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a  b  s  t  r  a  c  t

Rights-based  management  is prevalent  in many  fisheries,  yet  conventional  spatiotemporal
models  of  fishing  behavior  do not  reflect  such  institutional  settings.  We  adapt  random  util-
ity maximization  (RUM)  models  of spatiotemporal  fishing  behavior  to  capture  the  general
equilibrium  dynamics  of  catch-share  fisheries  by incorporating  endogenously  determined
equilibrium  quota  prices.  We  demonstrate  how  a structural  estimation  strategy  is capa-
ble of  recovering  policy-invariant  behavioral  parameters  and  predicting  out-of-sample
counterfactual  policies.  We  illustrate  the utility  of  our  structural  modeling  approach  by
evaluating  the  efficacy  of  “ecosystem-based”  policies,  such  as  spatial  closures,  in  a  catch-
share-managed  fishery.  Simulation  results  reveal  that  such  policies  have  the  potential  to
distort price  signals  in the quota  market  and  prevent  quota  prices  from  coordinating  fish-
ing behavior  in  an efficient  manner.  Ecosystem-based  policies  may  thus  fall  short  of  their
intended  objectives  when  introduced  into  rights-based  managed  fisheries.  Importantly,
we  demonstrate  that  such  conclusions  cannot  easily  be  drawn  from  behavioral  models  that
omit or  approximate  the  general  equilibrium  dynamics  of  rights-based  fisheries.

©  2022  The  Author(s).  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the
CC BY  license  (http://creativecommons.org/licenses/by/4.0/).
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mists are often called upon to inform policy makers of the potential consequences of proposed environmental
ral resource regulations. For economists to offer reliable advice, their models must adequately capture individual
making processes, contextual variables, and institutional settings to provide externally valid predictions across the
olicy scenarios of interest to decision-makers (Lucas, 1976; Heckman, 2010). If the range of these counterfactuals

markedly from in-sample conditions, then purely empirical, reduced-form descriptions of behavior will likely be

ctory. Instead, structural models that explicitly model individuals’ decision-making process in terms of objective-
e.g., profit or utility-maximizing) behavior under the salient economic, environmental, and institutional constraints
d (Wolpin, 2007; Keane, 2010).
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 paper, we demonstrate how a structural approach for estimating commercial-fishing behavior under rights-based
ent institutions can provide out-of-sample predictions of counterfactual policies that differ substantially from

ly used alternatives. Despite the prevalence of rights-based management in today’s developed-world fisheries,
pirical models of commercial fishing behavior—those intended to inform management decision making—do not

 reflect the incentives and constraints underlying rights-based institutions. Instead, they reflect the implicit theo-
sumptions of regulated open or limited access fisheries. As such, even if these models are calibrated on behavior
hts-based management, they do not capture the theoretical mechanisms by which incentives under rights-based
ent affect fishers’ behavior. The result, as we demonstrate, is that the predictions of these models could be highly
g.
ress this deficiency, we show how random utility maximization (RUM) models of spatiotemporal fishing behavior
s and Wilen, 1986; Holland and Sutinen, 2000; Smith, 2005; Haynie et al., 2009; Abbott and Wilen, 2011), which
minant form of management models used to predict the consequences of proposed fishery policies, such as spatial

ns (Smith and Wilen, 2003; Berman, 2006; Haynie and Layton, 2010; Hicks and Schnier, 2010), can be extended
orate the general equilibrium dynamics of catch share fisheries. Conventional RUM models of fishing behavior do
der the implications of individualized (and often transferable) quotas of catch entitlements within a season, which
hadow value reflecting the opportunity cost of quota. We  demonstrate how the dynamic and general equilibrium

 of fisheries with tradable short-term rights of annual catch entitlements can be captured through the introduction
-market for quota, which we model as a pure exchange economy. Fishers are assumed to be forward-looking within
g season and form expectations over future quota usage when considering contemporaneous quota supply and
ecisions. Under the assumption of rational expectations, each fisher’s stochastic dynamic programming problem

o a period-by-period static maximization problem given a set of equilibrium quota prices. Critically, expectations
ed in each period, leading to a new set of equilibrium quota prices to reflect the changing relative scarcity of quota
astic production environment.
monstrate the utility of our estimation strategy—which we  dub the rational expectations RUM (RERUM)—for both
r estimation and out-of-sample prediction through numerical simulations and Monte Carlo analyses. We first show
estimation approach can be used for ex ante policy evaluation in rights-based fisheries by evaluating the efficacy
etical bycatch reduction policies, such as bycatch “hot-spot” area closures or reductions in bycatch quotas. Our
l simulations reveal the importance of quota-lease prices for signalling bycatch scarcity and for incentivizing cost-
bycatch reductions. Indeed, we show that “ecosystem-based” policies such as hot-spot area closures, which attempt
s the spatiotemporal footprint of fishing effort, can fail to send correct scarcity signals, and in turn, may  fall short
tended objectives.
en examine whether the conventional RUM approach, which either omits or approximates quota-lease prices, is
f producing insightful ex ante policy evaluations for rights-based fisheries. We show that the omitted nature of
se prices in the conventional RUM approach leads to a form of omitted variable bias (or, alternatively, non-classical
ent error). These biases could jeopardize the estimation of shadow values or welfare estimates (e.g., Abbott and

11; Haynie et al., 2009; Hicks and Schnier, 2006). Moreover, we find that as counterfactual policy changes lie
gly out-of-sample, as measured by the degree to which lease prices are responsive to the counterfactual policy,
ntional RUM approach performs worse for ex ante evaluations. Conversely, for counterfactuals that have only a

 influence on quota-lease prices, reduced-form approaches that approximate the equilibrium lease prices can be
 for ex ante evaluations.
monstrate that substitution of high-resolution lease prices as data into the conventional RUM model eliminates
n bias of behavioral parameters. Unfortunately, thin markets combined with confidentiality concerns rarely allow
n approach (Holland et al., 2014). Imputing annual average prices—which are more commonly available—offers
rtial mitigation of the bias, since it fails to capture dynamic adjustments of behavior within the fishing season.
ore, even if high-resolution lease prices are available, prediction for out-of-sample policy scenarios requires the
n of counterfactual lease prices that are consistent with the stochastic production environment and the changes

t, ecological, or policy conditions embodied in the scenario. Our estimation approach imputes quota-lease prices
rket simulator at the core of the estimation procedure, whereby a fixed-point problem is solved to determine
tingent  equilibrium lease prices in every period. Thus, the RERUM estimator does not rely on the availability of
lution lease-price data and can produce counterfactual lease prices for out-of-sample prediction that are consistent

