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1. Introduction

Economists are often called upon to inform policy makers of the potential consequences of proposed environmental
and natural resource regulations. For economists to offer reliable advice, their models must adequately capture individual
decision-making processes, contextual variables, and institutional settings to provide externally valid predictions across the
range of policy scenarios of interest to decision-makers (Lucas, 1976; Heckman, 2010). If the range of these counterfactuals
deviates markedly from in-sample conditions, then purely empirical, reduced-form descriptions of behavior will likely be
unsatisfactory. Instead, structural models that explicitly model individuals’ decision-making process in terms of objective-
seeking (e.g., profit or utility-maximizing) behavior under the salient economic, environmental, and institutional constraints
are needed (Wolpin, 2007; Keane, 2010).
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In this paper, we demonstrate how a structural approach for estimating commercial-fishing behavior under rights-based
management institutions can provide out-of-sample predictions of counterfactual policies that differ substantially from
commonly used alternatives. Despite the prevalence of rights-based management in today’s developed-world fisheries,
most empirical models of commercial fishing behavior—those intended to inform management decision making—do not
explicitly reflect the incentives and constraints underlying rights-based institutions. Instead, they reflect the implicit theo-
retical assumptions of regulated open or limited access fisheries. As such, even if these models are calibrated on behavior
under rights-based management, they do not capture the theoretical mechanisms by which incentives under rights-based
management affect fishers’ behavior. The result, as we demonstrate, is that the predictions of these models could be highly
misleading.

To address this deficiency, we show how random utility maximization (RUM) models of spatiotemporal fishing behavior
(e.g., Eales and Wilen, 1986; Holland and Sutinen, 2000; Smith, 2005; Haynie et al., 2009; Abbott and Wilen, 2011), which
are the dominant form of management models used to predict the consequences of proposed fishery policies, such as spatial
regulations (Smith and Wilen, 2003; Berman, 2006; Haynie and Layton, 2010; Hicks and Schnier, 2010), can be extended
to incorporate the general equilibrium dynamics of catch share fisheries. Conventional RUM models of fishing behavior do
not consider the implications of individualized (and often transferable) quotas of catch entitlements within a season, which
create a shadow value reflecting the opportunity cost of quota. We demonstrate how the dynamic and general equilibrium
elements of fisheries with tradable short-term rights of annual catch entitlements can be captured through the introduction
of alease-market for quota, which we model as a pure exchange economy. Fishers are assumed to be forward-looking within
the fishing season and form expectations over future quota usage when considering contemporaneous quota supply and
demand decisions. Under the assumption of rational expectations, each fisher’s stochastic dynamic programming problem
reduces to a period-by-period static maximization problem given a set of equilibrium quota prices. Critically, expectations
are updated in each period, leading to a new set of equilibrium quota prices to reflect the changing relative scarcity of quota
in a stochastic production environment.

We demonstrate the utility of our estimation strategy—which we dub the rational expectations RUM (RERUM )—for both
parameter estimation and out-of-sample prediction through numerical simulations and Monte Carlo analyses. We first show
how our estimation approach can be used for ex ante policy evaluation in rights-based fisheries by evaluating the efficacy
of hypothetical bycatch reduction policies, such as bycatch “hot-spot” area closures or reductions in bycatch quotas. Our
numerical simulations reveal the importance of quota-lease prices for signalling bycatch scarcity and for incentivizing cost-
effective bycatch reductions. Indeed, we show that “ecosystem-based” policies such as hot-spot area closures, which attempt
to address the spatiotemporal footprint of fishing effort, can fail to send correct scarcity signals, and in turn, may fall short
of their intended objectives.

We then examine whether the conventional RUM approach, which either omits or approximates quota-lease prices, is
capable of producing insightful ex ante policy evaluations for rights-based fisheries. We show that the omitted nature of
quota-lease prices in the conventional RUM approach leads to a form of omitted variable bias (or, alternatively, non-classical
measurement error). These biases could jeopardize the estimation of shadow values or welfare estimates (e.g., Abbott and
Wilen, 2011; Haynie et al., 2009; Hicks and Schnier, 2006). Moreover, we find that as counterfactual policy changes lie
increasingly out-of-sample, as measured by the degree to which lease prices are responsive to the counterfactual policy,
the conventional RUM approach performs worse for ex ante evaluations. Conversely, for counterfactuals that have only a
marginal influence on quota-lease prices, reduced-form approaches that approximate the equilibrium lease prices can be
sufficient for ex ante evaluations.

We demonstrate that substitution of high-resolution lease prices as data into the conventional RUM model eliminates
estimation bias of behavioral parameters. Unfortunately, thin markets combined with confidentiality concerns rarely allow
for such an approach (Holland et al., 2014). Imputing annual average prices—which are more commonly available—offers
only a partial mitigation of the bias, since it fails to capture dynamic adjustments of behavior within the fishing season.
Furthermore, even if high-resolution lease prices are available, prediction for out-of-sample policy scenarios requires the
imputation of counterfactual lease prices that are consistent with the stochastic production environment and the changes
in market, ecological, or policy conditions embodied in the scenario. Our estimation approach imputes quota-lease prices
via a market simulator at the core of the estimation procedure, whereby a fixed-point problem is solved to determine
state-contingent equilibrium lease prices in every period. Thus, the RERUM estimator does not rely on the availability of
high-resolution lease-price data and can produce counterfactual lease prices for out-of-sample prediction that are consistent
with the structure of fishers’ dynamic decision problems and observed fisher behavior.

Finally, while our demonstration is tailored specifically to the production process and institutions of modern-day fisheries,
our work has broader relevance for other industrial and institutional settings—particularly for industries characterized
by stochastic production processes and managed under quotas (or quantity controls) with transferable property rights.
For example, cap-and-trade systems for controlling greenhouse gas emissions are typically comprised of firms that make
dynamic production decisions under uncertainty of future abatement costs while balancing emissions and permits over a
fixed regulatory horizon (Rubin, 1996; Kling and Rubin, 1997; Fell, 2016; Kollenberg and Taschini, 2016). As in our setting,
binding quota allocations create shadow values that reflect the opportunity cost of such constraints, and these shadow values
are harmonized through the coordinating mechanism of the quota market. Any proposed policy that influences these shadow
values will thus be reflected in the equilibrium quota prices. Thus, quota prices are not policy invariant, and therefore, models
of endogenous quota prices are generally required for counterfactual policy evaluations.
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The course of this paper is as follows. Section 2 discusses the relevant literature and the institutional background of rights-
based management of commercial fisheries. Sections 3 and 4 present the structural behavioral model and the estimation
strategy of the RERUM estimator. Section 5 demonstrates the utility of the RERUM model for predicting realistic policy
changes, such as quota reductions and spatial closures. Section 6 provides Monte Carlo simulation evidence of the estimation
performance and predictive utility of alternative RUM model specifications and Section 7 concludes the paper.

