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AbstractÐPerceptual organization offers an elegant framework to group low-level features that are likely to come from a single object.

We offer a novel strategy to adapt this grouping process to objects in a domain. Given a set of training images of objects in context, the

associated learning process decides on the relative importance of the basic salient relationships such as proximity, parallelness,

continuity, junctions, and common region toward segregating the objects from the background. The parameters of the grouping

process are cast as probabilistic specifications of Bayesian networks that need to be learned. This learning is accomplished using a

team of stochastic automata in an N-player cooperative game framework. The grouping process, which is based on graph partitioning

is, able to form large groups from relationships defined over a small set of primitives and is fast. We statistically demonstrate the robust

performance of the grouping and the learning frameworks on a variety of real images. Among the interesting conclusions are the

significant role of photometric attributes in grouping and the ability to form large salient groups from a set of local relations, each

defined over a small number of primitives.

Index TermsÐPerceptual organization, learning in vision, learning automata, Bayesian networks, feature grouping, object recognition,

figure ground segmentation.
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1 INTRODUCTION

ONE of the fundamental problems in intermediate level
vision is the selection of low-level features that belong

to one object. This process has been referred to by the
computer vision community as perceptual organization,
feature grouping, saliency detection, object hypothesis
generation, or simply as segmentation. This is one of the
largely unsolved, fundamental problems in vision and is
central to the design of artificial vision systems. Clemens
and Jacobs [1] have shown that recognition by ªindexing is
of very limited benefit unless accompanied by a grouping
process.º They showed that the performance of an indexing
system is dependent on the ability of a grouping system to
generate ªpureº groups with no background clutter. In fact,
the sizes of these groups are directly related to indexing
speedup. On a similar note, Grimson [2] has shown that the
combinatorics of the recognition process in cluttered
environments using constrained search reduces from an
exponential to a low order polynomial if we use an
intermediate grouping process. What is remarkable is that,
unlike for the indexing case, this grouping process need not
be perfect!

Goal. Gestalt psychologists have offered a set of laws
that are important in figure-ground segmentation, such as
the laws of parallelism, continuity, similarity, symmetry,
common region, and closure [3]. The use of these principles
in computer vision is not new [4]. However, their usage has

been limited in two aspects. First, the ability to tune the
relative importance of these relationships has not been
exploited. For example, in some domains, the parallelism
relation might be a better discriminant between object and
background than continuity. In such cases, we would like to
weigh parallelism more than continuity. In addition, the
definition of the salient relationships themselves entails
uncertainty. We offer a framework that casts the grouping
parameters as probabilities which are learned from a set of
training images of objects in their natural contexts.

Second, most past efforts have been to form simple, small
groups of features such as parallels [5], convex outlines [6],
ellipses [7], and rectangles [8]. This is partly because of the
rarity of fast frameworks to form large feature groups. The
computational difficulty arises from the fact that the search
space for large groups grows exponentially with the
number of features in a group. But, large feature groups
are important. It is highly unlikely for large organized
groups to arise by chance. Hence, according to the law of
accidentalness [4], the significance of a large organization is
higher than a small organized form. We present a
computational model that integrates a variety of salient
relationships, such as parallelism, continuity, common
region, and perpendicularity, among extended tokens to
form large groups.

Approach to the Solution. One possible strategy for
deciding on the relative importance of salient geometric
relationships is to consider 2D or 3D object models.
Statistical analysis of these models could provide estimates
of the various grouping parameters. For example, one could
look at the distribution of the angles between pairs of
straight lines in the model and decide on the grouping
angle tolerance. However, isolated object models do not
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constitute a sufficient basis for the grouping parameter
decisions. It is the job of the grouping algorithm to segregate
an object from not only the background clutter, but also
from other objects in the scene. Based on isolated object
models, we might be able to decide on the associative
parameter values between features within a model, but
these values will not guarantee segregation either from the
background clutter or from other objects. We have to also
consider the statistics of the background clutter and the
scene context of the objects. However, the modeling of both
these factors is an open and difficult problem. So, we
suggest using a training set of images of objects in context,
but with the objects of interest manually outlined. Based on
this training set of images, the importance of each relation-
ship is learned using an N-player stochastic automata game
framework. Unlike the usual gradient descent algorithms,
which can guarantee only a local minimum, the learning
automata-based N-player game framework converges to the
global optimum with the proper choice of its learning rate
[9]. Observe that, in this framework, the influence of the
object models on the grouping process is only statistical in
nature and is implicit through the use of training images.
We do not require explicit, detailed object models.

We assemble the contributions of the individual salient
relationships over a small number of primitives using a
graphÐthe scene structure graph. This graph is partitioned
to form large groups of features using the graph spectrum.
Graph spectrum refers to the ordered set of eigenvalues
(along with their eigenvectors) of the matrix representation
of a graph. The overall grouping process is fast. For a 512 by
512 image, it takes, on average 5 seconds, (on a Sparc Ultra)
to compute the salient groups. As we shall see, the
algorithm can cope with significant image clutter.

Fig. 1 depicts the overview of the system. The input to
the grouping algorithm consists of low-level image features
such as constant curvature edge segments (arcs and straight
lines). The output consists of salient groups of low-level
features. The feature grouping algorithm consists of two
parts: scene structure graph construction and spectral
partitioning. A weighted relational graph captures the
salient relationships among the edge tokens. Probabilistic
Bayesian networks quantify these salient relationships. The
uncertainty in the definition of the relationships and their
relative importance are captured using probability

measures. Section 2 discusses in detail this relational graph
construction. Section 3 outlines the graph spectral algorithm
used to partition the relational graph into feature clusters.
Because of the use of graph representations, the output
groups do not have a single global functional description,
such as elliptical, parallelogram, etc., but are described by
the strong pairwise interactions between the features. This
definition of groups tends to encompass a larger class of
feature distributions than functional descriptions.

The probabilities that underly the relational graph, along
with the other algorithm parameters, are learned using an
N-player automata game framework. As we shall see, in
addition to the six prior probabilities that capture the
relative importance of the salient relations, we have nine
grouping tolerance parameters and six feature detection
parameters that need to be chosen. The learning framework,
which decides on all these parameters is able to account for
dependence among parameters in the search process. We
believe that the learning framework can also be used to
learn parameters of other vision algorithms. These learning
automata need supervisory feedback. This feedback is
automatically generated by comparing the output of the
grouping algorithm with manually outlined training
images. The learning algorithm is discussed in detail in
Section 4. In Section 5, we present results and we conclude
with Section 6.

Previous Approaches. Learning is one of the thrust areas
in vision and has been used for feature selection [10],
texture classification [11], shape classification [12], region
segmentation [13], and object recognition and modeling
[14], [15]. However, the use of learning in perceptual
organization is new.

There is also work in parameter selection for vision
systems, such as [16], [17], [18]. More recently, Peng and
Bhanu [19] presented a closed loop recognition system
whose segmentation parameters are tuned based on feed-
back from the recognition module. They employ a team of
connectionist Bernoulli quasilinear units with one unit
associated with each value that each parameter can take.
Unlike the currently used search techniques, the team of
learning automata that we advocate can take into account
parameter dependencies in the search process.

Most work in perceptual organization for 2D images has
concentrated on extracting continuous contours by grouping
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image pixels, using primarily the properties of proximity and
continuity [20], [21], [22], [23], [24], [25], [26], [27]. Of the work
in perceptual organization with extended primitives, such as
lines or arcs, the effort has been mostly to form simple, small groups
of primitives such as parallels [5], convex outlines [6], ellipses
[7], [28], and rectangles [8], [28], [29]. Among the frameworks
that can form large groups is the solution suggested by
Herault and Horaud [30]. They use simulated annealing to
solve the figure ground problem. They group edgels based on
a quadratic cost function constructed out of terms based on
cocircularity, smoothness, and proximity. McCafferty [31]
combines different Gestalt principles into one energy func-
tional which is optimized using simulated annealing. As with
other energy minimization and cost function based methods,
these strategies are necessarily computationally expensive.

