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Abstract
This paper presents a task-oriented evaluation

methodology for edge detectors. Performance is mea-

sured based on the task of structure from motion.

Eighteen real image sequences from 2 different scenes
varying in the complexity and scenery types are used.
The task-level ground truth for each image sequence

is manually specified in terms of the 5’D motion and
structure. An automated tool computes the accuracy

of the motion and structure achieved using the set of

edge maps. Parameter sensitivity and execution speed
are also analyzed. Four edge detectors are compared.
All implementations and data sets are publicly avail-

able.

1 Introduction
The lack of an accepted objective empirical

methodology of evaluating even the most widely used
computer vision algorithms has delayed the further ap-
plication of computer vision. Without such a method-
ology, it is difficult for the users to select the best al-
gorithm for their need. Also, researchers who wish to
develop better algorithms cannot document the true
contribution of their work.
We found 22 new algorithms published in just 4

major journals (GMIP, PAMI, PR, SMC) since 1992.
(Refer to Tables of [3]). The necessity of comparing
with other works has been realized, in that 19 of the 22
papers compared their detector with one or more other
detectors visually and/or quantitatively. However,
only 9 comparisons used any previously published
methodology. Three established their own quantita-
tive comparison metrics. Seven others used only visual
(qualitative) comparison. That there would be so little
serious comparison is surprising considering that the
first comparison methodology was published in 1975.
Even more importantly, none of authors have used any
real image ground truth to evaluate their algorithms.
The quantitative comparisons were drawn from syn-

thetic images. Even though the importance of using
real images has been acknowledged, real images simply
are not used during the quantitative evaluation. An
additional concern is that the parameter sensitivity
of edge detectors is generally not acknowledged. The
output of an algorithm changes significantly with the
parameter setting. However, none of 22 edge detection
works states any details about how the parameters of
edge detectors compared to were searched. This leaves
one to wonder if the result of the edge detectors com-
pared to could have been bett,er if a better parameter
setting was used.

Lastly, the purpose of edge detection needs to be re-
membered. Edge detection is not usually a final result
by itself; it, is an input for further processing. There-
fore, the true performance lies in how well it prepares
the input for the next algorithm.

We propose that a convincing comparison method-
ology should have the following features.

A comparison method must be objective and quan-
titative.

A comparison method must be publicly available

and easily applicable.

A large data set must be carefully designed using
real images.

A comparison method should evaluate the algo-

rithm based on a vision task.

In this research, the edge detection algorithms have
been evaluated based on the task of structure from
motion [3].Th’1s is the first attempt to test edge de-
tectors based on another highly researched vision al-
gorithm. Four edge detectors are tested using 18 real
image sequences, containing a total of 278 images.
Six original sequences were taken from 2 different
scenes. Two shorter sequences are derived from each
original sequence, resulting in 12 shorter sequences.
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The comparison tool is developed to objectively eval-
uate the performance. Once the edge maps are cre-
ated by an edge detector, the evaluation program will
extract and correspond lines, execute the SFM pro-
gram and evaluate the result using the comparison
tool. The data set, comparison tool, and interme-
diate process implementations are publicly available
at http://figment.csee.usf.edu. The entire comparison
process can easily be applied to other edge detectors.

2 Background
2.1 Edge Detectors
Four detectors were studied. The Bergholm edge

detector applies a concept of edge focusing to find
significant edges. The image is smoothed using a
coarse resolution (high smoothing) and the possible
edges are located. Then, the neighbors of edges from
coarser resolutions are checked in finer resolution.
The Canny edge detector is considered as the stan-
dard methodology of edge detection. The image is
smoothed with a Gaussian filter, and the edge direc-
tion and strength is computed. The edges are refined
with non-maximal suppression and hysteresis. The
Rothwell edge detector is similar to the Canny edge de-
tector except 1) non-maximal suppression is not used
since it is claimed that it fails at junction points, and
2) hysteresis is not used due to the belief that the edge
strength is not relevant for the higher level image pro-
cessing tasks. The Sarkar edge detector is an Optimal
Zero Crossing Operator (OZCO).

