
Framework of Integrating 2D Points and Curves 

for Tracking of 3D Nonrigid Motion and Structure 

Min C. Shin, Ramprasad Balasubramanian, Dmitry Goldgof, and Carlos Kim 
Department of Computer Science & Engineering 

University of South Florida, Tampa, FL 33620 
shin, balasubr, goldgof, or ckim2@csee.usf.edu 

Abstract 

In this paper, we present a method for 3D nonrigid mo­
tion tracking and structure reconstruction from 2D points 
and curve segments from a sequence of perspective images. 
The 3D locations of features in the first frame are known. 
The 3D affine motion model is used to describe the non­

rigid motion. The results from synthetic and real data are 

presented. The applications include lip tracking, MPEG4 
face player, and burn scar assessment. The results show (1 ) 

curve segments are more robust under noise (observed from 
synthetic data with different Gaussian noise leve!), and (2) 
using both feature yields a significant performance gain in 

real data. 

1. Introduction 

The area of motion analysis has been receiving a sig­
nificant amount of attention due to a wide area of appli­
cation including scene analysis, robot navigation, and ob­
ject recognition [1]. Recently, the application of the mo­
tion analysis has been expanded to the world of the inter­
net. With a high bandwidth requirement of transmitting 
video data, the research on data compression and 3D recon­
struction has been growing. The nonrigid motion is able to 
describe more naturally occurring motions by eliminating 
the shape conservation constraint of rigid motion. By de­
scribing the change of image content using nonrigid motion 
model, the video can be compressed to (1) the initial scene 
information, and (2) the mathematical motion description 
of the subsequent images [4]. Also, it has been applied to 
the medical field such as the burn scar assessment study [7]. 

In this paper, the algorithm for recovering the 3D struc­
ture and the motion of object undergoing nonrigid motion 
from 2D perspective images is developed and analyzed. The 
integration of two types of features brings an additional ap­

plicability where not enough point features is available or 
the curve features are more naturally available such as lips. 
To the point feature based algorithm [2], we have added (1) 
the usage of curve features, and (2) more motion and struc­
ture constraint. The Bezier curve representation is chosen to 
enable an easy integration with point features since a Bezier 
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curve can be described by a set of control points [5]. The 
significant application of this algorithm is 3D lip tracking 
[6], the MPEG-4 compression [4], and the burn scar assess­
ment [7]. 

The 3D structure of the first frame is assumed to be 
known. This paper attempts to reduce the necessity of hav­
ing range images of "all" frames, enabling accurate real­
time 3D acquisition by recovering 3D information from the 
subsequent 2D images. The results show that a significant 
performance gain is observed by using both point and curve 
features. 

2. Problem Formulation 

GTg 

Figure 1. Error between two discrete curves. 
GTg is closest to M Em 

Bezier Curve Features The curve features used in this 
work are described by Bezier curves with 3 control points 
[5J. They describe quadratic curves. Rather than polyno­
mial representation of the curve, the Bezier curve is easier 
to interpret geometrically. More importantly, (1) the per­
spective projection of the 3D Bezier curve was simple pro­
jection of 3D control points and change of weights [5], (2) 
the Bezier curve is affine invariant [3], and (3) the curve is 
transformed by affine model by applying the affine model to 
the control points. So the motion of the curve is described 

by the motion of the control points. The motion of curve 
segments can be integrated with the points by using 3 con­
trol "points" as point features leaving the problem to be mo­
tion of points. 

A Bezier curve with 3 control points C is described by 

C(u) = (1-u)2·wo·To+2u(1-u)·Wl·T1 +U2·W2·T2 (1) 
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where Ti(i = 0,1,2) are the control points (20 or 3D). 
Wi (i = 0, 1,2) are weights for each control point. u para­
metric direction [0,1]. To and T2 are the end points of the 
curve which are observed from an image. while TJ is es­
timated by fitting a curve on a set of points describing the 
curve. 

For a 3D curve, weight values (w) are fixed to be 1.0. 
Its perspective 20 projection is described by (1) 20 control 
points being perspective projection of 3D control points. 
and (2) weights being depth/z-value of the corresponding 
3D control point [5]. The points along the curves were de­
tected by edge detection or manually. then they were fit to a 
Bezier curve by using a least-squared method. 
Error Measurement In order to compute the error be­
tween two curves, we have used Hausdorff-like distance 
between two curves. The 3D Ground Truth curve (CT) is 
a set of 3D points corresponding to the chain of 20 points 
observed from the intensity images. The 3D curve points 
are obtained from range images. Then. a 3D Machine Es­
timated (ME) curve is constructed from the three control 
points (which are estimated by this algorithm). by sampling 
u at the rate of IIG where G = number of curve points in 
CT. 

