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Abstrac_t

In this paper we demonstrate that it is possible to dis-
criminate between high level motion types such as walking,
jogging, or running based on just the change in the rela-
tional statistics among the detected image features, without
the need for object models, perfect segmentation, or track-
ing. Instead of the statistics of the feature attributes them-
selves, we consider the distribution of the statistics of the
relations among the features. We represent the observed
distribution of feature relations in an image as a point in a
space where the Euclidean distance is related to the Bhat-
tacharya distance between probability functions. Differ-
ent motion types sweep out different traces in this Space
of Probability Functions (SoPF). We demonstrate the effec-
tiveness of this representation on image sequences of human
in motion, gathered using a digital video camera. We show
that it is not only possible to distinguish between motion
types but also to discriminate between persons based on the
SoPF traces.

1. Introduction

High level complex motion analysis need not be contin-
gent on object recognition [5, 16]. Rather, motion analysis
can aid recognition of objects, thus giving rise to an ap-
proach called motion based recognition. One of the prob-
lems in motion analysis is motion recognition, which can be
used for motion based recognition. Some of the tasks in mo-
tion recognition involve distinguishing rigid motion from
non-rigid motion [15], recognizing human motion types
such as walking, running, jogging, etc. [12], or computing
the periodicity of motion [11, 14, 6]. Some motion recog-
nition strategies require feature correspondences in terms of
optic flow fields [11, 3, 8] or object parts [7]. These methods
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typically suffer from non-robustness with respect to noise,
image resolution, and large motion. To tackle this, some ap-
proaches rely on more area based measures, such as image
or object self-similarity [6, 14].

In another area of computer vision, namely object recog-
nition, there has been recent push for the use of statisti-
cal methods for recognition instead of the traditional model
based alignment and matching methods. For instance, there
have been in-depth studies into statistical features that are
appropriate for modeling natural images [10]. Multidimen-
sional histograms of feature distributions have been used
for recognition and shape modeling [1, 13]. Strong models
in terms of Markov Random Fields have been proposed for
statistical modeling of images [17]. In this paper, we pro-
pose a strategy based on statistical modeling of images to
bear on the problem of motion recognition. To be precise,
we present the formalism of Space of Probability Func-
tions (SoPF) over relational parameters, in which traces of
the observed relational statistics are used to recognize high
level motion. '

With motion, the statistics of the relationships among the
2D image features change. This change or non-stationarity
in relational statistics is not random, but follow the motion
pattern. The shape of the probability function governing
the distribution of the inter-feature relations, which can be
estimated by the normalized histogram of observed values,
change as parts of the object move. We suggest the use
of a space over these probability functions, which we refer
to as the SoPF (Space of-Probability Functions), to study
the trend of change in their shapes. Distances in this space
are related to the Bhattacharya distance between probability
mass functions. Each motion type creates a trace in this
space. The attractive aspects of this approach are that (i)
it does not require perfect segmentation of the object from
the background, (ii) it does not require feature tracking, (iit)
it is amenable to learning, and (iv) there is no assumption
about single pixel movement between frames.
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In the next section, we outline the concept of the rela-
tional distribution of an image, followed by a section de-
scribing the Space of Probability Functions (SoPF). We
present results on motion sequences of three persons, each
executing three different kinds of movements (walking, jog-
ging, and running).

2. Relational Distributions

We view an image as an assemblage of low level fea-
tures, such as edge pixels, corners, straight lines, or region
patches. The structure perceived in an image is determined
more by the relationship among features than by the indi-
vidual feature attributes themselves. Our goal is to device
a mechanism to capture this structure so that we can use its
variation with time to recognize high level motion. Graphs
(or hypergraphs) have been the most commonly used mech-
anism of capturing relationships among features. However,
the study of variation of a graph over time requires solving
the correspondence problem between features, which is a
computationally difficult problem. We avoid the need for
correspondence by using just the statistical distribution of
the relational attributes observed in the image.