2.2 Structure from Motion

A structure from motion (SFM) algorithm deter-
mines the structure (depth information) of a scene
and the motion of the camera. For this compari-
son experiment, the structure and motion from line
segments algorithm by Taylor and Kriegman was se-
lected for several reasons [4]. First, the working imple-
mentation was obtainable from the web site. Second,
the work had been extensively tested with synthetic
and real data, and this data is also publicly avail-
able. Third, the algorithm was already tested against
another structure from motion algorithm [5] and was
concluded to be more stable under noise [4].
Given n images with m corresponded lines, the

SFM algorithm extracts the depth information of the
line (3D location of each line in the camera coordi-
nates), and the motion of the camera. It solves the
problem in terms of an objective function 0 which
measures the disparity between the projected 3D line
and its corresponding observed 2D line. The algo-
rithm iterates searching for the structure and motion
estimate which minimizes 0. The algorithm gener-
ates an initial random guess of camera positions for
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Figure 1: Possible Orientations of Collinear Lines.

each iteration using the initial motion information. It
is found that without providing any initial motion in-
formation, the algorithm usually managed to converge
into a solution but after a far greater number of itera-
tions. In order to speed up the process, a good motion
estimate (rotation angle) was provided. A minimum
of 3 images and 6 lines is required by the SFM algo-
rithm, and more images or lines are allowed.

3 Framework
The comparison methodology involves four steps :

1) edge detection, 2) intermediate processing, 3) SFM,
and 4) evaluation of the result.

3.1 Intermediate Processing

Given the edge maps generated by each edge de-
tector, the intermediate processing involves extracting
and corresponding lines. These steps prepare the in-
put for the SFM program. It must be acknowledged
that these steps are not perfect nor optimized since the
result can vary depending on the sophistication of the
algorithm used and/or the parameters selected. The
overall goal is to compare the edge detectors, and algo-
rithms that we believe will give the minimum amount
of advantage or disadvantage to any particular edge
detectors are adopted.
A simple method of line extraction is implemented.

Line segments are represented by two endpoints in
pixel coordinates. First, the edge links are created
from the edge map by scanning from left to right
and top to bottom. A link starts with an edge pixel
with only 1 neighbor. The 8-connected neighboring
edge pixels are recursively linked until 1) there are
no more neighbor edge pixels or 2) there is more
than one neighbor, indicating a possible junction or
branch. Second, the edge links are divided at a high
curvature point with the curvature angle greater than

Thigh-cum-angle. Third, edge links are further broken
to form line edge segments using the Polyline Split-
ting Technique until the farthest point is closer than

Tpoint_toAine. Then, the line edge segment (a chain of
edge pixels) is fitted to a line using the Least Squared
Estimation, and the ending edge pixels are projected
to the line to the nearest pixel. These two projected
points are used to describe a line. Finally, lines which
are shorter than Tminline_length are eliminated.
The input of the SFM is a set of line correspon-

dences across a sequence of images. Manually match-
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ing the lines would provide the most error-free method
possible. However, it is not practical to match lines
from 18 image sequences (total of 278 images) for four
edge detectors where each edge detector will be tested
on minimum of 177 parameters. Also, the manual
matching could possibly give advantage or disadvan-
tage to a particular edge detector since the human
can actually use the knowledge of the scene to re-
sult in better matches. Therefore, an automated line
matching program was developed which will give 1)
the minimum advantage to any particular edge de-
tector and 2) the minimum mismatches. Note that
the SFM program will produce a wrong result if any
lines are mismatched, so minimizing mismatches is ex-
tremely important.
First, the Ground Truth (GT) lines in all images of

the sequence (Lij for image i and line j) are manually
defined and corresponded. Second, the Machine Es-
timated (ME) lines (lik for image i and line Ic) from
the Line Extraction program were corresponded using
the GT lines. If a ME line (lik) matches to a GT line
(Li,), lik is labeled with the index of Lij. TWO lines
are corresponded if two conditions are met.

1. Collinearity. If the sum of the distance between
the endpoints of Lij to lik is less than Tperp_dist,
they are considered to be collinear.