In computer vision, Sarkar and Boyer [32], [33] used
graph spectral techniques to capture the structure or
organization in a scene for change detection. Shapiro and
Brady [34] used the eigenvectors of a proximity graph to
establish correspondence between two sets of features.
Sengupta and Boyer [35] used the eigenvalues of the
connectivity relation matrix of a 3D model to extract global
attributes of an object. Recently, Shi and Malik [22] used
normalized cut-based spectral techniques to partition
graphs of image pixels into regions. In this paper, we use
the graph spectral partitioning technique to group extended
2D features.

2 SCENE STRUCTURE GRAPH SPECIFICATION

We represent the full scene structure using a graph whose
nodes are the image feature primitives, such as constant
curvature segments, and the links between the nodes
denote relations. We will refer to such a graph as the scene
structure graph (SSG). The links denote the Gestalt inspired
2-ary relationships of parallelism, perpendicularity, con-
tinuity, proximity, and common region [3]. Parallelism can
exist between two straight edge segments or between two
arcs (ribbons). Similarly, we consider continuity between
two straight lines or between two arcs. We consider two
types of perpendicularity: T-junctions and L-junctions, both

of which are usually considered important from an object
recognition point of view. Common region refers to the
relationship that two image primitives share or are
embedded in the same image region (photometric prop-
erty). This relation has been recently suggested by Gestalt
psychologists as being important.

It is certainly logical to raise doubts about the sufficiency
of 2-ary relationships in capturing the structure of a scene.
In general, richer k-ary relations, represented using hyper-
graphs, might be necessary. The graph spectral-based
grouping framework, outlined in the next section, can be
easily modified to handle hypergraphs by first transforming
them to equivalent 2-ary graphs. Recent work [36] indicates
it is possible to convert hypergraph representations into a
2-ary graph (with additional dummy nodes) that has the
same partitioning properties as the original hypergraph.
The present use of 2-ary relations is primarily due to
computational considerations. The order of search complex-
ity increases with the size of the k-ary relations. Also, as we
shall see in Section 5, even with just 2-ary relations, we are
able to generate high quality large groups.

The classification and the quantification of the binary
(2-ary) relations are as follows: For every pair of constant
curvature edge segments (straight lines and arcs), we
compute the distances as shown in Fig. 2. The computations
are referenced with respect to the larger segment, thus
ensuring that the relationship definitions are symmetric.
The distances, D1 and D2 represent the maximum and the
minimum distances, respectively, of the end points of
smaller line to the larger line. Similarly, D6 and D7
represent the maximum and minimum distances of the
end points of the smaller arc to larger arc, respectively. The
overlap between two straight (arc) edge segments is
represented by D3 (D5). The distance between the centers
of two arcs is represented by D8. The minimum distance
between the end points of two segments is denoted by D9.
We also compute the difference in slopes, �, between two
straight lines. These distances are absolute quantities, and
hence, are scale dependent. To make them scale indepen-
dent, we form their ratio with the length of the larger
segment of the pair, lmax, to arrive at the attributes shown in
Table 1.
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Fig. 2. The geometric attributes used to classify pairwise edge segment relationships are shown in (a), (b), and (c). The length of the segment e1 is

greater than the length of e2. The photometric attributes of an edge pixel are shown in (d).
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In addition to the geometric attributes, we compute two
photometric attributes, rmag and rwidth, as listed in the last
row of Table 1. We fashion these attributes after the
photometric attributes used by Boyer et al. [37] for dynamic
edge warping in the context of stereo matching as follows:
To compute the edges, we use the Canny step edge detector.
The maxima in the Canny detector response represents the
edge location. These maxima are detected as zero crossings
of the second directional derivatives. Along with a zero
crossing, the second derivative produces two lobes on each
side of the step edge, as shown in Fig. 2d. The heights and
the distances of these lobes from the edge location form the
photometric attributes of each edge pixel. The slope of the
zero crossing is implicit in these four quantities. In addition,
the average values of the four attributes capture the
photometric properties of the region around an edge. The
attributes r� and w� capture the properties on one side of
the edge and rÿ and wÿ capture the properties on the other
side. This is unlike the slope of the zero crossing, which just
captures the local photometric property at the edge. The
averages of r�; rÿ; w�, and wÿ over an edge segment form
the photometric attributes of the segment. We define the
photometric compatibility of two segments using rmag and
rwidth, which are defined as the fractional differences
between the average attributes of two edge segments, ei
and ej (Table 1). Two segments that share a common region
will tend to have low values for these two photometric
attributes.

2.1 Bayesian Networks

Based on the values of the photometric and geometric
attributes (Table 1), we classify each pair of edge segment
into straight parallel, T-junction, L-junction, continuous,
ribbon, proximal, sharing a common region, or none-of-the-
above. This classification requires noncrisp representations
of the relationships, which are, typically, uncertain. We use
probabilistic Bayesian network representations to model
these uncertainties. Bayesian networks are graphical repre-
sentations of joint probability specifications [38]. The nodes
of a Bayesian network represent the individual random
variables and its directed links denote the direct

dependencies between two variables. The links are quanti-

fied by the respective conditional probabilities. Not only

does the network representation explicitly encode the

dependencies between variables, but it also facilitates

efficient probabilistic updating upon the arrival of new

information.
Four Bayesian networks (see Fig. 3) classify the 2-ary

relationships. One network classifies pairs of straight lines
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TABLE 1
Scale Invariant Geometric and Photometric Attributes Computed between Each Pair of Edge Segments

The attributes that are specific to straight lines and arcs are labeled as such.

Fig. 3. Bayesian networks used to classify pairs of edge segments into
the Gestalt inspired salient relationships. The networks in (a) and
(b) classify pairs of straight lines and arcs, respectively. The network in
(c) computes the significance of the photometric similarity and the
proximity significance is computed using (d).
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into parallels(P), T-junctions(T), L-junctions(L), or contin-
uous lines(C). The second network classifies pairs of arcs
into cocircular(C) and parallels (ribbons, R). The third
network computes the significance of the region similarity
(Reg) between the edge segment. The fourth network
classifies proximity relations (Pr). The random variables of
the Bayesian networks are the relational attributes and the
relations themselves, denoted by P, T, L, C, R, Reg, and Pr.
Note that there is a node in each net denoted by N. This
node represents the none-of-the-above choice and captures
the probability that the line arrangement could have arisen
just by chance. Bayesian networks allow the consideration
of the dependence of different relational types upon each
another. As a consequence, the quantification of a relation-
ship, such as parallelism, between a line pair takes into
account not only the extent to which the line pair
participates in the parallelism relation, but also the extent
of its participation in other possible relationships such as
continuity, perpendicularity, etc.

The probabilities that need to be specified in the
Bayesian network are the prior probabilities of the various
relations (P, L, T, R, C, Pr, N, Reg) and the conditional
probabilities of the relational attributes given the relations.
The prior probabilities constitute an efficient mechanism for
incorporating the relative importance of the various
relationships. A low prior value for a relation would result
in low final probabilities, thus weighing down the effect of
that relation. A high prior would indicate high importance
of the relation. In the absence of evidence to the contrary,
we assume equal prior for none-of-the-above (N) relation.
Since the ribbon (R) and parallel (P) relations denote
essentially the same relation, namely, parallelism, we use
the same prior for both of them. Thus, we have six priors
that can chosen (or learned), namely the priors for P, L, T, C,
Pr, and Reg.

