Surface approximation to
scanned data

Les A. Piegl!,
Wayne Tiller?

1 Department of Computer Science & Engineering,
University of South Florida, 4202 Fowler Avenue,
ENG 118, Tampa, FL 33620, USA

2 GeomWare, Inc., 3035 Great Oak Circle, Tyler, TX
75703, USA

e-mail: piegl@grad.csee.usf.edu,
geomware@gower.net

A method to approximate scanned data
points with a B-spline surface is presented.
The data are assumed to be organized in the
form of Q,’J,i:O,... ,l’l;j:(),... ,mj,
i.e., in a row-wise fashion. The method pro-
duces a C?~1:4=D continuous surface (p
and ¢q are the required degrees) that does not
deviate from the data by more than a user-
specified tolerance. The parametrization of
the surface is not affected negatively by the
distribution of the points in each row, and
it can be influenced by a user-supplied knot
vector.

Key words: Data approximation — Reverse
engineering — B-splines — Curves and sur-

faces — Algorithms

Correspondence to: L.A. Piegl

1 Introduction

Surface approximation to rectangularly arranged
n x m points has been an integral part of surface
design and modeling in CAD/CAM. Recent ad-
vances in reverse engineering (Putambekar et al.
1995; Varady et al. 1997) call for different approx-
imation methods as data obtained from acquisition
devices cannot be guaranteed to follow the tradi-
tional “point carpet” topology. Surface construction
to point-cloud data has been investigated both for vi-
sualization (Amenta et al. 1998—Hoppe et al. 1994;
Schmitt et al. 1986) as well as for reverse engineer-
ing applications (Ma and Kruth 1994-Milroy et al.
1995; Sarkar and Menq 1991; Sapidis and Besl 1995;
Tuohy et al. 1997). While it is important to be able
to construct surfaces to arbitrary points, object scan-
ning, especially for reverse engineering, is not done
in just any random manner. Scanners most frequently
scan in an organized fashion, producing rows of data
points [a typical example is shown in Varady et al.
(1997).] The rows may or may not contain the same
number of points, and the distribution of points in
each row may vary quite a bit.

In this paper, we investigate the following problem.
Given a data set in the form:

Qi,j i=0,...,l’l j=0,...,m,~,

a degree (p, g¢) B-spline surface is sought that ap-
proximates the data up to a user specified tolerance €.
Neither the point set is assumed to have a rectangular
topology, nor is it assumed that the points are evenly
distributed along each row (Fig. 1a,b shows typical
data sets). The method is outlined as follows.

1. Divide the input tolerance into three components;
thatis, € = €, + €, + €.

2. Fit curves to the rows of data points so that each
curve does not deviate from the points more than
€y.

3. Fit a surface to the rows of curves so that it does
not deviate from any curve more than €,,.

4. Remove all removable knots from the surface in
step 3 using the tolerance €.

There are two key issues in this process: (1) the fit-
ting of curves to each row of data points indepen-
dently of one another, and (2) avoiding data explo-
sion by proper control of the knot vectors.

The organization of the paper is as follows. In
Sect. 2, B-spline notations are presented, and in
Sect. 3, the general curve approximation problem is
outlined. Section 4 gives details on how to approx-
imate curves to a given tolerance with knot-vector

The Visual Computer (2000) 16:386-395
© Springer-Verlag 2000

L.A. Piegl, W. Tiller : Surface approximation to scanned data 387

b

Fig. 1a,b. Data sampled from: a a brush handle (1454
points); b a dust pan (1229 points)

control. In Sect. 5, the surface approximation method
is discussed, and Sect. 6 concludes the paper.