2. Overlap. Two line segments could be collinear,
yet not belong to the same part of the ob-
ject/image. So, lik is projected to Lij, result-
ing in lIk and Lik is projected to lij, resulting in
Llk. Lij and lik could be oriented in four differ-
ent ways. (Refer to Figure 1). Obviously, the ori-
entation #l indicates overlap while #4 indicates
non-overlap. Since one GT line segment could be
broken down into several ME line segments in one
image, if lik is completely within Lij (#2), they
are corresponded. In case of the partial overlap
(#3), if 1) the intersection of lik and Li, is greater

than Toverlap percent of Lij and 2) the intersec-
tion of Lik and lij is greater than Tove,.lap percent
of E,j, then they are considered overlapping. Note
that many GT lines to 1 ME line correspondence
is not allowed.

The SFM requires a minimum of 3 correspondences
for each line. Lines with less than this Tmin_corr cor-
respondence are dropped.

3.2 Imagery Design
Some comparisons have concentrated primarily on

the evaluation criteria and ignored the importance of
the dataset; 13 out of 15 edge detection comparison
methodologies have used 4 or less synthetic and real

LegoHouse Scenes

WoodBlock Scenes

Figure 2: Image Scenes (6 originalsequences)

images. The dataset should be large and thorough in
order for the users of the methodology to have confi-
dence in evaluation. Four images (including synthetic)
would not seem to be thorough enough.

In this work, a large dataset of 18 sequences (6 orig-
inal and 12 derived) containing 278 images is carefully
designed considering different aspects influencing the
edge detectors and the structure from motion task.
(See Table 1 & Figure 2).

3.3 Ground Truth
The ground truth is manually defined in terms of

1) the rotation angle between two consecutive images,
and the rotation axis, and 2) “structure,” measured
as the angle between selected pairs of lines.

The object is rotated on a rotation stage according
to the predetermined GT rotation. To determine the
rotation axis of the stage, a cube is placed on the
calibrated rotating stage so that the straight edge of
the cube is aligned with the rotation axis. Intensity
and range images are taken. Two points defining the
endpoints of the rotation axis are determined from
the intensity image. The 3D location of two points is
extracted from the range image, and the vector defined
by two points is normalized to represent the rotation
axis. The structure GT is defined by a set of two lines
of the object and the angle between them.

3.4 Performance Metrics
The ME result is compared with GT in two areas :

motion (rotation axis, rotation angle) and structure.
Since the object is rotated along the fixed rotation
axis with no translation, the motion of the camera
(which SFM produces) is converted to the motion of
the object by reversing the sign of the rotation angle
while keeping the same rotation axis.
Two measurements for the motion (rotation axis

and rotation angle) are combined by the following
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Table 1: Properties of Image Sequences

image # of total # of Ave # of Ave line

set images rotation lines corres length

name angle per line (pixe12)

LHl 18 160.00” 122 8.80 80.64

LH1.A 12 160.00” 122 5.94 80.17
LH1.B 9 160.00” 122 4.46 81.42

LH2 19 355.00° 104 6.89 89.44
LH2.A 13 355.00° 104 4.76 88.41
LH2.B 10 355.00° 104 3.63 89.19

LH3 20 190.00° 118 7.58 83.29
LH3.A 14 190.00° 118 5.31 84.13
LH3.B 10 180.00’ 118 3.83 82.15

WBl 18 170.00° 29 11.03 132.91
WB1.A 9 160.00’ 29 5.52 133.87
WB1.B 12 160.00’ 29 7.31 133.69

WB2 28 275.00’ 36 15.72 110.85
WB2.A 14 265.00’ 36 7.94 110.56
WB2.B 17 275.00’ 36 9.50 111.86

WB3 30 285.00’ 47 18.17 91.93
WB3.A 15 270.00’ 46 9.24 92.04
WB3.B 10 260.00’ 45 6.18 92.77

# of lines, Ave # of correspondence/line, Ave line length are
computed from the manually specified GT lines

method. (Refer to Figure 3). First, an arbitrary point
at (1, 0,O) is set for PGT,, and PME~. For each camera
orientation j, PGT, is computed by moving PGT” with
.4ngleGT, and AxisGT, while PME, is computed with
AngleME, and Axis~~~. Then the motion error is

computed by MotionError = ~~eppor . 100% wheremOYe
MEt?,?-,?- is the distance between PGT, and PME,, and

GTmove is the distance between PGT~ and PGT,. The
percentage error is used since the absolute distance er-
ror would hold different significance depending on the
amount of the camera movement. The structure error
is measured by computing the angle difference between
the ME angle and its corresponding GT angle.