For the conditional probabilities, we need to specify the
probability of an attribute given the state of its parents in
the Bayesian network. For example, the relational attribute,
dmax, has P, C, and N as its parents. So, we need to specify:
P �dmax � djP � p; C � c;N � n�, where p, c, and n denote
the binary states of the parents. In the general case, this
would require specifying eight conditional probabilities for
dmax � d, corresponding to various combinations of the
states of the parents. However, in our case, we know that a
pair of straight line can exhibit only one of the three
relations. Thus, we need to specify only

P �dmax � djP � 1; C � 0; N � 0�;
P �dmax � djP � 0; C � 1; N � 0�;

and

P �dmax � djP � 0; C � 0; N � 1�;
the probabilities for other combinations are zero. These three
conditional probabilities represent the distribution of dmax
for a parallel, continuous, and none-of-the-above relation-
ships, respectively. For a parallel relation, dmax should
neither be zero nor should it be very large. Recall that dmax
is a measure of the distance between the two lines. Thus, the
parallel lines should not be collinear, which is the case
accounted for by the continuity relation, nor should they be
very far apart. So, we represent the density using the
triangular function, T �0; b�, shown in Fig. 4. However, dmax
should be ideally zero for a continuity relationship, so we
choose P �dmax � djP � 0; C � 1; N � 0� to be of the form
Tn�0; b�, as shown in Fig. 4. The node N represents the
completely random scenario, thus P �dmax � djP � 0; C �
0; N � 1� is a uniform density function over (0, 1).

Table 2 lists the forms of the conditional probability
densities of the Bayesian networks. We construct all the
conditional probabilities out of the density functions shown
in Fig. 4. The differences are in the parameters of the
functions. All the conditional density functions are char-
acterized by seven parameters, dtol, otol, �tol, ctol, dcont, ptol,
and rtol. These parameters represent the effective tolerances
used in the grouping process. Thus, dtol is the distance
tolerance, otol is the overlap tolerance, �tol is the orientation
tolerance, ctol is the tolerance between two arc centers, dcont
is the distance tolerance for continuity, ptol is the proximity
tolerance, and rtol represents region tolerance.

2.2 Quantification of the Scene Structure Graph

The described Bayesian networks classify each edge
segment pair into different salient Gestalt inspired relations.
Each pair of edge segments instantiates the respective
attribute nodes in the Bayesian networks. Messages
propagate in the network according to the method of
conditioning [38], updating the probabilities. The parent
node with the highest probability determines the type of the
relation between the pair of segments. The value of the
probability quantifies the quality of the relation. Thus,
Prob�Pij� denotes the confidence that the relationship
between the ith and jth features is parallelism. We combine
the quantified relations to generate the link weights of the
scene structure graph (SSG), wij, between two nodes as
shown below:

wij

� max Prob�Pij�; Prob�Rij�; Prob�Lij�;
ÿ

Prob�Cij�; Prob�Tij�
�� Prob�Prij� � Prob�Regij�

( )
� 0 if Prob�Nij� � fProb�Pij�; Prob�Rij�;

Prob�Lij�; Prob�Cij�; Prob�Tij�g:
�1�
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Fig. 4. Basic forms of the conditional probabilities of the Bayesian networks.
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This results in a single value for each edge, as opposed to a
vector weight.

3 GRAPH SPECTRAL PARTITIONING

We form large organized groups of primitives by searching

for clusters of nodes that are loosely connected to the rest of

the nodes in the scene structure graph SSG. To find these

node clusters, we cast the problem of grouping image

primitives into a partitioning problem of the scene structure

graph, SSG�N;E�, where N is the set of nodes and E is the

set of weighted edges. We compute this partitioning

recursively by first cutting the graph into two parts, N1

and N2, which are further bisected. The process continues

until we have partitions that are small enough.
We represent a graph bisection by a vector v whose sign

of the ith component (vi) represents the membership of

node i in one or the other set; positive components indicate

the nodes for one set and the negative components indicate

membership in the other. Denoting the weight of an edge

between nodes i and j as wij, we cast our graph bisection

problem as:

min
X
ij

wij�vi ÿ vj�2 �2�

subject to the constraints that 1)
P

i vi � 0 and 2)
P

i v
2
i � 1.

The minimization of above term will tend to assign

similar weights (vi; vj) to nodes (i and j) between which

there is a large link weight (wij). The difference between vi
and vj for nodes that are weakly connected will tend to be

large. The two constraints prevent the trivial solution of

v � 1 and v � 0, respectively. The first constraint will force

negative and positive values for vi with the convenient

consequence that the negative entries would correspond to

one partition and the positive values would constitute the

other partition.
We can merge the second constraint with the minimized

term in (2) to recast the problem as:

min

P
ij wij�vi ÿ vj�2P

i v
2
i

such that
X

vi � 0: �3�

The numerator of the minimized term can be rearranged as

follows:

X
ij

wij�vi ÿ vj�2 � 2
XN
i�1

XN
j�1

wij

 !
v2
i ÿ 2

XN
i�1

XN
j�1

wijvivj

� 2vTLGv;

�4�

where LG (known as the Laplacian matrix) is an N �N
sized array with the following entries:

LG�i; j� �
P

j;j6�i wij if i � j
ÿwij if i 6� j

�
�5�

for every i; j � 1; � � � ; N and where wij is the weight of edge

between nodes i and j. Thus, the minimization process can

be compactly expressed using vector notation as:

min 2
vTLGv

vTv
such that vT1 � 0; �6�

where 1 is vector with all entries equal to one. The solution

of this minimization can be easily constructed from the

Courant Fischer Minimax Theorem [39, p. 179]. The

following corollary of the Courant Fischer theorem gives a

variational characterization of the eigenvalues of a matrix.

Corollary 1 (from Courant-Fisher). Let A be a real symmetric

matrix with eigenvalues, �1 � �2 � � � � � �n and let the

corresponding eigenvectors be v1; � � � ;vn. Then,
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Conditional Probabilities Used in the Bayesian Networks

The functions T ; Tn; Tp; and U are as defined in Fig. 4.
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�k � min
v;v6�0;v?v1;���;vkÿ1

vTAv

vTv
: �7�

In particular, the first eigenvector, v1, minimizes the
quadratic expression in (7) with the minimum value being
�1. The second eigenvector provides a minimizing solution
orthogonal to the first eigenvector. The third eigenvector
provides a solution that is orthogonal to both the first and
the second eigenvectors, and so on. Equation (7) with k � 2
determines the solution for (6). This follows from the fact
that the first eigenvalue �1 of LG is zero and
v1 � �1; 1; � � � ; 1�. Thus, the condition in (7) that the second
eigenvector is orthogonal to v1 reduces to

P
i v2�i� � 0,

which is the constraint of the minimization. Thus, the
minimum value for the expression in (6) is 2�2 and the solution is
the second eigenvector of the Laplacian matrix. Given the
second eigenvector of the Laplacian, the partition is
obtained by assigning the positive entries to one set and
the negative ones to the other. This spectral partitioning
technique was first introduced by Fiedler [40], later on
reused by Pothen et al. [41], and is presently used to
determine load assignment in parallel and distributed
computing scenarios.

The second eigenvalue (�2) of the Laplacian matrix of a
graph is also commonly used as a measure of the
connectivity of the graph. It can also be shown [42] that if
G � �N;E� is a graph, and G1 � �N;E1� a subgraph, i.e.,
with the same nodes and a subset of the edges, so that G1 is
ºless connectedº than G, then �2�LG1

� < �2�LG�, i.e., the
algebraic connectivity of G1 is also less than or equal to the
algebraic connectivity of G.

It is interesting to note that, using the derivation in

[22], one can show that the above partitioning technique

offers us an approximate solution to the problem of

minimizing the total link weight between the two

partitions, N1 and N2 normalized by the size of the two

setsÐCut�N1; N2�� 1
jN1j � 1

jN2j�Ðand, hence, can be referred

to as the average cut solution. In [22], Shi and Malik

suggest spectral partitioning that approximate, another

cut measure, namely, the normalized cut, for image region

segmentation. The normalized cut minimizes the total

link weight between the two partitions, N1 and N2,

normalized by the association of the nodes within the

two sets: Cut�N1; N2�� 1
Assoc�N1� � 1

Assoc�N2��. As we shall see

in Section 5, normalized cut-based partitioning, with its

added computational complexities, does not produce

significantly different groups from average cut-based

partitioning for extended edges.
In summary, the graph spectral partitioning solution

operates by recursively partitioning each part. The stopping
condition of the recursion involves a threshold on the
maximum partition strength, which measures how strong a
cluster one wants to break. The other stopping condition is
the minimum cluster size beyond which we do not
partition. We learn these two parameters, along with the
six priors for the relations (see Section 2.1) and the seven
tolerances that specify the conditional probability specifica-
tion of the Bayesian network (see Section 2.1), using the
automata-based learning algorithm discussed in Section 4.

