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Abstract

In this paper, we present a method for 3D nonrigid mo-
tion tracking and structure reconstruction from 2D points
and curve segments from a sequence of perspective images.
The 3D locations of features in the first frame are known.
The 3D affine motion model is used to describe the non-
rigid motion. The results from synthetic and real data are
presented. The applications include lip tracking, MPEG4
face plaver, and burn scar assessment. The results show (1)
curve segments are more robust under noise (observed from
synthetic data with different Gaussian noise level), and (2)
using both feature yields a significant performance gain in
real data.

1. Introduction

The area of motion analysis has been receiving a sig-
nificant amount of attention due to a wide area of appli-
cation including scene analysis, robot navigation, and ob-
ject recognition [1]. Recently, the application of the mo-
tion analysis has been expanded to the world of the inter-
net. With a high bandwidth requirement of transmitting
video data, the research on data compression and 3D recon-
swruction has been growing. The nonrigid motion is able to
describe more naturally occurring motions by eliminating
the shape conservation constraint of rigid motion. By de-
scribing the change of image content using nonrigid motion
model, the video can be compressed to (1) the initial scene
information, and (2) the mathematical motion description
of the subsequent images [4]. Also, it has been applied to
the medical field such as the bum scar assessment study [7].

In this paper, the algorithm for recovering the 3D struc-
ture and the motion of object undergoing nonrigid motion
from 2D perspective images is developed and analyzed. The
integration of two types of features brings an additional ap-
plicability where not enough point features is available or
the curve features are more naturally available such as lips.
To the point feature based algorithm [2], we have added (1)
the usage of curve features, and (2) more motion and struc-
ture constraint. The Bezier curve representation is chosen to
enable an easy integration with point features since a Bezier
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curve can be described by a set of control points [S]. The
significant application of this algorithm is 3D lip tracking
[6], the MPEG-4 compression [4], and the burn scar assess-
ment [7].

The 3D structure of the first frame is assumed to be
known. This paper attempts to reduce the necessity of hav-
ing range images of “all” frames, enabling accurate real-
time 3D acquisition by recovering 3D information from the
subsequent 2D images. The results show that a significant
performance gain is observed by using both point and curve
features.

2. Problem Formulation
GTg

Mgy

Figure 1. Error between two discrete curves.
GT, is closest to M E,,

Bezier Curve Features The curve features used in this
work are described by Bezier curves with 3 control points
[S]. They describe quadratic curves. Rather than polyno-
mial representation of the curve, the Bezier curve is easier
to interpret geomewically. More importantly, (1) the per-
spective projection of the 3D Bezier curve was simple pro-
jection of 3D control points and change of weights [5], (2)
the Bezier curve is affine invariant [3], and (3) the curve is
transformed by affine model by applying the affine model to
the control points. So the motion of the curve is described
by the motion of the conwol points. The motion of curve
segments can be integrated with the points by using 3 con-
trol “points” as point features leaving the problem to be mo-
tion of points.
A Bezier curve with 3 control points C is described by

C(u) = (1—u)?-wo-To+2u(l—w)-wi-Ti+u®ws-Ty (1)



where T;(¢ = 0,1,2) are the control points (2D or 3D),
w;(i = 0,1,2) are weights for each control point, u para-
metric direction [0,1]. Ty and T are the end points of the
curve which are observed from an image, while 7} is es-
timated by fitting a curve on a set of points describing the
curve.

For a 3D curve, weight values (w) are fixed to be 1.0.
Its perspective 2D projection is described by (1) 2D control
points being perspective projection of 3D control points,
and (2) weights being depth/z-value of the corresponding
3D control point [5]. The points along the curves were de-
tected by edge detection or manually, then they were fit to a

Bezier curve by using a least-squared method.
Error Measurement In order to compute the error be-

tween two curves, we have used Hausdorff-like distance
between two curves. The 3D Ground Truth curve (GT) is
a set of 3D points corresponding to the chain of 2D points
observed from the intensity images. The 3D curve points
are obtained from range images. Then, a 3D Machine Es-
timated (M E) curve is constructed from the three control
points (which are estimated by this algorithm). by sampling
u at the rate of 1/G where G = number of curve points in
GT.

To evaluate a ME curve against a GT curve, each point
(ME,,)wherem= 1, 2, ..., M is compared against all points
of the GT to find the closest point (GT,) where g =1, 2, ...,
G. Then the error of M FE is determined by the mean of the
error distance for all points of M E (refer to Figure 1.)

