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In the first paper in this series, a class of observables that generalized the gravitational wave memory
effect were introduced and given the name “persistent gravitational wave observables.” These observables
are all nonlocal in time, nonzero in spacetimes with gravitational radiation, and have an observable effect
that persists after the gravitational waves have passed. In this paper, we focus on the persistent observable
known as “curve deviation,” and we compute the observable using the Bondi-Sachs approach to
asymptotically flat spacetimes at the leading, nontrivial order in inverse Bondi radius. The curve deviation
is related to the final separation of two observers who have an initial separation, initial relative velocity, and
relative acceleration. The displacement gravitational wave memory effect is the part of the curve deviation
that depends on the initial separation and is the entire contribution for initially comoving, inertial observers
at large Bondi radius. The spin and center-of-mass memory effects are contained within the dependence of
the curve deviation on the initial relative velocity, and the dependence of the curve deviation on relative
acceleration contains observables distinct from these known memory effects. We find that the full curve
deviation observable can be written in terms of differences in nonradiative data before and after the
radiation (which we call the “charge” contribution), along with a nonlinear “flux” contribution that
vanishes in the absence of gravitational radiation. This splitting generalizes the notion of “ordinary” and
“null”memory that exists for the displacement, spin, and center-of-mass gravitational wave memory effects
to the full curve deviation observable.
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I. INTRODUCTION

We continue, in this paper, the investigation of “persis-
tent gravitational wave observables” that was initiated in
[1] (henceforth, paper I) and further developed in [2]
(henceforth, paper II). Paper I introduced persistent observ-
ables in an effort to synthesize, and generalize, an increas-
ing number of types of gravitational wave memory effects
(hereafter simply “memory effects”1) that have been
computed more recently (for example, [5–10]) and that
were not evidently related to the displacement [11,12] and
velocity [13,14] effects that have been understood for much
longer. The persistent gravitational wave observables were
constructed so as to be applicable in a number of contexts.
While the memory effect is frequently studied in asymp-
totically flat spacetimes (for example, [12]), persistent
observables are classes of permanent effects measured
by idealized systems of observers, and these observables

can be used in any context in which there is a well-defined
notion of gravitational radiation. These contexts include,
for example, in linearized gravity on some background
spacetime (which was considered, for a flat background, in
paper I), as well as in nonlinear plane wave spacetimes
(paper II). There were three concrete observables defined in
paper I, which involved (i) a part of the deviation vector
between two accelerating curves, (ii) a holonomy observ-
able for transport laws for linear and angular momentum,
and (iii) a spinning test particle’s dynamics.
Papers I and II, however, did not investigate persis-

tent observables in much detail in the context in which
memory effects are frequently computed: in asymptotically
flat spacetimes “near” null infinity2 at leading, nontrivial
order in inverse distance (which we denote by 1=r).

*alex.grant@virginia.edu
†david.nichols@virginia.edu
1Note that there are also memory effects that occur in

electromagnetism [3] and more general Yang-Mills theories
[4], but in this paper we will only consider memory effects
due to gravitational radiation.

2Because null infinity is the boundary of an asymptotically flat
spacetime in which infinity has been brought to a finite point in
an “unphysical spacetime” through the covariant conformal
methods of Penrose [15,16], the notion of a spacetime point
being “near” infinity in the physical spacetime is a bit of a
misnomer. However, the phrase is commonly used, and it is a
convenient alternative to phrases like “at large Bondi radius r”
(Bondi coordinates [17,18] are defined in Sec. II A), and so it is
one that we will use in this paper.
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Our aim in this paper, then, is to perform this calculation so
as to better understand which properties of the usual
memory effects extend to more general persistent observ-
ables in this context. Of the three persistent observables
defined in paper I, we focus on the first, which was given
the name “curve deviation.” This observable is, of the three
considered in paper I, most closely related to the memory
effect in the following sense: while the displacement
memory effect is related to a change in the separation of
two observers that follow geodesics and are initially
comoving, the curve deviation observable also measures
a change in the separation, but it does not require the
observers to be geodesic or comoving. We anticipate that to
leading order in 1=r near null infinity, the other two
persistent observables in paper I will behave similarly to
curve deviation for the following reason. Given the scaling
of curvature with 1=r in asymptotically flat spacetimes, we
can work to linear order in the Riemann tensor; thus, the
analysis in linearized gravity in paper I (in which the three
persistent observables all had qualitatively similar behav-
iors) also should apply to the results of this paper. In future
work, in which we plan to carry out a similar analysis to
order 1=r2, we expect that qualitatively different features
will appear in these other observables.
We now summarize the main findings of this paper. We

first compute expressions for the curve deviation at leading
order in 1=r for a specific set of asymptotically defined
observers. Since these observers lie in the physical space-
time, we use a Bondi-Sachs expansion of the metric [17,18]
instead of the covariant conformal approach of Penrose
[15,16], although the two frameworks are equivalent, in
the sense that spacetimes which are asymptotically flat in
the sense of Penrose possess coordinate systems in which
the metric takes the Bondi-Sachs form [19]. We write our
result in terms of covariant bitensors (see, for example, [20]
and paper I) that act linearly on the initial separation
between the observers, their initial relative velocity, and
their initial relative acceleration (and higher derivatives,
such as the initial jerk). The dependence of the curve
deviation on the initial separation contains the same
information as the displacement memory effect does. In
addition, the dependence of curve deviation on the initial
relative velocity is closely related to what was called the
“subleading displacement memory” in paper I, which
contains information about the spin [7] and center-of-
mass [9] memory effects. Finally, the dependence on the
acceleration and its higher derivatives contains observables
that are independent of these known memory effects. All
the different components of the curve deviation depend on a
set of quantities that we call the temporal moments of the

news tensor (or just “moments of the news” for short).
Specifically, these moments of the news are retarded-time
integrals of the news tensor multiplied by powers of
retarded time (recall that the news tensor indicates that
the spacetime is radiating gravitational radiation, since its

absence indicates there is no such radiation [17,18,21]).
In particular, since the news tensor is roughly the retarded
time derivative of the gravitational waveform that is
measured by gravitational wave detectors, these moments
are (in principle) measurable and can be computed for
astrophysical sources (though we defer such calculations to
future work).
We next use Einstein’s equations in Bondi-Sachs form

[17,18] to compute the moments of the news tensor in terms
of the radiative and nonradiative data that characterize an
asymptotically flat spacetime, so that we can better under-
stand what physical processes and quantities produce
nontrivial values of these persistent observables. For the
displacement (and subsequently spin and center of mass)
memory effect near null infinity in general relativity, there
are several classifications of types of memory effects. The
first is the historical splitting into the linear memory effect
(named because it appears in linearized gravity [11]) and
the nonlinear memory effect (which is only nonzero
when nonlinear terms in Einstein’s equations are taken
into account [12]). A more recent classification by Bieri
and Garfinkle [22] split the memory into ordinary and null

parts instead. In this taxonomy, the null memory includes
contributions from all massless fields (both the radiative
gravitational and matter degrees of freedom) and the
ordinary part arises from changes in the data that character-
ize nonradiative degrees of freedom of an asymptotically
flat spacetime. Within the Bondi-Sachs approach to asymp-
totic flatness, it was shown, for example, in [5,23] that the
ordinary part of the memory corresponds to changes in the
conserved quantities conjugate to the Bondi-Metzner-Sachs
(BMS) asymptotic symmetries [17,24] and the null part
corresponds to the part of the integral of the flux of these
conserved charges that is nonlinear in the gravitational
degrees of freedom (or in other massless fields when not in
vacuum). Thus, we adopt a third classification for the
displacement, spin, and center-of-mass memory effects in
asymptotically flat spacetimes in terms of their “charge”
and “flux” contributions.
The second main result of this paper is that, much like

with the displacement memory effect, the curve deviation
observable at null infinity can be split into charge and flux
contributions, though there are two important caveats that
should be noted about this splitting. The first is that the
existence of “conserved quantities” in the charge contri-
bution to these observables should not be taken to imply the
existence of additional asymptotic symmetries: Noether’s
theorem implies that symmetries result in conservation
laws, but the converse is not necessarily true. Second, the
flux contribution that arises for the dependence of the curve
deviation on the initial relative acceleration (and higher
derivatives) depends on nonradiative information that is not
present in the gravitational waveform. This is in contrast to
the dependence of the curve deviation on initial separation
or relative velocity, in which the flux contributions are
purely radiative.
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The remainder of the paper is structured as follows. In
Sec. II, we first review asymptotically flat spacetimes in
Bondi coordinates, which we use throughout this paper.
In particular, we define the functions that occur in the
asymptotic expansion of the metric (such as the mass
aspect, shear, news, etc.) that are used to present our
results. We present in Sec. II D how these metric functions
evolve with retarded time, which is a necessary result for
dividing the curve deviation into its charge and flux
contributions. In Sec. III, we then determine the asymptotic
expansion of the curve deviation observable, and we
express the observable in terms of moments of the news.
We then show in Sec. IV how these moments can be
expressed in terms of their charge and flux contributions.
We conclude in Sec. V.
We use the conventions for the signature of the metric

and the Riemann tensor given in Wald [25]. Lowercase
Latin letters from the beginning of the alphabet will be used
for abstract spacetime indices. Our conventions for quan-
tities in Bondi coordinates are based upon those in [23],
although we make a handful of minor changes that are
given in Sec. II A. In particular, we use lowercase Latin
letters from the middle of the alphabet (i, j, etc.) for the
angular coordinate indices, instead of the (conventional)
uppercase Latin letters from the beginning of the alphabet,
and use D i to denote the covariant derivative on the unit
two-sphere instead of DA. Our conventions for bitensors
follow those of the review article [20], and we use the
convention that indices at a point x are denoted a; b;…,
while those at x0 are denoted a0; b0;…, etc. Following paper
I, we use Greek indices to indicate components along a
parallel-transported tetrad. Finally, also following paper I,
we take powers of order symbols, writing (for example)
Oða; bÞ2 ≡Oða2; ab; b2Þ, for brevity.