2 B-spline notations

For notational convenience, we introduce curve and
surface definitions first. A B-spline curve of degree p
is defined as

Cw)=>)_ Nipw)P,
i=0

where P; are the control points, and N; ,(u) are the
normalized B-splines defined over the knot vector

U={up=-- =Up,Uptlse - Up, Up—p=-" =}
N— — —
p+1 p+l1
A B-spline surface of degree (p, ¢) has the form

n m

S, v) =Y "> Nip@)Nj4@)Pij,

i=0 j=0

where the points P; ; form a control net and the
B-splines are defined over

U={uo=--=up,upy1,...,up, Up_p=+--=u,}
p+l p+l

V={vo=+-"=vg, V41, ..., Uy, Vg—g=+--=0s}.
q+1 q+1

We assume that the knot vectors U and } are al-
ways clamped, i.e., they are in the forms just given,
and that the curves and surfaces are nonrational. For
more details on B-spline curves and surfaces, the
reader is referred to the authors’ text (Piegl and Tiller
1997).

3 Curve approximation

In order for the curve approximation to be useful for
surface construction, the following issues must be
dealt with:

e General curve formulation
e Selection of parameters and knots
e Knot-vector control.

In the subsections that follow, each problem is inves-
tigated in detail.

3.1 Least-squares curve approximation

The approximation problem is stated as follows.
Given a set of points

0, i=0,...,k
a set of precomputed parameters
ti 1=0,...,k

and a knot vector U, a degree p B-spline curve with
n+1 control points is sought that interpolates the
end points; i.e.,

Cto) =Py= Qo C(tx) = P, = Ok,

and approximates the remaining points in the least-
squares sense, that is,

k—1
> 10i—Ccw))?
i=1

is a minimum with respect to the independent vari-
ables Pp,..., P,—1. The standard least-squares

388 L.A. Piegl, W. Tiller : Surface approximation to scanned data

method yields the following system of equations
(Piegl and Tiller 1997).

(NTN> P=R,

where Nisa (k—1) x (n — 1) matrix
[Nipt1) -+ Nu—1,p(t1)
| N1 p(tr—1) - N1, p(tk—1)
Risavector of (n — 1) elements
Ni,p(t)R1 4+ -+ N1, p(ti—1) Ri—1

| N1, p(t)R1 4+ Nyt p(ti—1) Ri—1

with

Ri = Qi — No,p(t;) Q0o — Ny, p(t:) Ok
i=1,...,k—1,

and P is the vector or unknown control points

P

Py

To solve for the unknown control points, proper pa-
rameters and a knot vector are needed.

3.2 Parameters and knot vector for
approximation

The parameters should reflect the distribution of
the points. Practical experience shows that chordal
length parametrization is quite satisfactory in most
applications. Let L be the total chordal length

k
L=) 10i—0Qi1l.

i=1

Then
th=0

Qi — 0i—1]
li:tifl‘i‘%, =1,... k-1
tr=1.

The knot vector is a delicate matter. There are two is-
sues here: (1) the numerical stability of the system of
equations, and (2) the quality of the approximating
curve. There are many ways to choose a knot vector

that gives stable equations. However, in our experi-
ence, not all stable equations yield acceptable curves.
The method we have chosen is explained as follows.

INPUT:
ti,i=0,...,k, parameters
p, degree
n, highest index of control points
OUTPUT:
U={ug, ..., upqpy1}, knot vector
ALGORITHM:
fori=0topdo {u; =1t0; uptiy1 =1}
inc=(k+1)/(n+1); low=high=0;d=—1;
fori =0ton do
d=d+inc;
high = |d+0.5];
sum = 0.0;
for j =low to high do sum = sum +1;;
w; = sum/(high —low +1);
low = high+1;
end

fori=1ton—pdo
sum = 0.0;
for j=itoi+p—1do
Ujyp = sum/p;

end

sum :sum+wj;

This algorithm first groups (k+1)/(n + 1) consec-
utive parameters and averages them to have n+1
representative values w;, i =0, ..., n. Then p con-
secutive values are averaged to yield the knots.
This choice of the knot vector has two important
properties.

1. It gives a stable system of equations with
a diagonally dominant coefficient matrix that
has semibandwidth less than p+1 (Cox 1971;
Schoenberg and Whitney 1953).