Let F = {fi,---,fn} represent the set of features in
an image. Let Fy represent a random k—tuple of fea-
tures. The relationship among these k-tuple features is de-
noted by Ry.. Thus, the 2-ary relationship between fea-
tures, which is the most commonly used form, will be rep-
resented by R,. Notice that, low-order correlation is cap-
tured by smaller values of k¥ and higher-orders of corre-
lation are captured by larger values of k. In a set of N
primitive features there are of course Civ possible k—tuples.
Let these relationships Ry be characterized by a set of
attributes Ax = {Ax(1), -+, Ax(M)}. Then the shape
of the object is represented by joint probability functions:
Pk(Ak = ak) = Pk(ak(l), RN / 7 ) (M)) = Pk(ak), where
a(7) is the (discretized, in practice) value taken by the rela-
tional attribute A, (z). A feature in an image can be looked
upon as a random outcome governed by these probability
functions. The attribute of each feature is a random outcome
of Pj(a;). Each pair of image features is a random out-
come drawn from P, (az). And, each image feature triple is
arandom outcome of Pz (as). We term the set of probability
functions {Px(ay)|k = 1,---, L} as the Relational Distri-
butions. We estimate these distributions, based on a training
set of images, by the normalized histogram of the attributes
of every k-tuple (k > 1) of observed features. Other sophis-
ticated strategies based on parameterized functional forms
and kernel densities can also be adopted. However, the sim-
pler histogram based strategy is sufficient for now.

2.1. Edge Based Features

We illustrate our ideas in this paper by considering edge
pixels detected in an image as the features. Other features

(c)

Figure 1. Edge pixel based 2-ary relational
distribution. (a) The two attributes character-
izing relationship between two edge pixels.
(b) Edge pixels in an image. (c) The distribu-
tion P,(d/D,6), where D captures the image
size. P,(0,0) is the top left corner of the im-
age. Brighter values denote higher probabili-
ties.

types such as the neurally inspired keys [9] or those based
on the Gaussian derivatives [13] will be subjects of future
studies. We detect edges in a image by the Canny edge de-
tector followed by hysteresis thresholding. Each edge pixel,
fi, is associated with the gradient direction, §;, at that point.
To capture the structure between edge pixels, we use the
difference in edge orientations and the distance between the
two edge pixels as the attributes, {A2(1), A2(2)}, of Rs.
We normalize the distance between the pixels by the image
size (D) to make it scale invariant. Note that our choice
of the attributes is such that the probability representation
is invariant with respect to scale, image plane rotation, and
translation. Fig. 1(a) depicts the attributes that are computed
between the two pixels. And, Fig. 1(c) shows the P;(a;, as)
for the edge image shown in Fig. 1(b), where high probabil-
ities are shown as brighter values. Note the concentration of
high values in certain regions of the probability event space.

To capture the relational distribution over triples of edge
pixels, Ps(ai1,az,as,a4), we use four attributes, as illus-
trated in Fig. 2(a). Since all pairs of distances in the
triplet are not independent on each other, attributes over all
pairs would not constitute an independent set of attributes.
Hence, we consider the pairs of pixels that are connected by
the maximum spanning tree over them, which for Fig. 2(a)
are dy2 and d; 3. Fig. 2(b) shows the four dimensional prob-
ability density P3(d12/D,d13/D,612,6,3) shown as a 2D
image for the edge image in Fig. 1(b). Note that most of the
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Figure 2. Edge pixel based 3-ary relational
distribution. (a) The four attributes character-
izing the relationship between three edge pix-
els. (b) The four dimensional relational dis-
tribution P;(dy2/D,d13/D,612,6,3) shown as a
2D image for the edge image in Fig. 1(b). The
columns correspond to the row scanned ver-
sion of the (di2/D,d.3/D) subspaces. The
rows correspond to the row scanned version
of the (,.,6:3) subspaces. Only non-zero
rows are shown. P3(0,0,0,0) is the top left
corner of the image.

probabilities are concentrated only in certain portions of the
event space. As compared to the 2-ary distribution, the 3-
ary distribution has a more concentrated shape. Entropy of
the 2-ary distribution is 0.92 and that for the 3-ary is 0.83.

3. Space of Probability Functions (SoPF)

As the parts of an articulated object move, the rela-
tional distributions will change. Motion will introduce non-
stationarity in the relational distributions over the image.
Fig. 3 shows some example 2-ary relational distributions
for some leg configurations. Notice how the modes of the
probability functions, identified as the bright regions in the
images, change with leg motion. By quantifying the evolu-
tion of the nature of these non-stationarities, we should be
able to infer the nature of articulated motion. We should
not only be able to distinguish periodic motion from non-
periodic one, but we should also be able to make judgment
about the nature of motion, e.g. walking versus jogging.