II. REVIEW OF ASYMPTOTICALLY

FLAT SPACETIMES

A. Bondi coordinates and metric

We use Bondi coordinates u, r, θi, where u is a retarded
time coordinate, r is a radial variable, and θi are angular
coordinates on the unit two-sphere. Because we will focus
on asymptotically flat solutions, we will write the metric in
the following form, which differs slightly from the standard
parametrization of the Bondi-Sachs metric:

ds2 ¼ −

"

1 −
2V

r

"

e2β=rdu2 − 2e2β=rdudr

þ r2Hij

"

dθi −
U i

r2
du

""

dθj −
Uj

r2
du

"

: ð2:1Þ

Note that the metric components satisfy grr ¼ 0 and
gri ¼ 0, which fix three of the four gauge degrees of
freedom of the metric. The final gauge degree of freedom is
fixed by the condition that

∂r detH ¼ 0: ð2:2Þ

These choices set up a Bondi coordinate system [17,18].
The Bondi metric in Eq. (2.1) is frequently (though need

not only be) used to describe asymptotically flat solutions.
To have the metric (2.1) correspond to such a solution, it is
necessary to impose boundary conditions on the metric
functions V, β, U i, and Hij so that the metric approaches a
Minkowski form as r → ∞. Given our parametrization of
the metric in Eq. (2.1), the metric functions V, β, U i, and
Hij must all be Oð1Þ. We will also require that these
functions admit a power series expansion in 1=r (that is,
without terms involving log r). Finally, we will write

Hij ¼ hij þOð1=rÞ; ð2:3Þ

where hij is the usual metric on the unit two-sphere. We use
hij to raise and lower the two-sphere indices (that is, i, j,
etc.). For later convenience, we also define D i to be the
connection on the two-sphere that is compatible with hij,
and we define ϵij to be the volume form on the two-sphere.
With this setup, one can perform a fairly standard

calculation (see, for example, [23,26]) to show that the
Einstein equations, in vacuum, give rise to a set of partial
differential equations in r (the hypersurface equations) for
V, β, and U i, which can be solved hierarchically in terms of
Hij. We review more of the details of this calculation in
Appendix A. The solutions of these equations imply that

β ¼ β̃=r; ð2:4aÞ

V ¼ mþM=r; ð2:4bÞ

U i ¼ Ui þ Vi=rþϒi=r2; ð2:4cÞ

where Ui will be determined by the Oð1=rÞ coefficient in
the expansion of Hij, where m and Vi are functions of
integration (that is, functions of u and θi) that arise from
solving these radial partial differential equations, and where
β̃, M, and ϒi are some Oð1Þ functions that admit a Taylor
series expansion in 1=r and are determined by the radial
differential equations. The exact forms of β̃,M, and ϒi are
not relevant here, but can be determined from Eqs. (A1),
(A11), and (A3), respectively.
Finally, we consider the expansion of Hij. First, the

gauge condition (2.2) implies that [see, for example,
Eq. (12) of [27] ]

Hij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
CklC

kl

2r2

s

hij þ
1

r
Cij; ð2:5aÞ

ðH−1Þij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
CklC

kl

2r2

s

hij −
1

r
Cij; ð2:5bÞ
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where Cij is trace free with respect to hij, and where we
have used the notation ðH−1Þij to indicate that this tensor is
the inverse ofHij, and notHij with its indices raised by hij.
This result can be verified by using Jacobi’s determinant
formula and the relationship that CikCkj ¼

1
2
CklC

klδi
j for

any symmetric, trace-free tensor Cij on the two-sphere.
We therefore find that the expansion of Hij is entirely

determined by the expansion of Cij. The requirement that
no log r terms occur when solving the hypersurface
equation for U i imposes that the coefficient of the 1=r
term in the power-series expansion of Cij vanishes, so that

Cij ¼ Cij þ
1

r2
Eij: ð2:6Þ

The function Cij is constant in r (that is, depends on just u
and θi) and Eij is Oð1Þ and has an expansion of the form

Eij ¼
X

∞

n¼0

1

rn
E
ðnÞ

ij: ð2:7Þ

In terms of the expansion of Hij, the quantity Ui in the
expansion of U i can be shown from the hypersurface
equations to be

Ui ¼ −
1

2
DjC

ij: ð2:8Þ

We also write Vi as

Vi ≡ −
2

3
Ni þ

1

16
D iðCjkC

jkÞ þ
1

2
CijDkCjk: ð2:9Þ

This is purely convention: Vi andNi are entirely equivalent.
In summary, the metric above can be written entirely in

terms of the quantities m, Ni, Cij, and Eij. The first three of
these quantities have names: m is known as the mass
aspect, Ni as the angular momentum aspect, and Cij as the
shear. These three quantities are purely functions of u and
θi. The quantity Eij is not named, and it is a function of all
four Bondi coordinates, as shown in Eq. (2.7).

B. Geodesic equation

For computing the curve deviation observable, which
involves timelike, accelerating worldlines near null infinity,
it will be helpful to first review the behavior of geodesics in
asymptotically flat spacetimes at large Bondi radius.
Consider a timelike worldline γ. We will write the four-
velocity _γa of this worldline as

_γa ¼ χð∂uÞ
a þ

1

r
við∂iÞ

a þ _rð∂rÞ
a; ð2:10Þ

where the normalization _γa _γa ¼ −1 of the four-velocity
implies that

_r ¼
1

2χ
e−2β=r

�

1þHij

"

vi −
χ

r
U i

""

vj −
χ

r
Uj

"

−

"

1 −
2V

r

"

e2β=rχ2
�

: ð2:11Þ

We assume that the quantities χ and vi are Oð1Þ. In
particular, we consider vi as Oð1Þ (as opposed to
_θ
i ¼ vi=r) because physical distances between points at
different values of θi go as rΔθi; thus, _θ

i being Oð1Þ
implies an observer moving at infinite velocity at infinity.
The geodesic equation, in terms of χ and vi, becomes

_χ ¼ Oð1=rÞ; _vi ¼ Oð1=rÞ: ð2:12Þ

This calculation requires the Christoffel symbols for the
metric (2.1), or rather the orders of the Christoffel symbols
in an expansion in 1=r. We give these in Appendix B. To
leading order, it is reasonable to consider both χ and vi to
be constant. In this paper, we will typically consider the
case where

χ ¼ 1þOð1=rÞ; vi ¼ Oð1=rÞ; ð2:13Þ

in which case we have that

_r ¼ Oð1=rÞ: ð2:14Þ

As such, these curves (to leading order) are curves of
constant r.
A similar calculation that requires the Christoffel sym-

bols is that of the parallel transport of the following
quantities:

ðθ̂iÞ
a ≡

1

r
ð∂iÞ

a; ðθ̂iÞa ≡ rðdθiÞa: ð2:15Þ

These are versions of the vector field ð∂iÞ
a and one-form

ðdθiÞa, respectively, that have finite magnitude at infinity.
These quantities are parallel-transported to leading order
in 1=r:

_γb∇bðθ̂iÞ
a ¼ Oð1=rÞ; _γb∇bðθ̂

iÞa ¼ Oð1=rÞ: ð2:16Þ

The left-hand sides of these equations are tensorial quan-
tities; the meaning of the Oð1=rÞ on the right-hand sides is
that these tensors have Oð1=rÞ components on the tetrad
given by f∂u; ∂r; θ̂1; θ̂2g and fdu; dr; θ̂1; θ̂2g.

C. Riemann tensor

For a vacuum spacetime, different components of the
Riemann (or equivalently Weyl) tensor can be written in
terms of an expansion in 1=r and in terms of the Bondi
metric functions in Sec. II A. To give all the relevant
components that we use in this paper, we first need to
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introduce the news tensor Nij ¼ ∂uCij, which will be
described in greater detail in Sec. II D. The first set of
components of the Riemann tensor is given by

Ri
uju ¼ −

1

2r
∂uN

i
j þOð1=r2Þ; ð2:17Þ

which is the leading order contribution to the Riemann
tensor:

Ra
bcd ¼ ðθ̂iÞ

að∂uÞbðθ̂
jÞcð∂uÞdR

i
uju þOð1=r2Þ ð2:18Þ

[where the Oð1=r2Þ has the same meaning as in Eq. (2.16)
above]. The fact that the leading-order piece of the
Riemann tensor is entirely given by the news is well
known (for example, [17,18]), but it is a key result for
computing the curve deviation observable in this paper.
Another feature of the Riemann tensor in Bondi coor-

dinates is that, in linearized gravity, the quantities
m, Ni, and Eij each show up in certain distinct components
of this tensor. The relevant components are Rurur, Rurri, and
Rrirj:

Rurur ≃ −∂2
r

"

V

r

"

¼ −
2m

r3
þOð1=r4Þ; ð2:19aÞ

Rurri ≃ −
r

2
∂r

"

∂rU i

r

"

¼
Ni

r3
þOð1=r4Þ; ð2:19bÞ

Rrirj ≃ −
1

2
r∂2

r

"

Eij

r2

"

¼ −
1

r3

X

∞

n¼0

ð2þ nÞð3þ nÞ

2

E
ðnÞ

ij

rn
:

ð2:19cÞ

Here “≃” indicates an equality that holds in the linearized
approximation, where we neglect terms that are quadratic
in m, Ni, Cij, Eij, and their derivatives. These relationships
between the metric functions m, Ni, and Eij and the
curvature provide some additional insight into the physical
properties of these metric functions. For example, for
some linearized source, one can compute the values of
the Riemann tensor far from this source, and then use
Eq. (2.19) in order to relate integrals of the stress-energy
tensor of the source to m, Ni, and Eij. This provides one
motivation for the names “mass aspect” and “angular
momentum aspect” for m and Ni, respectively. Another
method, using coordinate transformations, and allowing for
an analysis at the nonlinear level, was performed in [28].

