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Abstract 

The role of perceptual organization in motion analysis 
has heretofore been minimal. In this work we demonstrate 
that the use of perceptual organization principles of tempo­
ral coherence (common fate) and spatial proximity can re­
sult in a robust motion segmentation algorithm that is able 
to handle drastic illumination changes, occlusion events, 
and multiple moving objects. without the use of object mod­
els. The adopted algorithm does not employ the traditional 
frame by frame motion analysis, but rather treats the image 
sequence as a single 3D spatio-temporal block of data. We 
describe motion using spatio-temporal surfaces, which we, 
in turn, describe as compositions of finite planar patches. 
These planar patches, referred to as temporal envelopes, 
capture the local nature of the motions. We detect these 
temporal envelopes using 3D-edge detection followed by 
Hough transform, and represent them with convex hulls. We 
present a graph-based method to group these temporal en­
velopes arising from one object based on Gestalt organiza­
tional principles. A probabilistic Bayesian network quan­
tifies the saliencies of the relationships between temporal 
envelopes. We present results on sequences with multiple 
moving persons, significant occlusions, and scene illumina­
tion changes. 

1 Introduction 

Segmenting moving objects in image sequences is 
among the most challenging problems in image sequence 
analysis and is a necessary precursor to any motion inter­
pretation algorithm, such as gait recognition, intruder iden­
tification, or model-based tracking. The most common ap­
proach to motion segmentation relies on frame by frame 
image differencing [3,4], which has been found to be suffi-
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cient in well engineered, controlled settings. However, the 
differencing strategy breaks down in the presence of illumi­

nation changes or noisy background motion clutter, such as 
that present in fluttering leaves of a tree or in rain. 

Another common approach to motion segmentation uses 
optic flow estimates, which are usually based on local spa­
tial and temporal information. Typical approaches aggre­
gate the individual flow elements into regions of coherent 
motion [1]. Alternatively, frame based optic flow vectors 
are stitched together to obtain motion traces, which are then 
grouped based on geometric characteristics [2]. However, 
the local myopic nature of the information necessarily re­
sults in noisy optic flow estimates and encounters prob­
lems in the presence of occlusions. To overcome the local 
noisy nature of the point based flow estimates one might opt 
for motion estimation from extended features [5, 11, 7, 6]. 
However, the success of these approaches relies on the sta­
bility of detection of such features over multiple frames and 
the ability to effectively solve the correspondence problem. 

We show that the use of perceptual organization princi­
ples of proximity and temporal coherence (common fate) 
to group features in the spatio-temporal volumes robustly 
segments moving objects in image sequences. Unlike tradi­
tional frame by frame analysis or analysis over small num­
ber (5-6) of frames, we consider a spatio-temporal block 
consisting of many (> 20) images that are closely sam­
pled, temporally. Features on a moving object sweeps 
spatio-temporal surfaces in this volume, which exhibit sig­
nificant amount of organization and structure that is very 
different from the surfaces due to the background fea­
tures. Although we are not the first ones to suggest the 

use of spatia-temporal volumes for motion analysis (see 
Bolles and Baker [9], Jain and Liou [8], Ricquebourg and 
Bouthemy l12]. Niyogi and Adelson [13]), this work rep­
resents one of few that exploits Gestaltic principles of per­
ceptual organization for motion analysis. So far, the role of 
perceptual organization has been restricted mainly to ob-
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ject recognition from 2D images 1. Shi and Malik [10] 
present another framework for spatia-temporal grouping us­
ing Gestalt principles, which unlike our use of temporal co­
herence over the whole spatia-temporal volume uses coher­
ence over few frames at a time. The role of temporal co­
herence (common fate) in grouping is greater in our frame­
work. 

We show that even with fairly simple use of perceptual 
organizational principles we can achieve good motion seg­
mentation in the presence of occlusion, noise, and illumina­
tion changes, without the use of object models. 