structure of fishers’ dynamic decision problems and observed fisher behavior.
, while our demonstration is tailored specifically to the production process and institutions of modern-day fisheries,

 has broader relevance for other industrial and institutional settings—particularly for industries characterized
stic production processes and managed under quotas (or quantity controls) with transferable property rights.
ple, cap-and-trade systems for controlling greenhouse gas emissions are typically comprised of firms that make
production decisions under uncertainty of future abatement costs while balancing emissions and permits over a
latory horizon (Rubin, 1996; Kling and Rubin, 1997; Fell, 2016; Kollenberg and Taschini, 2016). As in our setting,
uota allocations create shadow values that reflect the opportunity cost of such constraints, and these shadow values
onized through the coordinating mechanism of the quota market. Any proposed policy that influences these shadow
ll thus be reflected in the equilibrium quota prices. Thus, quota prices are not policy invariant, and therefore, models
nous quota prices are generally required for counterfactual policy evaluations.
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urse of this paper is as follows. Section 2 discusses the relevant literature and the institutional background of rights-
nagement of commercial fisheries. Sections 3 and 4 present the structural behavioral model and the estimation

of the RERUM estimator. Section 5 demonstrates the utility of the RERUM model for predicting realistic policy
such as quota reductions and spatial closures. Section 6 provides Monte Carlo simulation evidence of the estimation
nce and predictive utility of alternative RUM model specifications and Section 7 concludes the paper.

round and related literature

vernance of many nation states’ fisheries has been transformed in recent decades—from the “tragedies” of open
d input regulation to a range of governance structures based upon individual or collective extractive rights. By one

 approximately 20% of global catch comes from fisheries managed under individual transferable quotas (Costello
do, 2019)—a number that only partially accounts for the full spectrum of rights-based management approaches,

 fishing cooperatives (Deacon, 2012) or TURFs (Wilen et al., 2012). Rights-based management is particularly com-
e Global North where it is facilitated by strong scientific input and adequate governance. Rights-based management,
ation with scientifically-based quotas and sound enforcement, has played a prominent role in reversing overfishing

oving economic efficiency in many fisheries (Worm et al., 2009; Grafton et al., 2006; Hilborn et al., 2005).
e these successes, rights-based management has not reduced the role of fisheries managers to merely conducting

essments and setting seasonal quotas. Rights-based management, especially individual output quotas, may  leave
t in-season externalities unaddressed (Boyce, 1992; Costello and Deacon, 2007), forcing managers to deploy addi-
nagement measures to address concerns such as growth overfishing or in-season rent dissipation. Furthermore,
he concerns of ecosystem-based management—e.g., protection of spawning stocks or vulnerable life stages, reduc-
nal impacts on unfished stocks or species of conservation concern, and habitat protection—are outside the scope of
ts-based managed systems (Holland, 2018).
sult of these concerns, managers use a wide range of tools, including input restrictions, protected areas, time-area
and dynamic ocean management (Maxwell et al., 2015), in addition to rights-based managed systems. Economists
rmed managers of the potential consequences of these actions by developing positive bioeconomic models (e.g.,
d Wilen, 2003; Holland, 2011; Huang and Smith, 2014; Hutniczak, 2015) that predict how changes to policy design
ge catch, effort, profits, employment, or ecological impacts. However, the continued adoption of rights-based man-
presents a significant challenge to fisheries policy modeling in that the overwhelming majority of empirical models
form in-season management measures fail to consider the implications of individualized (and often transferable)
ts within a season. Catch share fisheries define individualized (or sometimes cooperative-based) quota constraints,
hadow values that arise from such constraints are coordinated through within-season quota trading in a shared
ket. Experience has demonstrated that in-season behavior is often drastically altered by catch shares. This is par-

likely in terms of the allocation of fishing “effort” in both space and time (Reimer et al., 2014; Abbott et al., 2015;
ch et al., 2017; Miller and Deacon, 2017). Fishers may  spread their effort temporally and reallocate where they fish
ce revenues or reduce costs. More complex patterns may  emerge in multispecies catch share fisheries as vessels
ace and time to maximize the profit associated with their quota portfolios (Birkenbach et al., 2020). However,
f commercial fisheries often do not capture the behavioral mechanisms that arise under rights-based managed
ns, with the result that their predictions could be highly misleading (Reimer et al., 2017b).
onometric estimation approach is not the first to include dynamic or stochastic elements of within-season fishing

. Models of within-trip behavior have been extended to consider the logistical problem of the optimal trajectory
 decisions within a trip. Optimal within-trip behavior is therefore cast as a dynamic programming problem, with
n of model parameters coinciding with the solution (Hicks and Schnier, 2006, 2008) or approximation (Curtis and
00; Curtis and McConnell, 2004; Abe and Anderson, 2020) of the dynamic programming problem. Such models,

 do not capture the overriding dynamic concern that we would expect to emerge under catch shares—the manage-
 portfolio of quotas over the course of an entire season, where the state variables that provide the information set
’ decisions (i.e., expected catch, quota balances) evolve in a partially stochastic manner.
ful of papers have tackled seasonal fishing behavior dynamically (Provencher and Bishop, 1997; Huang and Smith,

kenbach et al., 2020). However, the stochastic evolution of the state variables coupled with the need to solve a fisher’s
optimization repeatedly in the estimation process through stochastic dynamic programming has resulted in the
n of very strong assumptions on the models to maintain computational tractability. This has usually taken the form

ly limiting the number of spatial locations available to fishers and curtailing the horizon of decision making in order
 the “curse of dimensionality.” Indeed, while notable advances have been made in reducing these computational
the dimensionality of most applied dynamic discrete choice models remains quite small (Aguirregabiria and Mira,

 we explain below, the coordinating mechanism of the quota lease market allows us to specify production decisions
listic spatial and temporal scale and number of state variables (species).
el of a catch share fishery

bjective is to build a model of within-season fishing behavior that generates externally valid ex ante predictions
 policies in a catch share fishery. This prospective model must be structural or mechanistic, in the sense that it

3
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 policy-invariant parameters that can be safely transported into “out-of-sample” environments, facilitating the
ante prediction (Heckman and Vytlacil, 2007; Heckman, 2010). Structural models achieve this flexibility through

 modeling the hypothesized decision process of agents in response to their decision context, usually through
ined optimization approach. This differs from estimating a reduced-form decision rule in that the latter runs a
sk of fragility since underlying ecological, economic, or policy state variables may  be subsumed into the estimated
orm parameters (Fenichel et al., 2013).
odel must satisfy several criteria. First, it must capture the primary within-season mechanisms fishers use to shape

 returns and catch compositions. While some aspects of input usage (e.g., bait or crew staffing) may  be somewhat
ithin a season, the primary short-run mechanisms influencing vessel output are where and when to fish (Abbott

