated FDR level ¢, FDP leads to a natural choice of the
cutoff 7, such that
Tq = mtin{ﬁ(t) <gq}. (6)

Based on the data-driven threshold in (6), we select the set of variables as S; = {j | M; > 7,}.
The key to achieve a reasonable estimate of the FDP is to construct the Gaussian mirror GM; to

guarantee the symmetric property of M; when j € &g, which, as shown in the next subsection, can

be achieved by carefully choosing the scalar ¢;. We discuss GM constructions for the OLS estimates

(requiring n > p), and then extend the results to the Lasso estimates for high-dimensional cases.

2.2 Gaussian mirrors for the OLS estimator

The j-th GM design (j = 1,---,p) for the OLS estimates lead to the following quantity:

By,B—j) = argmin ||y - X/@|I5, (7)
which has an explicit expression as 87 = ((X9)T X7)"1(X7)Ty. It is known that in 37, (Aj, B;)
follow a bi-variate normal distribution with mean zero conditional on X7. The following result
provides a sufficient condition for the mirror statistics M; = |B]++B]_ |— |Bj—@;| being symmetrically

distributed with j € Sp.

Proposition 1. Suppose U and V are two random variables following a bivariate normal distribution
with mean zero. If the correlation between U and V is zero, we have M = |U + V| — |U — V|

following a symmetric distribution about zero, i.e., P(M >t) = P(M < —t), Vt > 0.

Proof. Since the correlation between U and V is zero, we have Var(U + V) = Var(U — V).
Furthermore, combining with the fact that E(U + V) = E(U — V) = 0, the joint distribution of
(U+V,U —V) is identical to (U — V,U + V). Thus, M and —M follow the same distribution, i.e.,
P(M >t)=P(M < —t), Vt > 0. O

The following lemma provides an explicit construction of ¢; such that the correlation between

ﬁA;L and BA]_ is zero, resulting in a symmetric distribution of M;.

Lemma 1. For the GM; design in (2), we can choose

wJT(In ~ X—j(ijX—j)_lij)‘Bj
2] (I - X_j( X1, X_j)1 X))z

: (8)

Cj =



so that the correlation between BA;' and B]_ given z; and X_; is zero.

Proof. Conditioning on X, the covariance matrix of 3/ is

-1

X 14 0% + 2p(mj7zj) 1 —9v% (p(mjﬂx—]') + p(zj7X—j))T
ECOV(Bj | X7)=0" 1—v% 1407 —2pl@%) (@i X=g) — plzX=5))T
p(wj,ij) + p(szij) p(wj,ij) — p(zijfj) >

(9)
where v?% = %C?Z}Zj, p(mjvzj) = %ij;rzj’ (p(wﬁX*j))T = %$;|—X,], (p(Zj,ij))T = %Cjz;ijH
and ¥_; = %XIjX_j. Through calculating the inverse of the block matrix in (9), we have the

covariance of (Bf, B;) given X7 as
1 A+ /\7 ]
ECOV( fi 7Bj | X7)
=K10? (1= 0% — (o X ) TR Xo) o (pe X T ples X)) (10)
where

Kb = (1+0%)%—4(p®2))2 — ((p(mj,X_j))Tij(mj,X_j) + (p(zj,X—j))TE:]lp(zj,X—j))2

—(1—v% — (p(mj,X—j))TE:}p(mj’X—j) + (p(zij—j))TE:}p(zj’X—j))Q_

Simple calculation shows that if we choose c¢; such that v® — (p(zj’X*i))TZ:;p(zj’X*j) =1-

(p(”’f’X—f))TE:}p(mﬁX—f), which is equivalant to
Gz (I — X_j(XT,X_ )" X )zj=a] (I, - X_;(X 1, X_;) ' X ))a;,

then the covariance between B;r and B; is zero. We note that the numerator and denominator
of ¢; in (8) are the lengths of the projections of x; and z; onto the space of X_;’s orthogonal

complement, respectively. ]

Consequently, to construct the GM; for j = 1,--- ,p, we first generate the random vector z;
from N(0,I,,), and then choose ¢; as (8) such that the covariance between Bf and B; is zero. We

summarize the construction of the Gaussian mirror as follows.

Definition 1. (Gaussian Mirror for OLS) For j = 1,--- ,p, one first generates n-dimensional
Gaussian random vectors z; from N(0,I,), and then computes c; based on equation (8). The j-th

GM is designed as GM] = {33]‘ +Cj25, T — CjZj, X1y, L1, Ljt1y--- ,va}.

As we have argued, the GM; defined in Definition 1 guarantees that the covariance between B;r
and B; is zero based on Lemma 1. We further construct the mirror test statistics M; as in (4). The

following theorem is a direct consequence of Proposition 1.



Theorem 1. Let M; be the test statistics defined in (4) based on GM; in Definition 1, then
P(Mj < —t | Zj) = P(Mj >t | Zj), vVt > 0,

for j € 8p.

Algorithm 1 Gaussian mirror algorithm for OLS
1. Parallel FOR j =1,2,--- | p:

(a) Generate z; from Gaussian distribution with mean 0 and variance I,.
(b) Calculate ¢; using (8) and get the j-th GM design, GMj, as in Definition 1.

(c) Obtain the ordinary least square estimator of Bj and Bj_

(ﬁA;F,B;,,é_j) = argmin |ly — X_;8_; — CC;_B;_ - x;ﬁ;“%
64,87 B

(d) Calculate the mirror statistics M; = |B]+ + B;] - WA;F — Bj_|
END parallel FOR loop

2. For a designated FDR level g, calculate the cutoff 7, as

o #IM < -t
Tq‘mtm{t‘a@é{ﬂMth}vlS }

3. Output the index of the selected variables: Sy = {j| M; > 7,}.

The GM design is a special type of data perturbation method. Perturbation has been widely
used in statistics to ensure stability and quantify uncertainty (Yu and Kumbier, 2019; Yu, 2013).
For example, jackknife and bootstrap (Efron, 1992) are efficient data perturbation methods with
wide applications in statistical inference. In this work, we aim to control FDR based on a new
type of data perturbation. The perturbation in the GM design can reduce correlations between the
mirrored predictor and other ones, likely improving the robustness and power of variable selection.
Theorem 1 guarantees that the distribution of M; is symmetric with respect to zero for the null
variables. Therefore, for any threshold ¢, if we select the variables with the mirror statistics M; > ¢,
a natural estimate of the FDP is given by (5). For a designated FDR level ¢, a data-driven threshold
7, can be obtained as in (6). Note that the GM construction enables independent calculations of
the Mj’s for j = 1,...,p, and is easily parallelizable. Algorithm 1 can thus be implemented on a

parallel computing architecture, which significantly reduces the computational time. In Section 4,



we will show that the data-driven choice of 7, in Algorithm 1 guarantees that FDR is controlled

asymptotically under some weak dependence assumptions of the mirror statistics.

