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Abstract

The role of perceptual organization in motion analysis
has heretofore been minimal. In this work we demonstrate
that the use of perceptual organization principles of tempo-
ral coherence (common fate) and spatial proximity can re-
sult in a robust motion segmentation algorithm that is able
to handle drastic illumination changes, occlusion events,
and multiple moving objects, without the use of object mod-
els. The adopted algorithm does not employ the traditional
frame by frame motion analysis, but rather treats the image
sequence as a single 3D spatio-temporal block of data. We
describe motion using spatio-temporal surfaces, which we,
in turn, describe as compositions of finite planar patches.
These planar patches, referred to as temporal envelopes,
capture the local nature of the motions. We detect these
temporal envelopes using 3D-edge detection followed by
Hough transform, and represent them with convex hulls. We
present a graph-based method to group these temporal en-
velopes arising from one object based on Gestalt organiza-
tional principles. A probabilistic Bayesian network quan-
tifies the saliencies of the relationships berween temporal
envelopes. We present results on sequences with multiple
moving persons, significant occlusions, and scene illumina-
tion changes.

1 Introduction

Segmenting moving objects in image sequences is
among the most challenging problems in image sequence
analysis and is a necessary precursor to any motion inter-
pretation algorithm, such as gait recognition, intruder iden-
tification, or model-based tracking. The most common ap-
proach to motion segmentation relies on frame by frame
image differencing [3, 4], which has been found to be suffi-

OThis work was supported in part by the US National Science Founda-
tion grants 11S-9907141 and IR1-9501932.

0-7695-0750-6/00 $10.00 © 2000 IEEE

844

cient in well engineered, controlled settings. However, the
differencing strategy breaks down in the presence of illumi-
nation changes or noisy background motion clutter, such as
that present in fluttering leaves of a tree or in rain.

Another common approach to motion segmentation uses
optic flow estimates, which are usually based on local spa-
tial and temporal information. Typical approaches aggre-
gate the individual flow elements into regions of coherent
motion [1]. Alternatively, frame based optic flow vectors
are stitched together to obtain motion traces, which are then
grouped based on geometric characteristics [2]. However,
the local myopic nature of the information necessarily re-
sults in noisy optic flow estimates and encounters prob-
lems in the presence of occlusions. To overcome the local
noisy nature of the point based flow estimates one might opt
for motion estimation from extended features [5, 11, 7, 6].
However, the success of these approaches relies on the sta-
bility of detection of suchfeatures over multiple frames and
the ability to effectively solve the correspondence problem.

‘We show that the use of perceptual organization princi-
ples of proximity and temporal coherence (common fate)
to group features in the spatio-temporal volumes robustly
segments moving objects in image sequences. Unlike tradi-
tional frame by frame analysis or analysis over small num-
ber (5-6) of frames, we consider a spatio-temporal block
consisting of many (> 20) images that are closely sam-
pled, temporally. Features on a moving object sweeps
spatio-temporal surfaces in this volume, which exhibit sig-
nificant amount of organization and structure that is very
different from the surfaces due to the background fea-
tures. Although we are not the first ones to suggest the
use of spatio-temporal volumes for motion analysis (see
Bolles and Baker [9], Jain and Liou [8], Ricquebourg and
Bouthemy |12], Niyogi and Adelson [13]), this work rep-
resents one of few that exploits Gestaltic principles of per-
ceptual organization for motion analysis. So far, the role of
perceptual organization has been restricted mainly to ob-
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ject recognition from 2D images !. Shi and Malik [10]
present another framework for spatio-temporal grouping us-
ing Gestalt principles, which unlike our use of temporal co-
herence over the whole spatio-temporal volume uses coher-
ence over few frames at a time. The role of temporal co-
herence (common fate) in grouping is greater in our frame-
work.

We show that even with fairly simple use of perceptual
organizational principles we can achieve good motion seg-
mentation in the presence of occlusion, noise, and illumina-
tion changes, without the use of object models.

2 The Approach
2.1 3D edge detection and filtering

The grouping process starts with 3D edge detection in
the spatio-temporal volume, I(z,y,t), based on a 3D ex-
tension of the 2D Canny edge detector. We detect single
pixel width edge surfaces by using the 3D extension of the
2D non-maxima suppression scheme of Canny on the 3D
gradient estimates.

Based on the edge orientation estimates, we then filter
the nearly static background features and the features that
arise due to illumination changes. Let the angle that the
local 3D gradient direction makes with the time axis be de-
noted by 6;. This angle is zero when there is no motion
in time and is 90° when there is scene illumination change
across frames. Fig. 1(a) shows an XT slice of an image
sequence with no change in the illumination and Fig. 1(b)
shows the XT slice of an image sequence with changing il-
lumination. Note that the XT slice in Fig. 1(a) contains lines
predominantly parallel to the time axis whereas the XT slice
in Fig. 1(b) contains lines that are parallel and perpendicular
to the time axis, the perpendicular lines are due to changes
in illumination.