2 The Approach 

2.1 3D edge detection and filtering 

The grouping process starts with 3D edge detection in 
the spatio-temporal volume, I(x, y, t), ba<;ed on a 3D ex­
tension of the 2D Canny edge detector. We detect single 
pixel width edge surfaces by using the 3D extension of the 
2D non-maxima suppression scheme of Canny on the 3D 
gradient estimates. 

Based on the edge orientation estimates, we then filter 
the nearly static background features and the features that 
arise due to illumination changes. Let the angle that the 
local 3D gradient direction makes with the time axis be de­
noted by Ot. This angle is zero when there is no motion 
in time and is 90° when there is scene illumination change 
across frames. Fig. lea) shows an XT slice of an image 
sequence with no change in the illumination and Fig. l(b) 
shows the XT slice of an image sequence with changing il­
lumination. Note that the XT slice in Fig. lea) contains lines 
predominantly parallel to the time axis whereas the XT slice 
in Fig. 1 (b) contains lines that are parallel and perpendicular 
to the time axis, the perpendicular lines are due to changes 
in illumination. 

Thus, we remove background and illumination artifacts 
by filtering all pixels whose value of Ot satisfies either of 
the two conditions: 0 :'S sin (Jt :'S Ta or Tp :'S sin (Jt :'S 1, 
where Ta and Tp are the threshold values for filtering of 
pixels oriented along the time-axis and perpendicular to the 
time-axis, respectively. 

2.2 Temporal envelopes 

Each image feature that is undergoing motion will sweep 
out a surface in the spatia-temporal volume. For instance, 
a point on an object that is moving at constant velocity will 
sweep out a straight line in the spatia-temporal volume and 

I At the recent Workshops on Perceptual Organization in Computer Vi­
sion - 1998 and 1999, panicipant� recognized that principles of perceptual 
organization need not be restricted to just object recognition from 2D im­
ages, but also exploited for motion analysis. 
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Figure 1. (a) XT slice for a normal (constant 
illumination) scene. (b) XT slice for a chang­
ing illumination scene. Time axis is along the 
vertical direction. 

a straight boundary of an object will sweep out a plane 
in the spatia-temporal space. In general, the shape of the 
spatia-temporal surface will be complex. Instead of a math­
ematical specification of this spatia-temporal surface, we 
opt to describe this surface as collection of planar spatio­
temporal patches, which we call temporal envelopes. We 
detect these temporal envelopes using the Hough transform. 

2.3 Detection of Temporal Envelopes 

We set up the Hough transform space based on the Hes­
sian normal form of the plane equation: x cos Ox +y cos Oy + 
z cos Ot == p, where Bx, (Jy, and Ot are the angles that the 
surface normal makes with the three axes and p is the per­
pendicular distance of the plane from the origin. We esti­
mate these angles from the computed image gradient direc­
tion, which would be along the normal to the plane. Thus, 
cos (J", = I�'II' cos By = I�II' and cos Bt = rYn, where 
I",,1y and It are the partial derivatives of the 3D spatio­
temporal function and \71 is the gradient. From the equa­
tion, it appears that we have four parameters for a plane. 
However, not all angles are independent of each other. We 
merge two of the angles to arrive at three independent pa­
rameters: ((Jt,OXY'p), where OXY = tan-l(��:::). Each 
edge pixel votes for a single point in this quantized 3D 
Hough space, thus eliminating the possibility of false peaks. 
We find local maxima by considering local peaks over a 3D­
neighborhood windows. Once a local maximum is found, it 
is recorded and all other entries in the window are marked 
as ineligible to be detected as local maxima in the next it­
eration. This eliminates the possibility of detecting noisy 
peaks near the main peak. 

The Hough transform fits infinite planes to the edge 
points. We arrive atfinite planar patches - the temporal en­
velopes - by considering the 2D convex hull of the projec­
tion of edge points that voted for that plane onto the infinite 
plane. 

Authorized licensed use limited to: University of South Florida. Downloaded on August 04,2022 at 22:18:24 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. Bayesian network used to classify 
pairs of plane primitives. 