3 Gaussian Mirrors for High Dimensional Regression

In high-dimensional settings with the number of features p greater than the number of observations
n, one can still create mirror variables w;r = xj + c;z; and xT; =i —Cjzj, forj=1,---,p, and
construct the mirror statistics naturally using the Lasso estimator in (14). Although this simple
extension appears to work quite well empirically, its theoretical justification is challenging due to
the following reasons: (i) The specific design of ¢; as in the OLS case is no longer available. (ii) The
Lasso estimator is biased because of the regularization resulting from L; penalty with A, > 0. This
implies that E(ﬁj) # 0 and E(BJ_) # 0 for j in the false discovered set {j € Sp, B;L #0, BJ_ # 0}.
(iii) The L; penalization also forces a linear constraint on y in the selection procedure. Since the
Lasso estimator is a nonlinear function of y, the constraint on the Lasso estimator is nonlinear,
leading to its complicated distribution. We here propose a post-selection strategy to design the GM
and construct the mirror statistics M; such that each M satisfies the symmetric property when

j € So. Then, a consistent estimate of FDR can be derived via (5).

3.1 Literature on high-dimensional inference

To enable a proper statistical inference in high dimensional settings involving variable selections,
Zhang and Zhang (2014) and Van de Geer et al. (2014) propose de-sparsified Lasso; Wasserman
and Roeder (2009) advocate using data splitting (Cox, 1975) to avoid dealing with complex
constraints induced by variable selection; and Berk et al. (2013) suggest the post-selection adjustments
framework, aiming to provide valid statistical inference conditioning on the data-driven variable
selection result. In data splitting, the data is divided into two parts, with one half used to select
the model and the other half to conduct inference. For post-selection adjustments, (Berk et al.,
2013), Lee et al. (2016) propose a procedure that first selects variables using Lasso and then obtains
the OLS estimates for the selected model. By characterizing the selection event as a series of linear
constraints on the post-selection OLS estimates, they provide valid post-selection inference on
certain linear combinations of the coefficients of the selected variables.

Our goal is to control the number of false selected variables based on mirror statistics, which
requires that the mirror statistics be symmetrically distributed for null variables. To characterize
the distribution of mirror statistics on the null variable set, we consider the post-selection procedure
based on Lasso. More specifically, similar to Lee et al. (2016), we first use Lasso to select the

model and then re-fit the model with OLS and construct mirror statistics the same way as in the



low-dimensional case. In the following, we explain how to adjust such constructed mirror statistics

to accommodate the fact that the fitted model has to be conditional on the selection event.

3.2 Post-selection adjustment for Gaussian mirrors

Recall that Lasso solves the minimization problem
BZarg;ninlly—X5|!§+/\n\|ﬁ||1- (11)

Denote S = {j : 3; # 0} and & = sign(,ég) as the active set and the related sign based on Lasso
estimator. By Lemma 4.1 in Lee et al. (2016), the event {(S,8) = (S,s)} can be rewritten as a

series of constrains on y as follows

5 G—gl — Ao(S,S) bo(S,S)
(§=8.8=s}= { (Al(s,s)> = (b1(8,3)> } ’ (12)

where Ag encodes the “inactive” constraints determine the selection set, and Ay encodes the “active”

constraints which determine the sign of nonzero coefficients. The expression of these matrices are

1 { XTo(I - Ps)
AolS9) =3 (—Xi(f - Ps))

bo(S.5) — (1 - X%(Xsﬁs) 3)
1+ X g(Xs)Ts
A1(8,5) = —diag(s)(Xs Xs) ' Xg
b1(S,5) = —Adiag(s)(XI Xs) s,
where Pgs is the projection matrix of S.
We now develop the mirror statistics conditional on the event {(S,8) = (S,s)}, and focus on the

design matrix Xg. We first define the Gaussian mirrors for the j-th variable in S, j =1,...,|S]|.

Denote X _j(s) as the the submatrix of Xs by removing its j-th column. Then we choose ¢; as

m;—(In - X (X—_rj(s)X—j(S))71X—_rj(5))xj

EI(In - X—j(S)(ij(S)X—j(S))ilij(g))ij’

¢j = (14)

where 2; = (I — Ps)z; with z; generated from N(0,I,). Comparing with (8) in the OLS case,
¢; is constructed by first projecting z; on the orthognal space of Xs. Based on c;, we define the

Gaussian mirror designs as follows.

Definition 2. (Post-selection Gaussian Mirror) Given the post-selection set S and the corresponding

design matriz Xs, for j € {1,...,|S|}, we generate n-dimensional random vector z; from N (0, I),

10



then compute c; based on equation (1/). The j-th GM is designed as ng = {x; + ¢jzj,x; —
CjZj, L1y s Lj—1,Lj41,y--- ,$|S‘}.

Let o] = eI((Xi;)TXg«)_l(Xé)T and g = eQT((X‘JS')TX‘%)_I(X;)—r where ey is the standard
basis vector with the /th entry as one and the others as zero for £ = 1,2. n{ y and 7, y are the first

two dimensional OLS estimates of y regress on X fg That is,

B =nlyand B; =nyy. (15)

Before deriving the joint post-selection distribution of Bj and BAJ_, we first characterize the linear

constrains on (Bj + B;, Bj — B;) resulted from the post-selection event S.

Lemma 2. Let n = (n1,12), we have

(m+m) (m—m)=0, nim=nin=a. (16)

Let Ag(S,s) and A1(S,s) be matrices defined in (13), then there exist ag € R*P~ISD) and a; € RIS,
such that
Ap(S,s)n =ap(l,—1) and Ai(S,s)n =a;(1,1). (17)

In Lemma 2 equation (17), we show that Ay(S,s)n and A;(S,s)n are both rank one. Write
y =Py + (I - Py)y, and let r = (I — P,;)y and it is easy to verify that r is uncorrelated with
1"y, hence independent of 'y. Then the constrain Ay(S,s)y < bo(S,s) in (13) is equivalent to

Ao(S,s)n(nn) "0y + Ao(S,s)r = ap(1, —1)diag(c, a) (B}, B;) T + Ao(S,s)r

= aag(B] — B;) + Ao(S,s)r < by(S,s);

A+
~ A~ ] ’

aag (/Bj + ﬂj_) + A1(S,s)r < by(S,s)), that is, the “active” constraints are applied on the direction

i.e., the “inactive” constraints on ( Bj_) are applied on the direction of [1, —1]. Similarly, we have

of [1,1]. As shown in Figure 2 (a), the constraint regions for Bj and B; are along the line with
slope 1 and —1. By rotating the coordinate system by 45°, we have the joint distribution of BA;' + B]_
and BA; — B; shown in Figure 2 (b), where the constraint regions are parallel to the z-axis and

y-axis. We characterize the constraints provided by the selection event S in the following Lemma 3.