Complexity of the grouping process. The spectral
partitioning technique involves the computation of eigen-
vectors at each stage. Standard routines for eigenvector
computations are O�N3�. At each stage of the recursion, the
problem size reduces by two. Using the master theorem, we
can show that the complexity of a size N partitioning
problem is O�N3�. However, in practice, the scene structure
graph is sparse and we can significantly improve the
execution speed by using sparse matrix eigenvalue compu-
tation routines. Besides, we do not need to compute all the
eigenvectors of a matrix; we need to compute only the
second eigenvector at each iteration. The second eigenvec-
tor can be computed in O�N� using the Lanczos algorithm,
thus resulting in an overall partitioning complexity of
O�N logN�. The scene structure graph construction is
O�N2�. So, the overall complexity of grouping is O�N2�.

4 LEARNING GROUPING PARAMETERS

As with any perceptual organization strategy, the spectral
grouping algorithm also has parameters that need to be
chosen. Specifically, we have 15 parameters: seven tolerance
parameters used in the Bayesian network to construct the
scene structure graph (see Section 2.2), six prior probabil-
ities for the relations (see Section 2.1), and two parameters
(see Section 3) used in spectral partitioning, namely,
minimum cluster size and maximum partition strength.
These parameters are in addition to the three edge detection
parameters of edge scale, �, edge strength threshold, and
edge length threshold, and the three parameters of the
constant curvature contour segmentation algorithm. Thus,
there are 21 parameters that have to be chosen. The
advantage of this large number of parameters is the
flexibility of the grouping algorithm. The down side is that
we need an effective strategy to choose these parameters. In
this section, we present a strategy to learn these parameter
given a training set of images.

This problem of automated parameter selection is also
present in other computer vision contexts. The usual
practice is to choose such parameters by trial and error or
using heuristics. However, when we network a number of
vision modules, the number of parameters grows and
manual choice becomes difficult. The parameter choice
problem has three characteristics that make it computation-
ally expensive in practice. First, the search space is
extremely large. Let Np be the number of parameters to be
chosen and r be the number of possible values for each
parameter. Then, the total number of possible parameter
combinations is rNp . Second, for a network of vision
modules, tuning of parameters on a per module basis does
not guarantee overall optimal choice. In practice, the choice
of the parameters depends upon each other. This is true not
only between parameters of a particular module, but also
between parameters from different modules. Thus, not only
can there be dependence between the choice of the scale, �,
and the thresholds of the edge detector, but there can also
be dependence between the scale, �, and, say, the distance
tolerance factor (dtol) used in the grouping algorithm. With
the increase in edge scale, the contours move away from
each other and edges become sparse, which can affect the
distance tolerance. Third, the optimal parameter choices are
typically dependent on the image domain.
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The goal of the learning algorithm is to learn a set of
parameter combinations that result in good performance on
a class of images characterized by the training set. The
learned set of parameters is composed of combinations that
result in good performance on each of the training images.
For the experiments presented in Section 5, we chose the
size of the learned set of parameter combinations to be 100.
Given a new image, all 100 parameter combinations would
be tried, which of course is far better than trying 1021

combinations. Note that we implicitly encode the depen-
dence of parameter on images; there are good parameter
combinations for each training image in the chosen set.
Thus, if the new image has characteristics similar to one of
the training images, a subset of learned parameter
combinations will result in good performance.

There are various other possible strategies for selecting
the set of parameter combinations that result in good
performance. Peng and Bhanu [19] employ a team of
connectionist Bernoulli quasilinear units, with one unit
associated with each value that each parameter can take.
There are no interactions between the units. Sometimes, the
optimal parameter selection process is cast as an optimiza-
tion problem of an energy function [43], [44] and traditional
optimization techniques for parameter search, such as hill
climbing or gradient descent, are employed. We attack the
parameter estimation problem using a suite of learning
automata (LA) in an N-player stochastic game framework.
We use the learning automata primarily for three reasons:

. It has been proven that a team of learning automata
will converge to the global optimum [9] with the
right learning rate.

. The N-player game model can easily accommodate,
in the search process, interactions between different
parameter choices. It accounts for the dependence of
one parameter choice on another parameters to
guide the search process.

. Although in this paper we use the automata team as
an offline learning module, the team can also be
used online. The automata team can incorporate new
training data as they arrive. They are capable of
incremental learning. It is possible to use such a
team of automata to continuously enhance the

performance of a vision algorithm with each run.
However, this aspect is still a part of future work.

4.1 What Is a Learning Automaton?

A learning automaton (LA) is an algorithm that adaptively
chooses from a set of possible actions on a random
environment so as to maximize expected feedback. (The
reader is referred to [45] for an excellent introduction to
learning automata.) A learning automaton is coupled with
the environment, which in our case is the feature grouping
algorithm along with the image set. In response to the
chosen action, the environment generates a stochastic
output �, which is used by the learning automaton to
decide on the next action. The goal is to ultimately choose
the action that results in the maximum expected �.

A learning automaton decides on the next action by
random sampling based on an action probability vector,
pk � fpk1; � � � ; pkrg, defined over the set of actions, f�k1; � � � ; �krg.
In the beginning pk1 � � � � � pkr � 1=r, signifying that each
action is equally likely. On receiving a feedback from the
environment, this probability vector is updated using a
learning algorithm. The exact nature of the updating
algorithm varies. However, the common strategy is to
increase the probability of the action that generates a
favorable � and decrease the probability of the action that
generates an unfavorable feedback. The change in the
probabilities are such that

Pr
i�1 p

k
i � 1. With each iteration,

the entropy of the action probability vector decreases until the
probability of the optimal action converges to one. It can be
shown that the LA will converge if the statistics of the
environment are stationary and the updating functions
satisfy some minimal conditions. For the grouping problem,
this environmental stationarity assumption implies that the
statistics of the image set are stationary or that the images are
from one class.

In the present scenario, we associate one learning
automaton with one algorithm parameter. The actions
correspond to the various values of the parameter. How-
ever, the learning automata do not operate independently
of each other, but they work as a team to capture the
dependence between the parameters. The probabilistic
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updating of each automaton takes into account the actions
of other automata.

4.2 How Does a Team of Automata Operate?

We map the parameter estimation problem into an N-player
game by associating with each parameter a player who has to
choose from a range of parameter values (Fig. 5). We quantize
each parameter into r levels (r � 10 in our experiments) so
that each player has a finite set of ªmovesº or ªplaysº to make
or ªactionsº to choose from. Let us denote this choice set for
the kth player by �k � f�k1; � � � ; �krg. Each player randomly
makes a move, which forms part of the chosen parameter
combination. This parameter combination extracts a reward
from the environment, viz. from the grouping algorithm and
the image set. To generate a reward, the environment applies
the grouping algorithm with the parameter combination on
the training image set and computes the average performance
based on the measures discussed in Section 4.7. This reward is
returned to each player as feedback. Based on this common
feedback, �, each player chooses its next move. The objective
of each player is to choose an action so as to maximize this
feedback over time.

The updating strategy maintains estimates of the ex-
pected feedback for every combination of moves as a
multidimensional matrix called the (estimated) game matrix
D̂ � fD̂i1;���;iN g, whose dimension is r� r� � � � r�Ntimes).
Let the ikth possible action of the kth automaton be denoted
by �kik . Then, D̂i1;���;iN stores the average reward for the play
f�1

i1
; � � � ; �NiN g. It might appear that we would require a

significant amount of memory to store this game matrix
estimate. However, in practice, this estimated game matrix
is sparse and can be efficiently stored. The number of
nonzero entries will be, at most, equal to the number of
iterations, which is typically far less than the maximum
possible size of the matrix. Each player updates its action
probability vector based on this estimated game matrix.