2. If n =k, the approximation problem becomes an
interpolation problem, and the resultant knot vec-
tor coincides with the one for interpolation (Piegl
an Tiller 1997).

Figure 2a,b shows approximation examples. In
Fig. 2a, k =20, n = 6, and p = 3. The circles mark
the parameter values, the x’s represent the w; av-
erages, whereas the bars are the knots. Figure 2b
illustrates the interpolation case. Note that because
w; = t;, the interpolation and the approximation knot
vectors are the same.

The choice of the knot vector becomes more cru-
cial in approximation up to a given tolerance. Tight
tolerances may require that n & k, and this in turn
requires that the knot vector should be close to the

L.A. Piegl, W. Tiller : Surface approximation to scanned data 389

ER ' b 16!
it * L i

Fig. 2a, b. Data approximation: a k=20,n =6, p=3; b
k=20,n=20,p=3
Fig. 3. Knots and their flexibility intervals

one used for interpolation. Otherwise, the approxi-
mating curve can be fairly wiggly, especially towards
the end points.

3.3 Knot-vector control

Although the choice of the knot vector is crucial in
approximation, it turns out that each knot has some
flexibility locally. That is, the positions of the knots
can be perturbed without causing either numerical
problems or creating curves of unacceptable shape.
Our idea is to define an interval in which each in-
ternal knot can freely be moved. Denoting the knot
vector for degree p approximation by U?, these in-
tervals are defined as

p—1 p p—1
u,_ <u; <u; .

That is, the knot for a degree p approximation is
bracketed into an interval defined by knots used for
adegree p — 1 approximation. Introducing a percent-
age parameter per, one can control the width of each
interval. In other words, per = 0% gives no flex-
ibility, whereas for per = 100%, any value within

(uf:], uf 71) may be chosen. Figure 3 shows an ex-
ample. The large bars represent knots for the p =2
approximation, the small bars are the knots for the
p = 3 approximation, and the small rectangles are
the flexibility intervals for per = 75%.
The approximation algorithm that uses knot vector
control can then be explained as
INPUT:

0;,i=0,..., k, data points
., ii;}, candidate knots
n, p, highest index and required degree
per, percentage of interval use

OUTPUT:
C(u), curve approximant

U, updated knot vector

ALGORITHM:
T={t,..., tr} < get parametrization;
U?P = {ug uf+p+1} <« knots for degree p;
yr-1 = {ug_l, . ,uf:_,__]} < knots for degree p—1;
S={sg,..., Sp+p+1} < memory for knots for
approximation;
sj < 1t9,i=0,...,p;

sj <t i=n+1,..., n+p+1;
fori=p+1tondo
a= (l—per)*ull.]—l—per*ull.]__ll;
b:(l—per)*uf—i—per*uf_l;
ity < input knot closest to uf ;
if(itg € (a, b))
end
C(u) < approximate Q;,i =0, ..., k, with 7 and S;
U < Merge(U, S);

s;i=1uy else s; =ull.];

The algorithm accepts the data points and a knot vec-
tor as input. It then sees if the given knots can be used
to approximate the data. To do that, it sets up an “ide-
al” knot vector (the one outlined in Sect. 3.2) for de-
gree p and another one for degree p — 1. If there are
input knots in a flexibility interval, the algorithm se-
lects the one closest to the ideal knot. If no input knot
is present in an interval, the ideal knot is used. Af-
ter curve approximation is achieved, the input knot
vector is updated by adding the ideal knots whose
flexibility intervals did not contain input knots. Fig-
ure 4 shows an example. The small bars are the ideal
knots corresponding to the solid curve. The large
bars are the ones selected from an input knot vector.
They all fall within the flexibility intervals obtained

390 L.A. Piegl, W. Tiller : Surface approximation to scanned data

Fig. 4. Approximations with different knots

by per = 75%. The corresponding curve is dashed.
What is truly interesting to note is that the curves do
not deviate much, even though the knots are quite
far apart. Our experience shows that per = 100%
can safely be applied for almost all practical appli-
cations, especially if the data set is dense, which is
necessary to justify approximation as opposed to in-
terpolation anyway.