3.5 Parameter Training
This final result depends on parameters of the edge

detector (3), line extraction (3), and line correspon-
dence (3). Finding the best setting of 9 parameters
seemed computationally infeasible. Therefore, the fol-
lowing method was established.
First, good parameter settings for line extrac-

tion and line correspondence are found after observ-
ing many runs of the experiment: Tpoint_todine=5.0,

Thigh_czlrv_angte=gO.O, Tmin_line_length=50.0, Tperp_dist
=5.0, Toverlap=80.0, and Tmin_corr=3. These values
are fixed for all experiments.
Second, realizing that the edge detector’s perfor-

mance greatly varies with parameters, anadaptive
method of searching for the best parameter values is

Figure 3: Motion Error Measurement

used. A 5x5x5 initial uniform sampling of parameter
space is tested. The area around the best parameter
point in this coarse sampling is further subsampled
at 3x3x3 (with the previous best at the center). A
minimum of 2 subsamplings is executed, resulting in a
minimum attempt of 177 different parameter settings.
Subsampling is continued while there is a minimum
of 5% improvement. The parameters are trained sep-
arately for structure and motion. After the average
of 2.67 subsampings and the maximum of 8 subsam-
plings, the best parameters were found.

4 Results
The results of 9 LegoHouse and 9 WoodBlock se-

quences are presented. The section is divided into
three sections: Train, Test, and Parameter Sensitivity
& Speed. The motion performance is obtained with
the motion-trained parameters and the structure per-
formance with the structure-trained parameters. The
results are categorized into two scene groups (Lego-
House and WoodBlock) and by two metrics (motion
and structure) resulting in 4 categories.

4.1 Train
Edge detectors are trained separately for each im-

age sequence with GT information given. The perfor-
mance with trained parameters is the best possible for
the given image sequence with the parameter training
algorithm described in the previous section.
First, the Bergholm was able to obtain the best

train motion and structure performance in both scene
types. (Refer to Figure 4). The Canny and the Roth-
well performed the second, while the Sarkar performed
the worst in all 4 of them. Most of edge detectors
performed better with WoodBlock  sequences. This
could be the result of longer lines with longer corre-
spondences being available in the WoodBlock scenes.
(Refer to Table 1). Another interesting observation is
that the rankings were identical between 2 scenes for
a given metric (motion or structure).
Second, the performance varies greatly with the pa-

rameter settings for all edge detectors. The mean of
motion and structure performance obtained through
all parameter setting attempted during the Train is
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(a) Motion performance

LiLegc+lo”se
Woodslock

1111
Bergholm CEt”“Y Rothweu sarkar

(b) Structure performance

Figure 4: Train Performance

analyzed. The mean motion performance was nearly
twice the best, and the structure performance was
nearly 4 times the best. Especially, the structure per-
formance showed a great variation among the param-
eter settings. This confirms the importance of the pa-
rameter training for edge detector performance. The
Canny had the narrowest motion difference, while the
Sarkar had the narrowest structure difference.

4.2 Test

In order to test the performance of the edge de-
tectors on sequences different from those trained on,
the parameters trained for one sequence were tested
on other sequences within the scene group. In our
test data, there are 9 image sequences, where each se-
quence is tested on all other sequences for motion and
structure separately. Therefore, for each edge detec-
tor we tested 144 times for each image scene type: 9
sequence x 8 trained parameter settings from other
sequences in the group x 2 trainings (for motion and
for structure).

It is important to realize that under some instances
(settings of edge detector parameters), the edge maps
resulted in a set of corresponded lines that the SFM
program could not converge into any solution after
1750 iterations. In order to take this problem into

I I

(a) Motion performance
48/72 (LegoHouse) & 72/72 (WoodBlock)

(b) Structure performance
40/72 (LegoHouse) & 63/72 (WoodBlock)

Figure 5: Performance (on Common Converged Tri-
als.)

consideration, the analysis of Test is divided into two
sections. First, the convergence rates are compared.
Second, the performance of the test trials where all
edge detectors successfully converged into a solution
is analyzed.