D. Conservation and evolution equations

The above analysis of the metric implies that the metric
on a hypersurface of constant u can be determined entirely
in terms of the functions of integration,m andNi, as well as
the quantities Cij and Eij. However, we have not specified

how these quantities can be computed at future values of u
from their values at some known value of u. There are other
components of Einstein’s equations, which we have not yet
used, that describe how m, Ni, Cij, and Eij evolve.
The trace-free part (with respect to Hij) of the ij

components of the Einstein equations determines how
Cij and Eij evolve, and these components are frequently
referred to as the “evolution equations” in the Bondi-Sachs
framework [26]. These equations can be written such that
∂uHij obeys a differential equation in r with a right-hand
side that depends explicitly (and implicitly) onHij, as well
as on m and Ni [see Eq. (A12)]. The solution to this
differential equation [see Eq. (A16)] introduces a new set of
functions of integration, denoted Nij, which are related to
the tensor Cij in the expansion of Hij by

Nij ≡ ∂uCij: ð2:20Þ

This quantity is known as the (Bondi) news tensor (or just
“news”) and is free data in this problem, in the sense that
Nij is an unconstrained function of u and θi. It has the
property that it vanishes in stationary regions of a spacetime
(see, for example, [17]); however, a region where the news
vanishes is not necessarily stationary. Regions with vanish-
ing news provide a notion of a “nonradiative” region of the
spacetime; for example, in linearized gravity in such
regions, there would be no gravitational waves.
The higher order in 1=r parts of the Einstein equations

involving ∂uHij fix ∂uEij in terms of m, Ni, Cij, Eij, and
their derivatives. The evolution equation for Eij proves to
be much more complex in general, but the evolution
equation for the leading order piece, E

ð0Þ
ij (given in, for

example, [9]) takes the form

∂u E
ð0Þ

ij ¼
1

4
NklC

klCij þ
1

3
STFD iNj

þ
1

4
Cj

kD ½iD
lCk�l þ

1

2
mCij: ð2:21Þ

Here, we have introduced the notation STF, which means to
take the symmetric trace-free part of the free indices in the
expression (where “trace-free” means with respect to the
metric hij). The subleading order piece, E

ð1Þ
ij, obeys a

similar evolution equation that is given by [29,30]

∂u E
ð1Þ

ij ¼ −
1

4
ðD2 þ 2ÞE

ð0Þ
ij

− STFDk

��

3

32
D iðClmC

lmÞ −
1

4
CilDmC

lm

þ
1

3
Ni

�

Cjk −
5

32
ClmC

lmD iCjk

�

: ð2:22Þ
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The evolution equations for E
ðnþ1Þ

ij, for n ≥ 1, are similar, in

the sense that their linear piece involves only an operator
acting on E

ðnÞ
ij:

∂u E
ðnþ1Þ

ij ≃Dn E
ðnÞ

ij; ð2:23Þ

where

Dn ≡ −
nþ 2

2ðnþ 1Þðnþ 4Þ
ðD2 þ n2 þ 5nþ 2Þ; ð2:24Þ

and [as in Eq. (2.19)] we use “≃” to indicate that this
expression only contains the linear terms. We provide
a schematic form of the full evolution equation for E

ðnþ1Þ
ij

below, in Eq. (4.29), which can be determined from
Eq. (A16). Equation (2.23) can be derived from the
linearization of Eq. (A16), as outlined at the end of
Appendix A.
The evolution of m and Ni is determined by the uu and

ui components of Einstein’s equations, which are referred
to as the “conservation equations” (see, for example, [26]).
They are given by

∂um ¼
1

4

"

D iDjN
ij −

1

2
NijN

ij

"

; ð2:25aÞ

∂uNi ¼ D im −
1

4
ϵjiD

jðϵklDkD
mClmÞ

þ
1

4
ðNjkDjCki þ 3CijDkN

jkÞ: ð2:25bÞ

In summary, therefore, the situation is even simpler than
that presented in Sec. II A: the metric is entirely determined
by the initial values of m, Ni, and Eij at some value of u,
along with the value of Cij at each value of u. As such, we
split these quantities into radiative and nonradiative degrees
of freedom: m, Ni, and Eij are nonradiative, whereas Cij is
radiative.3

III. CURVE DEVIATION OBSERVABLE

A. Definition and properties

We review, in this section, the curve deviation persis-
tent observable that was given in paper I. This observable
is defined by the following procedure. Suppose there are
two observers who follow the two worldlines γ and γ̄,
respectively. For simplicity, we assume that γ is geodesic,
but that γ̄ has a nonzero acceleration ̈γ̄ā (note that we
place an overline on the indices of points along γ̄). We
parametrize each of these worldlines by proper time τ,
and we choose to set the proper times of these two
worldlines to be equal to some common value τ0 at some
initial point x along γ and x̄ along γ̄. At x, we consider a
separation vector ξa and relative velocity vector _ξa; the
former is defined by the exponential map (for details, see
[33]) and the latter is defined by taking a covariant
derivative of ξa with respect to τ.
Next, the separation ξa between the worldlines obeys the

following differential equation [1]:

ξ̈a ¼ −Ra
cbd _γ

c _γdξb þ aa; ð3:1Þ

where ̈ξa is the derivative of _ξa with respect to τ, and

aa ≡ gaā ̈γ̄
ā ð3:2Þ

is a sort of relative acceleration vector between the
two worldlines. In this expression, gaā is the parallel
propagator between γðτÞ and γ̄ðτÞ (for arbitrary τ),
parallel-transporting vectors along the unique geodesic4

between γðτÞ and γ̄ðτÞ. Note that, due to the presence
of aa on the right-hand side of Eq. (3.1), the final
separation between the observers at some later proper
time τ1 is nonvanishing, even in the absence of
curvature. In the absence of curvature, the final sepa-
ration is the same as the initial separation in the case
where the observers have zero acceleration and are
initially comoving; a nonzero initial velocity or relative
acceleration will lead to a different final separation.
Because we are primarily interested in the effects of
curvature on the final separation, we subtract the
solution to the following differential equation:

̈ξaflat ¼ aa: ð3:3Þ

The curve deviation observable then was defined in [1]
to be

Δξa
0
≡ ξa

0
− ξa

0

flat: ð3:4Þ

3Another way of splitting these quantities is to say that only
Nij contains radiative degrees of freedom and to append
Eq. (2.20) to our list of evolution equations. In this splitting,
Cij is nonradiative, and requires its initial value in order to
determine its value at all later times. This splitting is sensible,
since it is only Nij that characterizes the presence of radiation.
Our choice of calling Cij radiative is motivated by the inclusion of
the shear in the radiative phase space of [31,32], as well as the fact
that it is Cij which gravitational wave interferometers measure,
and not Nij.

4This geodesic always exists for γ and γ̄ sufficiently closely-
separated; such an assumption is built into this discussion, as ξa is
only defined in such a case.
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All of these quantities are computed at γðτ1Þ≡ x0, where
τ1 > τ0 (recall that we are parametrizing both of these
worldlines by the same affine parameter).
To determine the curve deviation observable, there-

fore, in addition to determining the final separation from
Eq. (3.1), we also need to compute the solution to Eq. (3.3).
The solution to Eq. (3.3) can be straightforwardly verified
to be

ξa
0

flat ≡ γg
a0

a½ξ
a þ ðτ1 − τ0Þ_ξ

a�

þ

Z

τ1

τ0

dτ2ðτ1 − τ2Þγg
a0

a00
aa

00
; ð3:5Þ

where x00 ¼ γðτ2Þ and γg
a0

a is the parallel propagator
between two points x and x0 on a curve γ. In the second
line, we have used the Cauchy rule for repeated integration
to write what naturally is a double integral in terms of a
single integral.
The curve deviation observable can then be parametrized

in terms of its dependence on ξa, _ξa, and

a
ðnÞ

a ≡
Dnaa

dτn

�

�

�

�

τ¼τ0

; ð3:6Þ

as follows [1]:

Δξa
0
≡ γΔK

a0
aξ

a þ γΔH
a0
a
_ξ
a þ

X

∞

n¼0

γΔ α
ðnÞ

a0
a a
ðnÞ

a

þOðξ; _ξ; aÞ2: ð3:7Þ

That is, the quantities γΔK
a0
a, γΔH

a0
a, and γΔ α

ðnÞ

a0
a

describe the dependence of the curve deviation observable
on initial values of the separation, relative velocity, and the

nth time derivative of aa, respectively. All three of these
quantities vanish in the absence of curvature due to the
subtraction of ξa

0

flat in Eq. (3.4). Since Eq. (3.1) is the
geodesic deviation equation, but with an extra “source”
term on the right-hand side, all three of these quantities can
be written in terms of the solutions to the geodesic
deviation equation, which are known as Jacobi propaga-
tors. For more details, see paper I; we will not require the
formalism of Jacobi propagators in this paper.
Finally, note that (as defined) aa is difficult to measure,

as its measurement by the observer along γ would require
the parallel transport of ̈γ̄ā

00
between the two geodesics at all

values of τ2 between τ0 and τ1. In Appendix C, we show
that

a
ðnÞ

a ¼ gaā
Dn ̈γ̄ā

dτn

�

�

�

�

τ¼τ0

þOðξ; _ξ; ̈γ̄Þ2: ð3:8Þ

This shows that Δ α
ðnÞ

a0
a describes the dependence of

the curve deviation on the nth time derivative of ̈γ̄ā at
τ ¼ τ0, providing a clearer physical interpretation of
these terms.

B. Asymptotic expansions and moments

of the news

We now consider asymptotic expansions of the bitensors
that characterize the curve deviation observable, γΔK

a0
a,

γΔH
a0
a, and γΔ α

ðnÞ

a0
a. To do so, we use the results from

paper I, which gives these observables in terms of an
expansion in powers of the Riemann tensor along a
parallel-transported basis:

γΔK
α
βðτ1;τ0Þ ¼−

Z

τ1

τ0

dτ2

Z

τ2

τ0

dτ3Rα
γβδðτ3Þ_γ

γ _γδþOðR2Þ; ð3:9aÞ

ðτ1 − τ0ÞγΔH
α
βðτ1; τ0Þ ¼ −

Z

τ1

τ0

dτ2

Z

τ2

τ0

dτ3ðτ3 − τ0ÞR
α
γβδðτ3Þ_γ

γ _γδ þOðR2Þ; ð3:9bÞ

γΔ α
ðnÞ

α
βðτ1;τ0Þ ¼−

1

n!

Z

τ1

τ0

dτ2ðτ2− τ0Þ
n

Z

τ1

τ2

dτ3

Z

τ3

τ2

dτ4ðτ4− τ2ÞR
α
γβδðτ4Þ_γ

γ _γδþOðR2Þ: ð3:9cÞ

In this expression, Greek letter indices indicate components
on a parallel-transported basis (note that _γα is not a function
of τ, since γ is assumed to be a geodesic).
We assume henceforth that the news Nij vanishes when

u ≤ u0 and u ≥ u1, where u0 and u1 is our notation for the
values of u at x and x0, respectively. By Eqs. (2.25a),
(2.25b), and (2.23), it follows that the metric functions m,
Ni, and E

ðnÞ
ij all become polynomial in u outside

of ½u0; u1�.
5 While this assumption may not be represen-

tative of the class of asymptotically flat spacetimes, where
the news Nij is typically assumed to fall off as 1=juj1þϵ, for
some ϵ > 0 (see, for example, [34]), we anticipate that

5Specifically, m is a constant, Ni is a linear function of u, and
E
ðnÞ

ij is a polynomial of degree nþ 2.
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removing this assumption will not qualitatively change
most of our results. The clearest difference is that having
nonvanishing news outside the interval ½u0; u1� would
primarily introduce terms proportional to the value of
the news at u0 and u1 into our expressions below.
To evaluate Eq. (3.9) in asymptotically flat spacetimes,

we use Eq. (2.17) for the leading-order Riemann tensor, and
then we make the following assumptions. First, we suppose
that our observer has a four-velocity _γa ¼ ð∂uÞ

a þOð1=rÞ,
or, in other words, that Eq. (2.13) holds. Second, for three
of the members of our parallel-transported basis of vectors,
we use _γa and ðθ̂iÞ

a, and for our parallel-transported basis
of one-forms, we use _γa and ðθ̂iÞa. The facts that _γa is
tangent to a geodesic and that ðθ̂iÞa and ðθ̂iÞa are parallel
transported along this geodesic to leading order in 1=rwere
shown in Sec. II B. For simplicity, we do not consider the
components of our observables along the fourth member of
these bases (which would correspond to the radial direc-
tion). Moreover, note that the components of our observ-
ables along _γa vanish by the symmetries of the Riemann
tensor and Eq. (3.9).
With these assumptions, we now compute the compo-

nents of γΔK
α
βðτ1; τ0Þ, γΔH

α
βðτ1; τ0Þ, and γΔα

α

ðnÞ
βðτ1; τ0Þ

along ðθ̂iÞ
a and ðθ̂iÞa, which we denote by ΔKi

jðu1; u0Þ,
ΔHi

jðu1; u0Þ, and Δαi
ðnÞ

jðu1; u0Þ, respectively. First, we find

that Eq. (3.9a) becomes

ΔKi
jðu1; u0Þ ¼

1

2r

Z

u1

u0

du2

Z

u2

u0

du3 _N
i
jðu3Þ þOð1=r2Þ;

¼
1

2r

Z

u1

u0

du2Ni
jðu2Þ þOð1=r2Þ; ð3:10Þ

where we have used the fact that the news tensor vanishes at
u0 and u1. To help make the following discussion more
systematic, we will define the nth moment of the news by

N
ðnÞ

i
jðu1; u0Þ≡

1

n!