The idea of passing a knot vector into the curve ap-
proximator makes sense only if there are more than
one approximation, precisely the case used in surface
approximation. Each row of data points is indepen-
dently approximated with a given knot vector passed
in for each row and subsequently updated. It is an-
ticipated that after several approximations to given
rows, the updated knot vector has enough knots so
that no or very few knots must be added. This in turn
may allow a tremendous data reduction in the output
surface knots, as the independently fitted curves have
many knots in common. When they are made com-
patible, only a few knots must be inserted into each
curve.

4 Approximation to a given tolerance

The approximation method discussed in the previ-
ous section requires the number of control points
as input. In practical applications, what is needed is
a curve that approximates the data up to a given tol-
erance €. Therefore, a fitting routine must determine
n so that the perpendicular errors are smaller than the
tolerance, that is,

10i— 07| <e i=1,... k-1,

where Q7 is the projection of Q; onto the curve. The
following iterative procedure worked well in prac-
tice.

1. The input to the routine are the data points Q;, i =
0,...,k, the tolerance ¢, the required degree p,
and a knot vector U (Fig. 5a).

2. The output is a curve C(u) and the updated knot

vector U.

3. Compute parameters 7' = {to, . .
ize an error vector £ = {eg, ...
vector. R

4. Interpolate Q;,i =0, ...,k with U passed in
(Fig. 5Db).

5. Setup knot priorities. Knots passed in receive pri-
ority 2, and added knots are assigned priority 1.
Remove all removable knots, observing their pri-
orities (Fig. 5c). In other words, try to remove
all removable knots with priority 1 first, then the
removable ones with priority 2. Details of knot re-
moval are found in Piegl and Tiller (1997). This
priority-based knot removal ensures that the algo-
rithm preserves as many input knots as possible.

7. Using the number of control points obtained in
the previous step and the input knot vector, ap-
proximate the data, applying the algorithm dis-
cussed in Sect. 3.3. Project each data point onto
the curve and update the error vector £; that is,
e = {Q,- — Q7T |, where QT is the projection of Q;
onto the curve.

8. If for some index ¢, ey > ¢, increase the number
of control points and reapproximate. Continue
thisuntile; <€, =0, ... , k(Fig. 5d).

9. Set up knot priorities as already described, pass
E to the knot removal routine, and remove knots
with priorities until ¢; <€,i =0,... ,k, still
holds (Fig. 5e).

10.Update the output knot vector by adding the new
knots needed by the approximation routine.

., It} and initial-
, ex} to the zero

o

A number of comments are in order.

e [t is almost impossible to guess the number of
control points necessary to approximate the data
so that the curve does not deviate from the points
more than the tolerance. An initial interpolation
followed by knot removal gives a fairly close
estimate.

e Starting the iterative process with an approxima-
tion as opposed to an interpolation almost always
gives better results, hence the use of an approx-
imative curve in step 7. Compare the curves in

L.A. Piegl, W. Tiller : Surface approximation to scanned data 391

Fig.5. a Input to approximation: data points and knot
vector; b interpolating data points; ¢ approximating the
curve after knot removal; d least-squares curve approxi-
mation; e final curve after knot removal

Fig. 5c and d. The error in Fig. 5d is much more
evenly distributed than the one in Fig. Sc.

If the estimate for the number of control points
was not adequate, it is increased in the following
way.

— Get the increment An = %

— Update the index n = min (n + An, %)

If n < k, then n is incremented by An. However,
if n & k, it is incremented in a binary search fash-
ion.

The final knot-removal step does not remove
many knots in general. However, it cleans up the
knot vector by removing knots that happen to lie
close to one another.

e Based on our experience, we set per = 100%
and did not use it as a user-adjustable input.
In order for the approximator to work prop-
erly, the point set must be fairly dense, which in
turn allows maximum flexibility in choosing the
knots.