First, even though the testing is performed within
the same scene group, not all edge detectors converged
into good solutions in all testings. The Canny showed
the best convergence rate (overall 98.65%), while the
Rothwell had the worst (overall 84.72%). Lower
convergence rates were achieved from the structure-
trained parameters than for the motion-trained pa-
rameters, and also in LegoHouse scenes compared to
the WoodBlock  scenes.

Second, the test performance is compared. The
Canny performed best in all 4 testing categories with
all converged sequences. (See Figure 5). The Rothwell
performed the worst in 3 categories. The Bergholm,
which showed the best train performance, shared
the second and the third with the Sarkar. Interest-
ingly, the Sarkar, with the worst trained performance,
showed a small degradation in the test. This behavior
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could have been expected from a relatively small dif-
ference between the train performance (Figure 4) and
the mean performance of all attempted parameter set-
tings.

4.3 Parameter Sensitivity & Speed
The effect of each parameter on the performance is

analyzed. First, the standard deviations of the mea-
surements of the converged parameter setting (struc-
ture and motion separately) where only one parameter
was varying are calculated. Then, the mean of stan-
dard deviations is calculated for all image sequences.
First, the smoothing operators (Sstart, Send, and

sigma) were usually the most influential parameters.
Second, low and high of the Sarkar had little effect on
either metric. Therefore, for the Sarkar, the param-
eter tuning could be reduced by 2 dimensions within
the range of dew and high which will lead to converg-
ing results. This finding is extremely valuable, since
the parameter tuning is important and time consum-
ing. However, the motion performance of the Sarkar
in the LegoHouse scene was highly sensitive with the
sigma. All parameters of the Bergholm and the Roth-
well were highly influential while all three parameters
of the Canny were usually less influential than other
edge detectors’ parameters. Also, the ranking of the
sensitivity of the parameters (such as the ranking of

S Send,start, T of the Bergholm) within each edge de-
tector was similar across the 4 categories.
In order to compute the speed of the edge detectors,

one image was run with the initial 5x5x5 parameter
samplings on a Sun Ultra Spare Workstation. The av-
erage execution times were 40 set (Bergholm), 8 set
(Canny), 8 set (Rothwell), and 14 set (Sarkar). The
precise differences in execution time are likely not re-
liable, as these was no attempt to assure comparable
levels of efficiency in the different implementations.

5 Conclusion
First of all, the sensitivity of edge detectors’ perfor-

mance to changes in the parameters is verified. This
corresponds with one conclusion of Heath et al ‘s work
[a]. The edge detectors showed the average degrada-
tion from the best to the mean of the average factor
of 2 (motion) and 4 (structure). (Refer to Figure 4).
Second, the Bergholm had the best “test-on-

training” performance in both metrics (Figure 4),
while the Canny and the Rothwell were second. With
separate test data, the Canny had the best perfor-
mance with both scene types for both motion and
structure (Refer to Figure 5). In Heath et al’s work,
the Canny performed the best when the parameter
was adapted for each image and the worst when fixed
for all images. Theoretically, it can be concluded that

once the optimal parameter setting for the image se-
quences is found, the Bergholm can achieve the best
performance, since it was the best performer in the
test-on-train.However, in practice, the Canny per-
formed better with any deviation from the training
sequence.
Overall, the Canny had the lowest sensitivity to

the parameter variations, the best test performance,
the fastest speed, and the robustness of highest con-
vergence rate. Thus we concluded that it performs
the best for the task of structure from motion. This
conclusion is similar to that reached by Heath et al
[2] in the context of a human visual edge rating ex-
periment, and by Dougherty and Bowyer [l] in the
context of ROC curve analysis. Thus it appears that
the Canny may be a preferred edge detector for a very
broad range of tasks.
There are several desirable directions for extending

this work. One is to include additional edge detectors.
Another is to include more complex image sequences.
A third is to more closely compare the results of this
analysis with those of Heath et al [2] and Dougherty
and Bowyer [l].
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