2. Background and related literature

The governance of many nation states’ fisheries has been transformed in recent decades—from the “tragedies” of open
access and input regulation to a range of governance structures based upon individual or collective extractive rights. By one
estimate, approximately 20% of global catch comes from fisheries managed under individual transferable quotas (Costello
and Ovando, 2019)—a number that only partially accounts for the full spectrum of rights-based management approaches,
including fishing cooperatives (Deacon, 2012) or TURFs (Wilen et al., 2012). Rights-based management is particularly com-
mon in the Global North where it is facilitated by strong scientificinput and adequate governance. Rights-based management,
in combination with scientifically-based quotas and sound enforcement, has played a prominent role in reversing overfishing
and improving economic efficiency in many fisheries (Worm et al., 2009; Grafton et al., 2006; Hilborn et al., 2005).

Despite these successes, rights-based management has not reduced the role of fisheries managers to merely conducting
stock assessments and setting seasonal quotas. Rights-based management, especially individual output quotas, may leave
significant in-season externalities unaddressed (Boyce, 1992; Costello and Deacon, 2007), forcing managers to deploy addi-
tional management measures to address concerns such as growth overfishing or in-season rent dissipation. Furthermore,
many of the concerns of ecosystem-based management—e.g., protection of spawning stocks or vulnerable life stages, reduc-
ing external impacts on unfished stocks or species of conservation concern, and habitat protection—are outside the scope of
most rights-based managed systems (Holland, 2018).

As a result of these concerns, managers use a wide range of tools, including input restrictions, protected areas, time-area
closures, and dynamic ocean management (Maxwell et al., 2015), in addition to rights-based managed systems. Economists
have informed managers of the potential consequences of these actions by developing positive bioeconomic models (e.g.,
Smith and Wilen, 2003; Holland, 2011; Huang and Smith, 2014; Hutniczak, 2015) that predict how changes to policy design
may change catch, effort, profits, employment, or ecological impacts. However, the continued adoption of rights-based man-
agement presents a significant challenge to fisheries policy modeling in that the overwhelming majority of empirical models
used to inform in-season management measures fail to consider the implications of individualized (and often transferable)
catch rights within a season. Catch share fisheries define individualized (or sometimes cooperative-based) quota constraints,
and the shadow values that arise from such constraints are coordinated through within-season quota trading in a shared
lease market. Experience has demonstrated that in-season behavior is often drastically altered by catch shares. This is par-
ticularly likely in terms of the allocation of fishing “effort” in both space and time (Reimer et al., 2014; Abbott et al., 2015;
Birkenbach et al., 2017; Miller and Deacon, 2017). Fishers may spread their effort temporally and reallocate where they fish
to enhance revenues or reduce costs. More complex patterns may emerge in multispecies catch share fisheries as vessels
utilize space and time to maximize the profit associated with their quota portfolios (Birkenbach et al., 2020). However,
models of commercial fisheries often do not capture the behavioral mechanisms that arise under rights-based managed
institutions, with the result that their predictions could be highly misleading (Reimer et al., 2017b).

Our econometric estimation approach is not the first to include dynamic or stochastic elements of within-season fishing
behavior. Models of within-trip behavior have been extended to consider the logistical problem of the optimal trajectory
of fishing decisions within a trip. Optimal within-trip behavior is therefore cast as a dynamic programming problem, with
estimation of model parameters coinciding with the solution (Hicks and Schnier, 2006, 2008) or approximation (Curtis and
Hicks, 2000; Curtis and McConnell, 2004; Abe and Anderson, 2020) of the dynamic programming problem. Such models,
however, do not capture the overriding dynamic concern that we would expect to emerge under catch shares—the manage-
ment of a portfolio of quotas over the course of an entire season, where the state variables that provide the information set
for fisher’ decisions (i.e., expected catch, quota balances) evolve in a partially stochastic manner.

A handful of papers have tackled seasonal fishing behavior dynamically (Provencher and Bishop, 1997; Huang and Smith,
2014; Birkenbachetal.,2020). However, the stochastic evolution of the state variables coupled with the need to solve a fisher’s
seasonal optimization repeatedly in the estimation process through stochastic dynamic programming has resulted in the
imposition of very strong assumptions on the models to maintain computational tractability. This has usually taken the form
of severely limiting the number of spatial locations available to fishers and curtailing the horizon of decision making in order
to reduce the “curse of dimensionality.” Indeed, while notable advances have been made in reducing these computational
burdens, the dimensionality of most applied dynamic discrete choice models remains quite small (Aguirregabiria and Mira,
2010). As we explain below, the coordinating mechanism of the quota lease market allows us to specify production decisions
over a realistic spatial and temporal scale and number of state variables (species).

3. A Model of a catch share fishery

Our objective is to build a model of within-season fishing behavior that generates externally valid ex ante predictions
of fishery policies in a catch share fishery. This prospective model must be structural or mechanistic, in the sense that it
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identifies policy-invariant parameters that can be safely transported into “out-of-sample” environments, facilitating the
job of ex ante prediction (Heckman and Vytlacil, 2007; Heckman, 2010). Structural models achieve this flexibility through
explicitly modeling the hypothesized decision process of agents in response to their decision context, usually through
a constrained optimization approach. This differs from estimating a reduced-form decision rule in that the latter runs a
greater risk of fragility since underlying ecological, economic, or policy state variables may be subsumed into the estimated
reduced form parameters (Fenichel et al., 2013).

Our model must satisfy several criteria. First, it must capture the primary within-season mechanisms fishers use to shape
economic returns and catch compositions. While some aspects of input usage (e.g., bait or crew staffing) may be somewhat
variable within a season, the primary short-run mechanisms influencing vessel output are where and when to fish (Abbott
etal.,2015; Reimeretal.,2017a; Scheld and Walden, 2018). Second, the model must be both dynamic and stochastic. Dynamic
models consider that fishers allocate their portfolio to maximize seasonal returns so that current fishing decisions depend
on expectations of fishery conditions later in the season. Stochasticity implies that planning will not be perfect—catch, and
hence quota balances, will not exactly match expectations. Third, the model must easily accommodate realistic changes to
management policies—such as catch limits and time/area closures. Finally, estimation and simulation of the model must be
achievable from available data with reasonable technology and computing time.