Although approximating data by B-spline curves to
a given tolerance is an important problem in itself,
the method forms the core of surface approxima-
tion to a user-specified accuracy. Because of the
tensor product nature of B-sline surfaces, curve ap-
proximators facilitate u- and v-directional fittings,
to which the surface approximation can be broken
down.

392 L.A. Piegl, W. Tiller : Surface approximation to scanned data

5 Surface approximation

The curve approximation scheme can be used to ap-
proximate the point set

Qi,j

up to the given tolerance €. The idea is

i=0,....n j=0,...,m

1. Allocate percentages of € to u- and v-directional
approximations and to knot removal.

2. Compute an initial knot vector.

3. Pass this knot vector to each curve approxima-
tion.

4. Update the knot vector after each approximation.

The data approximation algorithm is explained as:

INPUT:
Qi j,i=0,...,n;j=0,...,m;, data points
(p, q), required degrees
€, tolerance
pery, pery, pery, percentages
OUTPUT:
S(u, v), (P j, U, V), surface approximant
ALGORITHM:
€y = pery *€;
€y = pery *E€;
€] = pery *x¢€;

J <« NULL;
fori =0ton do
C;(v) < approximate Q; ;, j =0, ..., m;, using 14
and €,
V < add new knots;
end
{V, m} <~ make C;(v),i =0, ..., n, compatible;

U/ < NULL:
for j =0 to 7 do
for i =0 ton do
R; < j-th control point of C;(v);

end
qj(u) < approximate R;,i =0, ..., n, using U and €,
U < add new knots;
end
{U, n} < make Ciu),i=0,...,n, compatible;
{P;j,i=0,...,7;j=0,... 7} < control points

oij(u),j =0,..,m;
S(u, v) < remove all knots using ¢;

The routine first allocates tolerances to the three
operators: u- and v-directional approximations and
knot removal. Then the first knot vector in the v di-
rection is initialized to null, which will then be com-
puted inside the first call to the curve approximation
routine. Each row of data points is then approxi-
mated up to €,, producing the v-directional curves

Fig. 6. a Surface approximation to 1554 points; b control
points of surface approximant

Fig.7a,b. Surface approximation to: a sparse points
along dense rows; b dense points along sparse rows

Ci(v),i =0,...,n. Making these curves compat-
ible, the highest index in the v direction and the
v-knot vector are obtained. Performing the same pro-
cedure on the control points of C;(v) up to €,, one
obtains the surface control points and the u-knot vec-
tor. The final surface is the result of knot removal
using the tolerance €.

The importance of allocating various fractions of €
to the three operators is illustrated in the examples
of Figs. 6 and 7. In Fig. 6a, 81 rows of data points
were approximated. The lowest row index is 6, the

L.A. Piegl, W. Tiller : Surface approximation to scanned data 393

Table 1. Results of tolerance allocation in examples in Figs. 6

and 7
pery pery per 7 m Total
(percentage) (percentage) (percentage)
33 33 33 25 16 442
20 60 20 57 14 870
60 20 20 18 19 380
50 50 0 22 14 345
0 100 0 104 13 1470
100 0 0 15 39 640
0 0 100 21 21 484

highest is 39, and the total number of points is 1554.
The results of the tolerance allocation is shown in Ta-
ble 1. The surface obtained by (per,, pery, pery) =
(50%, 50%, 0%) is depicted in Fig. 6a. The con-
trol points are shown in Fig. 6b. It is quite evi-
dent that the number of control points (as well as
the quality of the surface) depends on how the tol-
erance is allocated. Our experience is summarized
here.

e In general, it is not worth allocating too much of
€ to knot removal because not too many knots
remain to be removed after the approximations.
A final knot-removal step is used only to elimi-
nate knots that are too close together.

e The approximation strategy interpolation-knot
removal is inferior to the method just mentioned,
both in terms of number of control points and
surface quality. Compare the fourth row (where
only approximations are used) and the last row
(where only interpolation and knot removal are
employed) of results in Table 1.