5; Reimer et al., 2017a; Scheld and Walden, 2018). Second, the model must be both dynamic and stochastic. Dynamic
onsider that fishers allocate their portfolio to maximize seasonal returns so that current fishing decisions depend
tations of fishery conditions later in the season. Stochasticity implies that planning will not be perfect—catch, and
ota balances, will not exactly match expectations. Third, the model must easily accommodate realistic changes to
ent policies—such as catch limits and time/area closures. Finally, estimation and simulation of the model must be

le from available data with reasonable technology and computing time.
ural models face a trade-off between realism and computational tractability, requiring that modeling decisions
realism where it is fundamental to the nature of agents’ decision problem and predicted outcomes while sacrificing
ere. In our case, the most fundamental decision concerns the modeling of the quota lease-market, for which we make
lifying assumptions. First, we assume that fishers must have enough quota at the end of the fishing season to cover
ulative catch. Accordingly, the market for leasing quota clears at the end of the season, and fishers’ expectations

 end-of-season quota demand and supply form the basis for within-season quota prices. Second, we  assume the
r quota is competitive. That is, fishers’ treat their expectations of quota-lease prices as given, even though prices

genously determined by the aggregate behavior of all fishers. Given the incentives embodied in these expected
hers carry out individually optimal “on-the-water” plans by allocating their effort over a discrete number of fishing

 time periods. We  close the model under the assumption of rational expectations so that equilibrium quota prices
stent with fishers’ beliefs.

er’s dynamic programming problem

er agent (i.e., the fisher) i, who has preferences defined over a sequence of states of the world zi,t from period
il period t = T + 1. In periods t ≤ T , agents choose a fishing location a ∈ A = {0, 1, . . .,  J}, where a = 0 represents
n of not fishing. In the final period t = T + 1, the agent incurs costs or receives revenues from buying or selling
he leasing market according to their cumulative quota usage. In any given time period, fishers must account for the
ity cost of using quota—whether it is best to use quota today for the profits it generates or preserve it for sale in the
ive quota market. The problem is stochastic because fishers do not know exactly what they (or others) will catch
cation and time period, and thus, they form expectations over fleet-wide catch realizations and the resulting end-

 excess demand for quota. We assume that the number of fishers is large enough that any single fisher perceives
ct on aggregate harvest and the quota lease price as negligible. Therefore, fishers’ expectations of quota prices are
xogenously to their own decisions.
ake a number of simplifying assumptions for the sake of tractability. First, the state of the world at period t for agent
ed to consist of two components: zi,t = (xi,t, εi,t). The subvector εi,t is private information known only by agent i
e of decision, and is assumed to be exogenous. The subvector xi,t is an endogenous and stochastic state variable
ing an agent’s S-dimensional vector of cumulative catch prior to making a decision in period t: xi,t = fx(xi,t−1) =
= xi,t−1 + yi,t−1, where yi,t = Y(ai,t, �i,t) represents fisher i’s S-dimensional vector of catch in period t.1 The term
ents the stochastic component of catch, which we  assume to be serially uncorrelated and unknown to any fisher at

a decision is made in period t. We  denote xt =
∑

∀ixi,t as the vector of fleet-wide cumulative catch at the beginning
 t for all species, which we assume to be common knowledge to all fishers.
d, we assume that an agent’s contemporaneous utility function for location ai,t is additively separable in the
le and unobservable components:

i,t , zi,t) =
{

u(ai,t, p
′
yi,t) + εi,t(ai,t) if t ∈ {1, . . ., T}

u(0, w
′
(�i − xi,T+1)) if t = T + 1,

(1)
i denotes a vector of quota endowments possessed by fisher i at the beginning of the season, w denotes a vector of
se prices, and p denotes a vector of ex-vessel prices. An agent’s utility in the final period T + 1 is evaluated at port
ith revenue equal to the value of their remaining endowment of quota.2

at the time index t should also be a component of the state vector, but we omit it here for the sake of keeping notation as simple as possible.
e shown that the indirect utility function in period T + 1 follows from an agent choosing consumption and an amount of quota to maximize
ect to a budget constraint (see Appendix B for details).

4
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 we assume that the unobserved state variables εi,t are independently and identically distributed (iid) across agents,
 locations, and have an extreme-value type 1 distribution that is common knowledge across fishers. Fourth, we
hat catch y is independent of the unobserved state variables ε and the observed endogenous state variables x,
al on the location choice a. This assumption implies that the stochastic component of catch � is conditionally
ent  of past, present, and future values of ε and x, so that: E(yi,t |ai,t, xi,t, εi,t) = E(yi,t |ai,t). Practically speaking, this
on  has several implications. First, a fisher’s private information about a location choice does not affect catch (or
ons of catch) once the fisher’s choice has been made—i.e., private information only influences catch by influencing

 choice. Second, cumulative catch, as reflected in xi,t , does not influence the distribution of contemporaneous
.,  within-season spatiotemporal stock dynamics are exogenous to fishing behavior. Finally, this assumption also
hat the next-period cumulative catch xj,t+1 of any fisher j is independent of fisher i’s current period unobserved
able εi,t , conditional on the values of the decision ai,t and state variable xi,t . Together, these assumptions define
ften referred to as the dynamic programming conditional logit model (Rust, 1987).3

iods t ≤ T , an agent observes the vector of state variables zi,t and chooses an action ai,t ∈ A to maximize expected

T+1−t∑
j=0

U
(

ai,t+j, zi,t+j

)
|ai,t, zi,t

⎞
⎠ . (2)

ion at period t affects the evolution of future values of the state variables xi,t , but the agent faces uncertainty
se future values due to the unknown nature of future catch. The agent forms beliefs about future states, which are

 beliefs in the sense that they are the true transition probabilities of the state variables. By Bellman’s principle of
y, the value function during the fishing periods t ≤ T can be obtained using the recursive expression:

zi,t

)
= max

a ∈ A

{
U

(
a, zi,t

)
+ Ez

(
V

(
zi,t+1

)
|a, zi,t

)}
, (3)

denotes the expectations operator with respect to the state vector z.4

tunately, there is typically no analytical form for the expected value function, and computationally expensive
l  and recursive methods are often needed to solve the Bellman equation instead. The restrictions these methods

the dimensionality of the state space have often limited the empirical relevance of dynamic programming models
behavior. Thankfully, the assumptions underlying the dynamic programming conditional logit model, combined
additional assumption that fishers are risk-neutral, imply that fisher i’s optimal decision rule in each period is
ally simplified. The expected quota-lease price w in period t acts as a shadow price of quota, which is harmonized
hers given the transferability of quota.5 Conditional on expected lease prices w, the solution of Eq. (3) takes on a
atic form6 :

i,t |w) = argmax
a ∈ A

{
u
(

a, (p − w)′E
(

yi,t |a
))