Structural models face a trade-off between realism and computational tractability, requiring that modeling decisions
preserve realism where it is fundamental to the nature of agents’ decision problem and predicted outcomes while sacrificing
itelsewhere.In our case, the most fundamental decision concerns the modeling of the quota lease-market, for which we make
two simplifying assumptions. First, we assume that fishers must have enough quota at the end of the fishing season to cover
their cumulative catch. Accordingly, the market for leasing quota clears at the end of the season, and fishers’ expectations
regarding end-of-season quota demand and supply form the basis for within-season quota prices. Second, we assume the
market for quota is competitive. That is, fishers’ treat their expectations of quota-lease prices as given, even though prices
are endogenously determined by the aggregate behavior of all fishers. Given the incentives embodied in these expected
prices, fishers carry out individually optimal “on-the-water” plans by allocating their effort over a discrete number of fishing
sites and time periods. We close the model under the assumption of rational expectations so that equilibrium quota prices
are consistent with fishers’ beliefs.

3.1. A fisher’s dynamic programming problem

Consider agent (i.e., the fisher) i, who has preferences defined over a sequence of states of the world z; ; from period
t =1 until period t =T + 1. In periods t < T, agents choose a fishing locationa € A= {0, 1, ..., J}, where a = 0 represents
the option of not fishing. In the final period t = T + 1, the agent incurs costs or receives revenues from buying or selling
quota in the leasing market according to their cumulative quota usage. In any given time period, fishers must account for the
opportunity cost of using quota—whether it is best to use quota today for the profits it generates or preserve it for sale in the
competitive quota market. The problem is stochastic because fishers do not know exactly what they (or others) will catch
at each location and time period, and thus, they form expectations over fleet-wide catch realizations and the resulting end-
of-season excess demand for quota. We assume that the number of fishers is large enough that any single fisher perceives
their effect on aggregate harvest and the quota lease price as negligible. Therefore, fishers’ expectations of quota prices are
formed exogenously to their own decisions.

We make a number of simplifying assumptions for the sake of tractability. First, the state of the world at period t for agent
i is assumed to consist of two components: z; ; = (X; (, & ;)- The subvector ¢&; ; is private information known only by agent i
at the time of decision, and is assumed to be exogenous. The subvector x; ; is an endogenous and stochastic state variable
representing an agent’s S-dimensional vector of cumulative catch prior to making a decision in period t: X; ; = fu(X; 1) =

th:lytk =X 1+Yir 1, wherey;, = Y(a;;, & ) represents fisher i's S-dimensional vector of catch in period t.! The term
&; ¢ represents the stochastic component of catch, which we assume to be serially uncorrelated and unknown to any fisher at
the time a decision is made in period t. We denote x; = wa,-,t as the vector of fleet-wide cumulative catch at the beginning
of period t for all species, which we assume to be common knowledge to all fishers.

Second, we assume that an agent’s contemporaneous utility function for location g;; is additively separable in the
observable and unobservable components:

u(ai,tap/}’i,t)'i‘gi,t(ai,t) if tefl,...,T}
U(air, i) = , ) (1)
U(O,W(Qi—Xj’T+1)) if t=T+1,

where €2; denotes a vector of quota endowments possessed by fisher i at the beginning of the season, w denotes a vector of
quota-lease prices, and p denotes a vector of ex-vessel prices. An agent’s utility in the final period T + 1 is evaluated at port
(a = 0) with revenue equal to the value of their remaining endowment of quota.?

! Note that the time index ¢t should also be a component of the state vector, but we omit it here for the sake of keeping notation as simple as possible.
2 It can be shown that the indirect utility function in period T + 1 follows from an agent choosing consumption and an amount of quota to maximize
utility, subject to a budget constraint (see Appendix B for details).
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Third, we assume that the unobserved state variables ¢; ; are independently and identically distributed (iid) across agents,
time, and locations, and have an extreme-value type 1 distribution that is common knowledge across fishers. Fourth, we
assume that catch y is independent of the unobserved state variables ¢ and the observed endogenous state variables x,
conditional on the location choice a. This assumption implies that the stochastic component of catch £ is conditionally
independent of past, present, and future values of € and x, so that: E(y; (|a; ;, X; t, &i,¢) = E(¥i ¢|a; ¢ ). Practically speaking, this
assumption has several implications. First, a fisher’s private information about a location choice does not affect catch (or
expectations of catch) once the fisher’s choice has been made—i.e., private information only influences catch by influencing
a fisher’s choice. Second, cumulative catch, as reflected in x;;, does not influence the distribution of contemporaneous
catch—i.e., within-season spatiotemporal stock dynamics are exogenous to fishing behavior. Finally, this assumption also
implies that the next-period cumulative catch x; ;4 of any fisher j is independent of fisher i’s current period unobserved
state variable ¢; ;, conditional on the values of the decision g; ; and state variable x; ;. Together, these assumptions define
what is often referred to as the dynamic programming conditional logit model (Rust, 1987).3

In periods t < T, an agent observes the vector of state variables z; ; and chooses an action g; ; € A to maximize expected
utility

T+1-t

E Z u (ai,t+j7zi,t+j) ies Zig | - @

j=0

The decision at period t affects the evolution of future values of the state variables x; ;, but the agent faces uncertainty
about these future values due to the unknown nature of future catch. The agent forms beliefs about future states, which are
objective beliefs in the sense that they are the true transition probabilities of the state variables. By Bellman’s principle of
optimality, the value function during the fishing periods t < T can be obtained using the recursive expression:

1% (zi,t) = max {U (a, z,;t) +E, (V (zi,tﬂ) a, zi,t) } , (3)

where E, denotes the expectations operator with respect to the state vector z.*

Unfortunately, there is typically no analytical form for the expected value function, and computationally expensive
numerical and recursive methods are often needed to solve the Bellman equation instead. The restrictions these methods
place on the dimensionality of the state space have often limited the empirical relevance of dynamic programming models
of fisher behavior. Thankfully, the assumptions underlying the dynamic programming conditional logit model, combined
with the additional assumption that fishers are risk-neutral, imply that fisher i’s optimal decision rule in each period is
dramatically simplified. The expected quota-lease price w in period t acts as a shadow price of quota, which is harmonized
across fishers given the transferability of quota.” Conditional on expected lease prices w, the solution of Eq. (3) takes on a
simple, static form® :

oz, w) = argmax {u (a, (p ~ WE (yila)) +&1 (@)} 4)
ae

Notably, the policy function has a simple analytical form that does not depend on the endogenous state variable x; ;. Rather, it
depends only on the fisher’s current private information &; ; and the expected quota-lease price w, both of which are exoge-
nous. Intuitively, the quota-lease price embeds all relevant information regarding expected future quota scarcity needed
to inform the present-day decision.” Functionally, this means that, given a perceived quota-lease price, the location-choice
problem in Eq. (2) reduces to a tractable period-by-period static maximization problem that does not require recursively
solving the Bellman equation.