Lemma 3. The selection event can be written as follows:

{Ay < b} := {Ao(S,8)y < bo(S,8)} N{AL1(S,s)y < bi(S,s)}
=(Vi(x) < BF + 87 < VW), W) >0y n{Vf@) <8 - 87 <V (r), V'(r) > 0}

11



Figure 2: Left: the joint distribution of B;’ and B; Right: Rotate the coordinate system by 45°
and obtain the joint distribution B;’ + B]_ and Bj’ - BJ_

where
b A b A
Vé:(r) = max m, VOU(r) ‘= min M, Vév(r) = min bg; — (Aor);,
]:aoj<0 Oéaoj j:a0j>0 Oéaoj jlaoj:O (18)
bl' — (AlI')' . bl' — (All‘)' .
VE(r) = max —L——2 YU(r) .= =L YN () = b1; — (Aqr),,
r(x) = max aar; r(r)i= min aar; 1 (r) = min by = (Arr);

with o = anm = ’17;7]2, apj,a1; are the j-th element of ag,ay in (17), by;,b1; are the jth element
of bo(S,s) and bi(S,s) in (13), respectively.

By the normality of y and (16), we have COV(B;_ + B]_,B;“ — BAJ_) =o?(m +m2) " (m —n2) =0.
B;r + BJ_ and B;L — B; are uncorrelated and hence independent. Since r is independent of 'y, it
behaves as fixed quantities for the distribution of B;r + BJ_ and ﬁj — BJ_ conditioning on S. Thus
B;r + B]_ {Ay < b} and ﬂAj — ﬁ;|{Ay < b} behave like two independent truncated normal random
variables. We next use the probability integral transformation to construct a uniform distribution
related to B;r + [3’]_ and Bf — B;

Theorem 2. Let Fl[La(’be] denote the CDF of a N(u,0?) random variable truncated to the interval
[a,b], that is,

Flod () = ((z —p)/o) = ®((a —p)/o)

ph 19
w0 ) o) Bl(a— m)o) 1)
where ® is the CDF of a N(0,1) random variable. Then for S 2 81 and j € Sy, we have
L r u r
Fo O 50y | 8 = 8.8 =5~ Unif(0,1) (20)
FYREM 0N 5oy | § = 8,6 =5 ~ Unif(0,1) (21)

and VE(r), V¥ (r), VE(r) and VY (r) are defined in (18).
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Y+ A N V- A
Denote Uj = Fy_ UQFO[ 02( ()] (ﬁ;r + B ), and V; = Fy, UQF(E 2 (5+ B; ), where Fj ;o
is the CDF of a N(0,02) random variable. Theorem 2 shows that, conditioning on the selection
set (S, s), for j € Sy, both U; and V; follow N(0,0?) and independent with each other. Therefore,
|U;| — |V;| have the same distribution with |V;| — |U;|. We define the mirror statistics M; as
\% V= (r),Vt A—
= 1Ry Fpra ™ OB 4+ B7)1 = 1P 2 F. ™ OB = B7). (22)

0,027 0,02

For j € 8y, M; is symmetrically distributed. When the signal is strong, i.e., j € &1, as shown in Lee
et al. (2016), the truncation points are far from zero. In such a case, the truncated CDF are close
to F 52, indicating the M defined in (22) is close to | BA;F + /5’]_ | —| B;“ — ﬁAJ_| In practice, the mirror
statistics tends to be conservative since we use CDF with mean zero for both null and non-null
variables. For non-null variables, the mean for BA;F + B; and BA;“ — B; before the truncation are an,u
and n; 1, respectively, where y = Ey. We find that replacing p by a reasonable estimate, such as
X /3, helps increase the power with little lose of FDR control.

The above properties of M; hold on the event {5’ = 8,8 = s}. We follow the selected model
framework in Tibshirani (2013); Fithian et al. (2014) so that any set {S O S}, i.e. the Lasso has

screened successfully. The union of these events is defined as

=) U {$=8s=st={Scs} (23)
5281 se{-1,1}IS]

This event includes all possible selections that selecting all of the nonzero variables while allow
false discovered variables. The GM approach is designed to pick out those false discovered ones.
Such selection consistency can be guaranteed by the L?-consistency of Lasso estimate under certain
conditions; see (Candes and Plan, 2009; Knight and Fu, 2000; Zhao and Yu, 2006; Van de Geer,

2008; Zhang and Huang, 2008; Meinshausen and Biithlmann, 2006; Meinshausen and Yu, 2009).
In Assumption 1, we suppose the compatibility condition and signal strength assumption in

Bithlmann and Van De Geer (2011) hold to guarantee the L?-consistency in Lemma 4.

Assumption 1. (a) (Compatibility Condition): Let ¢g9 > 0 be a constant. For a p x 1 vector «

satisfying ||as, |1 < col|aus, |1, we assume

s, |3 < gaTXTXa (24)
0

where the entry a; € as, if i € Sy, and as, = o\ as,, s1:= |S1], co is a constant depending

on the choice of A, and ¢g is the compatibility constant.

(b) (Signal Strength): minjes, |8;] > 64(;2)31 log(p)

n
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Lemma 4. Suppose that Assumption 1 holds. Consider the Lasso with regularization parameter

A = 4o+/log(p)n. Then we have

5 2

where S is the index set of the nonzero entries in the Lasso estimator B in (11).

Lemma 4 follows directly from the || - ||; convergence result in Bithlmann and Van De Geer
(2011), Theorem 6.1 and the signal strength condition in Assumption 1(b). Based on this lemma,
the event €& = {S&1 C S } holds with high probability, that is, the Lasso estimator can select all of
the non-zero variables while allow false discovered variables. The GM approach is designed to pick
out those false discovered ones; and a symmetric statistics M; constructed on the set S is sufficient

to achieve this goal.

Algorithm 2 Gaussian mirror algorithm for Lasso.

1. Fit Lasso with respect to the original design matrix X, i.e.,
B= arg;nin ly — XBII3 + AalBllx

by cross validation.

A

2. Parallel FOR j € 1,...,S:

(a) Generate z; from Gaussian distribution with mean zero and covariance matrix I,.
(b) Calculate debiased c; via (14).