The error of point features is computed by taking an
Euclidean distance between ME point location (estimated
from this algorithm) and GT point location.

3. Recovery Algorithm

The algorithm uses (1) 2D pixel coordinates of point
and curve features, and (2) the depth values of the point
and curve features from the first frame, to extract (1) mo-
tion (affine motion model), and (2) structure (3D location
of point & curve features.) The motion model assumes a
small motion in a local path which is constant throughout
the frames. This motion model is suitable for image se-
quences taken at a fast acquisition rate such as video se-
quences. In this work, the correspondence information is
assumed to be given. In many applications, 2D real-time
motion tracking is successfully achieved [6].

Consider an image sequence of I images (¢ : 1,...,I),
K points (k : 1,...,K), and L curves (! : 1,...,L). The
the Bezier curve is described by 3 control points and the
motion of the curve is defined by the motion of the control
points. We simply combine the 3L control points and K
points to create 3L + K = N point features (n : 1,...,N).
Given 2D pixel points P = [X?,Y;]T, we estimate the
3D structure of the point features (p, = [z%, %%, 25]7) and
nonrigid motion M. M is an affine motion model where
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The last column of the motion matrix is fixed to be
[1,1,1]7 to avoid any trivial solution. It has been shown
that second order motion model can be used to describe
more complex motion [2].

Let’s assume that P! = [U}, V/i] is a 2D point on image
plane where focal length is 1.8 without loosing any gen-
erality. Note that P} can be computed from P; using the
intrinsic parameters of the camera. Using the perspective
equation, we can estimate the 3D location ;ﬁﬁl if we know
2D location P; and the z}, of pi,.

Po=[Ulsh Ve ] 3

Therefore, the unknowns of the 3D structure is only z}

(depth). We can also estimate the 3D location p?, using es-
_(i—1)
n -

timated M and p

~(i~1)

Bn = Mp;, )
The error function E is
I N
E=)Y|ph— il )

i=2 n=1

Note that the structure of the first frame is known.

The least squares estimation of Marquette-Levenburgis
used to estimate structure (2;,) and motion (/) by minimiz-
ing E.

The motion is small and constant, therefore (1) the mo-
tion matrix is close to an identity matrix and (2) the depth
change between two consecutive frames (Az) is small. We
have empirically found these settings to work well. We im-
pose the following motion and structure constraints.

1. the diagonal elements (711, M2, m33)
0.75 <mg; <1.25

. the off-diagonal elements (m;; where ¢ # j)
—0.25 < m;; < 0.25

3. Az < 30mm.

There are “9 (motion)” + “(I — 1) - N (structure)” un-
knowns. The algorithm requires ((I —1)- N > 4.5). For in-
stance, for 3 frames, it (theoretically) requires only 1 curve
or 3 points.

The motion initial guess is assigned as

1 0 01

0101

0 011
and the structure initial guess is set by assigning 3D loca-
tions of the first frame to all frames.

4. Dataset

We have tested our algorithm on one synthetic and four
real image sequences. The dataset is attempted to meet the
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motion model principle of this framework: (1) motion is
fairly constant and small, and (2) the curves features are
planar (Figure 2.) Note that each curve can be planar in any
orientation allowing the patch to be non-planar.

Cu Sqezing Skin Stretching

Mouth Opening

Wrist Bending

Figure 2. Real image Sequences. The 2D pro-
jection of the recovered 3D point and curve
features are marked white on the first image
of each sequence

The real data includes noise from the following sources.
(1)range scanner. K*T range scanner could capture the
range up to the accuracy of 0.5mm. (2) pixel quantization
error. When a point is projected to 2D pixel coordinate, the
location had to be converted to integer value. (3) inconsis-
tent motion. The motion between two consecutive frames
in real data was not perfectly constant. The results show
that the data was constant enough for the algorithm to per-
form well. Also, the “delta function” [2] can be introduced
to accommodate the inconsistency. (4) feature extraction.
The chaincode of a curve is extracted by hand or first per-
forming edge detection then finding the chaincode to gather
points along the curve. The control points of the curve is
fitted using the least squares method. The error due to fit-
ting of the Bezier curve was small and did not affect the
performance of the algorithm.

5. Results

The results are divided into 2 sections: synthetic data
and real data. Error is presented in 4 categories: P_only,
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(b) structure error analysis

Figure 3. Change of error due to the noise of
the 2D input.