Z

u1

u0

du2ðu2 − u0Þ
nNi

jðu2Þ: ð3:11Þ

Note that, since we assume that Nij vanishes outside
of ½u0; u1�, N

ðnÞ

i
jðu; u0Þ is constant in u for u > u1.

Using Eq. (3.11), we can write the expression for
ΔKi

jðu1; u0Þ as

ΔKi
jðu1; u0Þ ¼

1

2r
N
ð0Þ

i
jðu1; u0Þ þOð1=r2Þ: ð3:12Þ

Note that the zeroth moment of the news, N
ð0Þ

i
jðu1; u0Þ, is

just the difference of the components of the shear Ci
j

between the times u0 and u1.

After several integrations by parts, which are des-
cribed in Appendix D, analogous versions of Eq. (3.12)
can be derived, so as to write ΔHi

jðu1; u0Þ and
Δ α

ðnÞ

i
jðu1; u0Þ in terms of moments of the news.

They are given by

ðu1 − u0ÞΔH
i
jðu1; u0Þ ¼

1

r

�

N
ð1Þ

i
jðu1; u0Þ

−
1

2
ðu1 − u0ÞN

ð0Þ

i
jðu1; u0Þ

�

þOð1=r2Þ; ð3:13Þ

and

Δ α
ðnÞ

i
jðu1; u0Þ ¼

1

2r
½ðnþ 3Þ N

ðnþ2Þ

i
jðu1; u0Þ

− ðu1 − u0Þ N
ðnþ1Þ

i
jðu1; u0Þ�

þOð1=r2Þ: ð3:14Þ

These three equations provide the relationships between the
various pieces of the curve deviation observables and
moments of the news, for the particular choice of asymp-
totic observers described in this section. The remainder of
this paper derives expressions for the moments of the news,
because the curve deviation observables can be determined
from the moments straightforwardly.

IV. “CHARGE” AND “FLUX” CONTRIBUTIONS

TO THE MOMENTS OF THE NEWS

In this section, we describe a splitting of the moments
of the news into parts that we call “charge” and “flux”
contributions, because the parts have some similarities to
the charge and flux parts of the displacement, spin, and
center-of-mass memory effects (though some notable
differences also arise). For the first few lowest moments
of the news, we compute these charge and flux terms by
using the evolution equations given in Sec. II D for m, Ni,
and E

ðnÞ
ij (for n ¼ 0 and 1). For n > 1, we instead use the

evolution equation in Appendix A to infer the form of these
two types of contributions to the curve deviation observ-
able, but we do not give explicit expressions for these
contributions. This section is organized such that the results
are given in the first subsection, the derivation of the results
are in the second subsection, and some properties of the
multipolar expansion of the temporal moments of the news
are given in the final subsection.

A. Summary of the moments

The zeroth moment of the news—or equivalently the
change in the shear, the displacement memory effect, and
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the part of the curve deviation in Eq. (3.12)—has a
previously understood decomposition into charge and flux
parts, because of its relation to the supermomentum charge
conjugate to BMS supertranslation symmetries. We review
this decomposition using the Einstein equations rather than
the Hamiltonian charges, since the former approach will
apply to all moments of the news, whereas it is not yet
known if the charge viewpoint would apply to all the
moments of the news.6

We start with the conservation equation for m,
Eq. (2.25a), and we note that the right-hand side vanishes
when there is no news. Integrating this equation, we can
solve for the zeroth moment of Nij:

1

4
D iDjN

ð0Þ
ijðu1; u0Þ ¼ Δmðu1; u0Þ −

Z

u1

u0

du2F ðu2Þ;

ð4:1Þ

where

Δmðu1; u0Þ≡mðu1Þ −mðu0Þ; F ≡ −
1

8
NijN

ij: ð4:2Þ

We call the Δmðu1; u0Þ term the charge contribution,
because it is the difference between the values of a
“conserved quantity” (in this case, m) at u0 and u1. The
mass aspect m is a “conserved quantity” in the sense that it
is conserved in the absence of radiation. We call the integral
of F in Eq. (4.1) the flux contribution, because it is a
nonlinear quantity that vanishes in the absence of radiation
(two properties that would be expected of, for example, a
flux of energy).
In the remaining subsections, we derive equations,

analogous to Eq. (4.1), for all moments of the news. For
convenience, we summarize the form of these results here,
but we leave the precise definitions to the later subsections.
We begin with the first moment, which we find is related to
the charge and flux contributions as follows:

1

2
DkSTFðD iDjÞN

ð1Þ

jkðu1; u0Þ

¼

Z

u1

u0

du2F̃ iðu2; u0Þ − ΔÑiðu1; u0Þ: ð4:3Þ

Here, we have defined

ΔÑiðu1; u0Þ≡ Ñiðu1; u0Þ − Ñiðu0; u0Þ; ð4:4Þ

and Ñiðu; ũÞ and F̃ iðu; ũÞ are defined in Eqs. (4.9) and
(4.14), respectively. The quantity Ñiðu; ũÞ, much likem, we
call a “conserved quantity,” because ∂uÑiðu; ũÞ ¼ 0 when
the news vanishes. Note that the angular momentum aspect
Ni is not a “conserved quantity” in this sense, because its u
derivative satisfies Eq. (2.25b) and does not vanish when
the news is zero. Additional terms given in Eq. (4.9) must
be added to Ni to form a quantity, Ñiðu; ũÞ, that has a
vanishing u derivative when the news tensor vanishes.
Equation (4.3) has the same form as Eq. (4.1), with a charge
contribution given by ΔÑiðu1; u0Þ and a flux contribution
given by the integral of F̃ iðu2; u0Þ.
Similarly, there are “corrected” versions of E

ðnÞ
ij, which

we denote by Ẽ
ðnÞ

ijðu; ũÞ, such that for any n ≥ 0, these

quantities satisfy ∂u Ẽ
ðnÞ

ijðu; ũÞ ¼ 0 when the news van-

ishes. Changes in these “conserved quantities” are related
to the higher moments of the news. For n ¼ 0, we find that
the relation is

1

6
STFD i½D lSTFðDjDkÞN

ð2Þ

klðu1; u0Þ�

¼ Δ Ẽ
ð0Þ

ijðu1; u0Þ −

Z

u1

u0

du2F̃
ð0Þ

ijðu2; u0Þ; ð4:5Þ

while for higher moments we find that (for n ≥ 0)

ð−1Þnþ1

6
Dn � � �D0STFD i½D lSTFðDjDkÞ N

ðnþ3Þ

klðu1; u0Þ�

¼ Δ Ẽ
ðnþ1Þ

ijðu1; u0Þ −

Z

u1

u0

du2 F̃
ðnþ1Þ

ijðu2; u0Þ: ð4:6Þ

In these equations, we have defined

Δ Ẽ
ðnÞ

ijðu1; u0Þ≡ Ẽ
ðnÞ

ijðu1; u0Þ − Ẽ
ðnÞ

ijðu0; u0Þ; ð4:7Þ

where Ẽ
ð0Þ

ijðu; ũÞ is defined in Eq. (4.20) and Ẽ
ðnþ1Þ

ijðu; ũÞ

(for n ≥ 0) is defined in Eq. (4.35). The contribution to
each moment of the news due to these terms we will call the
charge contribution, as before. Note that equations similar
to Eqs. (4.5) and (4.6) are also given, in the linear theory, by
Eqs. (11) and (12) of [40], which are written in terms of
components of the Weyl tensor, instead of E

ðnÞ
ij.

The flux contributions are similarly given by the inte-
grals of F̃

ðnÞ
ijðu2; u0Þ, but unlike the case of the zeroth and

first moments of the news, these contributions can be
further divided into two pieces:

F̃
ðnÞ

ijðu; ũÞ≡ F̃
ðnÞ

rad
ij ðu; ũÞ þ F̃

ðnÞ

nonrad
ij ðu; ũÞ: ð4:8Þ

6There is a relationship between the first moment of the news
and charges (and fluxes) of the extended [35] or generalized [36]
BMS algebras, which have been computed in Bondi coordinates
in the physical spacetime [7,37] (see also [10,38]). It does not
seem possible to obtain these charges through a covariant
procedure at null infinity in the unphysical spacetime [39].
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Here F̃
ðnÞ

rad
ij ðu; ũÞ is a nonlinear function constructed from

Cij and Nij (the radiative degrees of freedom), whereas
F̃
ðnÞ

nonrad
ij ðu; ũÞ depends also on at least one of the non-

radiative degrees of freedom in m, Ni, and E
ðpÞ

ij (for any

p < n). Equation (4.28) contains the values of F̃
ð0Þ

rad
ij ðu; ũÞ

and F̃
ð0Þ

nonrad
ij ðu; ũÞ, and Eq. (4.28) contains the values of

F̃
ðnþ1Þ

rad
ij ðu; ũÞ and F̃

ðnþ1Þ

nonrad
ij ðu; ũÞ (for n ≥ 0).

The existence of these nonradiative flux contributions
are unique to the second and higher moments of the news,
as the flux contributions to the zeroth and first moments
only contain Cij and Nij. As before, all of these flux
contributions vanish when the news vanishes.
In the remaining subsections, we give the derivations of

Eq. (4.3) in Sec. IV B 1, of Eq. (4.5) in Sec. IV B 2, and of
Eq. (4.6) in Sec. IV B 3. We then conclude this section with
a discussion of solving Eqs. (4.1), (4.3), (4.5), and (4.6) for
these temporal moments of the news using an expansion of
these quantities in tensor harmonics in Sec. IV C.