2.4 Grouping of Temporal Envelopes 

A moving object can result in one or more planes in the 
Hough space. Each detected plane in the Hough space re­
sults in a temporal envelope. A scene containing multiple 
moving objects would thus result in a collection of tempo­
ral envelopes in the spatio-temporal volume, with each ob­
ject in motion giving rise to more one or more temporal 
envelopes. The problem is to group the temporal envelopes 
from one object, for which we use the perceptual organi­
zational principles of proximity, continuity and parallelism, 

the latter being a form of the Gestalt principle of common 
fate. Temporal envelopes from a single moving object will 
tend to be close together, and mostly locally parallel and 
continuous. 

The grouping process starts with the construction of a 
Gestalt relationship graph, whose nodes are the tempo­
ral envelopes and the links denote the existence of salient 
Gestalt relationships. We term this graph as the scene struc­
ture graph. We employ Bayesian networks to quantify and 
classify the relation between two temporal envelopes into 
two classes: salient (S = 1) or not salient (S = 0). 

We classify the relation between two temporal envelopes 
into S = 1 or 0 based on the following attributes. (i) The 
ratio of the minimum and maximum distances between two 
temporal envelopes, dmin. (ii) The angle between the en­
velopes, normalized by Jr, which we denote bye. (iii) The 
temporal intercept of the temporal envelope, normalized by 
the maximum distance between the envelopes, which we 
denote by tint. All the three attributes are normalized to 
range from 0 to 1. 

Using these attributes we construct the Bayesian Net­
work 2 shown in Fig. 2, to classify pairs of plane primitives 

2 Bayesian networks are directed acyclic graphs, whose nodes repre· 
sent variables of interest, and edges represent dependence among these 
variables. They are graphical representations of joint probability distribu­
tions. To quantify the strengths of these dependencies, each node is asso­
ciated with a conditional-probability that captures the relationships among 

that node and its parents. The most distinctive characteristic of Bayesian 
networks is their ability to faithfully represent causal relationships and 

to adapt 10 changing conditions by updating the probability measures at-

846 

as being salient (S = 1) or not salient (S = 0). Apart 
from the structure of the Bayesian network, we need to 
specify the probabilities that go along with the nodes. For 
a node with no parents, we need to specify a prior distri­
bution. And for variables with parents, viz. dmin, e, and 
tdil I, we need conditional distributions. We assume that 
in the absence of contrary evidence, it is equally likely that 
the relation between a random pair of temporal primitives 

is salient or not salient. As for the conditional probabili­
ties, we need to specify the probability of an attribute given 
the state of its parent. For example, for the relational at­
tribute taiff we need to specify P( tail I = tl S = s). 
Thus, the probability distribution for tdil I is specified by 

P(tdilf = tiS = 1) and P(taift = tiS = 0). For a 
salient relation the ideal value of tdif f should be zero. We 
can represent such a distribution using the right-triangular 
function, Tn(x, b) = 2(b - x)/b2 over x = (0, b). The 

probability is maximum when x is equal to zero. Since, 
S = 0 represents a completely random scenario, we choose 

P(tdiff = tiS = 0) to be a uniform distribution over (0, 
1). We specify all the conditional probabilities as follows: 

P(dminlS = 1) 
P(drninlS = 0) 

p(elS = 1) 
p(elS = 0) 

P(tditflS = 1) 
P(tditflS = 0) 

= 

= 

Tn(dtol) 
U(O,l) 
Tn((}tol) (1) U(O,l) 
Tn(ttol) 
U(O,l) 

All the conditional probabilities involve three parameters: 

dtal, etol, and ttol. These parameters represent the effective 
tolerances in the grouping parameters. Thus, dtal is the dis­
tance tolerance, etal is the angle tolerance, and ttol is the 

time-intercept tolerance. 
We base the grouping of the temporal envelopes on the 

probability that the relationship between them is salient, 
given the variables (evidence) dmin, e and tdiff. We com­
pute this probability by passing probabilistic messages in 
the Bayesian network. 