We model the relational distributions using a space of
probability mass functions, referred to as the SoPF. Each
relational distribution of an image is a point in this space.
We construct this space such that the Euclidean distance
between points representing two relational distributions,
Py 1 (ax) and P 2(ay), is related to the Bhattacharya dis-
tance. The Bhattacharya distance between the two mass
functions is given by —In 31/ P 1(ax) Pk 2 (ak)-

We arrive at the SoPF by principal component analysis.
Let Py s, (ax) represent the relational distribution at time ;.
We describe the square root of each relational distribution

Figure 3. Some configurations of legs in mo-
tion with their corresponding 2-ary relational
distributions.

as a linear combination of orthogonal basis functions as fol-
lows. (We use the square root so that we arrive at a space

_where the distances are related to the Bhattacharya distance,

which we will shortly prove.)

v Pe(ai) = D cilti) @ilax) + plaw) +n(ax) (1)

=1

where ®;(ai)’s are orthonormal functions. The function
u(ax) is a mean function defined over the attribute space.
And n(ay) is a function capturing small random noise vari-
ations with zero mean and small variance. The orthonormal
functions, ®;’s, span a function space that captures the vari-
ations in the Pxs. We refer to this space as the SoPF.

Given a training set of mass functions, {Py ;(ax)}i =
1,---, N}, this SoPF can be setup using the well-defined
theory of principal component analysis (PCA), for whose
details we refer the reader to standard texts. The dimen-
sions of the SoPF are given by the eigenvectors of the co-
variance of the square root of the given relational distribu-
tions. The variance along each dimension is proportional
to the eigenvalues associated with it. In practice, we can
consider the subspace spanned by a few dominant vectors
associated with the large eigenvalues. We have found that
for human motion just 10 eigenvectors are sufficient.

The relational distribution at time ¢, is characterized by
the coordinates c;(t)’s in the SoPF. These coordinates can
be obtained by projecting the given density onto each of the
basis functions.

a()) = X #uto) (Pt - uad) @
ak
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Distance between two relational distributions, Py 1 (ay)
and Py 2(a), in the SoPF will be given by the Euclidean
distance between the coordinates representing the two,
{eali=1---N} and {cio}i = 1--- N}. Thus,

N
Distance(Py,1 (ax), Pr2(ak)) = Y _(ca —c2)®  (3)

i=1

Using Eq. 1 and the orthogonal property of the spanning
functions, ®;(ay)’s, we can show that the above distance is
related to the Bhattacharya distance.

Distance(Py,1 (ax), Pr 2(ak)) = zziil(cn - cia)?
= Yay (VPra(an) - \/Pk,z(ak))
= Yay (Per(ak) + Fr2(ax) — 2y/ Pk,l(ak)Pk,Z(ak))

2-2 Zak Pk,1 (ak)Pk,z (ak)

= 2(1 — ¢~ Bhattacharya Distance(p. .. P..2)

@

Note that Black and Jepson [2] also used PCA in the con-

text of tracking and matching moving objects. However, our

use of PCA is very different, we use PCA over the space of

relational statistics whereas their use of PCA is over the im-
age pixel space.

4. Motion Discrimination

Articulated motion sweeps a path or trace
through the SoPF, denoted by the coordinates
c(t) = {ca(t),---,cx(t)}. There are various sophis-
ticated techniques such as those based on Hidden Markov
Models, dynamic Bayesian networks, and State Space
trajectories [4] that can be used to recognize particular
motion types. One could use these formalisms and use the
SoPF coordinates as inputs. In this paper, however, we
adopt a simpler measure of warped distance between two
traces to demonstrate the viability of using the traced paths
to discriminate between motion types.