Thus, we remove background and illumination artifacts
by filtering all pixels whose value of 6, satisfies either of
the two conditions: 0 < sinf; < T, or T}, < sinf; < 1,
where T, and T}, are the threshold values for filtering of
pixels oriented along the time-axis and perpendicular to the
time-axis, respectively.

2.2 Temporal envelopes

Each image feature that is undergoing motion will sweep
out a surface in the spatio-temporal volume. For instance,
a point on an object that is moving at constant velocity will
sweep out a straight line in the spatio-temporal volume and

! At the recent Workshops on Perceptual Organization in Computer Vi-
sion — 1998 and 1999, participants recognized that principles of perceptual
organization need not be restricted to just object recognition from 2D im-
ages, but also exploited for motion analysis.
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Figure 1. (a) XT slice for a normal (constant
illumination) scene. (b) XT slice for a chang-
ing illumination scene. Time axis is along the
vertical direction.

a straight boundary of an object will sweep out a plane
in the spatio-temporal space. In general, the shape of the
spatio-temporal surface will be complex. Instead of a math-
ematical specification of this spatio-temporal surface, we
opt to describe this surface as collection of planar spatio-
temporal patches, which we call temporal envelopes. We
detect these temporal envelopes using the Hough transform.

2.3 Detection of Temporal Envelopes

We set up the Hough transform space based on the Hes-
sian normal form of the plane equation: x cos 6, +y cos 6, -+
zcos @ = p, where 0,,0,, and 6, are the angles that the
surface normal makes with the three axes and p is the per-
pendicular distance of the plane from the origin. We esti-
mate these angles from the computed image gradient direc-
tion, which would be along the normal to the plane. Thus,
cos B, |é—11|, cos b, I%lfl’ and cosf; = TVI‘TP where
I.,I, and I; are the partial derivatives of the 3D spatio-
temporal function and V1 is the gradient. From the equa-
tion, it appears that we have four parameters for a plane.
However, not all angles are independent of each other. We
merge two of the angles to arrive at three independent pa-
rameters: (0,605y,p), where 6, = tan™' (2—22—%). Each
edge pixel votes for a single point in this quantized 3D
Hough space, thus eliminating the possibility of false peaks.
We find local maxima by considering local peaks overa 3D-
neighborhood windows. Once a local maximum is found, it
is recorded and all other entries in the window are marked
as ineligible to be detected as local maxima in the next it-
eration. This eliminates the possibility of detecting noisy
peaks near the main peak.

The Hough transform fits infinite planes to the edge
points. We arrive at finite planar patches — the temporal en-
velopes — by considering the 2D convex hull of the projec-
tion of edge points that voted for that plane onto the infinite
plane.
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Figure 2. Bayesian network used to classify
pairs of plane primitives.

2.4 Grouping of Temporal Envelopes

A moving object can result in one or more planes in the
Hough space. Each detected plane in the Hough space re-
sults in a temporal envelope. A scene containing multiple
moving objects would thus result in a collection of tempo-
ral envelopes in the spatio-temporal volume, with each ob-
ject in motion giving rise to more one or more temporal
envelopes. The problem is to group the temporal envelopes
from one object, for which we use the perceptual organi-
zational principles of proximity, continuity and parallelism,
the latter being a form of the Gestalt principle of common
fate. Temporal envelopes from a single moving object will
tend to be close together, and mostly locally parallel and
continuous.

The grouping process starts with the conswuction of a
Gestalt relationship graph, whose nodes are the tempo-
ral envelopes and the links denote the existence of salient
Gestalt relationships. We term this graph as the scene struc-
ture graph. We employ Bayesian networks to quantify and
classify the relation between two temporal envelopes into
two classes: salient (S = 1) or not salient (S = 0).

We classify the relation between two temporal envelopes
into S = 1 or 0 based on the following attributes. (i) The
ratio of the minimum and maximum distances between two
temporal envelopes, dmin. (ii) The angle between the en-
velopes, normalized by #, which we denote by 0. (iii) The
temporal intercept of the temporal envelope, normalized by
the maximum distance between the envelopes, which we
denote by ti,:. All the three attributes are normalized to
range from 0 to 1.