The nodes, representing the temporal envelopes, in the 
Gestalt graph are connected if the value of the proba­
bility peS = 1Idmin,e,tdift) is greater than pes = 

0ldmin, (), tdiff). After quantifying the relationships be­
tween all pairs of temporal envelopes, we identify the 
groupings of temporal envelopes by the connected compo­
nents of the Gestalt graph. 

2.5 Spatial Envelopes 

Grouping of the temporal envelopes will result in group­
ing of the underlying edge pixels. For a time frame tr, we 
define the spatial envelope as the intersection of the plane 

tached with the nodes. The causal infonnalion encoded in the Bayesian 
network facilitates the process of grouping the plane primitives effectively. 
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t = tr with the 3D convex hull of the grouped edge pixels. 
which belong to one object in motion. This intersection, 
which is also convex shaped, represents the spatial envelope 
of that object in motion for that particular time frame. 

3 Results 

We have successfully applied the algorithm on a vari­
ety of image sequences, both synthetic and real. Here we 
present results on three sequences, with multiple motion, 
significant occlusion, and severe illumination changes. We 
would like to point out that motion segmentation strate­
gies built around image differencing would fail on these se­
quences because of the presence of intensity changes due to 
other causes than just motion. Because of space limitations, 
we do not show results demonstrating the viability of the 
algorithm in the presence of noise. 

3.1 Six persons 

We consider a complicated scene with six moving per­
sons: three persons walking to the left and three persons 
walking to the right, with different but overlapping time in­
tervals. The entire sequence consists of 280 frames, with 
two sample frames shown in Figs. 3(a) and (b). We also 
shown an XT-slice through the 3D edges after the removal 
of the background and the illumination-change edges in 
Fig. 3(e). Note the complicated nature of the interaction 
between the spatio-temporal traces of the different persons. 
There are 8 occlusion events over the whole sequence. The 
algorithm detected 14 temporal envelopes, which were then 
grouped into six groups: two groups had one temporal en­
velope each, three groups had two temporal envelopes each, 
and two groups had three temporal envelopes each. Fig. 3(t) 
shows the spatial envelopes for the 130-th image frame, 
when there were four persons in the image. To show the 
relationships between the different groups of temporal en­
velopes we display one temporal envelope from each group 
along with some spatial envelopes in Fig. 3(g). Note how 
we are able to easily segment out the trajectories of the dif­
ferent persons. 

3.2 Temporally, sparsely sampled sequence with 
significant occlusion 

The two frames shown in Fig. 4 are from a sequence of 
two persons walking to the left and one person walking to 
the right. This sequence is challenging for three reasons: 
First, this is a temporally sparsely sampled sequence with 
just 48 frames. Second, the persons are partially occluded 
behind the stairs for half the number of sequences. Only 

parts of them were visible during these frames. Third, when 
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(g) 

Figure 3. Results on an image sequences of 
6 persons over 280 frames. The 92-nd and 
the 118-th image frames are shown in (a) and 
(b), with the XV-slices through the 3D edges 
corresponding to those frames shown in (c) 
and (d). A XT-slice through the 3D edges af­
ter the removal of the background and the 
illumination-change edges is shown in (e), 
with the time axis is along the vertical direc­
tion. (f) The detected spatial envelopes over­
laid on the original gray scale images at the 
130-th image frame. (g) One temporal enve­
lope from each group along with some spatial 
envelopes embedded in the spatio-temporal 
volume. 
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Figure 4. Results on an image sequence with 
severe occlusion. The 25-th and the 27=th im­
age frames are shown in (a) and (b), which XV­
slices through the 3D edges corresponding 
to those frame shown in (c) and (d), respec­
tively. Two XT-slice through the 3D edges are 
shown in (e) and (f), with the time axis along 
the vertical direction. (g) Spatial envelopes 
overlaid on the original gray scale images at 
time frame=31. (h) One spatio-temporal enve­
lope from each group. 

the persons were behind the staircase, the local image struc­
ture around the railings of the stairs changed, thus chang­
ing the detected edges. This change in edge structure is 
not directly due to motion but due to local image structure 
changes. 