To evaluate a ME curve against a GT curve. each point 
(M Em) where m = 1.2 ..... M is compared against all points 
of the CT to find the closest point (GTg) where g = 1.2 . .... 

G. Then the error of ME is determined by the mean of the 
error distance for all points of ME (refer to Figure 1.) 

The error of point features is computed by taking an 
Euclidean distance between ME point location (estimated 
from this algorithm) and GT point location. 
3. Recovery Algorithm 

The algorithm uses (1) 20 pixel coordinates of point 
and curve features. and (2) the depth values of the point 
and curve features from the first frame. to extract (1) mo­
tion (affine motion model). and (2) structure (3D location 
of point & curve features.) The motion model assumes a 
small motion in a local path which is constant throughout 
the frames. This motion model is suitable for image se­
quences taken at a fast acquisition rate such as video se­
quences. In this work. the correspondence information is 
assumed to be given. In many applications. 20 real-time 
motion tracking is successfully achieved [6]. 

Consider an image sequence of I images (i : 1, ... , I). 
K points (k : 1, ... ,K). and L curves (l : 1, ... ,L). The 
the Bezier curve is described by 3 control points and the 
motion of the curve is defined by the motion of the control 
points. We simply combine the 3L control points and K 
points to create 3L + K = N point features (n : 1, ... , N). 
Given 20 pixel points F,: = [X:" Y�jY. we estimate the 
3D structure of the point features(p� = [x�, y�, z�V) and 
nonrigid motion M. M is an affine motion model where 

(2) 
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The last column of the motion matrix is fixed to be 
[1,1, l]T to avoid any trivial solution. It has been shown 
that second order motion model can be used to describe 
more complex motion [21. 

Let's assume that p� = [U�, V�l is a 20 point on image 
plane where focal length is l .0 without loosing any gen­
erality. Note that p� can be computed from P� using the 
intrinsic parameters of the camera. Using the perspective 
equation. we can estimate the 3D location p� if we know 
20 location p� and the z� of p�. 

. ]T z' n (3) 

Therefore. the unknowns of the 3D structure is only z� 
(depth). We can also estimate the 3D locationp� using es­
timated M andp�-J). 

�i _ M-(i-l) 
Pn - Pn 

The error function E is 

I N 

E = L L Ip� -p� I 
i=2 n=l 

Note that the structure of the first frame is known. 

(4) 

(5) 

The least squares estimation of Marquette-Levenburg is 
used to estimate structure (z�) and motion (M) by minimiz­
ing E. 

The motion is small and constant. therefore (1) the mo­
tion matrix is close to an identity matrix and (2) the depth 
change between two consecutive frames (f.z) is small. We 
have empirically found these settings to work well. We im­
pose the following motion and structure constraints. 

1. the diagonal elements (mll, m22, m33) 
0.75 S mii S 1.25 

2. the off-diagonal elements (mij where i =I j) 
-0.25 S mij S 0.25 

3. f.z S 30mm. 

There are "9 (motion)" + "(I - 1) . N (structure)" un­
knowns. The algorithm requires «(I -1)· N � 4.5). For in­
stance. for 3 frames, it (theoretically) requires only 1 curve 
or 3 points. 

The motion initial guess is assigned as 

(����) o 0 1 ] 

and the structure initial guess is set by assigning 3D loca­
tions of the first frame to all frames. 

4. Dataset 

We have tested our algorithm on one synthetic and four 
real image sequences. The dataset is attempted to meet the 
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motion model principle of this framework: (1) motion is 
fairly constant and small, and (2) the curves features are 
planar (Figure 2.) Note that each curve can be planar in any 
orientation allowing the patch to be non-planar. 

Mouth Opening Wrist Bending 

Figure 2. Real Image Sequences. The 20 pro­
jection of the recovered 3D point and curve 
features are marked white on the first image 
of each sequence 

The real data includes noise from the following sources. 
(l)range scanner. K2T range scanner could capture the 
range up to the accuracy of O.5mm. (2) pixel quantization 

error. When a point is projected to 2D pixel coordinate. the 
location had to be converted to integer value. (3) inconsis­
tent motion. The motion between two consecutive frames 
in real data was not perfectly constant. The results show 
that the data was constant enough for the algorithm to per­
form well. Also, the "delta function" [2] can be introduced 
to accommodate the inconsistency. (4) feature extraction. 
The chaincode of a curve is extracted by hand or first per­
forming edge detection then finding the chain code to gather 
points along the curve. The control points of the curve is 
fitted using the least squares method. The error due to fit­
ting of the Bezier curve was small and did not affect the 
perfonnance of the algorithm. 

5. Results 
The results are divided into 2 sections: synthetic data 

and real data. Error is presented in 4 categories: P _ only, 
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(a) motion error analysis 

(b) structure error analysis 

Figure 3. Change of error due to the noise of 
the 20 input. 