This estimated game matrix D̂ is really an approximation
of the underlying game matrix governing the game
D � fDi1;���;iN g, which is composed of the expected feedbacks
for every combination of moves, fi1; � � � ; iNg,

Di1;���;iN � E��j�1 � �1
i1
; � � � ; �N � �NiN �; �8�

where �kik is the ikth action of the kth automaton.1 We, of
course, do not know the game matrix a priori. However, if
the statistics of this game matrix are stationary, then we can
design algorithms based on its estimates so that the game
converges to the global optimum. In our case, this
environmental stationarity assumption implies that the
statistics of the image set are stationary or that the images
are from one class.

Let Ek
j denote the maximum expected reward to the kth

player when it plays �kj . We denote the vector composed of
these rewards by Ek � fEk

j g and term it the individual game
vector. This individual game vector can be looked upon as a
projection of the game matrix. Thus,

Ek
j � max

fis;s6�kg
Di1;���;ikÿ1;j;ik�1;���;iN : �9�

The term fis; s 6� kg denotes the set of possible combinations
of moves of all the players except for the kth player. Let the
globally optimal play for the the kth player be �kmk

, then

max
fisg

Di1;���;iN � max
j
Ek
j � Ek

mk
for all k � 1; � � � ; N:

The term fisg denotes the set of possible combinations of

moves of all the players. So, each player can reach the

globally optimum point by choosing the plays according the

individual game vector, Ek � fEk
j g. Of course, in practice,

we only have an estimate of this vector, Êk, which is

computed from the estimated game matrix D̂�i1; � � � ; iN�.

Êk
j � max

fis;s 6�kg
D̂�i1; � � � ; ikÿ1; j; ik�1; � � � ; iN�: �11�

Based on the environment feedback, �, and this

individual game vector estimate, Êk
j , each automaton

chooses its actions. Let us denote the iteration number by

n. We will denote the value of a variable at the nth iteration

by appending n as an argument to its symbol. Thus, ��n�
denotes the environmental feedback at the nth iteration and

�k�n� denotes the play of the kth automaton at the nth

iteration. Let f�1
i1
; � � � ; �kik ; � � � ; �NiNg be the play of the N

automata at the nth iteration. Following Thathachar and

Sastry [9], we update the action probability vectors and

other estimates, which essentially consists of two steps.
First is the update of the probability vector pk�n� 1�. We

increase the probabilities of the plays with estimates of the

individual maximum feedback, Êk
j �n� that are larger than

the feedback for the play chosen at the nth iteration Êk
ik
�n�.

We decrease probabilities of the other plays so that the total

sum of probabilities remains one. Mathematically,

pkj �n� 1� �
pkj �n� ÿ � Êk

ik
ÿ Êk

j

� �
pkj �n� if �j 6� ik� and �Êk

ik
� Êk

j �

� pkj �n� � � Êk
j ÿ Êk

ik

� �
�1ÿ pkj �n��

pkik
�n�

rÿ1 if �j 6� ik� and �Êk
ik
< Êk

j �
� 1ÿ

X
j6�ik

pkj �n� 1� if �j � ik�:

�12�
Recall, at start pkj �0� � 1

r , with all actions being equally

likely. The extent of change in the action probability vector

at each iteration depends on 1) �Ðthe learning rate, 2) the

difference in the maximum feedback for an action and the

action chosen at the nth iteration, and 3) the probability of

each action. For cases where different actions result in

drastically different feedbacks, the learning would be faster

than for a case where different actions result in almost

similar feedbacks. Also, in the beginning, when all the

action probabilities are small, learning is slow, which allows

the process to explore new actions.
The second step consists of updating the individual

game vector estimates, Êk
j �n� 1�. We use two intermediate

variables R and Z to first compute the game matrix

estimate, D̂j1;���;jN �n� 1�, which, in turn, determines

Êk
j �n� 1�. At each step, we need to update only one entry

of the game matrix, namely, the entry corresponding to the

play at the nth iteration, D̂i1;���;iN �n� 1�. Mathematically,
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Ri1;���;iN �n� 1� � Ri1;���;iN �n� � ��n�
Zi1;���;iN �n� 1� � Zi1;���;iN �n� � 1

D̂j1;���;jN �n� 1� � Rj1;���;jN �n� 1�
Zj1;���;jN �n� 1� jk 2 f1; � � � ; rg; 1 � k � N

Êk
ik
�n� 1� � maxfÊk

ik
�n�; D̂i1;���;iN �n� 1�:

�13�
At start, Ri1;���;iN �0� � 0, Zi1;���;iN �0� � 0, and Êk

ik
�0� � 0 for all

fi1; � � � ; iNg and k.

4.3 Choice of the Learn Rate

The outlined learning algorithm is optimal and can be
theoretically shown to converge to the global optimum
point with the right choice of learning parameter � (see [45],
[9] for details). The rate of convergence is inversely related
to �. If one chooses a very small �, then the learning
algorithm is very slow, but the probability of finding the
global optimum is high. A large � implies faster conver-
gence, but does not guarantee a global optimal point. In our
experiments, we start with � � 0 for the first 100 iterations
to let the algorithm form a starting estimate of the game
matrix and then, for later iterations, � is set to 0.1. Observe
that the effect of this learning rate on the learning process is
somewhat different from that in other types of learning
strategies. Fixing � to a constant does not imply a fixed
effective learning rate. Recall from (12), the amount of
change at each iteration is dependent on two other factors:
differences in feedback for different actions and the action
probabilities at that iteration. In fact, the amount of
updating is small toward the beginning iterations and
gradually increases, even for constant �.

4.4 Stopping Conditions

Traditionally, the stopping conditions are cast in terms of
the maximum action probability over all the players.
Ideally, the final action probability vector a of player
should have a probability of one corresponding to the
optimal action and zero for the others. For the parameter
selection case, we are not interested in the optimal
parameter combination but in a set of good parameter
combinations. So, we stop when the automata team does not find
any new parameter combination that is better than the ones
already found for a number (typically 200) of consecutive
iterations. This condition is easy to detect: If no Êk

ik
�n� 1�,

for 1 � k � N , is updated at an iteration (13), then it implies
that no new parameter combination that is better than the
previous ones has been found at that iteration. We keep
track of the number of consecutive iterations for which this
is true.

4.5 The Learned Parameter Combinations

The set of good parameter combinations is selected from the
sequence of actions, which we term the trace or the run
chosen by the team of learning automata. From this trace (or
run), we choose the k-best parameter combinations for each
image. Remember that, at each iteration, we have the
individual performance of the grouping algorithm with the
chosen parameter combination on all training images. The
k-best parameter combinations constitute the learned set of
parameters. Note, this strategy for learning good parameter
sets is faster than training on each image and then choosing

the k-best parameter combinations. We explore the para-
meter space guided by the average performance perfor-
mance of the grouping algorithm over the input images, but
the final selection of parameters is done based on individual
images.

4.6 How Is the Performance Feedback, �,
Computed?

The learning automata updates its action probability vector
based on feedback from the environment. The environment
in the present case consists of an edge detector, a contour
segmentor, and a grouping algorithm, along with the
training image set. At each iteration, the environment
applies the grouping algorithms on the training image set,
with parameters determined as per the LA actions. The
average performance forms the feedback to the LA team.

The feedback measure, which captures the performance
of the grouping algorithm on an image, is a combination of
three terms. The first term represents the expected speed of
object recognition from the groups generated. The second
term represents the confidence in the recognition results.
The third term is dependent on the false alarm rate. These
measures have been proposed in [46] as a part of a set of
five performance measures for grouping modules. The
rationale behind these measures is reproduced here for
completeness.