B. Derivations of the moments

1. First moment

We start with the first moment of the news; qualitatively,
the calculations and procedures that we use here will carry
over to the calculations for higher moments. Consider the
conservation equation for the angular momentum aspect,
Ni, in Eq. (2.25b). To extract from this expression an
equation like Eq. (4.1), we note that, unlike the conserva-
tion equation for m, the right-hand side of Eq. (2.25b) has
two types of terms: those that vanish when news vanishes,
and those that do not. Consequently, Niðu1Þ − Niðu0Þ does
not vanish when there is no news between u0 and u1,
unlike Δmðu1; u0Þ.

7

It is possible to construct from Ni a new quantity,
Ñiðu; ũÞ, which has the property that ∂uÑiðu; ũÞ ¼ 0 when
the news is zero. First, note that Ñiðu; ũÞ depends on a
“reference” time ũ. Second, note that this construction is
not unique: related quantities enter into the charges defined
by Wald and Zoupas [23,41], the two-parameter family of
charges in [37,42], and the supertranslation-invariant angu-
lar momentum in [43]. The particular choice that we make
here is just a simple example of such a quantity:

Ñiðu; ũÞ≡ NiðuÞ − ðu − ũÞDjmijðuÞ; ð4:9Þ

where

mij ≡mhij þ
1

2
D ½iD

kCj�k: ð4:10Þ

To show that ∂uÑiðu; ũÞ vanishes when there is no news,
we first point out that ∂umij is zero in the absence of news:

∂umij ¼
1

2
STFðD iDkÞN

k
j þ Fhij: ð4:11Þ

To compute this expression, we used the fact that, for any
tensor operator Aij,

A½i
kNj�k þ

1

2
AklN

klhij ¼ Ai
kNjk − STFðAi

kNjkÞ;

¼ STFðAikÞN
k
j: ð4:12Þ

The second line follows from the fact that Nij is a
symmetric, trace-free tensor. Finally, note that the terms
in Eq. (2.25b) that are nonzero when the news is nonzero
are given byDjmij; however, the u derivative of the second
term of Eq. (4.9) cancels this term in regions with a
vanishing news tensor.
To summarize, we find that

∂uÑiðu; ũÞ ¼ F̃ iðu; ũÞ −
1

2
ðu − ũÞDkSTFðD iDjÞN

jkðuÞ;

ð4:13Þ

where

F̃ iðu; ũÞ≡ F iðuÞ − ðu − ũÞD iF ðuÞ; ð4:14Þ

and where

F i ≡
1

4
ðNjkDjCki þ 3CijDkN

jkÞ: ð4:15Þ

Integrating Eq. (4.13) from u0 to u1, and setting ũ ¼ u0,
produces Eq. (4.3).

2. Second moment

We now relate the second moment of the news to the
evolution equation for E

ð0Þ
ij in Eq. (2.21). Many terms in

(2.21) are nonzero when the news vanishes; thus, to make a
charge and flux decomposition, we must define a quantity
Ẽ
ð0Þ

ij from E
ð0Þ

ij that has vanishing u derivative when the

news tensor is zero. We first write this evolution equation in
the following form, which will be similar to the form that
the evolution equations take at higher order in 1=r:

7A closely related statement is that the mass aspect m is
independent of u in regions without news, whereas the angular
momentum aspect Ni depends linearly on u (for example, see
[17,23]).
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∂u E
ð0Þ

ij ¼ F
ð0Þ

rad
ij þ

1

3
STFD iNj þ G

ð0;0Þ

rad
ij þ G

ð0;0Þ

nonrad
ij :

ð4:16Þ

Here, we have defined

F
ð0Þ

rad
ij ≡

1

4
NklC

klCij ð4:17Þ

to be the nonlinear piece of this equation that depends on
radiative degrees of freedom and vanishes when there is no
news (note that it is cubic, rather than quadratic in the news
and shear),

G
ð0;0Þ

rad
ij ≡

1

4
Ck

jD ½iD
lCk�l ð4:18Þ

to be a piece that does not vanish when there is no news, but
is a nonlinear function of the shear, and

G
ð0;0Þ

nonrad
ij ≡

1

2
mCij ð4:19Þ

to be the nonlinear piece that depends on a least one of the
nonradiative degrees of freedom. The notation with two
numbers underset below these tensors will be explained in
the next subsection.
Using this decomposition of the evolution equation, we

now define the quantity E
ð0Þ

ij by

Ẽ
ð0Þ

ijðu; ũÞ≡ E
ð0Þ

ijðuÞ þ ðũ − uÞ

�

1

3
STFD i Ñ

ð2Þ
jðu; ũÞ

þ G
ð0;0Þ

rad
ij ðuÞ þ G

ð0;0Þ

nonrad
ij ðuÞ

�

; ð4:20Þ

where

Ñ
ðnÞ

iðu; ũÞ≡ NiðuÞ þ
ũ − u

n
DjmijðuÞ ð4:21Þ

[note that Ñiðu; ũÞ defined in the previous section is given
by Ñ

ð1Þ
iðu; ũÞ]. The u derivative of Ñ

ðnÞ
iðu; ũÞ satisfies a

generalization of Eq. (4.13), which is given by

∂u

�

ðũ − uÞnþ1

ðnþ 1Þ!
Ñ

ðnþ2Þ
iðu; ũÞ

�

¼ −
ðũ − uÞn

n!
NiðuÞ þ

ðũ − uÞnþ1

ðnþ 1Þ!
F̃

ðnþ1Þ
iðu; ũÞ

þ
ðũ − uÞnþ2

2ðnþ 2Þ!
DkSTFðD iDjÞN

jkðuÞ; ð4:22Þ

where

F̃
ðnÞ

iðu; ũÞ≡

�

F iðuÞ þ
ðũ − uÞ

nþ 1
D iF ðuÞ

�

ð4:23Þ

[so that F̃ iðu; ũÞ, as defined in Eq. (4.14), is sim-
ply F̃

ð0Þ
iðu; ũÞ].

Next let us take the derivative of G
ð0;0Þ

nonrad
ij ðuÞ, which we

write as

∂u G
ð0;0Þ

nonrad
ij ¼ F

ð0;1Þ

rad
ij þ F

ð0;1Þ

nonrad
ij ; ð4:24Þ

where

F
ð0;1Þ

rad
ij ≡

1

8

"

DkD lN
kl −

1

2
NklN

kl

"

Cij ð4:25Þ

is the piece of Eq. (4.24) that depends only on radiative
degrees of freedom and

F
ð0;1Þ

nonrad
ij ≡

1

2
mNij ð4:26Þ

is the piece of Eq. (4.24) that depends on nonradiative
degrees of freedom. Note that the right-hand side of
Eq. (4.24) vanishes when the news vanishes [that is,
G

ð0;0Þ

nonrad
ij ðuÞ has vanishing u derivative].

We now have all the necessary elements to compute
the u derivative of Ẽ

ð0Þ
ijðu; ũÞ, which will give us the charge

and flux decomposition of the second moment of the news.
We then find that [using Eqs. (4.20), (4.16), and (4.24), as
well as Eq. (4.22) for n ¼ 0]

∂u Ẽ
ð0Þ

ijðu; ũÞ ¼ F̃
ð0Þ

rad
ij ðu; ũÞ þ F̃

ð0Þ

nonrad
ij ðu; ũÞ

þ
ðũ − uÞ2

12
STFD i½D lSTFðDjDkÞN

klðuÞ�;

ð4:27Þ

where

F̃
ð0Þ

rad
ij ðu; ũÞ≡ F

ð0Þ

rad
ij ðuÞ þ ðũ − uÞ

�

1

3
STFD iF̃

ð1Þ
jðu; ũÞ

þ _G
ð0;0Þ

rad
ij ðuÞ þ F

ð0;1Þ

rad
ij ðuÞ

�

; ð4:28aÞ

F̃
ð0Þ

nonrad
ij ðu; ũÞ≡ ðũ − uÞ F

ð0;1Þ

nonrad
ij ðuÞ: ð4:28bÞ

Equation (4.27) can now be integrated in time to yield
Eq. (4.5) for the second moment of the news, upon
setting ũ ¼ u0.
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3. Procedure for higher moments

The procedure required to compute the charge and flux
contributions to the order nþ 3 moment of the news is
similar to that used in Sec. IV B 2 to determine the second
moment. It first requires the evolution equation for E

ðnþ1Þ
ij,

for n ≥ 0. Given the linearized limit of this evolution
equation in Eq. (2.23), and using the full nonlinear
expression that can be obtained by Eq. (A16), the evolution
equation must take the following form:

∂u E
ðnþ1Þ

ij ¼ F
ðnþ1Þ

rad
ij þ F

ðnþ1Þ

nonrad
ij

þDn E
ðnÞ

ij þ G
ðnþ1;0Þ

rad
ij þ G

ðnþ1;0Þ

nonrad
ij : ð4:29Þ

While we do not compute the exact expressions for these
quantities in terms of the Bondi metric functions, the
properties of the four nonlinear terms can be summarized
as follows:

(i) F
ðnþ1Þ

rad
ij depends nonlinearly on Cij and Nij and

each term in its expression must include one copy

of Nij;
(ii) F

ðnþ1Þ

nonrad
ij also depends nonlinearly on Cij and Nij

(similarly to F
ðnþ1Þ

ij), but in addition has dependence

on at least one of m, Ni, and E
ðpÞ

ij (for p < nþ 1);

(iii) G
ðnþ1;0Þ

rad
ij depends nonlinearly on Cij alone; and

(iv) G
ðnþ1;0Þ

nonrad
ij depends nonlinearly on Cij, as well as

on at least one of m, Ni, and E
ðpÞ

ij (for p < n).

This decomposition can be determined from the full non-
linear expression in Eq. (A16) by noting that on the right-
hand side for expression for ∂u E

ðnþ1Þ
ij there are no terms

with explicit u derivatives (the only term with an implicit u
derivative is Nij ¼ ∂uCij, which appears at most once in
each term on the right-hand side). The terms F

ðnþ1Þ

rad
ij and

F
ðnþ1Þ

nonrad
ij are the only ones which vanish when the news

vanishes, andDn E
ðnÞ

ij is the only term in this equation that is

linear. Note that the constraints on the values of p that can
occur in the dependence of F

ðnþ1Þ

nonrad
ij and G

ðnþ1;0Þ

nonrad
ij on

E
ðpÞ

ij can be determined by dimensional analysis.