+ εi,t (a)
}

. (4)

he policy function has a simple analytical form that does not depend on the endogenous state variable xi,t . Rather, it
only on the fisher’s current private information εi,t and the expected quota-lease price w, both of which are exoge-
uitively, the quota-lease price embeds all relevant information regarding expected future quota scarcity needed

 the present-day decision.7 Functionally, this means that, given a perceived quota-lease price, the location-choice
in Eq. (2) reduces to a tractable period-by-period static maximization problem that does not require recursively
e Bellman equation.

nal expectations equilibrium quota prices

 presents a fisher’s optimal decision rule for a given expected quota-lease price w. Fishers determine their current
e optimal location choices given perceived quota prices w as specified by the policy function ˛(zi,t |w) in Eq. (4).

nse, quota prices determine fisher behavior. At the same time, given fishers’ decision rules ˛(zi,t |w), the quota
etermines expected quota prices in each period so that aggregate fisher behavior determines the equilibrium quota
tional expectations states that the market-clearing quota prices implied by fisher behavior are the same as the

ose to follow the well-known assumptions of the “Rust model” because, as will soon become apparent, the likelihood function for the unknown
arameters of the RERUM bears considerable resemblance to the likelihood function arising from static discrete choice methods, thereby facili-
omparison of our approach to conventional models. In general, many of these assumptions can be relaxed; however, in doing so, the form of the
unction changes, as does the solution and estimation methods. We refer the reader to Aguirregabiria and Mira (2010) for an excellent summary
and estimation methods for dynamic discrete choice models as assumptions deviate from the Rust model.
at we do not include a discount factor.
umption of risk neutrality has the practical implication that revenue enters utility linearly and is additively separable from the rest of utility.
endix C for a formal derivation.

icy function in Eq. (4) takes on a similar form to the utility function used by Miller and Deacon (2017).
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ces on which fishers’ decisions are based. That is, the market-clearing equilibrium quota prices are consistent with
uota-price expectations.
pected quota-price vector w is the equilibrium price that clears a seasonal competitive market for quota leasing,
assumed to be frictionless and without transaction costs. Let �̄ =

∑
∀i�i denote the vector of fleet-wide quota

ents for all species. Then the seasonal excess demand for quota for species s can be written as es = xs,T+1 − �̄s. In
 period t ≤ T , a fisher does not know with certainty what the demand for quota will be at the end of the season;
ard-looking fishers form expectations over excess demand given a perceived w and the state of the world in period

es|w, xt) =  E
(

xs,T+1|w, xt

)
− �̄s

=
[

T∑
k=t

∑
∀i

∑
∀a ∈ A

f (a|w) E
(

yi,s,k|a
)]

+ xs,t − �̄s,
(5)

· ) denotes the probability mass function for the discrete location-choice variable a and the bracketed term repre-
 expected catch for all fishers in the remaining periods.8 Given the assumption that fishers know the distribution

 information for all agents, f ( · ) can be derived by integrating the policy function (4) over the unobserved state

|w) =
∫

I[˛ (z|w) = a]g(ε)dε,

· ] is an indicator function and g( · ) is the probability density function of ε. The expected equilibrium quota-lease
period t can then be defined as those that satisfy the following market-clearing conditions:

es|w, xt) = 0 for ws > 0,

es|w, xt) ≤ 0 for ws = 0.
(6)

n equilibrium, prices will adjust so that positive prices achieve zero expected excess quota demand for scarce
hile prices fall to zero for species in excess supply (i.e., “free goods”). The equilibrium quota prices that solve

et-clearing conditions in the system of Eqs. (6) are state-contingent—i.e., they are a function of the observed (and
 knowledge) state of the world in period t. We  denote the equilibrium quota-lease price vector as w̃(xt).

 the assumption of rational expectations, fishers’ beliefs are consistent with the market-clearing conditions in
 to close the rational expectations model, we  substitute the equilibrium quota prices w̃(xt) into a fisher’s optimal
rule:

i,t) = argmax
a ∈ A

{
u
(

a,
(

p − w̃(xt)
)′

E
(

yi,t |a
))

+ εi,t (a)
}

, (7)

rves as the basis for our rational-expectations RUM (or RERUM) model.
phasize here that the state-contingent equilibrium prices w̃(xt) reflect the scarcity of quota that exists in time t

ectations regarding optimal future behavior and harvesting conditions. Thus, while the equilibrium quota prices
mined by a market-clearing condition at the end of the season, w̃(xt) are the equilibrium prices that emerge in
s quota is exchanged. We  further note that since equilibrium quota prices are determined by common knowledge

ate cumulative catch xt , and not knowledge of individual catch xi,t , it is not necessary to track within-season quota
s.

ation

ar, we have characterized equilibrium fishing behavior for a known set of behavioral parameters. In this section,
nt an empirical strategy for estimating a vector of structural parameters in the utility function � utilizing panel

 individuals who behave according to the decision model described in Section 3. For every observation (i, t) in

l dataset, we observe the individual’s action ai,t , the payoff variable yi,t , and the subvector xi,t of the state vector
, εi,t). Because the subvector εi,t is observed by the agent but not by the researcher, εi,t is a source of variation in
ions of agents conditional on the variables observed by the researcher. It is the model’s econometric error, which

 structural interpretation as an unobserved state variable.

plicity, we  have implicitly assumed that a fisher forms their expectation of excess demand before they observe their private information ε. For
ber of fishers, as we have assumed here, this has a negligible influence on our results; it is, however, trivial to relax this assumption at the cost
esentation.

6
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ing that the data are a random sample over individuals, the log-likelihood function is
∑N

i li(�), where li(�) is the
ion to the log-likelihood function of i’s individual history9 :

�
)

= log Pr
{

ai,t : t = 1, . . .,  T |yi,t, xt, �
}

= log Pr
{

ai,t = ˛
(

xi,t, εi,t, �
)

: t = 1, . . .,  T |yi,t, xt, �
}

=
T∑

t=1

logf
(

ai,t |xt, �
)

.