3.2. Rational expectations equilibrium quota prices

Eq. (4) presents a fisher’s optimal decision rule for a given expected quota-lease price w. Fishers determine their current
and future optimal location choices given perceived quota prices w as specified by the policy function a(z; ;|w) in Eq. (4).
In this sense, quota prices determine fisher behavior. At the same time, given fishers’ decision rules «(z; ;|w), the quota
market determines expected quota prices in each period so that aggregate fisher behavior determines the equilibrium quota
prices. Rational expectations states that the market-clearing quota prices implied by fisher behavior are the same as the

3 We choose to follow the well-known assumptions of the “Rust model” because, as will soon become apparent, the likelihood function for the unknown
structural parameters of the RERUM bears considerable resemblance to the likelihood function arising from static discrete choice methods, thereby facili-
tating the comparison of our approach to conventional models. In general, many of these assumptions can be relaxed; however, in doing so, the form of the
likelihood function changes, as does the solution and estimation methods. We refer the reader to Aguirregabiria and Mira (2010) for an excellent summary
of solution and estimation methods for dynamic discrete choice models as assumptions deviate from the Rust model.

4 Note that we do not include a discount factor.

5 The assumption of risk neutrality has the practical implication that revenue enters utility linearly and is additively separable from the rest of utility.

6 See Appendix C for a formal derivation.

7 The policy function in Eq. (4) takes on a similar form to the utility function used by Miller and Deacon (2017).
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quota prices on which fishers’ decisions are based. That is, the market-clearing equilibrium quota prices are consistent with
fishers’ quota-price expectations.

The expected quota-price vector w is the equilibrium price that clears a seasonal competitive market for quota leasing,
which is assumed to be frictionless and without transaction costs. Let 2 = ZVI.SZ,- denote the vector of fleet-wide quota

endowments for all species. Then the seasonal excess demand for quota for species s can be written as es = Xs 7.1 — Qs.In
any given period t < T, a fisher does not know with certainty what the demand for quota will be at the end of the season;
thus, forward-looking fishers form expectations over excess demand given a perceived w and the state of the world in period
t:

E(esiw, X) =E (xo 111w, ) —

T
= ZZ Zf(a|W)E (.Vi,s,k‘a) + X5t — Qs,

k=t Vi YaeA

(3)

where f( - ) denotes the probability mass function for the discrete location-choice variable a and the bracketed term repre-
sents the expected catch for all fishers in the remaining periods.® Given the assumption that fishers know the distribution
of private information for all agents, f(-) can be derived by integrating the policy function (4) over the unobserved state
variable:

flaw) = /I[Ol(ZIW)=a]g(8)d&

where I[ -] is an indicator function and g( - ) is the probability density function of €. The expected equilibrium quota-lease
prices in period t can then be defined as those that satisfy the following market-clearing conditions:

E(esiw,x;)=0 for ws >0,
(6)

E(eslw,xt) <0 for ws=0.

That is, in equilibrium, prices will adjust so that positive prices achieve zero expected excess quota demand for scarce
species, while prices fall to zero for species in excess supply (i.e., “free goods”). The equilibrium quota prices that solve
the market-clearing conditions in the system of Egs. (6) are state-contingent—i.e., they are a function of the observed (and
common knowledge) state of the world in period t. We denote the equilibrium quota-lease price vector as W(x;).

Under the assumption of rational expectations, fishers’ beliefs are consistent with the market-clearing conditions in
(6). Thus, to close the rational expectations model, we substitute the equilibrium quota prices W(x;) into a fisher’s optimal
decision rule:

’

a(zi) = argmax {u (a, (p - W(Xt)) E (yi,t\a)> + it (a)} , (7)
€

Eq. (7) serves as the basis for our rational-expectations RUM (or RERUM) model.

We emphasize here that the state-contingent equilibrium prices Ww(x;) reflect the scarcity of quota that exists in time ¢
given expectations regarding optimal future behavior and harvesting conditions. Thus, while the equilibrium quota prices
are determined by a market-clearing condition at the end of the season, W(x;) are the equilibrium prices that emerge in
period t as quota is exchanged. We further note that since equilibrium quota prices are determined by common knowledge
of aggregate cumulative catch x;, and not knowledge of individual catch x; , it is not necessary to track within-season quota
exchanges.

4. Estimation

Thus far, we have characterized equilibrium fishing behavior for a known set of behavioral parameters. In this section,
we present an empirical strategy for estimating a vector of structural parameters in the utility function 0 utilizing panel
data for N individuals who behave according to the decision model described in Section 3. For every observation (i, t) in
this panel dataset, we observe the individual’s action g; ;, the payoff variable y; ;, and the subvector x; ; of the state vector
zi ¢+ = (Xi ¢, & ). Because the subvector ¢; ; is observed by the agent but not by the researcher, ¢; ; is a source of variation in
the decisions of agents conditional on the variables observed by the researcher. It is the model’s econometric error, which
is given a structural interpretation as an unobserved state variable.

8 For simplicity, we have implicitly assumed that a fisher forms their expectation of excess demand before they observe their private information &. For
a large number of fishers, as we have assumed here, this has a negligible influence on our results; it is, however, trivial to relax this assumption at the cost
of model presentation.
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Assuming that the data are a random sample over individuals, the log-likelihood function is Z?’ll»(@), where [;(0) is the
contribution to the log-likelihood function of i’s individual history®
I; (9) = logPr{ai’[ ct=1,..,Tlyi¢ Xe, 9}
= IOgPr {ai,t =« (xi,b Eits 9) t=1,..., lei,tv Xt 9}

T
= Zlogf (aiclxe, ).
=1

Closed-form expressions for f( - ) follow from the iid extreme value type 1 distribution we’ve assumed for ; ;, which produces
the conventional logit probabilities:

et(a (p-w(xt))E(yla))

k,(p— 'E(ylk))
ZWeU( (p-w(x¢))E(yIk))

(8)

f (alxe, 0) = (9)

This expression is predicated on knowledge of the quota price rules w(x;). Therefore, we need to either observe the state-
contingent quota prices or come up with a strategy for determining the implied quota prices within the estimation process.
In the former case, observed quota prices can simply be inserted into the choice probabilities in Eq. (9) and maximum
likelihood estimation can proceed as usual. However, in many cases, these lease prices are not observed due to limitations
on data disclosure or because only average prices are reported, as opposed to state-contingent prices. Given this missing
data problem, we propose solving for the rational expectations equilibrium prices for each trial value of 6.