Constructing a quantity Ẽ
ðnþ1Þ

ij from E
ðnþ1Þ

ij becomes

more involved than it was for E
ð0Þ

ij, because unlike

∂u G
ð0;0Þ

nonrad
ij , the quantity ∂u G

ðnþ1;0Þ

nonrad
ij does not generally

vanish when the news is zero. However, we can construct
the following iterative procedure to find a quantity related
to higher u derivatives of G

ðnþ1;0Þ

nonrad
ij that does eventually

have a u derivative that vanishes when the news tensor
is zero. To obtain this quantity, consider the iterative
relationship:

∂u G
ðn;qÞ

nonrad
ij ≡ F

ðn;qþ1Þ

rad
ij þ F

ðn;qþ1Þ

nonrad
ij

þ G
ðn;qþ1Þ

rad
ij þ G

ðn;qþ1Þ

nonrad
ij ; ð4:30Þ

where
(i) F

ðn;qþ1Þ

rad
ij depends nonlinearly on Cij and Nij;

(ii) F
ðn;qþ1Þ

nonrad
ij depends nonlinearly on Cij, Nij,

along with at least one of m, Ni, and E
ðpÞ

ij

(for p < n − q − 1);
(iii) G

ðn;qþ1Þ

rad
ij depends nonlinearly on Cij alone; and

(iv) G
ðn;qþ1Þ

nonrad
ij depends nonlinearly on Cij, as

well as on at least one of m, Ni, and E
ðpÞ

ij

(for p < n − q − 2).
Again the values of p that are allowed are constrained by
dimensional analysis. Note that this process of iteratively
defining G

ðn;qÞ

nonrad
ij will end at some point, as there always

exists a qn such that

G
ðn;qnÞ

nonrad
ij ¼ 0: ð4:31Þ

In particular, from Eq. (4.24), we have that q0 ¼ 1.
To define Ẽ

ðnþ1Þ
ijðu; ũÞ from E

ðnþ1Þ
ij, we need to introduce

a few more quantities constructed from G
ðn;qÞ

rad
ij and

G
ðn;qÞ

nonrad
ij . These quantities are

G̃
ðn;pÞ

ijðu; ũÞ≡
X

qn−p

q¼0

ðpþ 2Þ!ðũ − uÞq

ðpþ qþ 2Þ!
½ G
ðn−p;qÞ

rad
ij ðuÞ þ G

ðn−p;qÞ

nonrad
ij ðuÞ�; ð4:32Þ

which has the property that
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∂u

�

ðũ − uÞpþ2

ðpþ 2Þ!
G̃

ðn;pÞ
ijðu; ũÞ

�

¼ −
ðũ − uÞpþ1

ðpþ 1Þ!
½ G
ðn−p;0Þ

rad
ij ðuÞ þ G

ðn−p;0Þ

nonrad
ij ðuÞ�

þ
ðũ − uÞpþ2

ðpþ 2Þ!
½ F̃
ðn;pÞ

radðu; ũÞ þ F̃
ðn;pÞ

nonradðu; ũÞ�; ð4:33Þ

where

F̃
ðn;pÞ

rad
ij ðu; ũÞ≡

X

qn−p−1

q¼0

ðpþ 2Þ!ðũ − uÞq

ðpþ qþ 2Þ!
½ F
ðn−p;qþ1Þ

rad
ij ðuÞ þ

_G
ðn−p;qÞ

rad
ij ðuÞ� þ

ðpþ 2Þ!ðũ − uÞqn−p

ðpþ qn−p þ 2Þ!
_G

ðn−p;qn−pÞ

rad
ij ðuÞ; ð4:34aÞ

F̃
ðn;pÞ

nonrad
ij ðu; ũÞ≡

X

qn−p−1

q¼0

ðpþ 2Þ!ðũ − uÞq

ðpþ qþ 2Þ!
F

ðn−p;qþ1Þ

nonrad
ij ðuÞ: ð4:34bÞ

The definition of G̃
ðn;pÞ

ijðu; ũÞ was created so that it cancels terms that appear in the evolution equation for E
ðn−pÞ

ij that do not

vanish when the news is zero. Using this definition, it is then possible to show that the following definition

Ẽ
ðnþ1Þ

ijðu; ũÞ≡ E
ðnþ1Þ

ijðuÞ þ ðũ − uÞ G̃
ðn;−1Þ

ijðu; ũÞ þ
X

n

p¼0

ðũ − uÞpþ1

ðpþ 1Þ!
Dn � � �Dn−p

�

E
ðn−pÞ

ijðuÞ þ
ũ − u

pþ 2
G̃

ðn;pÞ
ijðu; ũÞ

�

þ
ðũ − uÞnþ2

3ðnþ 2Þ!
Dn � � �D0STFD i Ñ

ðnþ3Þ
jðu; ũÞ ð4:35Þ

satisfies

∂u Ẽ
ðnþ1Þ

ijðu; ũÞ ¼ F̃
ðnþ1Þ

rad
ij ðu; ũÞ þ F̃

ðnþ1Þ

nonrad
ij ðu; ũÞ þ

ðũ − uÞnþ3

6ðnþ 3Þ!
Dn � � �D0STFD i½D lSTFðDjDkÞN

kl�; ð4:36Þ

where

F̃
ðnþ1Þ

rad
ij ðu; ũÞ≡ F

ðnþ1Þ

rad
ij ðuÞ þ ðũ − uÞ F̃

ðn;−1Þ

rad
ij ðu; ũÞ þ

X

n

p¼0

ðũ − uÞpþ1

ðpþ 1Þ!
Dn � � �Dn−p

�

F
ðn−pÞ

rad
ij ðuÞ þ

ũ − u

pþ 2
F̃

ðn;pÞ

rad
ij ðu; ũÞ

�

þ
ðũ − uÞnþ2

3ðnþ 2Þ!
Dn � � �D0STFD i F̃

ðnþ2Þ
jðu; ũÞ; ð4:37aÞ

F̃
ðnþ1Þ

nonrad
ij ðu; ũÞ≡ F

ðnþ1Þ

nonrad
ij ðuÞ þ ðũ − uÞ F̃

ðn;−1Þ

nonrad
ij ðu; ũÞ

þ
X

n

p¼0

ðũ − uÞpþ1

ðpþ 1Þ!
Dn � � �Dn−p

�

F
ðn−pÞ

nonrad
ij ðuÞ þ

ũ − u

pþ 2
F̃

ðn;pÞ

nonrad
ij ðu; ũÞ

�

: ð4:37bÞ

Thus, ∂u Ẽ
ðnþ1Þ

ijðu; ũÞ vanishes when there is vanishing

news. Equation (4.36) then can be integrated in time to
yield the charge and flux decomposition for the order nþ 3

moment of the news given in Eq. (4.6).

4. Procedure applied to the third moment

As the procedure in Sec. IV B 3 for classifying the terms
in the evolution equation and constructing the charge and

flux decomposition for the moments of the news is some-
what involved, we provide an example for n ¼ 0, since
the evolution equation for E

ð1Þ
ij is known [and given by

Eq. (2.22)]. Inspecting the various terms in Eq. (2.22), we
see that

F
ð1Þ

rad
ij ¼ F

ð1Þ

nonrad
ij ¼ 0; ð4:38Þ
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along with

G
ð1;0Þ

rad
ij ¼

1

4
STFDk

��

CilDmC
lm −

3

4
D iðClmC

lmÞ

�

Cjk

þ
5

4
ClmC

lmD iCjk

�

; ð4:39aÞ

G
ð1;0Þ

nonrad
ij ¼ −

1

3
STFDkðNiCjkÞ: ð4:39bÞ

Taking a u derivative of Eq. (4.39b), we find that

F
ð1;1Þ

rad
ij ¼ −

1

12
STFDk½ðNlmD lCmi þ 3CilDmN

lmÞCjk�;

ð4:40aÞ

F
ð1;1Þ

nonrad
ij ¼ −

1

3
STFDkðNiNjkÞ; ð4:40bÞ

G
ð1;1Þ

rad
ij ¼

1

12
STFDkðCjkD

lD ½lD
mCi�mÞ; ð4:40cÞ

G
ð1;1Þ

nonrad
ij ¼ −

1

3
STFDkðCjkD imÞ; ð4:40dÞ

and taking a u derivative of Eq. (4.40d), we find that

F
ð1;2Þ

rad
ij ¼ −

1

12
STFDk

�

CjkD i

"

D lDmN
lm −

1

2
NlmN

lm

"�

;

ð4:41aÞ

F
ð1;2Þ

nonrad
ij ¼ −

1

3
STFDkðNjkD imÞ; ð4:41bÞ

along with

G
ð1;2Þ

rad
ij ¼ G

ð1;2Þ

nonrad
ij ¼ 0; ð4:42Þ

so that q1 ¼ 2.
With these quantities defined, we can now write down a

more explicit expression for Ẽ
ð1Þ

ijðu; ũÞ. By Eq. (4.35), we

have that

Ẽ
ð1Þ

ijðu; ũÞ ¼ E
ð1Þ

ijðuÞ þ ðũ − uÞ G̃
ð0;−1Þ

ijðu; ũÞ

þ ðũ − uÞD0

�

E
ð0Þ

ijðuÞ þ
ũ − u

2
G̃

ð0;0Þ
ijðu; ũÞ

�

þ
ðũ − uÞ2

6
D0STFD i Ñ

ð3Þ
jðu; ũÞ; ð4:43Þ

where Eq. (4.32) implies that

G̃
ð0;−1Þ

ijðu; ũÞ ¼ G
ð1;0Þ

rad
ij ðuÞ þ G

ð1;0Þ

nonrad
ij ðuÞ

þ
ũ − u

2
½ G
ð1;1Þ

rad
ij ðuÞ þ G

ð1;1Þ

nonrad
ij ðuÞ�;

ð4:44aÞ

G̃
ð0;0Þ

ijðu; ũÞ ¼ G
ð0;0Þ

rad
ij ðuÞ þ G

ð0;0Þ

nonrad
ij ðuÞ: ð4:44bÞ

Finally, we can write down more explicit expressions for
the radiative and nonradiative flux contributions defined in
Eq. (4.37):