The warped distance is based on Dynamic Time Warp-
ing. It is computed over one motion cycle by warping
one trace onto the other and then computing the differ-
ence. Let two traces over one motion cycle be denoted
by {c1(idt)|i = 1,---,m} and {ca(jdt)lj = 1,---,n},
where 6t is the time difference between image frames.
Without loss of generality, let us assume that the first trace
has lesser number of points, i.e. m < n. The distance be-
tween these traces is computed by first constructing a con-
tinuous curve, Cj (t) from the first trace by assuming lin-
ear interpolation between the coordinate points. Next we
stretch this curve such that the first and the last coordinates
match with the second curve, i.e. Ci(mt/n). Then we
compute the distance between the second trace coordinate

(©)
Figure 4. Two consecutive frames from a run-
ning sequence are shown in (a) and (b). The
thresholded difference image is shown in (c).
(d) The segmented motion edges.

points and this stretched curve.

n

10
WD(ex (i81),ea(361) = 3 3 (Ca(j66)~Ca* (= 6t))?

o J=l k=1

5
The warped distance measure responds to changes in shapes
of the traces over each motion cycle but does not change
with the speed with which each cycle is executed. Thus, the
distance between a fast walk and a slow walk would tend to
be small as compared to the distance between a walk and a
run cycle.

5. Human Motion Discrimination

We demonstrate the effectiveness of the presented ideas
in the context of discriminating between walking, jogging,
and running motion patterns. For our image sequence
database, we imaged three persons performing the three
types of motion on a treadmill using a Canon Optura dig-
ital video camera with progressive scan CCD. The frames
were sampled at a rate of 30 frames per sec. Fig. 3 shows
some typical frames. Due to temporal quantization noise,
some of the image frames for running motion had motion
blur. Also, the some frame to frame movement are over
several pixels as is seen in the consecutive frames shown in
Figs. 4 (a) and (b).

We compute the relational distribution for each image
over only the edge pixels that are in motion, which are iden-
tified as follows. First, we apply the Canny edge detector
over each image frame. Then, we compute the thresholded
image difference between two consecutive frames, which
identifies image parts that are possibly in motion. Fig. 4 (c)
shows an example thresholded difference image. We con-
sider only those Canny edge pixels that are in these motion
regions (Fig. 4 (d)).

1-979
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Figure 5. Ten most dominant dimensions of
SoPF, with the corresponding eigenvalues
quantifying the associated variation shown
below each image. The vertical axis rep-
resents d/D and ¢ is along the horizontal.

Brighter values indicate larger values.

We used the 2-ary relational distributions, P»(d/D, ),
to build the SoPF. One cycle of each motion type for each
person is our training set. A total of 306 frames, was used
to build the SoPF. The eigenvectors of the SoPF associated
with the 10 largest eigenvalues are shown in Fig. 5 as gray
level images. The vertical axes of the images plot the dis-
tance attribute, d/D, and the angle is along the horizontal.
From the banded pattern in the two most dominant eigen-
vector we can see that they emphasize differences in the
distance attribute between two features. Differences in ori-
entation are emphasized by the other eigenvectors.

Fig. 6 shows the sorted eigenvalues for the 2-ary SoPFs
as the **’ed plot. Notice that most of the energy of the varia-
tion in the relational distribution is captured by the few large
eigenvalues. For the results in this paper, we used the eigen-
vectors associated with the 10 largest eigenvalues, which as
we see are sufficient.

Fig. 7 shows the variation of the coordinate, co(t), as-
sociated with the largest eigenvalues of a training cycle for
each of the three persons over each motion type. Each plot
shows the variation over three motion cycles overlaid on
each other. We can make the following observations from
the figures. First, the differences in the nature of the varia-
tion for any person and a motion type over different cycles is
small. Second, co(t) captures mostly the periodic nature of
the variation. Form of the variation between motion types
and between persons is small. For the first and the third
persons the second peak is smaller than the first one in the
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Figure 6. Comparison of the largest eigenval-
ues associated with the edge images of peo-
ple in motion and those associated with the
SoPF of 2-ary relational distributions of the
same images. Values were energy normal-
ized.

walking traces. Also, the amplitude of variation for the jog-
ging motion of the third person is lower than the other two.
Since the eigenvector associated with this coordinate em-
phasize the variation in distance between features, the am-
plitude of variation of ¢o(t) is related to the stride lengths.
In other words, the third person’s jogging stride is shorter
than the other two. Another aspect worth pointing out is
that the plots for running tend to be more “pointed” than for
the other two motion types.