(8)

rm expressions for f ( · ) follow from the iid extreme value type 1 distribution we’ve assumed for εi,t , which produces
ntional logit probabilities:

a|xt, �
)

= eu(a,(p−w(xt ))′E(y|a))∑
∀keu(k,(p−w(xt ))′E(y|k))

. (9)

ession is predicated on knowledge of the quota price rules w(xt). Therefore, we need to either observe the state-
t quota prices or come up with a strategy for determining the implied quota prices within the estimation process.

rmer case, observed quota prices can simply be inserted into the choice probabilities in Eq. (9) and maximum
 estimation can proceed as usual. However, in many cases, these lease prices are not observed due to limitations
isclosure or because only average prices are reported, as opposed to state-contingent prices. Given this missing
lem, we propose solving for the rational expectations equilibrium prices for each trial value of �.
sted fixed-point algorithm (NFXP) pioneered by Rust (1987) is a search method for obtaining maximum likelihood

 of the structural parameters, which combines an “outer” algorithm that searches for the root of the likelihood
s with an “inner” algorithm that solves for the fixed-point of the rational expectations equilibrium for each trial
he structural parameters. Specifically, consider an arbitrary value of �, say �̂0. Conditional on �̂0, the inner algorithm

 the wt that solves the fixed-point problem in Eq. (6) given optimal fisher behavior described in Eq. (5). This produces
rium vector of quota prices w̃(xt) for each observation in our data, which can be substituted into Eq. (9) to form

e probabilities f
(

ai,t |xt, �̂0

)
. Next, the outer algorithm uses the gradient of the log-likelihood function with the

obabilities in Eq. (9) to start a new iteration with a new structural parameter �̂1. This process continues until either
og-likelihood converges based on a pre-specified convergence tolerance.10

ERUM estimator: a demonstration

 section, we demonstrate how the RERUM can be used for predicting counterfactual fishery policies. Specifically,
der a fishery in which fishers receive individual quotas for two  species that are jointly harvested, but only one of
cies (Species 1) has an ex-vessel value to a fisher—i.e., Species 2 can be considered a bycatch species. We  simulate
tural model described in Section 3 with known parameter values to evaluate two forms of hypothetical policies

 to reduce bycatch: (1) reductions to the quota for the bycatch species, and (2) bycatch hot-spot area closures.

ata-generating process

ta generating process (dgp) is purposefully simple to facilitate our understanding of the model predictions. We
shers begin each period in port and choose from a n × n grid of fishing locations. The observable component of a
ntemporaneous expected utility function in Eq. (1) for location a is specified as:

ui,t

)
= �Revp′E(yi,t |a) + �DistDist(a),

st(a) represents the distance from port to location a. A fisher’s optimal location choice is determined by Eq. (7),
es on the specification{ ′ }

i,t) = argmax

a ∈ A
�Rev(p − w̃(xt)) E(yi,t |a) + �DistDist(a) + εi,t (a) ,

e rational-expectations quota prices w̃(xt) are determined by Eq. (6).11

at we are estimating the structural parameters � taking the harvest variable yi,t and state variable xt as given. Thus, we are taking a partial MLE
ere. In theory, it is possible to jointly estimate the structural parameters of both the harvesting and utility functions in a full MLE  approach;
r the sake of simplicity, we leave that for future research.
e details on the NFXP algorithm, see Appendix D.
ral, quota prices are sensitive to the data-generating parameters, as depicted in Fig. A1, and have comparative statics that are consistent with
ta prices increase with ex-vessel prices, quota scarcity, and the marginal utility of revenue. Note that the latter is only true for the target species.

7
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odel fisher i’s catch of species s ∈ {1, 2} in period t and location a as ys,i,t = Y(a, �s,i,t) = qs,i exp
{

�s,i,t(a)
}

, where
 1) denotes fisher i’s catchability coefficient and �s,i,t(a) is a normally distributed random variable with location-
ean parameters �s(a) and a common variance �2. Catch is thus a log-normal distributed random variable with

s,i,t |a) = qs,i exp{�s(a) + �2/2}.12 For simplicity, �s(a) and �2 (and thus expected catch) are assumed to remain
over all individuals and time periods; however, realized catch varies across all individuals and time periods due to
idual- and time-specific nature of the idiosyncratic shock �s,i,t(a).13

nsider two different biological scenarios with different spatial distributions for each species, producing the global
n sets depicted in Fig. 1. In the first scenario, the two  species have minimal spatial overlap, and thus, fishers are
bstitute between species relatively easily. In contrast, fishers are more constrained by the bycatch species in the
enario as there is greater spatial overlap between species and fishers must travel further away from port to avoid

tch quota reductions and hot-spot closures: Simulation results
duce the bycatch quota and the area open to fishing, respectively, by increments of 5% to a minimum of 25% of their
levels. For the area closures, we emulate a hot-spot closure policy by closing areas to fishing that experience the
mount of bycatch in the baseline simulations.14 Harvest and utility shocks (� and ε) are drawn from their respective

s decrease with the marginal utility of revenue if a species’ net price (ex-vessel price minus quota lease price) is negative. In this case, fishers
void catching this species, decreasing demand for its quota.
an parameters �s(a) vary over the grid according to distinct two-dimensional normal density functions for both species.
ample does not incorporate stock depletion or other spatial/temporal variability in expected catch over the course of the season. We  do so to
tion on the dynamics generated by the opportunity cost of quota. It is a relatively straightforward extension of our approach to include these

 so long as fishers consider stock depletion and other non-stationarities to be an exogenous process in their planning behavior.
mple, if 75% of a 100-location grid is closed to fishing, we  close the 75 cells that have the highest amount of bycatch from a baseline simulation
tial closures.
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Table 1
Parameter values and descriptions for the data generating process.

Parameter Parameter values Description

Knowna Randomb

�Rev 1 [0.5,1.5] True preference parameter for expected revenue
�Dist −0.4 [−0.5,−0.1] True preference parameter for distance
J 100 [36,144] Number of locations
N  20 [10,40] Number of individual fishers
T  50 [25,60] Number of time periods in a year
S 2 [1,4] Number of species
Yrs  1 [1,5] Number of years
p  (1000,0) [500,1500] Ex-vessel price vector
q  10−3 [0.15,5.8] × 10−3 Catchability coefficient
�2 3 [0.1,5] Variance of random harvest component (�)
TAC (13,7) × 10−3 [0.8,1.5] × 10−3 Total allowable catch (proportion of abundance)

a Denote
b Denote

uniform  dis

probabili
paramete

Result
each poli
resulting
is consist
target sp
choke sp
overlap b
fully utili

The ef
quota red
since the
considera
reduction
is harves
foregone
of bycatc

Hot-sp
closures. 