(c) Calculate the mirror statistics
% V= (r),Vt®)], 5 H—
= 1By poFoa ™Y NG+ B = IR B BT = 5D (29)

END parallel FOR loop

3. Calculate the cutoff to control FDR at target q.

#{j | M; < —t}
2 M SIS

Tq = mln{

4. Output the index of the selected variables: Sy = {j | M; > 7,}.

Theorem 3. Let M; be the mirror statistics defined in (22), which can be computed using Algorithm
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2 in this section, with the GM design in Definition 2. We have
P(Mjg—t|2j):P(Mth|Zj), Vit >0.
for 7 € Sy with probability 1 — 2/p.

Based on Theorem 3, we show that the symmetric property of M; holds for finite sample size
for any j € So. We use #{j| M; < —t} as an (over)-estimate of the number of false positive set,
and define an estimate of FDP as

N #{j| M; < —t,j ES}

FDP(t - .
®) #{j|M; >t jeStV1

(26)

Algorithm 2 illustrates the detailed procedure from the Gaussian mirror design to false discovery

control. Similar to the GM algorithm for the OLS in Section 2.2, we compute M; in parallel for
7=1,...,p.

4 Theory for FDR Control with Gaussian Mirrors

Section 2 introduces a Gaussian mirror-based method to estimate the FDP. Controlling FDR is
useful when the number of features is large. For example, modern gene expression studies usually
involve thousands of genes; and genome-wide association studies (GWAS) routinely examine tens of
thousands to millions of single nucleotide polymorphisms (SNPs). It is of practical importance to
select a set of small number of significant genes or SNPs for follow-up experimental validations and
testings, which requires the scientist to have a reliable estimation and control of the FDR so as to
control the experimental cost. In this section, we show that the FDR can indeed be controlled at
any given level ¢ asymptotically by using Gaussian mirrors.

Without loss of generality, we use M; to indicate both the one defined in (4) and the one
defined in (22). The key is to design the Gaussian mirror appropriately such that for j € Sy,
P(M; < —t|zj) =P(M; >t] z;), Vt > 0. When we select the j-th variable if M; > ¢, then the
FDP satisfies

#jeSo: My >t} #{jeSo:M;<—t}  #{j:M; <t}
#{ M >ty vl #G M >tV T # My >tV

(27)

where the last term is the F/DTD(t), an (over-)estimate of the FDP defined in (5). As shown in
Algorithms 1 and 2, a data-driven threshold 7, > 0 is chosen in (6) as the smallest value such
that F/D\P(Tq) < ¢q. To proceed, we need the following weak dependence assumption on the mirror

statistics M;’s for j = 1,--- ,p, as p — oo.
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Assumption 2. (a) Let T be a subset of {1,2,--- ,p}, and a < 3/2 be a constant, the mirror
statistics M;’s satisfy

Cov( Y 1M; > 1), > 1(My > 1)) <C|T|*, VTt
JET keT

where 1(+) is an indicator function, C is an absolute constant;

(b) Let po = |So|, and p1 = |S1| for OLS; py = |Sp N 3|, P = |$'| for Lasso post-selection, we

assume

im =my >0, lim P1 =m=1—my>0.
P Ppo+p1 P po+p1

Assumption 2(a) quantifies the pairwise correlation among all the M;’s. When the M;’s are
pairwise independent, the left hand side is O(|T]). When the M;’s are perfectly correlated, the left
hand side is O(|T?). Here we assume « < 3/2 to incorporate cases where the M;’s are moderately
correlated. Empirically, we observe that pairwise correlations among the M;’s are always weaker
than those among the Bj’s due to the random perturbation introduced by c¢;z;, which provides
an explanation why the GM tends to be more powerful than both the BH and knockoff when
the covariates are moderately to highly correlated. Assumption 2(b) essentially requests that the

number of null variables casts a constant proportion of the total number of variables.

Lemma 5. Define a few quantities: V(t) = #{j : j € So,M; < —t},V'(t) = #{j : j € So, M; >
thU(t) = #{j € S1i,M; < —t},W(t) = #{j € S1,M; > t} and R(t) = {j : M; > t}.
Define Go(t) = lim, =3 s BL(M; < —t), Gi(t) = lim, -3 5 EL(M; > t), and Ga(t) =
lim,, p% > jes, EL(M; < —t). Suppose Assumption 2 holds and both Go(t), Gi(t), and Ga(t) are

continuous function, then

40

lim sup ‘ - Go(t)‘ = limsup ’
t | Po t

bo

wi(t) Gl(t)' = limsgp ‘Rg) —mpGo(t) + mG1(t)| =0,

t
lim sup ‘ ue) _ Gg(t)‘ = lim sup )
1

t n t
almost surely.

The proof of Lemma 5 is provided in the Appendix 8. With the aid of this lemma, we have the

following result.

Theorem 4. Let M; be the test statistics calculated using the OLS. For any given g-level, we choose
74 > 0 according to (6). If Assumption 2 holds, then, as p — oo,

E #{j:Jj € So, andjesl} <

#{j:jeS}Ivi (28)
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Proof. First, we show 7, < C for some sufficiently large constant C' in probability 1. For any € > 0,

let t* be chosen such that
WoGo(t*) + 7T1G2(t*)

moGo(t*) + mG1(t*)

When p is sufficiently large, based on Lemma 5, we have

< q—E€.

‘V(t*) +U(t*)  moGo(t*) + mGa(t) <2

R(t*) V1 TF()Go(t*) + 7T1G1(t*)

Then
<q-—e¢/2.

Note that 7, is chosen such that

U
Tg =argminqt: ————=
implying that 7, < t*.
Note that for a sufficient large constant C' > t*, by Lemma 5,

V) mGol®)
Rt)V1  moGo(t) +mGi(t)

lim sup
0<t<C

-0

Then we have

Zz‘e&) 1(M; > Tq) Zie&) 1(M; > Tq)

lim sup E < Elim su
1% Vv
= Elim sup ﬂ =Elim sup ﬂ <gq.
0<ry<c R(7q) V 1 0<ry<c R(1g) V 1

The first inequality is based on the Fatou’s lemma and the last inequality is based on the definition
of 7. O

The next theorem provides a FDR control for Gaussian mirror algorithm for Lasso.

Theorem 5. Let M; be the test statistics calculated using the Algorithm 2. For any given g-level,
we choose T4 > 0 according to (6). If Assumptions 1 and 2 hold, then, as p — oo,

#{j: 7 € So, andjegl} <

#{j:jeﬁl}v1 <q+o(1). (29)

When conditioning on the event that S; C S, we can follow the proof of Theorem 4. Combining

this with Lemma 4, we have this theorem.
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5 Estimating the Number of False Discoveries

The GM approach introduced in Section 2 provides a way to select significant features with controlled
FDR. Here we address a problem closely related to FDR controls but may be of more direct interest
to some practitioners. Suppose the scientists are only allowed to explore no more than 100 selected
features due to limited budget, then the following questions are of immediate concerns: (1) How
should they select the list of top 1007 (2) How many false discoveries (FDs) do they expect to have?
(3) Can statisticians provide an uncertainty measure for the estimated FDs?