The nested fixed-point algorithm (NFXP) pioneered by Rust (1987) is a search method for obtaining maximum likelihood
estimates of the structural parameters, which combines an “outer” algorithm that searches for the root of the likelihood
equations with an “inner” algorithm that solves for the fixed-point of the rational expectations equilibrium for each trial
value of the structural parameters. Specifically, consider an arbitrary value of 8, say 90 Conditional on 60, the inner algorithm
solves for the w; that solves the fixed-point problem in Eq. (6) given optimal fisher behavior described in Eq. (5). This produces
an equilibrium vector of quota prices W(x;) for each observation in our data, which can be substituted into Eq. (9) to form

the choice probabilities f (ai,t|xt, 90). Next, the outer algorithm uses the gradient of the log-likelihood function with the

choice probabilities in Eq. (9) to start a new iteration with a new structural parameter 6. This process continues until either
0 or the log-likelihood converges based on a pre-specified convergence tolerance.!?

5. The RERUM estimator: a demonstration

In this section, we demonstrate how the RERUM can be used for predicting counterfactual fishery policies. Specifically,
we consider a fishery in which fishers receive individual quotas for two species that are jointly harvested, but only one of
these species (Species 1) has an ex-vessel value to a fisher—i.e., Species 2 can be considered a bycatch species. We simulate
the structural model described in Section 3 with known parameter values to evaluate two forms of hypothetical policies
designed to reduce bycatch: (1) reductions to the quota for the bycatch species, and (2) bycatch hot-spot area closures.

5.1. The data-generating process

The data generating process (dgp) is purposefully simple to facilitate our understanding of the model predictions. We
assume fishers begin each period in port and choose from a n x n grid of fishing locations. The observable component of a
fisher’s contemporaneous expected utility function in Eq. (1) for location a is specified as:

E (uj¢) = OrevD E(i ¢ 1) + Opise Dist(a),

where Dist(a) represents the distance from port to location a. A fisher’s optimal location choice is determined by Eq. (7),
which takes on the specification

&(z;,;) = argmax {em(p (%)) E(Yi1a) + OpiscDist(a) + 1, (a)} :

acA

where the rational-expectations quota prices W(x;) are determined by Eq. (6).!

9 Note that we are estimating the structural parameters 6 taking the harvest variable y; ; and state variable x; as given. Thus, we are taking a partial MLE
approach here. In theory, it is possible to jointly estimate the structural parameters of both the harvesting and utility functions in a full MLE approach;
however, for the sake of simplicity, we leave that for future research.

10 For more details on the NFXP algorithm, see Appendix D.
11 In general, quota prices are sensitive to the data-generating parameters, as depicted in Fig. A1, and have comparative statics that are consistent with
theory: quota prices increase with ex-vessel prices, quota scarcity, and the marginal utility of revenue. Note that the latter is only true for the target species.
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Fig. 1. Spatial distribution of expected catch for species 1 (left) and 2 (center) with port located in the upper left-hand corner in cell [1,1]; expected global
production set (right) with the total allowable catch (black dot and dashed lines).

We model fisher i’s catch of species s € {1, 2} in period t and location a as y, ; = Y(a, &;.; 1) = qs,; €XP {Es’i,[(a)}. where
qs,; € (0, 1) denotes fisher i’s catchability coefficient and & ; ((a) is a normally distributed random variable with location-
specific mean parameters s(a) and a common variance o2, Catch is thus a log-normal distributed random variable with
mean E(ys ; 1a) = qs ; exp{us(a) + 02/2}.12 For simplicity, us(a) and o2 (and thus expected catch) are assumed to remain
constant over all individuals and time periods; however, realized catch varies across all individuals and time periods due to
the individual- and time-specific nature of the idiosyncratic shock & ; ((a).!

We consider two different biological scenarios with different spatial distributions for each species, producing the global
production sets depicted in Fig. 1. In the first scenario, the two species have minimal spatial overlap, and thus, fishers are
able to substitute between species relatively easily. In contrast, fishers are more constrained by the bycatch species in the
second scenario as there is greater spatial overlap between species and fishers must travel further away from port to avoid
bycatch.

5.2. Bycatch quota reductions and hot-spot closures: Simulation results

We reduce the bycatch quota and the area open to fishing, respectively, by increments of 5% to a minimum of 25% of their
baseline levels. For the area closures, we emulate a hot-spot closure policy by closing areas to fishing that experience the
highest amount of bycatch in the baseline simulations.'# Harvest and utility shocks (£ and ¢) are drawn from their respective

Quota prices decrease with the marginal utility of revenue if a species’ net price (ex-vessel price minus quota lease price) is negative. In this case, fishers
will try to avoid catching this species, decreasing demand for its quota.

12 The mean parameters us(a) vary over the grid according to distinct two-dimensional normal density functions for both species.

13 This example does not incorporate stock depletion or other spatial/temporal variability in expected catch over the course of the season. We do so to
focus attention on the dynamics generated by the opportunity cost of quota. It is a relatively straightforward extension of our approach to include these
extensions, so long as fishers consider stock depletion and other non-stationarities to be an exogenous process in their planning behavior.

14 For example, if 75% of a 100-location grid is closed to fishing, we close the 75 cells that have the highest amount of bycatch from a baseline simulation
with no spatial closures.
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Table 1
Parameter values and descriptions for the data generating process.
Parameter Parameter values Description
Known? Random”
Orev 1 [0.5,1.5] True preference parameter for expected revenue
Opist -0.4 [-0.5,-0.1] True preference parameter for distance
J 100 [36,144] Number of locations
N 20 [10,40] Number of individual fishers
T 50 [25,60] Number of time periods in a year
S 2 [1,4] Number of species
Yrs 1 [1,5] Number of years
p (1000,0) [500,1500] Ex-vessel price vector
q 1073 [0.15,5.8] x 103 Catchability coefficient
o? 3 [0.1,5] Variance of random harvest component (&)
TAC (13,7)x 1073 [0.8,1.5]x 103 Total allowable catch (proportion of abundance)

2 Denotes the parameter values (species-specific, where applicable) for the data generating process with known (and fixed) parameter values.
b Denotes the range of parameter values for the data generating process with a random parameter space. Parameter values are drawn randomly from a
uniform distribution.

probability distributions, and state variables are endogenously updated in each time period. The remaining data-generating
parameter values are known and remain fixed across all policy simulations (presented in column 1 of Table 1).

Results from the policy simulations are presented in Fig. 2, where we’ve simulated 200 counterfactual seasons under
each policy. Under the baseline policies, the quota for the bycatch species (s = 2) is binding in both biological scenarios,
resulting in a positive quota-lease price in all simulated seasons. In scenario 1, the lease price for the target species (s = 1)
is consistently positive as well, pointing toward the dominance of interior solutions in the quota market. In contrast, the
target species almost always has a non-positive lease price in scenario 2, where the bycatch species consistently acts as a
choke species, preventing the full harvest of the target species quota. This difference largely stems from the higher spatial
overlap between the target and bycatch species in scenario 2, making bycatch avoidance so costly that it is not possible to
fully utilize the target species quota.