Since fish
bycatch-t
bycatch p

The ke
signal sca
cost-effec
scarcity o
to comma
1), the clo
locations
quota can

Altoge
harvester
counterfa
managem
fishing ef
how poli
are likely

6. Evalu

The  pr
cies spec
s the parameter values (species-specific, where applicable) for the data generating process with known (and fixed) parameter values.
s the range of parameter values for the data generating process with a random parameter space. Parameter values are drawn randomly from a
tribution.

ty distributions, and state variables are endogenously updated in each time period. The remaining data-generating
r values are known and remain fixed across all policy simulations (presented in column 1 of Table 1).
s from the policy simulations are presented in Fig. 2, where we’ve simulated 200 counterfactual seasons under
cy. Under the baseline policies, the quota for the bycatch species (s = 2) is binding in both biological scenarios,

 in a positive quota-lease price in all simulated seasons. In scenario 1, the lease price for the target species (s = 1)
ently positive as well, pointing toward the dominance of interior solutions in the quota market. In contrast, the
ecies almost always has a non-positive lease price in scenario 2, where the bycatch species consistently acts as a
ecies, preventing the full harvest of the target species quota. This difference largely stems from the higher spatial
etween the target and bycatch species in scenario 2, making bycatch avoidance so costly that it is not possible to
ze the target species quota.
fect of the bycatch reduction policies differs across both biological scenarios and policy types. Not surprisingly, the
uctions are effective at achieving desired bycatch reductions: bycatch falls at a 1:1 ratio with the bycatch quota

 quota remains binding over all reductions. The lost utility from achieving a given level of bycatch reduction is
bly higher in scenario 2 because of the higher cost of bycatch avoidance. In scenario 2, the primary cost of bycatch

 is foregone catch of the target species, as the bycatch quota continues to bind before the target-species quota
ted. By contrast, the primary cost in scenario 1 is traveling greater distances to avoid bycatch: there is minimal

 target species catch in scenario 1 and the target species quota price declines very slowly on average while the price
h quota rises steadily with increased scarcity.
ot closures, on the other hand, have virtually no impact on bycatch in either scenario over the examined range of

In fact, hot-spot closures have the effect of pushing fishers into areas with higher bycatch-to-target species ratios.
ers are already avoiding bycatch under the baseline policy, bycatch is being generated in areas with relatively low
o-target species ratios; hot-spot closures therefore push fishers out of relatively cleaner areas, thereby increasing
er unit of target species catch.
y difference between the two bycatch-reduction policies is reflected in the quota-lease prices: quota reductions
rcity to fishers through increased quota-lease prices, and fishers have the incentive to reduce bycatch in the most
tive manner given their information about catch rates. Hot-spot closures, on the other hand, do not signal bycatch
ver a wide spectrum of policy severity when bycatch quota is already sufficiently scarce under the baseline scenario
nd a positive price. Instead, for fisheries where bycatch species does not consistently act as a choke species (scenario
sures decrease the value of the target species quota price by pushing fishers into increasingly sub-optimal fishing

. In fact, quota prices for the bycatch species are only responsive to the closures in scenario 1 once the target-species
 no longer be harvested before the bycatch quota binds.
ther, these policy simulations demonstrate the utility of modeling the spatiotemporal production decisions of
s under the dynamically evolving constraints imposed by the seasonal quota market. The structural model can yield
ctual policy predictions of fisher welfare, catch rates, and lease price behavior for changes in both rights-based
ent parameters (i.e., quota allocations) and “ecosystem-based” policies targeting the spatiotemporal footprint of

fort. The simulation results also highlight the role that lease prices play in relaying signals of quota scarcity, and
cies that fail to influence the relative scarcity of quota in the desired direction as reflected in these relative prices

 to fall short of their intended objectives.
ating alternative RUM models: a Monte Carlo analysis

evious section established that the RERUM estimator has the potential to produce meaningful insights for poli-
ific to rights-based managed fisheries. We  now consider whether alternative, commonly-used RUM models of

9
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Fig. 2. Numerical simulation outcomes—bycatch hot-spot closures (left column) and bycatch TAC reductions (right column) for two biological scenarios
(blue  and red). The median (solid line) and 25th–75th percentile range (shaded area) are presented using 200 draws from the data-generating process. (For
interpretation  of the references to color in this figure legend, the reader is referred to the web version of this article).
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poral fishing behavior are capable of producing similar insights for rights-based fishery policies. Specifically, we
the in- and out-of-sample predictive performance of conventional RUM model specifications through a Monte Carlo
assuming the data generating process is as described in Section 5. We  investigate several different biological and
y scenarios to determine the conditions under which alternative RUM models may  provide adequate predictions

 behavior under rights-based management. To judge each estimator’s in-sample predictive performance across
data-generating and sampling environments, we also draw randomly from the data-generating parameter space
, �) and the sampling parameter space (e.g., T, N, S). To evaluate out-of-sample prediction performance, we  sim-

 same counterfactual bycatch-reduction policies as in Section 5, using estimated parameters from the alternative
mators.15

phasize that our intent in this section is not to investigate whether the RERUM estimator is superior to the
e RUM models, since the RERUM is a consistent estimator of the true parameters by construction. Rather, our
o illustrate the potential promise and peril of using conventional RUM models for policy evaluation in rights-based

 fisheries, and in doing so, highlight when (and how) capturing the general equilibrium dynamics of rights-based
matters. For completeness, we also include Monte Carlo results for the RERUM estimator. For a more detailed
tion of practical issues for estimating the RERUM model, we  refer the reader to Appendix F.

native RUM model specifications

nsider the following alternative RUM model specifications, described in further detail below, which differ in their
t of the shadow cost of quota in the specification of a fisher’s optimal location choice:

 RUM (SRUM):

= argmax
a ∈ A

{
�Revp′E(yi,t |a) + �DistDist(a) + εi,t(a)

}
;

-Price RUM (QPRUM):

˛i,t = argmax
a ∈ A

{
�Rev(p − wt)′E

(
yi,t |ai,t

)
+ �DistDist

(
ai,t

)
+ εi,t (a)

}
,

ere wt = observed quota − lease prices;

ximate Rational Expectations RUM (ARUM):

˛i,t = argmax
a ∈ A

{
�Rev(p − ŵt)