F̃
ð1Þ

rad
ij ðu; ũÞ ¼ ðũ − uÞ F̃

ð0;−1Þ

rad
ij ðu; ũÞ

þ ðũ − uÞD0

�

F
ð0Þ

rad
ij ðuÞ þ

ũ − u

2
F̃
ð0;0Þ

rad
ij ðu; ũÞ

�

þ
ðũ − uÞ2

6
D0STFD iF̃

ð2Þ
jðu; ũÞ; ð4:45aÞ

F̃
ð1Þ

nonrad
ij ðu; ũÞ ¼ ðũ − uÞ F̃

ð0;−1Þ

nonrad
ij ðu; ũÞ

þ ðũ − uÞD0

�

F
ð0Þ

nonrad
ij ðuÞ

þ
ũ − u

2
F̃
ð0;0Þ

nonrad
ij ðu; ũÞ

�

; ð4:45bÞ

where (4.34a) implies that

F̃
ð0;−1Þ

rad
ij ðu; ũÞ ¼ F

ð1;1Þ

rad
ij ðuÞ þ

_G
ð1;0Þ

rad
ij ðuÞ

þ
ũ − u

2
½ F
ð1;2Þ

rad
ij ðuÞ þ

_G
ð1;1Þ

rad
ij ðuÞ�; ð4:46aÞ

F̃
ð0;0Þ

rad
ij ðu; ũÞ ¼ F

ð0;1Þ

rad
ij ðuÞ þ

_G
ð0;0Þ

rad
ij ðuÞ; ð4:46bÞ

and Eq. (4.34b) implies that

F̃
ð0;−1Þ

nonrad
ij ðu; ũÞ ¼ F

ð1;1Þ

nonrad
ij ðuÞ þ

ũ − u

2
F
ð1;2Þ

nonrad
ij ðuÞ;

ð4:47aÞ

F̃
ð0;0Þ

nonrad
ij ðu; ũÞ ¼ F

ð0;1Þ

nonrad
ij ðuÞ: ð4:47bÞ

C. Expansion in spherical harmonics

It is important to note that the expressions that we
derived in Sec. IV were for angular derivatives acting on the
moments of the news tensor and not the moments of the
news themselves. To obtain the moments of the news from
these expressions requires us to invert these angular
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operators, which, in turn, requires us to determine the
conditions under which these angular operators can be
inverted. This issue can be addressed by expanding these
moments in tensor spherical harmonics. As we will now
show, these operators cannot be inverted for generic
moments of the news greater than the second, because
the operator that arises in Eq (4.6), for the order nþ 3

moment of the news annihilates harmonics with l < nþ 3.
This issue does not arise for zeroth, first, and second
moments of the news, however. To show this quantitatively,
we first need to introduce our conventions for our tensor
spherical harmonics.

1. Tensorial spherical harmonics

We first introduce the tensorial spherical harmonics,
which are defined as follows8:

ðTI
lmÞi1���is ≡ 2ðs−1Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl − sÞ!

ðlþ sÞ!

s

× STF

�

D i1
� � �D is

Ylm I ¼ E

ϵji1D i2
� � �D is

DjYlm I ¼ B
:

ð4:48Þ

The value I ¼ E refers to the “electric” harmonics, and
I ¼ B the “magnetic” harmonics. The index l must satisfy
l ≥ s, and m is in the range −l ≤ m ≤ l.9 From these
definitions, one can show the following “raising” relation
between rank s − 1 and rank s harmonics:

STFD i1
ðTI

lmÞi2���is ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl − sþ 1Þðlþ sÞ

2

r

ðTI
lmÞi1���is :

ð4:49Þ

We will also need the “lowering” relations of the form

DjðTI
lmÞij ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þðl − 1Þ

2

r

ðTI
lmÞi ð4:50Þ

and

D iðTI
lmÞi ¼

�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p

Ylm I ¼ E

0 I ¼ B
; ð4:51Þ

which are also straightforward to show. Finally, the action
of the Laplacian D2 on the tensor spherical harmonics is
given by

D2ðTI
lmÞij ¼ ½4 − lðlþ 1Þ�ðTI

lmÞij ð4:52Þ

(see, for example, [45]).

2. Multipolar decomposition

We now write the moments of the news in an expansion
in tensor harmonics (where, for simplicity, we drop the
dependence on u1 and u0):

N
ðnÞ

ij ≡

X

l≥2

X

jmj≤l

X

I¼E;B

N
ðnÞ

I
lmðT

I
lmÞij: ð4:53Þ

We then consider the angular operators that act
on the moments of the news in Eqs. (4.1), (4.3), (4.5),
and (4.6).
First, we focus on the angular operator in Eq. (4.1).

Equations (4.50) and (4.51) imply that

D iDjðT
I
lmÞ

ij ¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ2Þðlþ1Þlðl−1Þ
2

q

Ylm I ¼ E

0 I ¼ B
; ð4:54Þ

so that

D iDjN
ð0Þ

ij ¼
X

l≥2

X

jmj≤l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þðlþ 1Þlðl− 1Þ

2

r

N
ð0Þ

E
lmYlm:

ð4:55Þ

Thus, Eq. (4.1) determines only the electric harmonics for
the zeroth moment of the news (a well-known property
of computing the displacement memory effect from the
conservation equation for the mass aspect; see, for exam-
ple, [23]).
Next, consider Eq. (4.3), and the first moment of the

news. After commuting several partial derivatives and
using the definition of the Riemann tensor in two dimen-
sions, we find

DkSTFðD iDjÞðT
I
lmÞ

jk

¼
1

2
½2D iDjDkðT

I
lmÞ

jk −DjðD2 − 4ÞðTI
lmÞij�: ð4:56Þ

Combining this expression with those in Eqs. (4.48),
(4.52), and (4.54), we arrive at the result

DkSTFðD iDjÞN
ðnÞ

jk

¼
X

l≥2

X

jmj≤l

lðlþ 1Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þðl − 1Þ

2

r

× ½N
ðnÞ

E
lmðT

E
lmÞi −N

ðnÞ

B
lmðT

B
lmÞi�: ð4:57Þ

8Note that the definitions of these harmonics here agree with
the three types of harmonics used in [44], with the exception of
the s ¼ 1 and I ¼ B case, which differs by a minus sign.

9We place the tensor indices outside of parentheses so that they
are not confused with the labels I and lm for the harmonics.
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For n ¼ 1, this is the angular operator acting on the first
moment of the news, which appears in Eq. (4.3). It is
possible to invert this equation to solve for the full first
moment of the news, including both the electric and
magnetic parts.
Applying a divergence to Eq. (4.57) and taking the STF

part, then with the help of Eq. (4.49), we obtain

STFD i½D lSTFðDjDkÞN
ðnÞ

kl�

¼
X

l≥2

X

jmj≤l

ðl − 1Þlðlþ 1Þðlþ 2Þ

4

× ½N
ðnÞ

E
lmðT

E
lmÞij −N

ðnÞ

B
lmðT

B
lmÞij�: ð4:58Þ

Thus also when n ¼ 2, one can invert Eq. (4.5) to obtain the
all the harmonics of the second moment of the news (and
hence the complete moment).
Finally, we consider Eq. (4.6), and the order nþ 3

moment of the news. Here, we need to use Eqs. (2.24) and
(4.52) to see that

DnðT
I
lmÞij ¼

ðnþ 2Þ½lðlþ 1Þ − ðnþ 2Þðnþ 3Þ�

2ðnþ 1Þðnþ 4Þ
ðTI

lmÞij:

ð4:59Þ

It follows that Dn will only annihilate the l ¼ nþ 2

harmonic. The operator Dn � � �D0 will then only annihilate
all harmonics with l ≤ nþ 2. This implies that

Dn � � �D0STFD i½D lSTFðDjDkÞ N
ðnþ3Þ

kl� ¼
X

l≥nþ3

X

jmj≤l

�

Y

n

k¼0

ðkþ 2Þ½lðlþ 1Þ − ðkþ 2Þðkþ 3Þ�

2ðkþ 1Þðkþ 4Þ

�

×
ðl − 1Þlðlþ 1Þðlþ 2Þ

4
½ N
ðnþ3Þ

E
lmðT

E
lmÞij − N

ðnþ3Þ

B
lmðT

B
lmÞij�: ð4:60Þ

One can invert this equation for the harmonics of N
ðnþ3Þ

ij

with l ≥ nþ 3.
In the linear theory, it follows from Eq. (2.23) and the

fact that Dn annihilates the l ¼ nþ 2 harmonic that the
l ¼ nþ 2 harmonic of E

ðnþ1Þ
ij is constant for n ≥ 0.

Newman and Penrose [46] derived an analogous result
using the subleading components of the Weyl tensor
instead of the components of the metric used here [though
they are related by Eq. (2.19c) in the linear theory]. In
particular, in the case where n ¼ 0, these constants are
related to the Newman-Penrose constants [46], which are
defined in terms of the subleading part of a particular
component of the Weyl tensor. The Newman-Penrose
constants, unlike the l ¼ 2 parts of E

ð1Þ
ij, are constant

not only in the linear theory, but nonlinearly as well.
Whether such constants arise in the full nonlinear theory for
any further subleading parts of the Weyl tensor is still an
open question.

V. DISCUSSION

In this paper, we have computed the curve deviation
observable defined in paper I [1] in vacuum, asymptotically
flat spacetimes near null infinity (that is, at leading order in
1=r). This observable generalizes geodesic deviation in that
it consists of a part of the final displacement of nearby
observers who have an initial displacement, relative veloc-
ity, relative acceleration, and higher nonzero time deriva-
tives of the relative acceleration. The dependence of the
curve deviation on the initial displacement contains the

displacement memory effect, the dependence on initial
relative velocity contains the spin and center-of-mass
memory effects, and the dependence on the initial accel-
eration and its time derivatives contains a number of new,
independent persistent observables. All these different
observables can be cast as different “moments of the news
tensor”: namely, integrals of the product of the news tensor
and an integer power of the retarded time.
Similarly to the case of the displacement memory effect,

we find that the contributions to all parts of the curve
deviation observable can be divided into “charge” and
“flux” contributions. The charge part corresponds to a
change in a quantity that is constant in the absence of
radiation, and the flux part is an integral of a quantity that
vanishes in the absence of radiation. This is perhaps not
surprising given the close relation between the displace-
ment, spin, and center-of-mass memory effects on the one
hand, and the first two moments of the news that enter into
the curve deviation observable. However, this classification
holds for all parts of the curve deviation and all moments of
the news. The form of the flux contribution is more
involved for the dependence of the curve deviation observ-
able on initial relative acceleration (and its higher deriv-
atives), which constrain the second and higher moments of
the news tensor. Specifically, we find that the flux con-
tribution can be split into two parts: (i) there is a radiative
flux contribution that is given entirely in terms of quantities
that appear in the gravitational waveform and (ii) a non-
radiative flux contribution, which depends on source
properties that are not present in the radiation. We also
found that there are moments of the news tensor in these
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observables that are not constrained through these charge
and flux contributions, as determining these observables
involves inverting angular operators that annihilate certain
spherical harmonics.
In future work, we plan to compute these observables for