The effect of the bycatch reduction policies differs across both biological scenarios and policy types. Not surprisingly, the
quota reductions are effective at achieving desired bycatch reductions: bycatch falls at a 1:1 ratio with the bycatch quota
since the quota remains binding over all reductions. The lost utility from achieving a given level of bycatch reduction is
considerably higher in scenario 2 because of the higher cost of bycatch avoidance. In scenario 2, the primary cost of bycatch
reduction is foregone catch of the target species, as the bycatch quota continues to bind before the target-species quota
is harvested. By contrast, the primary cost in scenario 1 is traveling greater distances to avoid bycatch: there is minimal
foregone target species catch in scenario 1 and the target species quota price declines very slowly on average while the price
of bycatch quota rises steadily with increased scarcity.

Hot-spot closures, on the other hand, have virtually no impact on bycatch in either scenario over the examined range of
closures. In fact, hot-spot closures have the effect of pushing fishers into areas with higher bycatch-to-target species ratios.
Since fishers are already avoiding bycatch under the baseline policy, bycatch is being generated in areas with relatively low
bycatch-to-target species ratios; hot-spot closures therefore push fishers out of relatively cleaner areas, thereby increasing
bycatch per unit of target species catch.

The key difference between the two bycatch-reduction policies is reflected in the quota-lease prices: quota reductions
signal scarcity to fishers through increased quota-lease prices, and fishers have the incentive to reduce bycatch in the most
cost-effective manner given their information about catch rates. Hot-spot closures, on the other hand, do not signal bycatch
scarcity over a wide spectrum of policy severity when bycatch quota is already sufficiently scarce under the baseline scenario
to command a positive price. Instead, for fisheries where bycatch species does not consistently act as a choke species (scenario
1), the closures decrease the value of the target species quota price by pushing fishers into increasingly sub-optimal fishing
locations. In fact, quota prices for the bycatch species are only responsive to the closures in scenario 1 once the target-species
quota can no longer be harvested before the bycatch quota binds.

Altogether, these policy simulations demonstrate the utility of modeling the spatiotemporal production decisions of
harvesters under the dynamically evolving constraints imposed by the seasonal quota market. The structural model can yield
counterfactual policy predictions of fisher welfare, catch rates, and lease price behavior for changes in both rights-based
management parameters (i.e., quota allocations) and “ecosystem-based” policies targeting the spatiotemporal footprint of
fishing effort. The simulation results also highlight the role that lease prices play in relaying signals of quota scarcity, and
how policies that fail to influence the relative scarcity of quota in the desired direction as reflected in these relative prices
are likely to fall short of their intended objectives.

6. Evaluating alternative RUM models: a Monte Carlo analysis

The previous section established that the RERUM estimator has the potential to produce meaningful insights for poli-
cies specific to rights-based managed fisheries. We now consider whether alternative, commonly-used RUM models of
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Fig. 2. Numerical simulation outcomes—bycatch hot-spot closures (left column) and bycatch TAC reductions (right column) for two biological scenarios
(blue and red). The median (solid line) and 25th-75th percentile range (shaded area) are presented using 200 draws from the data-generating process. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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spatiotemporal fishing behavior are capable of producing similar insights for rights-based fishery policies. Specifically, we
evaluate the in- and out-of-sample predictive performance of conventional RUM model specifications through a Monte Carlo
analysis, assuming the data generating process is as described in Section 5. We investigate several different biological and
regulatory scenarios to determine the conditions under which alternative RUM models may provide adequate predictions
of fishing behavior under rights-based management. To judge each estimator’s in-sample predictive performance across
different data-generating and sampling environments, we also draw randomly from the data-generating parameter space
(e.g., 0, u, o) and the sampling parameter space (e.g., T, N, S). To evaluate out-of-sample prediction performance, we sim-
ulate the same counterfactual bycatch-reduction policies as in Section 5, using estimated parameters from the alternative
RUM estimators.!>

We emphasize that our intent in this section is not to investigate whether the RERUM estimator is superior to the
alternative RUM models, since the RERUM is a consistent estimator of the true parameters by construction. Rather, our
intent is to illustrate the potential promise and peril of using conventional RUM models for policy evaluation in rights-based
managed fisheries, and in doing so, highlight when (and how) capturing the general equilibrium dynamics of rights-based
fisheries matters. For completeness, we also include Monte Carlo results for the RERUM estimator. For a more detailed
consideration of practical issues for estimating the RERUM model, we refer the reader to Appendix F.

6.1. Alternative RUM model specifications

We consider the following alternative RUM model specifications, described in further detail below, which differ in their
treatment of the shadow cost of quota in the specification of a fisher’s optimal location choice:
Static RUM (SRUM):

@, = argmax { OgeyD'E(; 1|a) + Opis Dist(a) + &; (a) } ;

acA

Quota-Price RUM (QPRUM):
Qir = argn}‘ax {9Reu(P —~w)E (yi,t|ai,t) + Opis Dist (ai,t) + &t (a)} )
ae
where w; = observed quota — lease prices;

Approximate Rational Expectations RUM (ARUM):

i = argmax {Ogeu(p — W) E(i 1) + Opisc Dist(ag ) + €;.¢(a) } ,

acA
where Wsi = Yos+ 7y 2t +24Y2s2t, 2 =[X10 X2, t], 5= 1,2,

and x;,; denotes the proportion of remaining fleet-wide quota for species s in period t. The parameters 6 = [Ogey, Opjs] are
the structural preference parameters of interest and are estimated alongside the vector [yg s, ¥1,s] and symmetric matrix
V2,s-

The first specification (SRUM) is a static RUM approach that does not account for the forward-looking thinking of fishers,
and thus, estimates a policy function that does not deduct the shadow cost of quota from expected revenues. So long as the
TAC has a non-zero probability of binding for at least one species, the SRUM model will underestimate the expected revenue
coefficient 6g.,. Moreover, to the extent that a location’s distance from port is correlated with the expected catch of a species
with binding quota, the estimate of the distance coefficient 0p;, will also be biased (upwards or downwards, depending on
the direction of the correlation).

The second specification (QPRUM) represents the approach one would take to address the bias of the SRUM model if
quota-lease prices were observed—that is, include the observed prices w; directly into the policy function. We consider two
versions of this approach, one which uses the period-specific quota-lease prices w; (QPRUMT1, the best-case scenario) and
another which uses the seasonal average quota price w (QPRUM2, a more likely scenario).