The first question is easy to address based on the mirror statistics {M;} (j =1,---,p). We
order the mirror statistics decreasingly as M) > --- > M(;,) and choose the top k features, as those

corresponding to the set of the top-k mirror statistics. Denote the selected set as 7y, i.e.,
I, = {] : Mj S {M(l),. .. ,M(k)}},

where k < #{j | M; > 0} since the GM procedure does not select variables with negative mirror
statistics. Let FD(k) = |Z) N Sy| denote the true number of FDs in the top-k list, which is a
random variable with its randomness arising from X, {¢;}, and {z;}. The expected number of
FDs, E[FD(k)], is a more stable target for estimation. Since the mirror statistics is distributed

symmetrically for the null variables, we estimate E[F D(k)] as
FD(k) = #{Mj < =M} (30)

Theorem 6 below shows that the error bound between @(k) and E[F'D(k)] is op(k). As k increases,
the error bound also increases although the relative error gets smaller. Theorem 7 states that P/’l\)(kz)

is an unbiased estimator of E[F'D(k)] with high probability.

Theorem 6. Suppose that Assumptions 1 and 2 hold, p/n — oo, k < #{j | M; > 0}, and
k/p1 = O(1). Let M; be the mirror statistics calculated from Algorithm 2. We have

lim P (i ‘fl\)(k) - E[FD(k)]‘ > e) —0.

n—o0

for any € > 0.

Theorem 7. Suppose that Assumptions 1 holds, k < #{j | M; > 0}. Let M; be the mirror statistics
calculated from Algorithm 2. We have

— 2
P (E[FD(k)] - E[FD(k:)]) ~1-°.
p

Next, we describe a nonparametric bootstrap method to construct a confidence interval for

E[FD(k)]. The method starts by fitting the regression model based on the original design matrix
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using either the least squares (if p < n) or the Lasso method, and obtaining the fitted values
vy = (1, ,Un) as well as the residuals v = y — y. Then, for b = 1,..., B, we generate
independently the b-th “bootstrap sample” y® = g + ~® where the v®) is drawn randomly from
~ with replacement. With the bootstrapped “observations” y®, we calculate the mirror statistics
{Ml(b)7 . .,M,S”)} using Algorithm 1 (Algorithm 2 for Lasso). The B sets of bootstrap mirror
statistics are denoted as {Ml(b), MQ(b), e ,M,gb)}le, which give rise to a set of B bootstrap estimates
of FD(k): Bpp = {F/'b(l)(k), cee F/'b(B)(k‘)}. A bootstrap confidence interval for E[F'D(k)| can
be constructed as the upper and lower «/2 quantiles of the sample Brp, denoted as fl\)(a /2)(k)
and F/’l\)(l_a /2)(k), respectively. We may also first re-center the set Brp to have mean F/’l\)(k‘) and
then use the corresponding quantiles. If a budget-sensitive domain scientist is only interested in a
(1 — «@)100% upper confidence bound of E[F'D(k)], then she/he can use P/’B(l,a)(k).

Algorithm 3 Bootstrap distribution of M; and fl\?(k)
1. Parallel FOR b=1,---,B:

(a) For low-dimensional cases, fit linear regression model via OLS, i.e., minimizing (3); For
high dimensional cases, fit Lasso via minimizing the penalized least squares in (11). Let
Y = (1,92, -+ ,Un) be the fitted values, and r = y—g = (r1,r2, -+ ,r,) be the residuals.
(b) Sample from r; with replacement to get r® = (rgb), réb), e ,r,(lb)). Let y® =g+ 7®).
(c) Apply Algorithm 1 (low-dimensional case) or Algorithm 2 (high-dimensional case) by

replacing y with y(b)

i and calculate the mirror statistics M ]’-’ for 5 =1,...,p accordingly.

End Parallel FOR.
2. Output the bootstrap estimate {M{’, Mé’, e ,Mg}le.

3. For b = 1,..., B, we calculate the estimate of the number of false discoveries based on
{Mf,Mé’,-w ,M;,’} as
—=b
FD (k) = #{M} < —M{}.

where {M (bl), oM (bp)} are the decreasingly ordered mirror statistics.

4. Construct the confidence interval of E[F' D(k)| as [fl\)(a/g)(k:), fb(l_a/g)(k')] and upper confi-
dence interval as [0, F/’l\)(l,a)(k)].
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6 Numerical Studies

6.1 Low dimensional scenarios (p < n)

The first method is BH Benjamini and Hochberg (1995), which controls FDR through finding a data
adaptive threshold for the p-values of the regression coefficients. The second method is the knockoff
Barber and Candes (2015), which introduces the knockoft filter to control the FDR in the sparse
linear model whenever there are at least as many observations as variables. The third method is the
model-X knockoff Candes et al. (2018), which extends the knockoff procedure to high-dimensional
settings. For the model-X knockoff, We construct the knockoffs with both known covariance matrix
(model-X) and a second-order estimate of the covariance matrix (model-X-est). Also, we observe
that the knockoffs constructed based on the known covariance matrix becomes exteme conservative
for the constant correlation setting with correlation coefficient larger than 0.5. We implement a
modified verison of model-X knockoff construction (model-X-fix) which significantly increases the
power. We consider two scenarios in simulations: p < n and p > n. In all simulation settings, we
set the targeted value of the FDR as ¢ = 0.1.

We simulate linear regression models with n = 1000 and p = 300. For the GM approach,
we calculate the mirror statistics based on Algorithm 1. For the BH method, we calculate the
z-statistics 21, ..., 2, for the OLS estimates, i.e., z; = f3;/(0 (XTX)j_jl). The j-th variable is

BH

selected if |z;| > TfH , where 7% is chosen as

g PON(O,1)] > 1)
K {p #0711z = t} Sq}' (3)

The knockoff and model-X knockoff statistics are calculated based on the Lasso estimators. For

different methods, we evaluate the FDR and the selection power based on 100 replications. The
selection power is calculated as the ratio between the number of the correctly selected covariates and
the true nonzero covariates. In each of the following settings, we randomly set 240 coefficients of 3
as zero and generate the remaining 60 nonzero coefficients independently from N (0,20/+/n). The
response variable y is generated according to e.q (1) with 0 = 1. The design matrix are composed
of i.i.d. rows with each row generated from N(0,X).