Fig. 8 plots the variation of the second coordinate ¢y (t),
which has larger variation amongst different types of mo-
tions and persons. Differences in walking style of the sec-
ond person from the first and the third show up in the nature
of the variation. The running style of each person is differ-
ent from the other two, as is also evident from the plots.

5.1. Distinguishing motion types

To test whether we can reliably distinguish between
walking, jogging, and running across persons, we grouped
the data into three classes, each representing each motion
type and containing SoPF traces from all persons. We com-
pute the warped distance (Eq. 5) between traces of each mo-
tion type (intra-class distance) and between traces of differ-
ent motion types (inter-class distances). The first row of Ta-
ble 1 list the means of the inter- and intra-class distances
along with estimates of the variances of these estimates.
The mean inter-class distance (30.52¢-3) is almost double
of the mean intra-class distance (15.82e-3).
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Table 1. Distance between the traces through

e SoPF. The second and the fourth columns
list the mean distances. The third and fifth
columns list the variances in respective mean
estimates.

Trace Distance (10~°)
Distinguishing Intra-Class Inter-Class
v Ty u© Oy
Motion Types | 15.82 | 0.83 || 30.52 | 0.72
Motion Types

of Person | 242 | 039 || 4138 | 275
of Person 2 3.76 | 0.69 || 19.80 | 0.75
of Person 3 478 | 146 || 1545 | 0.70
Persons based
on Walk 2.11 | 039 || 2288 | 1.72
on Jogging 565 | 1.47 } 20.12 | 1.73
onRunning |- 322 | 0.60 || 2269 | 1.25

. L. e , Table 2. Distance between the traces through
Figure 7. Variation of ¢, (t) within each motion SoPF for a sequence with moderate amount
cycle for each of the three persons and mo- of segmentation noise. -

tion types.

Trace Distance (10~7)
Distinguishing Intra-Class Inter-Class

§ @ Tp H Tp
Motion Types | 13.68 | 0.72 || 27.16 | 0.64
Motion Types

of Person | 2.12 | 036 || 37.32 | 2.46
of Person 2 334 | 062 18.05 | 0.75
of Person 3 4.23 1.31 1430 [ 0.58
Persons based
on Walk 178 | 034 || 2037 | 1.51
on Jogging 504 | 1.28 || 1699 | 1.42
on Running 2.87 | 054 || 1933 | 1.05

Table 3. Distance between the traces through
SoPF for a sequence with large amount of
segmentation noise.

Trace Distance (10~%)

Distinguishing Intra-Class Inter-Class

B Oy [ o
Motion Types 10.74 | 0.56 22.16 | 0.49
Motion Types

of Person 1 1.79 | 0.30 || 3033 | 1.97
of Person 2 291 0.53 15.17 | 0.64

Figure 8. Variation of ¢, (¢) within each motion of Person 3 381 | 1.06 || 12.68 | 0.44
cycle for each of the three persons and mo- Persons based
tion types. on Walk 1.60 | 031 || 17.04 | 1.29

on Jogging 431 1.05 1292 | 1.07
on Running 2.60 | 047 14.15 | 0.73
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Figure 9. (a),(b): Some typical frames where
the segmentation process misses significant
portions of the legs. (c) An under segmented
frame (corresponding to that in Fig. 4). (d) A
more under segmented frame.

5.2. Motion discrimination on a per person basis

The SoPF traces can also be used to distinguish between
motion types of a particular person. For each person we
computed the distances between traces for the same mo-
tion type (intra-class distance) and that between traces for
different motion types (inter-class distance). The second,
third, and fourth rows of Table 1 list the mean distances for
these two classes, along with estimates of their variances,
for each of the three persons. We see that the mean inter-
class distances are about 4 to 20 times larger than the mean
intra-class distances.

5.3. Discriminating between persons

The next question we consider is the possibility of distin-
guishing persons based on SoPF traces of different gaits. To
study this, for each motion type, we formed three classes of
traces, one for each person. The inter- and intra-class mean
distances between the traces over a cycle of motion is listed
in the last three rows of Table 1. As we can see the inter-
class mean distances are about 4 to 10 times larger than the
intra-class mean distances. Thus, it is definitely possible to
distinguish between persons based on SoPF traces.