The third specification (ARUM) attempts to address the bias of the SRUM model without the luxury of having quota-lease
prices. Specifically, the ARUM model introduces a reduced-form quadratic approximation of quota-lease prices by interacting
expected catch with observed state variables meant to reflect the scarcity of quota, including the proportion of remaining
quota xs ¢ and time period t.'® Similar approaches have been followed previously, for example, to estimate the implicit
cost of fleet-wide bycatch quotas (Abbott and Wilen, 2011) and to estimate the extent of cooperation in a common-pool
fishery (Haynie et al., 2009). The ARUM model approximates the shadow value of quota using both species’ cumulative catch
information. Note that without temporal variation in the ex-vessel price p, it is not possible to identify the constant yp s

15 Monte Carlo simulations were conducted using Matlab (Version 2019a) with parallel computing (18 workers) running on an Amazon EC2 instance
(c4.8xlarge) with an Intel Xeon E5-2666 v3 processor (2.9GHz) and 60GiB of memory. Code for reproducing Monte Carlo results can be found at
https://github.com/mnreimer/RERUM.git.

16 We also considered fleet-wide cumulative catch as a state variable, but the proportion of remaining quota was selected for the ARUM model due to its
superior predictive performance.

11
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Fig. 3. Parameter estimation and in-sample predictive performance—percent bias in utility parameter estimates (left and center columns); root-mean-
square error (RMSE) between estimated and population choice probabilities (right column). Markers denote median values and error bars denote the 25th
and 75th percentiles. Distributions generated from 200 draws from the data-generating process with random draws from the data-generating and sampling
parameter space.

in the ARUM model. In practice, it is rare to observe within-season variation in prices (Holland et al., 2014); thus, we omit
0,s from the ARUM specification, and note that only the differences in quota prices w across the state space are identified,
as opposed to the absolute level of quota prices. As we discuss below, this has implications for identifying the structural
parameter ey, but has no implications for prediction.

6.2. Estimation and in-sample performance

For each of 200 independent Monte Carlo draws, we estimate the parameters of the RERUM and the alternative RUM
models, and calculate parameter bias and the root-mean-squared-error (RMSE) of predicted location-choice probabilities,
relative to the true model (described in Section 5). Column 2 of Table 1 provides the range of parameter values for the random
parameter space that we sample from (uniformly).

As expected, both the RERUM and QPRUM1 estimators are able to recover the structural parameters 6 due to explicitly
accounting for the evolving shadow-cost of quota (either imputed or observed, respectively) in the estimation process
(Fig. 3). The QPRUM2 estimator, which accounts for only the seasonal average quota price, also provides a relatively unbiased
estimator Ogey. In contrast, the SRUM specification underestimates gy, as predicted for situations in which the shadow cost
of quota is strictly positive. The ARUM specification does not improve the estimation performance of 6g., over the SRUM
because it is unable to identify the absolute level of the quota prices (yp) due to the time-invariant nature of prices p. Instead,
1 is subsumed into the estimate of 6gey, resulting in a underestimation of 6g,,. Moreover, including an approximation of the
shadow cost of quota creates challenges for precision, as reflected in the wide distributions of 9Rev for the ARUM specification.
All five models have relatively good estimation performance for 6, which is expected when the distance from port to areas
with high expected catch is symmetric across species.!”

Altogether, despite having trouble using variation in observed state variables to identify 6g.,, the ARUM model offers an
improvement over the SRUM model for in-sample predictions according to the RMSE of choice probabilities. By contrast, the
QPRUM2 estimator does not provide much improvement over the SRUM estimator for in-sample predictions because, despite
incorporating quota price information into the estimation process, it does not account for the within-season evolution of
the quota shadow costs.

6.3. Out-of-sample performance

For both forms of policy counterfactuals considered in Section 5.2, we simulate an entire fishing season with stochastic
harvest and state variables that are endogenously updated in each time period. Fishers make location choices according
to their policy-function specification (i.e., SRUM, QPRUM, ARUM, or RERUM). For both the ARUM and RERUM models, the
quota-lease price is updated in each period using each model’s respective quota-price rule. For example, the ARUM model
inserts the observed state variables into the quadratic quota-price approximation function, while the RERUM model updates
the quota-lease price using the observed state variables and solving for the rational-expectations equilibrium quota prices in

17 This symmetry is exhibited in our Monte Carlo sample (with random error) since we allow for the spatial overlap of species to be randomly determined
when drawing from the data-generating parameter space.
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Eq. (6).In contrast, the SRUM and QPRUM models are static, and do not update each period to reflect the evolving shadow cost
of quota. The SRUM model uses no quota prices while the QPRUM models use the observed quota prices from the estimation
sample, essentially considering them exogenous to the counterfactual policies under consideration. For each counterfactual
policy, we generate 200 independent draws from the dgp. Process error is introduced through harvest and utility shocks
(£ and ¢), which are drawn from their respective probability distributions. Sampling error is introduced by drawing utility
parameters from simulated sampling distributions, which are generated by estimating the parameters of the RERUM and
the alternative models using 500 independent draws from the dgp under the baseline policy. More details concerning the
process for generating out-of-sample simulations is contained in Appendix E.

In general, the alternative RUM models perform well in predicting changes in expected utility for small changes from the
baseline policy, but get progressively worse as counterfactual policies move farther away from the baseline (Fig. 4).!8 In both
scenarios, the alternative RUM models tend to overestimate the cost of reducing the bycatch TAC. The SRUM and QPRUM
models have no method of accounting for increased shadow prices from TAC reductions; thus, fishers are predicted to fish
business-as-usual until the season ends from a binding TAC. As a result, predicted changes in expected utility under the SRUM
and QPRUM models are proportional to bycatch TAC reductions. The ARUM model does account for changes in bycatch quota
scarcity through the approximated quota-lease prices, and in turn, fishers are predicted to fish in different locations with
less expected bycatch. As a result, early-season endings from hitting the bycatch TAC are avoided and predicted changes in
expected utility are relatively close to the truth, at least for small reductions in the TAC.

18 Given the similarity in the out-of-sample predictions for the QPRUM1 and QPRUM2 models, we only present the results for QPRUM1.
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The alternative RUM models tend to do better predicting changes in expected utility from the hot-spot closures. The
performance of the SRUM and QPRUM models tend to be inferior to the ARUM model, although they are still capable of
producing reasonable predictions for a small number of closures. Predictions from the ARUM model are quite good for
the hot-spot closures, particularly for scenario 2; ARUM predictions are close to the true model, on average, even for large
changes from the baseline. However, sampling error in the lease-price parameters leads to considerably more variation in the
ARUM model’s prediction error, demonstrating a potential drawback of using the reduced-form approach to approximate
the quota-lease prices.