(i) Power decay correlation The covariance matrix X is autoregressive, i.e., each of its
element 0;; = p“_j‘, and we take p = 0,0.2,0.4,0.6, 0.8, respectively. Figure 3 (al-a2) show the
box-plot of the FDPs and the selection power for the five methods. As shown in Figure 3 (al), the
FDPs of the four methods are all around the targeted value 0.1. Figure 3 (a2) shows that the GM
method has the highest power among the four methods; and the gap between GM and the other
methods gets larger as p increases. Particularly, when p increases to 0.8, the power of the knockoff

method decreases dramatically with some extreme cases of having no rejections at all.
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(al) Power decay auto-correlation

(a2) Power decay auto-correlation
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Figure 3: The FDR and power performances for low-dimensional cases. Notations Model-X-est,
Model-X, Model-X-fix, knockoff refer to the Model-X knockoff with estimated covaraince matrix,
Model-X knockoff with known covariance matrix, modified Model-X knockoff with known covariance
matrix, and knockoff, respectively. The upper and lower hinges of the box correspond to the first
and third quartiles. The interval is calculated via the mean of the FDP + the sample standard
deviation of the FDP.
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(ii) Constant positive correlation. Here we let 0;; = p'(#7) with 1(-) being an indicator
function.The simulation results are summarized in Figure 3 (b1-b2). In this case, the partial
correlation of X is low, implying that the correlation among the 3 is small and the test statistics are
weakly correlated. The BH method produces the most stable FDPs and maintained a high power.
Model-X-est and the GM method come in a close second, obtaining results almost indistinguishable
from that of the BH.

When p > 0.5, the power of the Model-X drops to near-zero, which is due to a numerical issue
in the original Model-X software. The Model-X procedure generates knockoffs from N (u, V'), where
V' is obtained via solving a semi-definite programming problem. When p >= 0.5, V is nearly a
rank-one matrix, which results in high collinearity among the generated knockoffs and significantly
reduces the power. Dongming Huang and Lucas Jensen (personal communication) suggested a
simple remedy, which is to project each variable onto the orthogonal space of the first principal

component of ¥ and add a small perturbation as

1oy 1
X;Lewzxj—aXE ]_p—f-ﬁzj
where a = (p — p*1.5711,)7! and z; i N(0,1I,). Then, X" = (7, ..., x;°’) serves a new

design matrix for constructing knockoffs via the standard Model-X procedure with the covariance
matrix I,. This modification significantly increases the power of Model-X knockoff (as shown in
Figures 3(b1-b2) and 4(b1-b2)), but it only works for this case, where each x; can be represented as
the sum of a common latent Gaussian factor and an independent term. Although power decreases
for all the methods when p increases, the GM method appears to be least affected.

(iii) Constant partial correlation. In this setting, the precision matrix @ = X~! has
constant off-diagonal elements, i.e., ¢;; = 71(#7) . The correlation among the X can be very small
when 7 is large. For example, when 7 = 0.6, the off-diagonal entries of 3 is about —0.0083 and the
diagonal entry is 2.4917. The comparison results are reported in Figure 3(cl-c2). Both the GM
and BH methods work well in terms of the FDP and power, while GM is slightly more powerful.
When 7 > 0, both knockoff and Model-X-est (using estimated covariance matrix) are extremely
conservative. For instance, when 7 = 0.6, both the FDP and power of these two methods drop
to zero even though the pairwise correlations among the x;’s are small. The Mode-X with known
covariance matrix works better, the power still decreaes fast as p increases, much worse than both
the GM and the BH methods.

6.2 High dimensional scenarios (p > n)

We consider the high dimensional case with p = 1000 and n = 300, in which Algorithm 2 is used
for the GM method. Similar to Candes et al. (2018), we implement the marginal BH (henceforth,
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BH-ma), which is based on the p-value of the marginal regression between y and x;, j =1,--- ,p.
We also consider the data splitting BH (henceforth, BH-ds), which employs Lasso to select variables
based on the first half of the data, and applies the BH method based on the p-values of the OLS
fitting of the selected variables using the second half of the data. For the Model-X knockoff, we use
both the default setting Gaussian knockoffs with known covariance matrix and the second-order
knockoffs with estimated covariance matrix as implemented in the R package knockoff. Note that
the original knockoff method can not be applied to the high dimensional case when p > n.

We consider the same three correlation structures of the design matrix X as in Section 6.1. In
each setting, we set 940 coefficients of 3 as zero and generate the remaining 60 coefficients from
N(0,20/+/n). The response variable y is generated according to e.q (1) with o = 1. We evaluate
the FDPs and powers of the methods based on 100 replications, with the target FDP set at ¢ = 0.1.

(i) Power decay correlation. As shown in Figure 4 (al), the FDPs of the GM method are
well controlled around 0.1 in all cases. The FDPs of Model-X-est, Model-X, BH-ds are well controlled
when p < 0.6. When p > 0.8, the FDPs of Model-X-est are inflated to 0.23. This inflation effect is
also observed in Candes et al. (2018). The FDPs of BH-ms start to get significantly inflated when
p > 0.4. We see in Figure 4 (a2) that the GM and two Model-X methods have very comparable
powers, whereas the two BH methods do not perform as well.

(ii) Constant Positive Correlation. As shown in Figure 4(b1), GM, BH-ds, and Model-
X /Model-X-fix all control their FDPs properly around 0.1. Model-X-est is overly conservative with
the observed FDP near zero when p > 0.2, whereas BH-ma fails to control the FDR especially
when p > 0.2 mainly because of strong correlations among the covariates. When p is larger than
0.5, we apply the same algorithmic modification as in the low dimensional scenario for Model-X,
denoted as Model-X-fix, which improves the power. Figure 4(b2) shows the power comparisons.
The power of Model-X-est knockoff decreases rapidly as p increases, getting to zero when p > 0.6.
In contrast, Model-X/Model-X-fix maintains a better power than Model-X-est. The power of BH
increases dramatically with p increases, at the expense of an equally rapidly growing FDP. The
powers of GM maintain the most stable power, decreasing only moderately from 0.75 as p increases.

(iii) Constant partial correlation. As shown in Figure 4(cl), all methods have their FDPs
well under control in all cases, except that BH-ma somehow has its FDP greatly inflated when
p = 0.8 (Figure 4 (c1)). Both GM and Model-X-est perform well and comparably in terms of both
the FDR control and power, with GM having a slight advantage, while BH-ma, BH-ds and Model-X
have significantly lower powers than GM and Model-X-est for p > 0.
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Figure 4: The FDR and power performance for high-dimensional scenarios. Notations are the same
as those in Figure 3. Note that Model-X-fix, which fixed a previous numerical error of the knockoff

package, was applied only to case (b) for p > 0.6.