P _both, Conly, Cboth. "P" indicates that the error is for 
point features and "c" indicates the curves. "Only" means 
that only one feature is used for the motion estimation while 
"both" means that both point and curve features are used. 
For instance, "C_only" means that only curve features are 
used d uring the motion estimation and the error is for the 
curve features. "P _both" means that both features are used 
during the motion estimation and the error is for the point 
features. 

5.1. Synthetic Data 
In this section. the synthetic data consisting of 3 frames 

are considered. Three 3D curves and nine 3D points on a 
plane nearly 1.5m away from the camera has been stretched 
in x-direction resulting in average motion of lOmm/frame. 
The 3D curves and points are projected to 2D pixel plane 
therefore naturally including quantization error. 

The experiment on synthetic data carries two purposes. 
First, the algorithm is to be validated under a simple set­
ting. Second, the effect of noise on performance is in­
vestigated. The 2D pixel coordinate of the features have 
been added with Gaussian noise in x and y direction where 
cr = (0,2,4,6,8). 
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First, under no additive noise (aside from the quantiza­
tion noise), the performance of P_only, P_both, C_only, and 
C_both are within a small range at a very reasonable level of 
(1.47mm - 1.80mm for motion) and (O.98mm - 1.07mm for 
structure) (refer to Figure 3.) Second, the motion estimation 
seem to be more robust under noise than the structure esti­
mation. Third, the none of four settings (described above) 
had any significant advantage in motion error. However, the 
structure error with curve segments were significantly lower 
than error with point features. Fourth, using both features 
did not seem to improve the results except some regions 
with high noise level. 

5.2. Real Data 
Four real data sequences have been used: (1) cup squeez­

ing, (2) skin stretching, (3) mouth opening, and (4) wrist 
bending (Figure 2.) The 2D projection of the recovered 
3D point and curve features are marked white on the first 
image of each sequence for presentation. With the "Wrist 
Bending" sequence, the point features on the curves are ex­
tracted. The points are marked "black" for easier visualiza­
tion. This dataset is to show that the algorithm can incorpo­
rate even the point features on the curves. 

The statistics of the dataset is given in Table 1. Ex­
cept for the face dataset, the number of features was far 
more than the minimum requirement of 3 (for 3 frames). 
The dataset consisting of 3 frames were used. However, 
the framework is easily expandable to the longer image se­
quences [2]. 

The Table 2 shows the results which are divided into four 
categories: P _only, P _both, C_only, Cboth. The results be­
tween using one type of feature and two types are shown 
between (p_only & P_both) and (Conly & C both). There 
were 16 such instances == 2 (curve and point) x 4 data�ets x 

2 (motion & structure). 
First, the results (under P_both and Cboth) show that 

the algorithm was able to incorporate using both features. 
The error was less than 2.5 mm (in average) in l3 out of 
16 times. The average absolute error of four datasets was 
around 2mm. Considering that the range camera's accu­
racy is only up to O.5mm, the error seems to be reasonable. 
The mouth data showed a greater error rate possibly due 
to a small number of features being used. Also, the wrist 
data contains some inconsistency on the range data due to 
the hair on the skin. Second, when both features are used, 
the results were more stable . In 6 out of 16 instances, the 
results were better using both features with the average im­

provement of 54%. In 6 other instances, the error increased 
by average of 8%. This indicates that the usage of both fea­
tures improved the results when there was a large error. 
6. Conclusions 

This work presents a framework to integrate point and 
curve features for nonrigid motion recovery and 3D struc­
ture reconstruction. The results of synthetic data show that 

the addition of the curve features significantly improved the 
structure performance. The results from real data show that 
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2D 

cup 6.6 
skin 23 .4 

face 31.8 
wrist l3.1 

3D # of points # of curves 

2.6 6 2 
7.4 6 3 
11.1 3 1 
7.0 9 3 

Table 1. Real Data Description. Average 
Movement for each frame is shown. 2D in 
pixels and 3D in mm. 

cup 0.7 0.5 3.3 1.4 
skin 4.0 1.5 1.4 1.5 
face 1.9 2.1 3.8 3.9 
wrist 1.9 2.4 2.1 2.4 

I mean II 2.1 1.6 2.7 I 2.3 
Motion Results (Units in mm) 

cup 0.8 0.5 2.2 0.8 
skin 6.6 2.0 1.1 1.1 
face 4.1 4.1 2.2 2.2 
wrist 2.9 3.0 1.6 1.6 

I mean II 3.6 2.4 1.8 1.5 

Structure Results (Units in mm) 

Table 2. Results of Real Data. (Units in mm) 

(1) the algorithm was able to incorporate the usage of both 
features, (2) the addition of the curve features reduced the 
error significantly when there was a large error. 
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