5.4. Robustness with respect to segmentation errors

One of the attractive features of the presented approach
is that it does not rely on perfect segmentation. Indeed, as
outlined before, the segmentation process used is a rather
crude one that identifies motion edges based on the image
difference. The motion edges identified in such a manner
contain a number of edge pixels from the background as
was seen in Fig. 4(d). Sometimes, as shown in Fig. 9(a) and
(b), even significant edges are missed if they are too close to
the motion region boundary. Results presented so far were
based on images that contained all these artifacts.

Table 4. Distance between the traces through
SoPF of original size (O) and half scaled (HS)
sequences.

Trace Distance (10~°)

Motion Cycles | O-Cycle1 | O-Cycle?2 | O-Cycle 3
HS-Cycle 1 4.14 6.30 10.12
HS-Cycle 2 7.38 6.12 10.93
HS-Cycle 3 7.50 7.14 4.96

We also conducted a controlled study, where we relaxed
our thresholds for identifying motion edges to include more
edges. Fig. 9 (c) and (d) show motion edges identified for
the frame shown in Fig. 4 for two different degrees of tol-
erances. More background edges are included in Fig. 9(d)
than in Fig. 9(c), which is more that in Fig. 4(d). The vari-
ous inter- and intra-class mean distances traces for the two
noisy segmentations are listed in Tables 2 and 3. On com-
paring these distances with that listed in Table 1 we see that,
although the gap between the inter- and intra-class means
decrease with increasing segmentation noise, there is still
enough discriminating power between the classes.

5.5. Robustness with respect to scale variations

To show that the traces in the SoPF are scale invariant
we computed the distance between traces of three jogging
cycles in their original sizes and their half scaled versions,
all from the same person. The results are shown in Table 4,
we can see the distances between traces are smaller that the
mean intra-class distance shown in Table 1.

5.6. Higher order relational distributions

The results presented so far are using 2-ary relational dis-
tributions. One might ask if higher order relational distribu-
tions, such as 3-ary ones among three edge pixels, result
in better discriminating power? Our studies, which due to
limited space we cannot present here, indicate that although
the difference between the inter- and intra-class mean dis-
tance reduces for 3-ary relations, the intra- and the inter-
class distance variations are less than that for 2-ary rela-
tions. Thus, 3-ary relations should offer better discriminat-
ing power than 2-ary relations, but the probability space for
3-ary relations is much larger than for 2-ary and hence as a
consequence is slower to compute. Complexity to compute
3-ary relation distributions is @(N?3), where N is the num-
ber of edge pixels, whereas the computational complexity
for 2-ary distributions is O(N?). ‘

5.7. A few words about space and time

On first reading, it might appear that the space com-
plexity of the relational distributions would be enormous
and computing them would be time consuming. It is true
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that the representational complexity increases with the N-
aryness of the relations. However, we found that 2-ary and
3-ary relations suffice. To represent the 2-ary relations we
used a 30x30 matrix which is much smaller than the im-
ages, which were 256x130 each. The 3-ary relations were
represented by a 30x30x30x30 matrix. However, since the
edges were structured, most of the 3-ary relation space was
empty, hence, sparse matrix representations would be well
suited, which we plan to explore. As far as time taken to
compute the relational distributions are concerned, it took
6.9 seconds per image for the 2-ary relations and 38.24 min
per image for the 3-ary relations by exhaustively enumer-
ating all possible 3 combinations of edges on a Sun Ul-
tra 30 Creator workstation running at 246 MHz with 500
Mb of RAM. This exhaustive enumeration, during run time,
can be replaced by a stochastic sampling process, possibly
by a Markov Chain Monte Carlo one, to estimate the co-
ordinates in the SoPF space directly. This is presently under
consideration.