The out-of-sample predictions we consider here produce two important insights. First, despite being able to recover
structural parameters reasonably well, static RUM models that incorporate observed quota-lease prices in the estimation
process do not produce good out-of-sample predictions if quota-prices are not allowed to adjust to the market, ecological, or
regulatory conditions of the counterfactual policy. This is true even for policies such as the bycatch hot-spot-closure policy
for scenario 2, which does not induce large changes in quota prices, on average (Fig. 2). The reason lies in the stochastic
realizations of production, which are embodied in the observed quota prices but are not expected to be the same as those
observed in the estimation sample. Thus, quota prices that do not update to reflect the prevailing state-of-the-world under
counterfactual policies will not accurately predict behavior.

Second, RUM models that incorporate a state-contingent, reduced-form approximation of the quota-price, such as the
ARUM, are capable of improving out-of-sample predictions over static RUM models. However, this improvement is limited
to only certain situations. The reason largely lies in the quota-price responses to the policy change (Fig. 2): as quota prices
move further away from those observed in the estimation sample, predictions from the reduced-form models tend to move
further away from the truth. For example, hot-spot closures in scenario 2 have almost no effect on quota prices. Accordingly,
the ARUM model does very well at predicting out-of-sample in this case since the lease-price parameters of the ARUM
are calibrated to replicate the in-sample behavior under economically equivalent scenarios. In contrast, TAC reductions in
scenario 1 have the largest influence on quota prices, and in turn, predictions from the ARUM model are only acceptable for
small changes in the TAC.

7. Conclusion

We demonstrate how commonly-used models of spatiotemporal fishing behavior can be adapted to incorporate the
dynamic and general equilibrium elements of catch share fisheries. Our approach extends the traditional RUM framework
for estimating fishing location choices by incorporating a within-season market for quota exchanges, which determines
equilibrium quota-lease prices (or, equivalently, quota shadow costs) endogenously. Our estimation strategy is able to
consistently recover structural behavioral parameters, even when quota-lease prices are unobserved. We demonstrate the
use of our approach for predicting behavioral responses to fishery policies, such as spatial closures and TAC reductions, within
a catch share fishery, and illustrate the importance of allowing quota-prices to be endogenous for conducting out-of-sample
policy evaluations.

Our study provides several important insights. First, quota markets that convey price signals that fully reflect the scarcity
of managed species are essential for coordinating fishing behavior to achieve managers’ objectives in an efficient manner. The
introduction of additional constraints on production decisions, including ecosystem-based policies such as spatial closures,
to rights-based management systems has the potential to distort these price signals. Such interactions between price-
and non-price-based policies may be counterproductive and yield outcomes that fall well short of intended objectives,
while imposing unnecessarily high costs on the fleet. Insights from this interaction between ecosystem- and rights-based
policies are generally not available from conventional models of spatiotemporal fishing behavior. Explicitly modeling the
general equilibrium dynamics of rights-based fisheries, as we do here, allows researchers to better understand potential
feedbacks between ecosystem- and rights-based policies, and evaluate whether rights-based policies are capable of achieving
ecosystem-based management objectives (Miller and Deacon, 2017).

Second, the inclusion of quota-prices, either observed or imputed, in the specification of RUM models is necessary to
identify structural parameters. However, identifying the structural parameters of the RUM model is not sufficient for making
accurate out-of-sample predictions of counterfactual policy changes. Rather, sufficiency lies in determining what quota prices
would be under the counterfactual policy change. Thus, even if practitioners observe quota prices and use them to recover
the structural behavioral parameters, a model of endogenous quota prices is necessary for counterfactual policy evaluations.
In other words, quota prices themselves are not policy invariant.

Third, in the absence of a structural model for quota-lease prices, a reduced-form approximation of state-contingent
quota-lease prices can perform well in evaluating out-of-sample policy changes, provided there is adequate quota-price
variation in the sample, relative to the range of price variation induced by the counterfactual policy. Changes in quota prices
reflect the realized magnitude of the effect of the policy on economic incentives, and therefore function as sufficient statistics
for whether a particular policy/economic/biological regime is sufficiently “in sample” to be evaluated using a reduced-form
model. The challenge is knowing ahead of time whether a policy change of interest will result in quota-prices that lie out-of-
sample. As we demonstrate in Section 5, even seemingly “marginal” policy changes can result in large quota-price changes.
Without knowing how quota prices will respond to a policy change, it is hard to determine ex ante whether a reduced-form
approach will produce adequate policy evaluations.
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Our intent in this paper has been to demonstrate the fundamental role of quota-lease (or shadow) prices as a coor-
dinating mechanism for general equilibrium dynamics in right-based fisheries, and how conventional empirical models
can be adapted to include them in a theoretically consistent manner. In doing so, we have made a number of simplify-
ing assumptions for pedagogical purposes. For example, the computation of our equilibrium quota-lease prices relies on
the assumptions that fishers are rational and risk-neutral, and that the quota-lease market is competitive, frictionless, and
without transaction costs. As with any model, real-world applications must assess and adapt these assumptions according
to the empirical setting at hand. Empirical investigations of quota-lease prices demonstrate that some quota markets may
be competitive (e.g., Newell et al., 2007; Jin et al., 2019); however, evidence of price dispersion (e.g., Newell et al., 2005;
Ropicki and Larkin, 2015) and reliance on barter transactions (Holland, 2013) in some quota markets suggests that quota
markets may not be operating efficiently. Moreover, previous work has demonstrated that fishers may be risk-averse (e.g.,
Dupont, 1993; Mistiaen and Strand, 2000) and may not be rational (Holland, 2008). However, we argue that the ultimate
test of any structural model is not how realistic its assumptions are; rather, its ability to capture policy-invariant parameters
and its predictive performance in policy-relevant out-of-sample contexts is what matters most (Heckman, 2010; Low and
Meghir, 2017). Fortunately, there exist well-established model validation techniques that are readily applicable to a vari-
ety of structural estimation settings (e.g., Keane and Wolpin, 2007). We believe the RERUM estimator, as presented here,
provides a useful framework for future model development as assumptions are relaxed and/or adapted to fit real-world
rights-based-management contexts.

In summary, the layering of spatial closures and a host of other policies on top of rights-based management systems creates
unavoidable feedbacks to seasonal quota markets. These prices, or internal shadow prices for systems that disallow leasing,
are the endogenous mechanisms by which rights-based management alters the responses of fishers to these scenarios. Our
model has shown the crucial importance of drawing upon structural models of the quota-price determination process for
prediction—whether or not these models are used to estimate fishers’ underlying behavioral parameters. Failure to do so
will fundamentally limit the ability of economists to answer crucial “what if” questions posed by fishery managers.
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