Using these attributes we construct the Bayesian Net-
work ? shown in Fig. 2, to classify pairs of plane primitives

2Bayesian networks are directed acyclic graphs, whose nodes repre-
sent variables of interest, and edges represent dependence among these
variables. They are graphical representations of joint probability distribu-
tions. To quantify the strengths of these dependencies, each node is asso-
ciated with a conditional-probability that captures the reladonships among
that node and its parents. The most distinctive characteristic of Bayesian
networks is their ability to faithfully represent causal relationships and
to adapt to changing conditions by updating the probability measures at-
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as being salient (S = 1) or not salient (S = 0). Apart
from the structure of the Bayesian network, we need to
specify the probabilities that go along with the nodes. For
a node with no parents, we need to specify a prior distri-
bution. And for variables with parents, viz. dpin, 6, and
tqirs, we need conditional distributions. We assume that
in the absence of contrary evidence, it is equally likely that
the relation between a random pair of temporal primitives
is salient or not salient. As for the conditional probabili-
ties, we need to specify the probability of an attribute given
the state of its parent. For example, for the relational at-
tribute t4;57 we need to specify P(tqifs tS = s).
Thus, the probability distribution for #4; 5 is specified by
P(tais; = t|S = 1) and P(taisf = t|S = 0). Fora
salient relation the ideal value of ¢,4;55 should be zero. We
can represent such a distribution using the right-triangular
function, Tn(z,b) = 2(b — z)/b? over z = (0,b). The
probability is maximum when Z is equal to zero. Since,
S = 0 represents a completely random scenario, we choose
P(tgir; = t|S = 0) to be a uniform distribution over (0,
1). We specify all the conditional probabilities as follows:

PldminlS=1) = Tn(diw)
P(dnin|S=0) = U(0,1)
P|IS=1) = Tn(bia) a)
POIS=0) = U(0,1)
P(taisrlS=1) = Tn(ta)
P(tgifs]S=0) = U(0,1)

All the conditional probabilities involve three parameters:
diol, 0161, and t;,. These parameters represent the effective
tolerances in the grouping parameters. Thus, d;.: is the dis-
tance tolerance, 6, is the angle tolerance, and ¢, is the
time-intercept tolerance.

We base the grouping of the temporal envelopes on the
probability that the relationship between them is salient,
given the variables (evidence) dpin, 0 and t4;5 5. We com-
pute this probability by passing probabilistic messages in
the Bayesian network.

The nodes, representing the temporal envelopes, in the
Gestalt graph are connected if the value of the proba-
bility (S = 1ldmin,8,tai5s) is greater than P(S
Oldmin,0,tqifs)- After quantifying the relationships be-
tween all pairs of temporal envelopes, we identify the
groupings of temporal envelopes by the connected compo-
nents of the Gestalt graph.

2.5 Spatial Envelopes

Grouping of the temporal envelopes will result in group-
ing of the underlying edge pixels. For a time frame ¢,, we
define the spatial envelope as the intersection of the plane

tached with the nodes. The causal information encoded in the Bayesian
network facilitates the process of grouping the plane primitives effectively.
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t = ¢, with the 3D convex hull of the grouped edge pixels,
which belong to one object in motion. This intersection,
which is also convex shaped, represents the spatial envelope
of that object in motion for that particular time frame.

3 Results

We have successfully applied the algorithm on a vari-
ety of image sequences, both synthetic and real. Here we
present results on three sequences, with multiple motion,
significant occlusion, and severe illumination changes. We
would like to point out that motion segmentation strate-
gies built around image differencing would fail on these se-
quences because of the presence of intensity changes due to
other causes than just motion. Because of space limitations,
we do not show results demonstrating the viability of the
algorithm in the presence of noise.

3.1 Six persons

We consider a complicated scene with six moving per-
sons: three persons walking to the left and three persons
walking to the right, with different but overlapping time in-
tervals. The entire sequence consists of 280 frames, with
two sample frames shown in Figs. 3(a) and (b). We also
shown an XT-slice through the 3D edges after the removal
of the background and the illumination-change edges in
Fig. 3(e). Note the complicated nature of the interaction
between the spatio-temporal traces of the different persons.
There are 8 occlusion events over the whole sequence. The
algorithm detected 14 temporal envelopes, which were then
grouped into six groups: two groups had one temporal en-
velope each, three groups had two temporal envelopes each,
and two groups had three temporal envelopes each. Fig. 3(f)
shows the spatial envelopes for the 130-th image frame,
when there were four persons in the image. To show the
relationships between the different groups of temporal en-
velopes we display one temporal envelope from each group
along with some spatial envelopes in Fig. 3(g). Note how
we are able to easily segment out the trajectories of the dif-
ferent persons.