24



6.3 Simulation studies based on a population genetics data set

Due to the recent biotechnology revolution, genome wide association studies (GWAS) have become
an attractive tool for genetic research. In such studies, researchers examine a genome-wide set (tens
of thousands to millions) of genetic variants of a group of individuals, hopefully randomly selected
from the target population, to see if any variant is associated with a phenotype of interest. Genetic
variants are usually in the form of single nucleotide polymorphisms (SNPs), and are often used as
covariates in a linear or logistic regression model to fit the observed phenotype, but with its main
goal being variable selections. Since the SNPs often take on only three values, {0,1,2} (representing
0, 1, or 2 minor allele mutations, respectively), the design matrix of any SNP-based regression is

clearly non-Gaussian.

1.00 1.00
= = - -
0.75 0.75
GM GM
o Model-X )
0 0.50 g 0.50
w o

FRERIIl

0.25 é & .

0.00 0.00

20 40 60 80 20 40 60 80
Partial Correlation Coefficient Partial Correlation Coefficient

Figure 5: The FDP and power for GM and Model-X knockoff for the GWAS-based design matrix
designs. The upper and lower ”hinges” of each box correspond to the first and third quartiles of the

100 replications.

We consider a panel of 292 tomato accessions in Bauchet et al. (2017), which is publicly available
at ftp://ftp.solgenomics.net/manuscripts/Bauchet_2016/ and includes breeding materials
(specimens) characterized by > 11,000 SNPs. Here we are interested in examining the FDP and
power of GM, BH, and Model-X knockoff by using this real-data set to create realistic design
matrices. Specifically, we randomly select 1000 SNPs as X and randomly generate 60 nonzero
regression coefficients from N (0, c¢?/n), where ¢ ranges from 20 to 80. The response variable y is
generated from e.q (1) with standard Gaussian noise. We set the target FDP as 10% and calculate
the FDP and the averaged power based on 100 independent replications.

As shown in Figure 5, we observe that GM controls the FDR at the target 10% quite precisely,
while Model-X is too conservative with near-zero FDP. As a consequence, Model-X has a significant

lower power than GM. The BH methods (both the marginal regression and the data splitting
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version), on the other hand, completely lose the FDR control because of high correlations among the
randomly selected SNPs. As a consequence, the high power of BH-ma is not scientifically meaningful

in this case.

6.4 Empirical results on estimating the expected number of FDs

In this part, we assess the performance of the GM method for estimating the expected number of
FDs in a top-k list, denoted as F'D(k), as well as the coverage probability of its bootstrap confidence
interval proposed in Section 5. We consider both low dimensional (n = 1000, p = 300) and high
dimensional scenarios (n = 300, p = 1000). For both scenarios, we randomly generate 60 nonzero
coefficients independently from N(0,20/n). The design matrix follows the same covariance settings
as those described in Sections 6.1 and 6.2 with p = 0.2. The response y is generated according to
e.q (1) with 0 = 1. We repeat 100 times for each setting.

In each replication, we obtain the estimate of F D(k) with k € (50, 70). For the rth replication
(1 < r < 100), we calculate fl\)(r)(k) following (30), and record the underlying true number
of false discoveries as FD(") (k). We use the sample average E[FD(k)] := s 210:01 FD") (k) as
an approximation to E[FD(k)] and use E[FD(k)] := s S0 fl\?m(k) as an approximation of
E[ﬁb(kz)], which should ideally track the value of E[F' D(k)].

By using Algorithm 3 with B = 200, we calculate the empirical coverage probability of the
proposed bootstrap confidence interval for E[F'D (k)| as

1
100

where }71\72;)/2) (k) and P/’I\)E;)_Q/Q) (k) are the /2 and (1—«/2) quantiles of the bootstrap distribution

of fl\?(k) in the rth replication. In addition, we evaluate the empirical coverage probability of the

#{r: E[FD(k)] € [FD(a2)(k), FD(1_a2)(k)]}

bootstrap (1 — «)100% upper bound

ﬁ#{r :E[FD(k)] € [0, ﬁ(ka)(k)]}‘

We set o = 0.05 for all simulation cases.

The scatter plots in Figures 6 (al,bl,c1) show the FD(k) against FD(k), the true number of
false discoveries, in each replication of low dimensional cases with k ranging from 50 to 70. The
closer the point approaches the diagonal line, the closer the two numbers are. As k increases, the
estimate tends to be more dispersed, which is expected since the error bound between F/'Z\)(k) and
FD(k) increases as k increases. In fact, F'D(k) is also more variable around its mean E(F D(k)) as k
increases. Figure 6 (a2,b2,c2) report the coverage probabilities of the confidence interval and upper

confidence interval for E[F'D(k)] in all the settings. The coverage probabilities are above 0.95 when
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Figure 6: Low dimensional scenario with (n=1000, p=300). Left panels: scatter plots of F/’l\?(k)

versus F'D(k) for k € (50, 70), under three correlation structures of the design matrix, respectively.
The triangles are E[FD(k)] versus IE[F/'E(/@)] in 100 replications, and the dashed line is = y. Right
panels: the coverage frequencies of the 95% bootstrap confidence interval and confidence upper

bound of E[FD(k)] (approximated by E[FD(k)]), respectively, for k ranging from 50 to 70. The

color shading represents different values of k.
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k is smaller than 60. When k is larger than 60, the coverage probabilities drop occasionally below
0.95 by a small amount. This is expected since the variation of F/'b(k:) increases as k increases,
which makes it more difficult to approximate its distribution.

Figure 7 shows the simulation results for high dimensional scenarios. For the auto-correlation
structure, the scatter plot in Figure 7 (al) shows that our proposed estimate tends to underestimate
slightly when k is large. For the constant correlation structure and constant partial correlation
structure (Figure 7 (b1, c1)), however, the proposed estimate slightly overestimate the number of
false discoveries. Similar to the observation in the low dimensional case, the scatter points become
more dispersed from the diagonal line as k increases. Figures 7 (a2,b2,c2) show the coverage of the
two-sided confidence interval and confidence upper bound for E[F'D(k)]. The coverage probabilities
of the confidence upper bound of E[FD(k)] were over 0.95 for all cases, and that for confidence
interval are also mostly above 0.95 except for the constant partial correlation case with k£ > 65.

This slight under-coverage appears to be a consequence of over-estimation of the number of FDs.

7 Discussion

We introduce the perturbation-based Gaussian Mirror method for controlling FDR in selecting
variables for high-dimensional linear regression models. Intuitively, to test if a variable X; is truly
informative, the GM constructs a pair of variables mirroring each other at X;. The scale of the
mirror can be computed explicitly and easily as a function of the design matrix so as to guarantee
that the distribution of the mirror test statistic is symmestric about zero under the null. With
this construct, we show that asymptotically the FDR is controlled at any designated level. We
have further proposed a way to assess the variance of the number of estimated FDs in a top-k list,
providing extra information about the reliability of the reported FDP results. Through empirical
studies we find that the GM is not very sensitive to the scale of the mirror, making the method
more broadly applicable.