We motivate the estimation of the speed of recognition
from a constrained search point of view, based on
Grimson's [2] complexity analysis of object recognition
using imperfect groups in the presence of clutter. Let NG

denote the number of features in a detected group, NO

denote the number of model features, and NG\O denote the
number of group features that lie on the model. Assuming
that all features are equally important, Grimson showed
that the expected search, Wterm, is essentially polynomial if
we terminate when the number of matched features equal
some predetermined threshold, t. The exact expression is
given by:

NONG
NG

NG\O
�Wterm

� tNONG
NG

NG\O
1� �2

NO

� �2

�2 NG

NO

� �b�NG=NO��2ÿ1c
:

�14�
The constant � is small and is typically equal to 0:2 P

D , where
P is the total perimeter of the object and D is the image
dimension. If NG

NO
� 50D2

P 2 , then the search is essentially
quartic. In the worst case, P � D and the requirement is
NG � 50NO, a very liberal requirement. The term in (14),
which depends on the quality of the group, is the ratio NG

NG\O
.

This constitutes the first part of performance measure.

Ptime�G;O� � NG\O
NG

: �15�

This measure ranges from zero to one and should be as
large as possible to minimize the amount of search.

The quality of the terminated constrained search will be
proportional to the threshold, t, which is the number of
model features explained by the group. Thus, t

NO
captures
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the model to group match quality. Using this expression,
coupled with the fact that the termination threshold t is less
the number of common features, NG\O, between the model
and the group, we suggest the second part of the
performance measure to be:

Pqual�G;O� � NG\O
NO

: �16�

This measure ranges from zero to one and should be large
to ensure high confidence recognition. Large values of this
measure will help discriminate between models, and thus,
boost the accuracy of recognition.

The performance measures in (15) and (16) need the
availability of object models or, at least, estimates of the
numbers of features (NO) in the models. Since we are
concerned with an edge-based recognition strategy, the
features of interest are edge pixels. Manual construction of
3D models is cumbersome and renders the performance
analysis almost intractable for real domains. We circumvent
this problem using manual outlines of object boundaries in
each image. Given an edge image, the collection of edge
pixels close to the manual outline represents the perfect
grouping of features in an image. For 2D model-based
recognition scenarios, such as those that are view-based, the
number of edge points will provide a good estimate of the
number of model features. For 3D model-based recognition
scenarios, we expect the number of edge features in an
image to be proportional to the actual number of 3D model
features (on average).

Let the grouping algorithm generate N groups,
G1; � � � ; GN for an image with M objects, O1; � � � ; OM . The
false alarm groups are defined to be groups that do not
overlap with any object of interest. For each pair of group,
Gi, and image object, Oj, that overlap, we compute
Ptime�Gi;Oj� and Pqual�Gi;Oj�. Let the total number of
overlaps be Noverlaps, which can be anywhere between 0 and
NM. We then combine these measures as follows to
generate the performance measure, �:

� �
���������������������������������������������������������������������������������������������������������������P

ij Ptime�Gi;Oj�
Noverlaps

� � P
ij Pqual�Gi;Oj�
Noverlaps

� �
1ÿNfalse

N

� �s
;

�17�
where Nfalse is the number of groups that do not overlap
with any object. Notice that the measure � is inversely
related to the number of false alarms and that it ranges from
zero to one, with one being the desired value. Other
combinations of the measures might be desirable based on
the task at hand; however, this combination suffices for the
illustration of the essential ideas.

5 RESULTS AND ANALYSES

We present thorough analyses and evaluation of the
performance of both the spectral grouping and the learning
strategies. First, we investigate the performance of the
spectral grouping algorithm on a variety of real images.
Second, we compare the performance of the particular
spectral partitioning technique that we use for grouping
with normalized cut-based spectral graph partitioning
suggested elsewhere [22]. Third, we demonstrate the ability

to learn to group features of a single object type, e.g.,
airplanes, in the presence of different types of background
clutter. Fourth, we demonstrate the ability to learn to form
groups that correspond to several object types in a particular
domain, e.g., aerial.

5.1 General Performance of Spectral Grouping

Fig. 6 shows some sample results of the spectral grouping
algorithm on a variety of real images, namely, oblique aerial
views, top aerial views, and outdoor images of manmade
and natural objects. The left column shows the gray-level
images with the ground truth objects (manually) outlined in
different colors. The middle column shows the input edge
features that are to be grouped. The rightmost column
shows the different detected groups. Each group is colored
differently. Note how the algorithm is able to pick out
salient features in the scene even in the presence of
significant image clutter.

In the multistory building of Fig. 6a, the grouping
algorithm picked out the parallel structures corresponding
to the windows. The image in Fig. 6d has significant clutter,
but the algorithm is able to pick out the salient groups
corresponding to the major objects in the scene. The
algorithm is also able to resolve the buildings (circular
and rectangular) shown in Fig. 6g. Figs. 6j-6o demonstrate
the applicability of the grouping algorithm to different
domains and to images that are close views of man-made
and natural objects. In spite of the large image clutter in the
mailbox image of Fig. 6j, the groups corresponding to the
major structures in the scene are found. In Fig. 6m, the tiger
is segmented out from the scene (red group). The algorithm
is able to handle curved edge segments.

Parameter values for good grouping. The results attest
to the flexible nature of the grouping algorithm. It is capable
of producing good results with complex images even in the
presence of significant image clutter. The various input
parameters make the grouping algorithm very flexible. We
can tune the relative importance of different relations to suit
a particular domain or object. To study the effect of the
choice of the grouping parameters on performance, we
employed the team of learning automata to learn a set of 100
parameter sets with the best performance, as measured by �
(17), on images such as those shown in Fig. 6. We make the
following observations based on the distribution of these
good parameter sets, which are plotted as normalized
histograms in Fig. 7.

1. The priors that result in good performance for each
of the salient 2-ary relationships differ from image to
image. Both high and low prior choices result in
good performance, depending on the image.

2. For most of the images, a prior of 0.5 or more for
region similarity results in superior performance.
This suggests that photometric attributes play a
significant role. This is in agreement with the Gestalt
psychologists recent suggestion of the importance of
common region as a grouping factor [3]. However,
so far, photometric attributes have not played a
significant part in extended feature grouping algo-
rithms in computer vision.

3. Continuity between edge segments is not always
important for figure ground segmentation. For some
of the images (e.g., Fig. 6b), low priors for this
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Fig. 6. The performance of the spectral grouping algorithm. The images in the middle column show the image edge features that are grouped. The

right column shows the feature groupings found using the spectral method. Each cluster is shown in a single color.
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relation result in good performance. We should
point out that we are referring to continuity at an
extended edge segment level and not at a pixel level.
The learning process might choose a low continuity
prior even for images with seemingly long
continuous edge features. This can happen if long
continuous chains of edge pixels do not get
fragmented as a result of the edge detection and
the contour segmentation processes and, thus, the
extracted edge segments are long and exhibit low
continuity between them.

4. For most of the images, low priors for proximity and
T-junctions result in good performance, which
suggests that these relations might not be important
for every image.

5.2 Comparison with Normalized Cut Partitioning

The graph bipartitioning algorithm that is at the heart of the
grouping algorithm can be shown to minimize the weight
between the partitions normalized by the size of the
partitions, thus the name average cut. One can also define
bipartitions based on minimizing the weight between the
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Fig. 7. Normalized histogram of the parameter values that result in good performance over images like that shown in Fig. 6. Each bar plot

corresponds to a parameter, as labeled. The horizontal axis of each plot corresponds to the 10 different values for each parameter. The highest bar

in each plot is shown darker than the rest.

Fig. 8. Variation of performance of normalized cut and average cut-based grouping on a set of 20 images. The solid bars correspond to the best

performance achieved on an image for average cut-based grouping. The shaded bars correspond to the performance of the normalized cut-based

grouping on the corresponding image.
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partitions, normalized by the total connection within the
partitionsÐnormalized cut [22]. Here, we investigate the
need for normalized cut, with its associated larger
computational burden, as opposed to average cut.