e The allocation of ¢ depends on the data. If the
rows are densely spaced, however, the points in
each row are fairly sparse, a larger percentage
is allocated to the u-directional approximation.
An example is shown in Fig. 7a: 635 points are
approximated with (per,, pery, pery) = (80%,
20%, 0%). If the rows are sparsely spaced, how-
ever, each row contains a dense point set, and
a higher percentage of ¢ is allocated to the
v-directional approximation. Figure 7b shows
such a situation: 526 points are approximated by
(pery, pery, perr) = (20%, 80%, 0%).

One may wonder how the number of control points
depends on the tolerance, i.e., what kind of growth

Table 2. Results of the approximating data points

€ n m
1.0 8 6
0.5 14 10
0.1 25 19

0.05 31 23
102 46 33
1073 46 37
1074 48 38
10-5 48 39
0.0 48 39

Fig. 8a—c. Surface approximation examples: a € = 1.0; b
€=0.5;ce=0.1

394

rate the control points exhibit as the tolerance ap-
proaches zero. Table 2 shows the results for the
data points in Fig. 8a—c. The relevant numeri-
cal values are: n =40 and (per,, pery, pery) =
(40%, 40%, 20%).

The results of the first three rows are illustrated in
Fig. 8a—c. Because the rows of data points are ap-
proximated independently of one another, an expo-
nential growth of control points is expected (pre-
cisely as in surface lofting). Fortunately, this is not
the case, and is due to the knot-vector control. By the
time the approximator approximated some number
of rows of data points, the updated knot vector, which
is passed on to every curve approximator, has enough
knots that most of them can be used for approxima-
tion, and update is hardly ever necessary. Traditional
lofting methods would require an order of magnitude
more control points in both directions, especially for
smaller tolerances.

6 Conclusions

We have presented a method to approximate rows of
data points with a C?~1.4=1 degree (p, ¢) B-spline
surface. The main ideas are: (1) approximate the
rows of data points independently of one another,
(2) select the knots from a given knot vector, and
(3) control the percentage of the tolerance allo-
cated to curve approximations and knot removal.
The independent approximation of each row elim-
inated wiggles in the surface shape and allowed
a good parametrization because of the flexibility
inherent in the passed in knot vector. This knot
vector in turn produced a very slow growth (loga-
rithmiclike) of control points as the function of the
tolerance. Practical experience shows that there is
significant flexibility in how the knots are selected
and these selections have little effect on the resultant
shape.

Acknowledgements. The work reported in this paper was supported by
the National Science Foundation under grants No. DDI-9526119 and
No. CDA-9724422 awarded to the University of South Florida.

L.A. Piegl, W. Tiller : Surface approximation to scanned data

References

1.

10.

11.

12.

13.

Amenta N, Bern M, Kamvysselis M (1998) A new Voronoi-
based surface reconstruction algorithm. SIGGRAPH ’98
Conference Proceedings. pp 415-421

Bajaj CL, Bernardini F, Xu G (1995) Automatic recon-
struction of surfaces and scalar fields from 3-D scans. SIG-
GRAPH ’95 Conference Proceedings. pp 109118

Cox MG (1971) Curve fitting with piecewise polynomials.
J Inst Math Appl 8:36-52

Curless B, Levoy M (1996) A volumetric method for build-
ing complex models from range images. SIGGRAPH ’96
Conference Proceedings. pp 303-312

Eck M, Hoppe H (1996) Automatic reconstruction of B-
spline surfaces of arbitrary topological type. SIGGRAPH
’96 Conference Proceedings. pp 325-334

Guo B (1997) Surface reconstruction: from points to
splines. Comput Aided Des 29:269-277

Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle,
W (1992) Surface reconstruction from unorganized points.
Comput Graph 26:71-78