′E(yi,t |ai,t) + �DistDist(ai,t) + εi,t(a)
}

,

ere ŵs,t = �0,s + � ′
1,szt + z′

t�2,szt, z′
t = [x1,t, x2,t, t], s = 1, 2,

enotes the proportion of remaining fleet-wide quota for species s in period t. The parameters � = [�Rev, �Dist] are
tural preference parameters of interest and are estimated alongside the vector [�0,s, �1,s] and symmetric matrix

st specification (SRUM) is a static RUM approach that does not account for the forward-looking thinking of fishers,
 estimates a policy function that does not deduct the shadow cost of quota from expected revenues. So long as the

 non-zero probability of binding for at least one species, the SRUM model will underestimate the expected revenue
t �Rev. Moreover, to the extent that a location’s distance from port is correlated with the expected catch of a species
ing quota, the estimate of the distance coefficient �Dist will also be biased (upwards or downwards, depending on

tion of the correlation).
cond specification (QPRUM) represents the approach one would take to address the bias of the SRUM model if
se prices were observed—that is, include the observed prices wt directly into the policy function. We  consider two

of this approach, one which uses the period-specific quota-lease prices wt (QPRUM1, the best-case scenario) and
hich uses the seasonal average quota price w (QPRUM2, a more likely scenario).

ird specification (ARUM) attempts to address the bias of the SRUM model without the luxury of having quota-lease
ecifically, the ARUM model introduces a reduced-form quadratic approximation of quota-lease prices by interacting

 catch with observed state variables meant to reflect the scarcity of quota, including the proportion of remaining
t and time period t.16 Similar approaches have been followed previously, for example, to estimate the implicit

et-wide bycatch quotas (Abbott and Wilen, 2011) and to estimate the extent of cooperation in a common-pool
aynie et al., 2009). The ARUM model approximates the shadow value of quota using both species’ cumulative catch
on. Note that without temporal variation in the ex-vessel price p, it is not possible to identify the constant �0,s

Carlo simulations were conducted using Matlab (Version 2019a) with parallel computing (18 workers) running on an Amazon EC2 instance
) with an Intel Xeon E5-2666 v3 processor (2.9 GHz) and 60 GiB of memory. Code for reproducing Monte Carlo results can be found at
ub.com/mnreimer/RERUM.git.

 considered fleet-wide cumulative catch as a state variable, but the proportion of remaining quota was selected for the ARUM model due to its
edictive performance.

11
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Fig. 3. Parameter estimation and in-sample predictive performance—percent bias in utility parameter estimates (left and center columns); root-mean-
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UM model. In practice, it is rare to observe within-season variation in prices (Holland et al., 2014); thus, we  omit
 the ARUM specification, and note that only the differences in quota prices w across the state space are identified,
ed to the absolute level of quota prices. As we  discuss below, this has implications for identifying the structural
r �Rev, but has no implications for prediction.

ation and in-sample performance

ch of 200 independent Monte Carlo draws, we estimate the parameters of the RERUM and the alternative RUM
nd calculate parameter bias and the root-mean-squared-error (RMSE) of predicted location-choice probabilities,

 the true model (described in Section 5). Column 2 of Table 1 provides the range of parameter values for the random
r space that we sample from (uniformly).
ected, both the RERUM and QPRUM1 estimators are able to recover the structural parameters � due to explicitly
g for the evolving shadow-cost of quota (either imputed or observed, respectively) in the estimation process

he QPRUM2 estimator, which accounts for only the seasonal average quota price, also provides a relatively unbiased
 �Rev. In contrast, the SRUM specification underestimates �Rev, as predicted for situations in which the shadow cost

is strictly positive. The ARUM specification does not improve the estimation performance of �Rev over the SRUM
t is unable to identify the absolute level of the quota prices (�0) due to the time-invariant nature of prices p. Instead,
umed into the estimate of �Rev, resulting in a underestimation of �Rev. Moreover, including an approximation of the
ost of quota creates challenges for precision, as reflected in the wide distributions of �̂Rev for the ARUM specification.
odels have relatively good estimation performance for �Dist , which is expected when the distance from port to areas

 expected catch is symmetric across species.17

ther, despite having trouble using variation in observed state variables to identify �Rev, the ARUM model offers an
ent over the SRUM model for in-sample predictions according to the RMSE of choice probabilities. By contrast, the

 estimator does not provide much improvement over the SRUM estimator for in-sample predictions because, despite
ting quota price information into the estimation process, it does not account for the within-season evolution of

 shadow costs.

of-sample performance

th forms of policy counterfactuals considered in Section 5.2, we  simulate an entire fishing season with stochastic
nd state variables that are endogenously updated in each time period. Fishers make location choices according
olicy-function specification (i.e., SRUM, QPRUM, ARUM, or RERUM). For both the ARUM and RERUM models, the

se price is updated in each period using each model’s respective quota-price rule. For example, the ARUM model
e observed state variables into the quadratic quota-price approximation function, while the RERUM model updates
-lease price using the observed state variables and solving for the rational-expectations equilibrium quota prices in

metry is exhibited in our Monte Carlo sample (with random error) since we allow for the spatial overlap of species to be randomly determined
ing from the data-generating parameter space.

12
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 contrast, the SRUM and QPRUM models are static, and do not update each period to reflect the evolving shadow cost
The SRUM model uses no quota prices while the QPRUM models use the observed quota prices from the estimation
ssentially considering them exogenous to the counterfactual policies under consideration. For each counterfactual
e generate 200 independent draws from the dgp. Process error is introduced through harvest and utility shocks
, which are drawn from their respective probability distributions. Sampling error is introduced by drawing utility
rs from simulated sampling distributions, which are generated by estimating the parameters of the RERUM and
ative models using 500 independent draws from the dgp under the baseline policy. More details concerning the

or generating out-of-sample simulations is contained in Appendix E.
eral, the alternative RUM models perform well in predicting changes in expected utility for small changes from the
olicy, but get progressively worse as counterfactual policies move farther away from the baseline (Fig. 4).18 In both

, the alternative RUM models tend to overestimate the cost of reducing the bycatch TAC. The SRUM and QPRUM
ave no method of accounting for increased shadow prices from TAC reductions; thus, fishers are predicted to fish
as-usual until the season ends from a binding TAC. As a result, predicted changes in expected utility under the SRUM
M models are proportional to bycatch TAC reductions. The ARUM model does account for changes in bycatch quota

hrough the approximated quota-lease prices, and in turn, fishers are predicted to fish in different locations with

cted bycatch. As a result, early-season endings from hitting the bycatch TAC are avoided and predicted changes in

 utility are relatively close to the truth, at least for small reductions in the TAC.

he similarity in the out-of-sample predictions for the QPRUM1 and QPRUM2 models, we only present the results for QPRUM1.
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ternative RUM models tend to do better predicting changes in expected utility from the hot-spot closures. The
nce of the SRUM and QPRUM models tend to be inferior to the ARUM model, although they are still capable of
g reasonable predictions for a small number of closures. Predictions from the ARUM model are quite good for
pot closures, particularly for scenario 2; ARUM predictions are close to the true model, on average, even for large
rom the baseline. However, sampling error in the lease-price parameters leads to considerably more variation in the
odel’s prediction error, demonstrating a potential drawback of using the reduced-form approach to approximate
-lease prices.