6. Why not just PCA of the Edge images?

One might ask, why not just do a PCA of the edge im-
ages instead of the relational distribution of the edges? Our
experience shows that the SoPF representation is more com-
pact than the PCA space of the raw edges themselves. Be-
sides, the computational complexity of the edge PCA is de-
pendent of the image size used, hence the scale of the im-
ages, whereas the relational distributions have fixed sizes.
In fact, since we have 265x130 images, we found it difficult
to allocate enough memory to compute the eigenvalues and
eigenvectors directly from these images using a Sun Ultra
30 Creator workstation running at 246 MHz with 256 Mb
of RAM. So we then reduced the image size by half and it
took almost 34 hrs to calculate the eigenspace. In contrast,
the size of the relational distribution we used was 30x30,
which is easier to compute. Fig. 6 shows the plot of the
eigenvalues for the edge PCA as the "0’ed plot. From this
plot it is obvious that the Edge PCA space is a lot less com-
pact than the SoPF space and that we need less number of
dimensions. ‘

7. Conclusions

In this paper we presented a statistical framework for
motion analysis that tracks the variation of non-stationarity
in the distributions of relations among image features in in-

dividual frames. We proposed the concept of a Space Of -

Probability Functions (SoPF) that allows us to capture the
non-stationary variations. Among the attractive features of
this approach are (i) no part level tracking or feature corre-
spondence is necessary, (i) motion segmentation of object
need not be perfect, (iii) there is no need for object models,
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and (iv) single pixel movement between frames is not as-
sumed. We presented results on human motion sequences
of 3 persons with 3 kinds of motions, walking, jogging,
and running. We realize that to make a definitive statement
about performance we need to consider a larger image se-
quence database, but based on the testing that we have done
we can claim that the method presented here is exciting.

References

[1] S. Belongie and J. Malik. Matching with shape contexts.
In Workshop on Content-Based Access of Image and Video
Libraries, pages 20-26, 2000.

[2]1 M. Black and A. Jepson. EigenTracking:robust matching
and tracking of articulated objects using view-based rep-
resentation. In European Conference on Computer Vision,
pages 329-342, 1996. )

[3] M. Black, Y. Yacoob, and S. Ju. Recognizing human mo-
tion using parameterized models of optical flow. In Motion-
Based Recognition, page Ch. 11, 1997,

[4] A.Bobick and A. Wilson. A state based approach to the rep-
resentation and recognition of gesture. IEEE Trans. Pattern
Anal. and Mach. Intel., 19(12):1325-1337, December 1997.

[5] R. Collins, A. Lipton, and T. Kanade. Introduction to the
special section on video surveillance. IEEE Trans. Pattern
Anal. and Mach. Intel., 22(8):745-746, Aug. 2000.

[6] R. Cutler and L. Davis. Robust real-time periodic motion
detection, analysis, and applications. IEEE Trans. Pattern
Anal. and Mach. Intel., 22(8):781-796, Aug. 2000.

[71 N. Goddard. Human activity recognition. In Motion-Based
Recognition, page Ch. 7, 1997.

[8] J. Little and J. Boyd. Recognizing people by their gait: The
shape of motion. Videre, 1(2):xx-yy, 1998.

[9]1 D. Lowe. Object recognition from local scale-invariant fea-
tures. In International Conference on Computer Vision,
pages 1150-1157, 1999.

[10] B. Olshausen and D. Field. Natural image statistics and ef-
ficient coding. Nerwork Computation in Neural Systems,
7(2):333-339, 1996.

[11] R. Polana and R. Nelson. Detection and recognition of pe-
riodic, nonrigid motion. International Journal of Computer
Vision, 23(3):261-282, 1997.

[12] R. Polana and R. Nelson. Temporal texture and activity
recognition. In Motion-Based Recognition, page Ch. 5,
1997.

[13] B. Schiele and J. Crowley. Recognition without correspon-
dence using multidimensional receptive field histograms. In-
ternational Journal of Computer Vision, 36(1):31-50, Jan.
2000.

[14] S. Seitz and C. Dyer. Cyclic motion analysis using periodic
trace. In Motion-Based Recognition, page Ch. 4, 1997.

f15] A. Selinger and L. Wixson. Classifying moving objects
as rigid or non-rigid without correspondences. In DARPA,
pages 341-347, 1998.

[16] M. Shah and R. Jain (Eds.). Motion-Based Recognition.
Kluwer Publishers, 1997.

{171 S. Zhu. Embedding gestalt laws in markov random fields.
IEEE Trans. Pattern Anal. and Mach. Intel., 21(11):1170-
1187, November 1999.

Authorized licensed use limited to: University of South Florida. Downloaded on August 04,2022 at 22:14:39 UTC from IEEE Xplore. Restrictions apply.