Fig. 4(e) and (f) show the XT-slices of the 3D edge im­
ages. Note that, since the persons moving to the left were 
close together (walking side-by-side) in all the frames their 
traces were combined into a single path in the XT-slice. The 
algorithm detects only one plane for the two persons walk­
ing to the left and one plane for the persons walking to the 
right. This is because of the fact that the persons walking to 

the left were so close to each other that all the edge pixels 
corresponding to both the persons vote for a single plane; 
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this a case when the algorithm fails to resolve the individual 
persons. Two spatial envelopes are shown in Fig. 4(g). The 
two temporal envelopes are shown in the Fig. 4(h). Inspite 

of severe occlusion conditions, we are able to maintain track 
over the whole time sequence. 

(e) 

(g) 

Figure 5. Results on a image sequence with 
scene illumination change. Two image frame 
are shown in (a) and (b), with the XV-slice 
through the 3D edges corresponding to these 
frame shown in (c) and (d). A XT-slice through 
the 3D edges is shown in (e). (f) Spatial en­
velopes overlaid on the original gray scale 
images. (g) Detected temporal envelopes. 

3.3 Sequence with change in scene illumination 

In the last set of experiments presented here, we con­
sider an image sequence of 49 frames of a person walking 
from right to left, with changing illumination conditions. 
Some lights in the room were randomly turned on and off 
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during the motion capture. Two sample frames are shown 

in Figs. 5(a) and (b). It is also worth mentioning that the 
screen of the left computer monitor was not blank. There 
was a screen saver program that created changing patterns, 
thus representing a different kind of changing background 
clutter. The effect of the illumination changes is evident on 
the XT-slice shown in Fig. 5(e), which shows the edges af­

ter filtering the background and illumination-changes. Note 
that significant clutter does survive the filtering processes, 
however, the clutter does not fonn any organized structure. 

As a consequence, the grouping process is able to discard 
the clutter and we get two temporal envelopes for the person 

as shown in Fig. 5 (g). Fig. 5 (f) shows a spatial envelope 
overlaid on the original gray scale image at time frame 3 1 .  
This demonstrates the ability o f  the algorithm t o  segment 
moving objects in the presence of illumination changes. 

3.4 Effect of the Input Parameters 

For all the image sequences we used an edge detector 
scale of 1 .6. The quantization of the spatial parameter con­
stituting the Hough space was 1 pixel and the angle quan­
tization was 3°. Coarse quantization of the Hough space 

will result in "bloating" of the spatial envelopes as more 
and more of background pixels participate in a Hough space 

maxima. The window size for peak detection in the Hough 
space ranged from 20 to 40 units along each dimension. The 
background filtering threshold ranged from 3° to 40• How­
ever, the range for the illumination threshold was greater 
- it ranged from 5° for sequences with no illumination 
change to about 160 for sequences with drastic illumination 
changes. Drastic illumination changes from frame to frame, 
results in noisy estimates for the gradient directions, hence 

the need for a wider range of threshold values. 

4 Conclusions 

We presented a framework for segmenting moving ob­
jects in an image sequence, based on the coherence in the 
spatio-temporal volume. The use of perceptual organiza­

tion principles renders the segmentation procedure robust 
and helps grouping in the presence of motion occlusions. 
This is one of the few applications of perceptual grouping in 
motion analysis. An essential property of the presented al­

gorithm is that no a priori knowledge about the structure of 
the objects is required. Our framework includes a 3D edge 

detection algorithm, a voting based algorithm to detennine 
the temporal envelope primitives of the moving object, and 

a grouping algorithm to group the temporal primitives of 
an object. The framework, although simple, is sufficiently 
powerful as demonstrated by the results on real images with 
severe conditions. We obtain good results on scenes with 
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several persons, occlusions, noise, and changing illumina­

tion. 
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