ut-of-sample predictions we consider here produce two  important insights. First, despite being able to recover
l parameters reasonably well, static RUM models that incorporate observed quota-lease prices in the estimation
o not produce good out-of-sample predictions if quota-prices are not allowed to adjust to the market, ecological, or
y conditions of the counterfactual policy. This is true even for policies such as the bycatch hot-spot-closure policy
rio 2, which does not induce large changes in quota prices, on average (Fig. 2). The reason lies in the stochastic
ns of production, which are embodied in the observed quota prices but are not expected to be the same as those

 in the estimation sample. Thus, quota prices that do not update to reflect the prevailing state-of-the-world under
ctual policies will not accurately predict behavior.
d,  RUM models that incorporate a state-contingent, reduced-form approximation of the quota-price, such as the
e capable of improving out-of-sample predictions over static RUM models. However, this improvement is limited
rtain situations. The reason largely lies in the quota-price responses to the policy change (Fig. 2): as quota prices

ther away from those observed in the estimation sample, predictions from the reduced-form models tend to move
ay from the truth. For example, hot-spot closures in scenario 2 have almost no effect on quota prices. Accordingly,

 model does very well at predicting out-of-sample in this case since the lease-price parameters of the ARUM
ated to replicate the in-sample behavior under economically equivalent scenarios. In contrast, TAC reductions in
1 have the largest influence on quota prices, and in turn, predictions from the ARUM model are only acceptable for
nges in the TAC.

usion

monstrate how commonly-used models of spatiotemporal fishing behavior can be adapted to incorporate the
and general equilibrium elements of catch share fisheries. Our approach extends the traditional RUM framework
ating fishing location choices by incorporating a within-season market for quota exchanges, which determines
m quota-lease prices (or, equivalently, quota shadow costs) endogenously. Our estimation strategy is able to
tly recover structural behavioral parameters, even when quota-lease prices are unobserved. We demonstrate the

 approach for predicting behavioral responses to fishery policies, such as spatial closures and TAC reductions, within
are fishery, and illustrate the importance of allowing quota-prices to be endogenous for conducting out-of-sample

aluations.
udy provides several important insights. First, quota markets that convey price signals that fully reflect the scarcity
ed species are essential for coordinating fishing behavior to achieve managers’ objectives in an efficient manner. The
ion of additional constraints on production decisions, including ecosystem-based policies such as spatial closures,
based management systems has the potential to distort these price signals. Such interactions between price-
price-based policies may  be counterproductive and yield outcomes that fall well short of intended objectives,
posing unnecessarily high costs on the fleet. Insights from this interaction between ecosystem- and rights-based
re generally not available from conventional models of spatiotemporal fishing behavior. Explicitly modeling the
quilibrium dynamics of rights-based fisheries, as we do here, allows researchers to better understand potential
s between ecosystem- and rights-based policies, and evaluate whether rights-based policies are capable of achieving

-based management objectives (Miller and Deacon, 2017).
d, the inclusion of quota-prices, either observed or imputed, in the specification of RUM models is necessary to
tructural parameters. However, identifying the structural parameters of the RUM model is not sufficient for making
out-of-sample predictions of counterfactual policy changes. Rather, sufficiency lies in determining what quota prices

 under the counterfactual policy change. Thus, even if practitioners observe quota prices and use them to recover
ural behavioral parameters, a model of endogenous quota prices is necessary for counterfactual policy evaluations.
ords, quota prices themselves are not policy invariant.

 in the absence of a structural model for quota-lease prices, a reduced-form approximation of state-contingent
se prices can perform well in evaluating out-of-sample policy changes, provided there is adequate quota-price

 in the sample, relative to the range of price variation induced by the counterfactual policy. Changes in quota prices
e realized magnitude of the effect of the policy on economic incentives, and therefore function as sufficient statistics
er a particular policy/economic/biological regime is sufficiently “in sample” to be evaluated using a reduced-form

e challenge is knowing ahead of time whether a policy change of interest will result in quota-prices that lie out-of-
s we demonstrate in Section 5, even seemingly “marginal” policy changes can result in large quota-price changes.

knowing how quota prices will respond to a policy change, it is hard to determine ex ante whether a reduced-form
 will produce adequate policy evaluations.
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tent in this paper has been to demonstrate the fundamental role of quota-lease (or shadow) prices as a coor-
mechanism for general equilibrium dynamics in right-based fisheries, and how conventional empirical models
apted to include them in a theoretically consistent manner. In doing so, we have made a number of simplify-
ptions for pedagogical purposes. For example, the computation of our equilibrium quota-lease prices relies on
ptions that fishers are rational and risk-neutral, and that the quota-lease market is competitive, frictionless, and

ransaction costs. As with any model, real-world applications must assess and adapt these assumptions according
pirical setting at hand. Empirical investigations of quota-lease prices demonstrate that some quota markets may
titive (e.g., Newell et al., 2007; Jin et al., 2019); however, evidence of price dispersion (e.g., Newell et al., 2005;

nd Larkin, 2015) and reliance on barter transactions (Holland, 2013) in some quota markets suggests that quota
ay  not be operating efficiently. Moreover, previous work has demonstrated that fishers may  be risk-averse (e.g.,

993; Mistiaen and Strand, 2000) and may  not be rational (Holland, 2008). However, we  argue that the ultimate
y structural model is not how realistic its assumptions are; rather, its ability to capture policy-invariant parameters
edictive performance in policy-relevant out-of-sample contexts is what matters most (Heckman, 2010; Low and
017). Fortunately, there exist well-established model validation techniques that are readily applicable to a vari-
uctural estimation settings (e.g., Keane and Wolpin, 2007). We  believe the RERUM estimator, as presented here,
a useful framework for future model development as assumptions are relaxed and/or adapted to fit real-world
sed-management contexts.
mary, the layering of spatial closures and a host of other policies on top of rights-based management systems creates
ble feedbacks to seasonal quota markets. These prices, or internal shadow prices for systems that disallow leasing,
dogenous mechanisms by which rights-based management alters the responses of fishers to these scenarios. Our
s shown the crucial importance of drawing upon structural models of the quota-price determination process for
n—whether or not these models are used to estimate fishers’ underlying behavioral parameters. Failure to do so
amentally limit the ability of economists to answer crucial “what if” questions posed by fishery managers.
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