We compared average and normalized cut-based group-
ing on a set of 20 aerial images. On each of these images, we
used the team of learning automata to sample the parameter
space to obtain the best performance for normalized and
average cut-based groupings. We considered two different
learning runs or traces of the automata team. Fig. 8 shows
the variation of best performance of the normalized cut and
average cut. The solid bars correspond to the best

performance achieved on an image for average cut-based
grouping. The shaded bars correspond to the performance
of the normalized cut-based grouping on the corresponding
image. It is evident from the plot that the performance of
the average cut and the normalized cut-based groupings are
similar. For some images, average cut is better and, for
some, normalized cut is better. Fig. 9a shows the image on
which the performance of average cut-based grouping,
which is shown in Fig. 9b, is most superior to normalized
cut-based grouping, which is shown in Fig. 9c. Conversely,
Fig. 9d is the image on which the performance of average
cut-based grouping (Fig. 9e) is most inferior to normalized
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Fig. 9. (a) The image on which the performance of average cut-based grouping, shown in (b), is most superior to normalized cut-based grouping,

shown in (c). (d) The image on which the performance of average cut-based grouping, shown in (e), is most inferior to normalized cut-based

grouping, shown in (f).

Fig. 10. Typical iteration traces of the learning automata team. The plot in (a) corresponds to learning on set S1 of airplane images and that in

(b) corresponds to the set S2. The vertical axis corresponds to the running average feedback (�) over last 10 iterations.
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cut (Fig. 9f) based grouping. While interpreting the images,

we should remember that the performance measure

decreases with presence of false alarm groups, i.e., groups

that do not overlap with any objects.
Statistically, the variation of performance between the

different cut-based groupings is not significant. The non-
parametric Wilcoxon test, which is based on ranks, shows that

the distributions of the performance of the average and the
normalized cut are statistically from the same population

�Rank Sum � 395:0; Z � ÿ:392281;Prob � jZj � 0:6949�:
Recall that nonparametric tests do not make assumptions
about the forms of the distributions and are also good for
comparing distributions with small number of samples.
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Fig. 11. Representative images from the set of 40 airplane images. The images in the second column show the edge features that are the input of the
grouping algorithm. Each image in the third column shows the output groups with the best parameters combination obtained by training on the set of
20 images that includes the corresponding image (on the left). Each image in the fourth column image shows the groups with the best parameter
combination obtained by training on the set that does not include the corresponding gray-level image.
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Thus, our results indicate that average cut bipartitioning is
sufficient for grouping extended edge features.

5.3 Adaption of the Grouping Algorithm to Object
Types

Can the team of learning automata adapt the grouping
process to segregate a particular object type from its natural
background contexts? To study this, we selected the class of
airplanes as the object type. The different types of airplanes
could be in different background contexts, such as a tarmac
or grass fields, and also at different orientations. We selected
40 such aerial images, with different lighting conditions,
viewpoints, and scales. The left column in Fig. 11 show
samples of these images. The images, which are of different
sizes, are printed to occupy the same size on paper.

We separated the 40 images into two sets, S1 and S2, so
that we could train on one set and test with the other. In the
training phase, the team of learning automata sampled the
parameter space, first using the image set S1 and then S2,
such that the average performance was maximized. Fig. 10
shows two typical traces, one for image set S1 and the other
for set S2. Note how the average feedback quickly
converges in about 3,000 iterations. Compare this with the
size of the search space, which is 1021; there are 21
parameters, including the edge detector and contour
segmentation parameters and each parameter can take

10 possible values. From the sampling trace, we composed a
set of 100 good parameter sets using five best parameter
combinations for each image in S1 (or S2). The learned 100
parameter combinations for S1 was applied on S2, and vice
versa, to obtain the test performances. Thus, for each image,
we have the best performance that can be achieved by
t r a i n i n g o n t h e s e t c o n t a i n i n g i t Ð t h e t r a i n
performanceÐand the best performance using the para-
meters learned on the set not including the imageÐthe test
performance.

The images in the third column of Fig. 11 show the best
train performance on the images in the first column. The
images in the fourth column show, the best test perfor-
mance. The second column of images show the input edge
features. Note the similarity of the train and test groups.
This attests to the good performance of the learning
algorithm. It is also interesting to note how the group
corresponding to the airplane is separated from other
features in an image. The background feature statistics vary
from image to image. In some images, the background is
more organized than in others. There are also strong and
long edge features in the background that cannot be
eliminated by simple edge thresholding. In fact, the edge
images shown in the second column are the best possible
edges that can be obtained by changing the edge scale and
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Fig. 12. (a) Variation of train and test performance for different airplane images. The solid bars correspond to the best performance achieved on an
image when it was included in the training set. The shaded bars represent the best performance achieved on an image when it was not included in
the training set. (b) Variation of average training and testing performance with different runs. The solid bars correspond to the best train performance
as averaged over the set of images for one learning run. The shaded bars correspond to the best test performance as averaged over the set of
images for one learning run.

TABLE 3
ANOVA of the Learning Performance on the Aerial Images of Planes
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thresholds and, even, the contour segmentation parameters.
Recall, that parameters of the edge detection and contour
segmentation are also part of the learning process.

Statistical Analysis. With regards to the performance of
the learning algorithm, we consider the following questions:
1) Does the observed train and test performance depend on
the particular image? 2) Does the observed train and test
performance depend on different runs of the learning
automata team? Fig. 12a plots the best train and best test
performance for each of the 40 images. The black bars
correspond to the best train performances and the best test
performances are denoted by shaded bars. For each image,
the train and test performance are close to each other with a
mean difference of 4 percent, however, the maximum
achievable performance does vary from image to image.
Fig. 12b plots the train and test performance, as averaged
over the 40 images, for five different runs of the learning
automata team. The solid bars correspond to average train
performance and the shaded bars correspond to average
test performance, over the image set. As expected, due to
the stochastic nature of the learning algorithm, there is
variation between different runs; the mean difference
between average training performance is 8 percent. How-
ever, the relative difference between overall test and train
performance from run to run is small, at around 2 percent.

Although Fig. 12 gives us a visual feel for the robustness of
the learning algorithm, it does not quantify the statistical
significances of the observations. For statistical analysis, we
employed the Analysis of Variance (ANOVA) technique,
which can assess the statistical significance of the effect of
different factors, and their interactions on the overall
performance variation. The main factors that can effect the
grouping performance in our case are three: 1) the different

learning runs, 2) whether it is train or test performance, and
3) the images. ANOVA can compute the significance of the
performance variations not only due to individual factors, but
also due to their interactions. Thus, we can answer questions
such as does the train and test performance interact with
images or is the variation of train and test performance
dependent on the images (Train/Test � Image)? Is the
interaction of train and test performance and different
learning runs significant (Run�Train/Test)? Is performance
on an image dependent on the particular learning run
(Run � Image)?

Table 3 lists the ANOVA results. From the results, we
can see that the variations due to the three main factors are
significant; however, their interactions are not significant.
Thus, the train and test performance differences that we see
in Fig. 12 are statistically significant. This is not unusual. It
is indeed rare that the train and test performance is the
same for a learning algorithm. Typically, the test perfor-
mance is expected to be lower than train performance. What
is of interest is the extent of the difference which, in the
present case, is smallÐabout 4 percent difference. Similarly,
although the variation in performance with respect to the
particular stochastic run is significant, it is smallÐthe mean
difference is about 8 percent. On the contrary, the
performance difference between image is not only signifi-
cant, but is also not smallÐthe mean difference is about
30 percent. This attests to the variety of the image setÐit is
not homogeneous.