P_both, C_only, C_both. “P” indicates that the error is for
point features and “C” indicates the curves. “Only” means
that only one feature is used for the motion estimation while
“both” means that both point and curve features are used.
For instance, “C_only”” means that only curve features are
used during the motion estimation and the error is for the
curve features. “P_both” means that both features are used
during the motion estimation and the error is for the point
features.

5.1. Synthetic Data

In this section, the synthetic data consisting of 3 frames
are considered. Three 3D curves and nine 3D points on a
plane nearly 1.5m away from the camera has been stretched
in x-direction resulting in average motion of 10mm/frame.
The 3D curves and points are projected to 2D pixel plane
therefore naturally including quantization error.

The experiment on synthetic data carries two purposes.
First, the algorithm is to be validated under a simple set-
ting. Second, the effect of noise on performance is in-
vestigated. The 2D pixel coordinate of the features have

been added with Gaussian noise in x and y direction where
o =1(0,2,4,6,8).



First, under no additive noise (aside from the quantiza-
tion noise), the performance of P_only, P_both, C_only, and
C_both are within a small range at a very reasonable level of
(1.47mm - 1.80mm for motion) and (0.98mm - 1.07mm for
structure) (refer to Figure 3.) Second, the motion estimation
seem to be more robust under noise than the structure esti-
mation. Third, the none of four settings (described above)
had any significant advantage in motion error. However, the
structure error with curve segments were significantly lower
than error with point features. Fourth, using both features
did not seem to improve the results except some regions
with high noise level.

5.2. Real Data

Four real data sequences have been used: (1) cup squeez-
ing, (2) skin stretching, (3) mouth opening, and (4) wrist
bending (Figure 2.) The 2D projection of the recovered
3D point and curve features are marked white on the first
image of each sequence for presentation. With the “Wrist
Bending” sequence, the point features on the curves are ex-
tracted. The points are marked “black” for easier visualiza-
tion. This dataset is to show that the algorithm can incorpo-
rate even the point features on the curves.

The statistics of the dataset is given in Table 1. Ex-
cept for the face dataset, the number of features was far
more than the minimum requirement of 3 (for 3 frames).
The dataset consisting of 3 frames were used. However,
the framework is easily expandable to the longer image se-
quences [2].

The Table 2 shows the results which are divided into four
categories: P_only, P_both, C_only, C_both. The results be-
tween using one type of feature and two types are shown
between (P_only & P_both) and (C_only & C_both). There
were 16 such instances = 2 (curve and point) x 4 datasets x
2 (motion & structure).

First, the results (under P_both and C_both) show that
the algorithm was able to incorporate using both features.
The error was less than 2.5 mm (in average) in 13 out of
16 times. The average absolute error of four datasets was
around 2mm. Considering that the range camera’s accu-
racy is only up to 0.5mm, the error seems to be reasonable.
The mouth data showed a greater error rate possibly due
to a small number of features being used. Also, the wrist
data contains some inconsistency on the range data due to
the hair on the skin. Second, when both features are used,
the results were more stable. In 6 out of 16 instances, the
results were better using both features with the average im-
provement of 54%. In 6 other instances, the error increased
by average of 8%. This indicates that the usage of both fea-
tures improved the results when there was a large error.

6. Conclusions

This work presents a framework to integrate point and
curve features for nonrigid motion recovery and 3D struc-
ture reconstruction. The results of synthetic data show that
the addition of the curve features significantly improved the
swucture performance. The results from real data show that
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[l 2D | 3D | #of points | # of curves
cup 6.6 | 2.6 6 2
skin || 234 | 74 6 3
face || 31.8 | 11.1 3 1
wrist || 13.1 | 7.0 9 3

Table 1. Real Data Description. Average
Movement for each frame is shown. 2D in
pixels and 3D in mm.

[ (| P-only | P_both | C_only | C_both |
cup 0.7 0.5 33 1.4
skin 4.0 1.5 1.4 1.5
face 1.9 2.1 3.8 39
wrist 1.9 24 2.1 2.4
mean [ 2.1 1.6 2.7 2.3

Motion Results (Units in mm)
cup 0.8 0.5 2.2 0.8
skin 6.6 2.0 1.1 1.1
face 4.1 4.1 2.2 2.2
wrist 29 3.0 1.6 1.6
mean 3.6 24 1.8 1.5
Structure Results (Units in mm)
Table 2. Results of Real Data. (Units in mm)

(1) the algorithm was able to incorporate the usage of both
features, (2) the addition of the curve features reduced the
error significantly when there was a large error.
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