3.2 Temporally, sparsely sampled sequence with
significant occlusion

The two frames shown in Fig. 4 are from a sequence of
two persons walking to the left and one person walking to
the right. This sequence is challenging for three reasons:
First, this is a temporally sparsely sampled sequence with
just 48 frames. Second, the persons are partially occluded
behind the stairs for half the number of sequences. Only
parts of them were visible during these frames. Third, when
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Figure 3. Results on an image sequences of
6 persons over 280 frames. The 92-nd and
the 118-th image frames are shown in (a) and
(b), with the XY-slices through the 3D edges
corresponding to those frames shown in (c)
and (d). A XT-slice through the 3D edges qaf-
ter the removal of the background and the
illumination-change edges is shown in (e),
with the time axis is along the vertical direc-
tion. (f) The detected spatial envelopes over-
laid on the original gray scale images at the
130-th image frame. (g) One temporal enve-
lope from each group along with some spatial
envelopes embedded in the spatio-temporal
volume.




this a case when the algorithm fails to resolve the individual
persons. Two spatial envelopes are shown in Fig. 4(g). The
two temporal envelopes are shown in the Fig. 4(h). Inspite
of severe occlusion conditions, we are able to maintain wrack
over the whole time sequence.

Figure 4. Results on an image sequence with
severe occlusion. The 25-th and the 27=th im-
age frames are shown in (a) and (b), which XY-
slices through the 3D edges corresponding
to those frame shown in (c) and (d), respec-
tively. Two XT-slice through the 3D edges are
shown in (e) and (f), with the time axis along
the vertical direction. (g) Spatial envelopes
overlaid on the original gray scale images at
time frame=31. (h) One spatio-temporal enve-
lope from each group.

the persons were behind the staircase, the local image struc-
ture around the railings of the stairs changed, thus chang-
ing the detected edges. This change in edge structure is
not directly due to motion but due to local image siucture
changes.

Fig. 4(e) and (f) show the XT-slices of the 3D edge im-
ages. Note that, since the persons moving to the left were
close together (walking side-by-side) in all the frames their
traces were combined into a single path in the XT-slice. The
algorithm detects only one plane for the two persons walk-
ing to the left and one plane for the persons walking to the
right. This is because of the fact that the persons walking to
the left were so close to each other that all the edge pixels
corresponding to both the persons vote for a single plane;

e
R
i

(2

Figure 5. Results on a image sequence with
scene illumination change. Two image frame
are shown in (a) and (b), with the XY-slice
through the 3D edges corresponding to these
frame shown in (c) and (d). A XT-slice through
the 3D edges is shown in (e). (f) Spatial en-
velopes overlaid on the original gray scale
images. (g) Detected temporal envelopes.

3.3 Sequence with change in scene illumination

In the last set of experiments presented here, we con-
sider an image sequence of 49 frames of a person walking
from right to left, with changing illumination conditions.
Some lights in the room were randomly turned on and off
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during the motion capture. Two sample frames are shown
in Figs. 5(a) and (b). It is also worth mentioning that the
screen of the left computer monitor was not blank. There
was a screen saver program that created changing patterns,
thus representing a different kind of changing background
clutter. The effect of the illumination changes is evident on
the XT-slice shown in Fig. 5(e), which shows the edges af-
ter filtering the background and illumination-changes. Note
that significant clutter does survive the filtering processes,
however, the clutter does not formn any organized structure.
As a consequence, the grouping process is able to discard
the clutter and we get two temporal envelopes for the person
as shown in Fig. 5 (g). Fig. 5 (f) shows a spatial envelope
overlaid on the original gray scale image at time frame 31.
This demonstrates the ability of the algorithm to segment
moving objects in the presence of illumination changes.

3.4 Effect of the Input Parameters

For all the image sequences we used an edge detector
scale of 1.6. The quantization of the spatial parameter con-
stituting the Hough space was 1 pixel and the angle quan-
tization was 3°. Coarse quantization of the Hough space
will result in “bloating” of the spatial envelopes as more
and more of background pixels participate in a Hough space
maxima. The window size for peak detection in the Hough
space ranged from 20 to 40 units along each dimension. The
background filtering threshold ranged from 3° to 4°. How-
ever, the range for the illumination threshold was greater
— it ranged from 5° for sequences with no illumination
change to about 16° for sequences with drastic illumination
changes. Drastic illumination changes from frame to frame,
results in noisy estimates for the gradient directions, hence
the need for a wider range of threshold values.

4 Conclusions

We presented a framework for segmenting moving ob-
jects in an image sequence, based on the coherence in the
spatio-temporal volume. The use of perceptual organiza-
tion principles renders the segmentation procedure robust
and helps grouping in the presence of motion occlusions.
This is one of the few applications of perceptual grouping in
motion analysis. An essential property of the presented al-
gorithm is that no a priori knowledge about the structure of
the objects is required. Our framework includes a 3D edge
detection algorithm, a voting based algorithm to determine
the temporal envelope primitives of the moving object, and
a grouping algorithm to group the temporal primitives of
an object. The framework, although simple, is sufficiently
powerful as demonstrated by the results on real images with
severe conditions. We obtain good results on scenes with
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several persons, occlusions, noise, and changing illumina-
tion.
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