Hoppe H, DeRose T, Duchamp T, Halstead M, Jin H,
McDonald J, Schweitzer J, Stuetzle W (1994) Piecewise
smooth surface reconstruction. SIGGRAPH ’94 Conference
Proceedings. pp 295-302

Lyche T, Morken K (1987) Knot removal for parametric
B-spline curves and surfaces. Comput Aided Geom Des
4:217-230

Ma W (1994) NURBS-based CAD modeling from mea-
sured points of physical models. PhD Dissertation, Catholic
University of Leuven, Leuven, Belgium

Ma W, He P (1998) B-spline surface local updating with
unorganized points. Comput Aided Des 30:853-862

Ma W, Kruth J-P (1994) Mathematical modeling of free-
form curves and surfaces from discrete points with NURBS.
In: Laurent PJ, Le Méhauté A, Schumaker LL (eds) Curves
and surfaces in geometric design. Peters AK, Wellesley,
Mass., pp 319-326

Ma W, Kruth J-P (1995a) NURBS curve and surface fit-
ting and interpolation. In: Daehlen M, Lyche T, Schu-
maker LL (eds) Mathematical methods for curves and sur-
faces. Vanderbilt University Press, Nashville, Tenn, pp 315—
322

. Ma W, Kruth J-P (1995b) Parametrization of randomly

measured points for least-squares fitting of B-spline curves
and surfaces. Comput Aided Des 27:663—-675

. Milroy MJ, Bradley C, Vickers GW, Weir DJ (1995) G'

continuity of B-spline surface patches in reverse engineer-
ing. Comput Aided Des 27:471-478

. Piegl L, Tiller W (1997) The & URBS Book, 2nd edn.,

Springer, New York, NY

17.

18.

19.

20.

21.

22.

23.

24.

L.A. Piegl, W. Tiller : Surface approximation to scanned data 395

Pratt MJ (1985) Smooth parametric surface approximation
to discrete data. Comput Aided Geom Des 2:165-171
Puntambekar NV, Jablokow AG, Sommer HJ (1994) Uni-
fied review of 3-D model generation for reverse engineer-
ing. Comput Integrated Manufacturing Syst 7:259-268
Sarkar B, Menq CH (1991) Smooth-surface approximation
and reverse engineering. Comput Aided Des 23:623-628
Sapidis NS, Besl PJ (1995) Direct construction of poly-
nomial surfaces from dense range images through region
growing. ACM Trans Graph 14:171-200

Schmitt FM, Barsky BA, Du WH (1986) An adaptive subdi-
vision method for surface-fitting from sampled data. Com-
put Graph 20:179-188

Schoenberg 1J, Whitney A (1953) On Polya frequency func-
tions III: the positivity of translation determinants with an
application to the interpolation problem by spline curves.
Trans Am Math Soc 74:246-259

Tuohy ST, Maekawa T, Shen G, Patrikalakis NM (1997)
Approximation of measured data with interval B-splines.
Comput Aided Des 29:791-799

Varady T, Martin RR, Cox J (1997) Reverse engineering
of geometric models — an introduction. Comput Aided Des
29:255-268

LES A. PIEGL is professor
in the Department of Computer
Science and Engineering, Uni-
versity of South Florida, Tampa,
Florida, USA. His research in-
terests are in CAD/CAM, geo-
metric modeling, data structures
and algorithms, computer graph-
ics and software engineering. He
spent many years researching
and implementing NURBS in
academia as well as in industry.
He is the co-author of the text-
book The N URBS Book, pub-
lished by Springer-Verlag. He
serves as Editor for Computer-
Aided Design.

WAYNE TILLER is presi-
dent ofGeomWare, Inc., a com-
pany specializing in NURBS
technology and software. He
has 28 years experience in ap-
plied mathematics, computer
science, and software develop-
ment. He has worked in the
area of NURBS geometry since
1981, conducting research and
implementing software. He has
published numerous papers on
this topic and is co-author of the
book, The N URBS Book. He
received a PhD in mathematics
from Texas Christian University,
USA.