From Table 3, we also see that the interactions are not

significant, which implies that we can claim that 1) the

observed train and test performance is not dependent on the

images (Train/Test � Image), 2) the observed train and test

performance is not dependent on the stochastic sampling
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Fig. 13. Normalized histogram of the parameter values that result in good performance for segmenting planes from aerial views. Each bar plot

corresponds to a parameter, as labeled. The horizontal axis of each plot corresponds to the 10 different values for each parameter. The highest bar

in each plot is shown darker than the rest.
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runs (Run � Train/Test), and 3) the observed performance

on an image is not dependent on the particular stochastic

run (Run � Image).
The parameter choices. Fig. 13 shows the normalized

histograms of the parameter choices that compose the set of

100 learned parameter sets. The plots with subscripted titles

correspond to the grouping parameter tolerances and the

other six plots correspond to the priors for the salient

relationships, i.e., parallel, proximity, L-junction, Continu-

ity, T-junction, and Region. The modes of the distributions

are marked with dark bars. These distributions are less

dispersed than the one for the set of general images in Fig. 7,

which can be attributed to the similar nature of the airplane

images. We can also see that L-junction, T-junction, and

region similarity play a greater role in segmenting out the

plane from the background than do parallelism, proximity,

or even continuity. This is due to the fact that the latter three

relationships are sometimes present in the background to a

larger extent than in the object itself, hence, they are bad

indicators for figure-ground segmentation in this context.
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Fig. 14. Representative images from the set of 20 aerial images. Each image in the second column shows the output groups with the parameters

obtained by training on the set of 20 images that includes the corresponding image (on the left). Each image in the third column image shows the

groups with the parameter obtained by training on the set that does not include the corresponding gray-level image.
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5.4 Adaptation of the Grouping Algorithm to a
Domain

Is it possible to adapt the grouping algorithm to a domain
and not just to a particular object type, as we have seen in
Section 5.3? Specifically, we investigate if it is possible to
achieve good learning performance on a general class of
images such as aerial images. We concentrate on a set of
20 images, some samples of which are shown in the left
column of Fig. 14. The ground truth object (manual)
outlines are shown overlaid on the gray-level image. As
before, we separated these 20 images into two sets, S1 and
S2. We trained on one set and tested with the other. In the
training phase, the team of learning automata sampled the
parameter space using S1 (and S2) such that the average
performance was maximized. From the learning trace, we
composed a set of 100 good parameter sets using the 10 best
parameter combinations for each of the 10 images in S1 (or
S2). The learned 100 parameter combinations for S1 were
applied on S2, and vice versa, to obtain the best test
performances on each image. Thus, for each image, we have
the best performance that can be achieved by training on the
set containing itÐthe train performanceÐand the best
performance using the parameters learned on the set not
including the imageÐthe test performance. The images in
the second column of Fig. 14 show train performance. The
images in the third column show the test performance. Note
the reasonable similarity of the train and test groups. This
attests to the good performance of the learning algorithm.

Statistical Analysis. Fig. 15a plots the best train and best
test performance for each of the 20 images. The black bars
correspond to train performances. Test performances are
shown using shaded bars. For each image, the test
performance is lower than the train performance. The mean
difference between train and test performance is 14 percent.
This is larger than the differences observed for learning a
single object type, which is to be expected since we are
trying to generalize across a domain rather than across just
a single object type. As before, the overall group quality
differs from image to image; there is 44 percent variation
across images. Fig. 12b plots the train and test performance
as averaged over the 20 images for five different runs of the
learning automata team sampling. As before, the solid bars
correspond to train performance and shaded bars corre-
spond to test performance. The mean difference in train
performance from run to run is about 3 percent. However,
the difference between train and test performance, which is
about 14 percent, does not seem to vary with runs.

To quantify the statistical significance of the observed
differences, we employed the Analysis of Variance
(ANOVA) technique. The factors that can give rise to
overall variations are the same as before, namely, 1) learning
runs, 2) train or test case, 3) images, and their interactions,
(Train/Test � Image), (Run � Train/Test), and (Run �
Image). Table 4 lists the ANOVA results. From the results,
we can see that:
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Fig. 15. (a) Variation of train and test performance on the aerial images. The solid bars correspond to the best performance achieved on an image
when it was included in the training set. The shaded bars correspond to the best performance achieved on an image when it was not included in the
training set. (b) Variation of training and testing performance with different runs. The solid bars correspond to the best train performance as averaged
over the set of images for one learning run. The shaded bars correspond to the best test performance as averaged over the set of images for one
learning run.

TABLE 4
ANOVA of the Learning Performance on Aerial Images
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1. The train and test performance difference (of about
14 percent mean) that we see in Fig. 12 is statistically
significant.

2. Images are a significant source of variation, which
attests to the variety of the image set.

3. The performance does not vary significantly be-
tween different learning runs. This is desirable, but
definitely not typical, for learning based on stochas-
tic samplings. We believe this might be due to the
underlying nature of the parameter space, which
might have low variations.

4. The observed train and test performance is depen-
dent on the images (Train/Test � Image). Thus, the
relative train and test performance vary for image to
image. For some images, the difference between
train and test is lower than others. This is due to the
larger variety of the images being considered.

5. The observed relative train and test performance is not
dependent on the learning runs (Run � Train/Test).

6. The observed performance on an image is not depen-
dent on the particular learning run (Run� Image).

The parameter choices. Fig. 16 shows the normalized
histograms of the parameter choices that compose the set of
100 learned parameter sets. The plots with subscripted
labels correspond to the grouping parameter tolerances and
the other six correspond to the priors for the salient
relationships, i.e., parallel, proximity, L-junction, Continu-
ity, T-junction, and Region. The modes of the distributions
are marked with dark bars. For aerial images, we see that,

except for proximity, all other relationships play an
important role in segmenting objects from background.
Unlike for the plane images, where parallelism and
continuity did not consistently play an important role, here
they do play a significant role. This dependence of grouping
performance on the relative importance of the relationships
is precisely the reason why we need a framework that can
adapt the grouping process.

6 CONCLUSION

We presented a flexible, learnable, perceptual organization
framework based on graph partitioning. The graph spectral
techniques facilitate the easy consideration of global context
in the grouping process. An N-player automata framework
learns the grouping algorithm parameters. We demon-
strated the performance of the grouping algorithm on a
variety of images. Among the interesting conclusions are:
1) It is possible to perform figure-ground segmentation
from a set of local salient relations, such as parallelism,
continuity, perpendicularity, proximity, and region similar-
ity, each defined over a small number of primitives. 2) The
relative importance of the salient relations is dependent on
the object or domain of interest. 3) Just geometric relation-
ships are not sufficient for groupings. Photometric
attributes, such as region similarity, play a significant role
in grouping extended low-level features (see discussion
associated with Figs. 7, 13, and 16). We also showed that
grouping performance with a different underlying graph
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Fig. 16. Normalized histogram of the parameter values that result in good grouping performance for aerial images. Each bar plot corresponds to a

parameter, as labeled. The horizontal axis of each plot corresponds to the 10 different values for each parameter. The highest bar in each plot is

shown darker than the rest.
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spectral formulation, namely normalized cut, did not result
in statistically significant differences.

Extensive statistical analysis of the learning algorithm
shows that it is possible to adapt grouping process to single

object types (e.g., airplanes) with performances within
4 percent of the best possible performance. We found that
the observed learning performance on an image is not

dependent on the learning run (or trace). Also, the observed
train and test performance differences are independent of
the particular image. Furthermore, we demonstrated that it
is also possible to learn grouping parameters for a specific

image domain (e.g., aerial), with a mean train and test
difference of 14 percent. In this case, too, we found that the
performance of the learning algorithm is independent of the
learning run.

Although we motivated the grouping problem from an

object recognition point of view, the grouping output can

also be used for other vision tasks, such as to focus attention

in a scene. Similarly, the learning algorithm can be used for

other vision tasks such as performance characterization. To

compare two vision algorithms, we need to first decide on

the best parameters on a per image basis or for a group of

images. As the number of parameters increases, exhaustive

search becomes computationally very expensive. The learn-

ing framework in this paper offers an efficient alternative

strategy. It can be used to find the best parameter on a per

image basis or for a group of images, just by controlling the

images that are considered to be part of the environment.

The parameter learning framework can also be used to tune

parameters of a network of vision modules, where the

number of parameters is usually large and there are strong

interactions between different parameters.
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