A distinctive advantage of the GM method is that it can be applied to any low or high-
dimensional regression problems without requiring any distributional assumption or knowledge on
the design matrix. It is thus ideal for analyzing the data arising from many application fields, such
as population genetics, molecular and cellular biology, and biomedical researches. Furthermore,
the GM method is constructed marginally for each covariate with twofold advantages: (i) unlike
global constructions such as those in Model-X knockoffs, the mirror construction introduces only a
small and controllable additive “disturbance”, which not only alleviates possible high correlations
among the original covariates, but also gains in power; (ii) the computation for the GM method can

be easily parallelized, thus easily scalable to handle high dimensional large datasets, if advanced
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computation infrastructures such as GPU are available. Unlike other marginal methods, such as the
conditional randomization (Candes et al., 2018) relying on the conditional distribution of [X; | X_;],
which is difficult or impossible to obtain in practice and highly expensive computationally, the
construction of the GM is straightforward and nearly universal for both low and high-dimensional
cases.

The GM design introduced in this article is a general framework based on the idea of marginally
perturbing each variable by adding Gaussian noises. It is expected that such a construction can be
generalized to handle more complex statistical and machine-learning models such as generalized
linear models, index models, additive models, neural networks, etc. In linear models, we choose the
scale of the mirror ¢; to annihilate the partial correlation between the mirrored variables X; and
X ; SO that the mirror statistics is symmetric under the null. A nature gerneralization is to choose
¢; to minimize a dependence measure of Xj+ and X i conditioned on the remaining variables. Our
preliminary results show that a modified GM method works well for selecting important variables in

neural network models. We will leave more detailed studies along this line to future research.

8 Appendix

Proof of Lemma 5. We start with the first statement. For any integer NV, let

N
Sy =3 (1(j € S0, M; < —t) — E1(j € Sp, M; < —1)).
j=1

According Chebyshev’s inequality, for any € > 0,

Var(SN)'

P(|SN| > Né) < N2e2

Assumption 2 implies that
Var(Sy) = Z Var(1(M; < —t)) + Z Cov(1(M; < —t),1(M < —t))
JESo 1<j#k<N,j,k€So
<N + CN® < CNmax(l,a)‘
Consequently, P(|Sy| > Ne) < CN™x(=1.a=2) and

P(|Sn2| > N26) < O Nmax(—2,2(a—2))

Note that a < %, implying that 2(a — 2) < —1. Therefore,

> P(|Syz2| > N%€) < oc.
N=1
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According to Borel-Cantelli’s lemma, we know that

Sz
N2

— 0,a.s..

Next, consider Dy = maxy2<jp<(n41)2 [Sk — Sn2|. Then

2
ED% =E < max |Sk—SN2|) < Z E(S), — Sy2)%
N2<k<(N+1)? N2<k<(N+1)2

Based on Assumption 2, the E(S), — Sy2)? can be bounded as

k
E(Sk— Sy2)? =E| Y (1(j € So, M; < —t) = E1(j € So, M; < —t))|* < C(k — N?)mx(he),
J=N2+1

Combining the above two equations together, we have
ED]QV < Z C(k _ NZ)max(l,a) < C(2N + 1)max(2,a+1)‘
N2<k<(N+1)?

Apply Chebyshev’s inequality, we knows that

2
P(Dy > N%) < Iigfg < O N™or(=2a=3),
€

The fact that o — 3 < —3 indicates that Y P(Dy > N?€) < co. According to Borel-Cantellis’

lemma,

In summary, for any integer p, let N = |,/p], then

p —  N?

PO :
Note that oo 7O with mg > 0, therefore,

@S Sn2 + Dy

—0 a.s..
Po N2

Namely,
V(t) - :;:1 El(] S So,Mj < —t)

Po
According to the definition of G(t), then

—0 a.s. (32)

w — Go(t) —0 a.s..
Po
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With similar argument, we can show that % —Ga(t) — 0, Wp—(lt) —G1(t) — 0 a.s.. For R(t), similar

argument can show that

1
R(t) — lim — ZEl(M] >t) a.s
p p-
7j=1
Note that
p
—ZElM > 1) ZEleSO,M > 1)+ Y El(j €S, M; > t)
p] 1 j=1
1l
- Z 1(j € So, M; < —t) + Y EL(j € S1,M; > t)
b= -
= 7=1
Therefore,

hm ZEl M > t) = mpGo(t) + m1G1(t).
] 1
Next, we will show that % converges to Go(t) uniform almost surely. Note that Gg(t) is
continuous and bounded between 0 and 1. Therefore, for any € > 0, we can choose 0 =ty < t; <
- <t such that |Go(tg) — Go(tk—1)| < €,Vk. Assume that ¢ falls in the interval (tx_1,%x), then

V(tk—1) < V(t) < V(tx). Therefore,
sgp [V (t)/po— Go(t)| < e+ sgp |Go(tr) — Go(tg—1)] = 0 a.s.

Similarly, one can show that U(t)/p; — G1(t) converges to 0 uniform almost surely, W (t)/p1 — G1(t)
converges to 0 uniform almost surely and R(t)/p — moGo(t) + m1G1(t) converges to zero uniform
almost surely.
O
Proof of Theorem 6. Suppose that Assumption 1 holds. Using the [; convergence results in
Van de Geer et al. (2014), we have

P(M; > 0) = P(sign(3}) = sign(3;)) > 1 — ]23

for j € S1. By the Boole’s inequality, we have that the event £ holds with probability larger than
1- %. By (2), we have

FD(k) = #{M; < ~Mgy} = #{j -5 € So. My < ~M)} =V (Mp)).
where V' (-) is defined in Lemma 5. Also, F'D(k) can be written as

FD(k) = #{j € So : M, > t}.
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The expection of FD(k) is

1

FEIFD(k)] = S EL(M; > Myy) = > E1(M; < — M)

J€So J€So
where the second equality holds by the symmetric property of M; for j € Sp. By equation (32) in
the proof of Lemma 5, conditioned on &, we have
V(t) = 38 EL(j € So, Mj < —t)
k

—0 a.s..

Since the event &£ holding with probability 1 — %, we have

V(t) — ?:1 El(] € So,Mj < —t)

P
1.
’ =
O
Proof of Theorem 7 Assume that £ holds, we have
FD(]{) = #{M] < _M(k)} = #{j : ] S S(],Mj < _M(k:)}
Thus we have that
E[FD(k)] = EL(j € So, M; < —M))) = E1(j € So, M; = M) = E[FD(k)].
holds with probability 1 — 2. O
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