astrophysical sources, such as compact binary mergers. In
this context, we plan to both explore these observables in a
post-Newtonian framework, as has been done for the
displacement memory effect [47], for example, or for the
spin and center-of-mass memory effects [9,44]. We will
also investigate these moments of the news tensor for
waveforms produced by numerical relativity simulations of
binary black hole systems.
Once we have predictions from astrophysical sources,

we intend to assess how these effects could be measured
by gravitational wave detectors such as LIGO and LISA.
The main challenge is in defining what is meant by a
“measurement” of these effects. This arises even in the case
of the usual displacement memory effect: this effect is
nonlocal in time, reflecting a change before and after a
burst of gravitational waves. Such changes are effectively
zero-frequency effects, and are undetectable by detectors
with sensitivity only at finite, nonzero frequencies. What
is meant by a detection of the memory, for example in
[48–51], is instead the detection of a part of the waveform
which contributes to the total displacement memory effect.
This part of the waveform, which could be called the
“displacement memory signal” (to distinguish it from the
displacement memory effect), is a function of time, and
its detectability can be estimated in terms its signal-to-
noise ratio.
The displacement memory signal is given by the flux

contribution in Eq. (4.1), considered not as an integral
between two fixed times u0 and u1, but as a function of time
u (by integrating from some given u0 until u). For the first
moment of the news, there is similarly a part of a waveform
which contributes to the total first moment of the news.
This part of the waveform is related to the spin and center-
of-mass memory signals discussed in [9,44], and con-
structed from the flux contribution in Eq. (4.3). The size of
the spin and center-of-mass memory signals is even smaller
than that of the displacement memory signal; thus,
Refs. [9,44] provided preliminary evidence that the effects
would not be detected until the next generation of gravi-
tational-wave detectors following LIGO and Virgo are
built. It is natural to consider generalizing this procedure
for higher moments of the news. This is a topic we intend to
pursue in future work.
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APPENDIX A: HYPERSURFACE AND

EVOLUTION EQUATIONS

In this Appendix, we list the relevant hypersurface and
evolution equations that arise from the vacuum Einstein
equations, as mentioned in Sec. II A.
The first is the hypersurface equation arising from

Rrr ¼ 0, which gives the following differential equation
for β:

∂r

"

β

r

"

¼
r

16
ðI−1Þijklð∂rHijÞð∂rHklÞ; ðA1Þ

where

I ijkl ≡HikHjl; ðI−1Þijkl ≡ ðH−1ÞikðH−1Þjl: ðA2Þ

This differential equation can be readily solved for β,
and the solution shows that β will have no logarithmic
dependence on r and that β̃≡ rβ is finite as r → ∞. This
confirms Eq. (2.4a). Moreover, this differential equation
has no constant of integration, as β is assumed to be finite
as r → ∞.
The second set comes from Rri ¼ 0, and is a differential

equation for U i:

∂r

�

r4e−2β=rHij∂r

"

Uj

r2

"�

¼ 2

�

r4∂r

"

D iβ

r3

"

−Qi

�

; ðA3Þ

where

Qi≡
r2

2

�

Dk½ðH
−1Þjk∂rHij�−

1

2
ðH−1ÞjkD i∂rHjk

�

; ðA4Þ

which is Oð1Þ since ∂rHij ¼ Oð1=r2Þ. Equation (A3) can
be integrated twice in order to solve for U i; in order to avoid
logarithmic terms in the first integral, the integrand must
not have an Oð1=rÞ piece. This can be shown to imply that
DjCij must not have a contribution at Oð1=rÞ, and since
divergence-free, trace-free, rank two tensors on the sphere
must vanish, it follows that Cij cannot have a contribution at
Oð1=rÞ, yielding Eq. (2.6). This first integral, moreover,
has a constant of integration that is directly related to the
angular momentum aspect Ni. The second integral has
neither a constant of integration (since U i must remain
finite as r →∞), nor any logarithmic terms. All of these
results confirm Eq. (2.4c).
The final two sets of Einstein equations come from

Rij ¼ 0, which reduce to the following differential equa-
tions for ∂uHij and V:

rDij
kl

"

r∂uHkl þ
1

r
Kkl

"

þ 2ð∂rVÞHij ¼
1

r
Qij; ðA5Þ

where the differential operator Dij
kl is defined by
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Dij
klAkl ≡ ∂rAðijÞ þ AkðiHjÞl∂rðH

−1Þkl; ðA6Þ

the quantity Kij defined by

Kij ≡D iðHjkU
kÞ − UkHklH

l
ij −

1

2
r2
"

1 −
2V

r

"

∂rHij; ðA7Þ

and the source Qij takes the form

Qij ≡ re2β=r
�

e−2β=rHij − hij −
1

r

"

e−2β=r
�

KðijÞ þ
1

2r
Dk½U

k∂rðr
2HijÞ�

�

− 2D iDjβ þ rH ij

"

þ
2

r2

�

ðD iβÞðDjβÞ þ rHk
lðij

�

1

2r
e−2β=rU l∂rðr

2HjjÞkÞ − δljjÞDkβ

�

þ
1

4
r6e−4β=rI ijkl

�

∂r

"

Uk

r2

"��

∂r

"

U l

r2

"���

: ðA8Þ

In these equations, the quantities Hi
jk and H ij are

defined by

Hi
jk ≡

1

2
ðH−1Þilð2D ðjHkÞl −D lHjkÞ ðA9Þ

and

H ij ≡DkH
k
ij −Hk

liH
l
kj: ðA10Þ

Equation (A5) is more complicated than either of the
previous hypersurface equations, but it can be split into its
pure trace and STF pieces, using Hij instead of hij (as we
have done for the rest of the paper). Contracting Eq. (A5)
into ðH−1Þij, we find that the pure trace equation is
given by

∂rV ¼
1

4

�

1

r
ðH−1ÞijQij − r∂r

�

1

r
ðH−1ÞijKij

��

: ðA11Þ

Since ðH−1ÞijKij and ðH−1ÞijQij are independent of V, this
equation can be readily integrated to determine V. The
constant of integration that appears is the mass aspect m,
and it can be shown that no logarithmic terms appear in the
solution, confirming Eq. (2.4b).
Taking the STFH of Eq. (A5) (the symmetric, trace free

part computed using Hij), we find a differential equation
that only involves ∂uHij:

Dij
kl

"

r∂uHkl þ
1

r
STFHKkl

"

¼
1

r2
Pij; ðA12Þ

where

Pij ≡ STF
H

Qij −
r

2
ϵklKklϵmðiHjÞn∂rðH

−1Þmn: ðA13Þ

This equation is typically called an evolution equation (by,
for example, [26]), instead of a hypersurface equation.
However, it resembles a hypersurface equation in the sense
that it is a differential equation in r for some new quantity
∂uHij, but it is a much more complicated differential
equation that cannot be solved simply by an integration.
Instead, we introduce two quantities, J ij

kl and ðJ −1Þijkl,
where the former solves the differential equation

∂rJ
ij
kl ¼ −

1

2
ðI−1Þijmnð∂rI

mn
opÞJ

op
kl ðA14Þ

[with the boundary condition that J ij
kl ¼ δikδ

j
l þ

Oð1=rÞ], and the second is an inverse in the sense that

ðJ −1ÞijmnJ
mn

kl ¼ J ij
mnðJ

−1Þmn
kl ¼ δikδ

j
l: ðA15Þ

In terms of these quantities, Eq. (A12) can be reduced to
an ordinary differential equation in r, which yields (after
some further manipulations) the following integral expres-
sion for ∂uCij:

∂uCij ¼ STFh

�"

Nkl þ

Z

dr

r2
PmnJ

mn
kl

"

ðJ −1Þklij

�

−
1

r

�

STFhKij −
1

2r
CijðH

−1ÞklKkl

�

: ðA16Þ

The constant of integration Nij in the first line of this
expression is the news tensor, and it can be seen that this
integral has no logarithmic contributions. Expanding
this equation order by order in 1=r, one can determine
the evolution equations for each E

ðnÞ
ij, such as Eqs. (2.21)

and (2.22) for ∂u E
ð0Þ

ij and ∂u E
ð1Þ

ij.
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Moreover, one can show that linearizing Eq. (A16)
yields Eq. (2.23). To do so, we first note that Eq. (A1)
implies that

β ≃ 0; ðA17Þ

and so Eq. (A3) can be integrated to obtain

U i ≃ −
2

3r
Ni − r2

Z

dr

r4

Z

r2dr∂r

"

DjC
ij

r

"

; ðA18Þ

where we have also used the linearization of Eq. (2.9).
Next, one can show from Eq. (A7) that

Kij ≃D iUj −
r2

2
∂r

"

Cij

r

"

; ðA19Þ

and so from Eq. (A13) that

Pij ≃ STFQij ≃ −STFD iUj þ
r2

2
∂r

"

Cij

r

"

; ðA20Þ

where we have used the fact that

STFDkD iCj
k ¼

1

2
ðD2 þ 2ÞCij: ðA21Þ

As such, Eq. (A16) becomes

∂uCij ≃ Nij −

Z

dr
r
∂rSTFD iUj þ

1

2
∂rCij; ðA22Þ

which [together with

STFD iD
kEjk ¼

1

2
ðD2 − 2ÞEij ðA23Þ

and Eq. (A18)] implies that

∂uEij ≃
1

3
STFD iNj þ

r2

2

�
Z

dr
r
∂r

�

r2
Z

dr

r4

Z

r2dr∂r

�

ðD2 − 2ÞEij

r3

��

þ ∂r

"

Eij

r2

"�

: ðA24Þ

Expanding this equation order by order in 1=r gives
Eq. (2.23).

APPENDIX B: CHRISTOFFEL SYMBOLS

In this Appendix, we provide the Christoffel symbols of
the metric in Bondi-Sachs form given in Eq. (2.1). A full
list of these Christoffel symbols can be found (for example)
in [17] for the axisymmetric case, or [53] for the general
case, but for brevity we only list the orders in 1=r, as it is
only this information which is relevant for the discussion in
this paper. We find that

Γ
u
uu ¼ Oð1=rÞ; Γ

r
uu ¼ Oð1=rÞ; Γ

i
uu ¼ Oð1=r2Þ;

ðB1aÞ

Γ
u
ur ¼ 0; Γ

r
ur ¼ Oð1=r2Þ; Γ

i
ur ¼ Oð1=r3Þ; ðB1bÞ

Γ
u
ui ¼ Oð1=rÞ; Γ

r
ui ¼ Oð1=rÞ; Γ

i
uj ¼ Oð1=rÞ;

ðB1cÞ

Γ
u
rr ¼ 0; Γ

r
rr ¼ Oð1=r2Þ; Γ

i
rr ¼ 0; ðB1dÞ

Γ
u
ri ¼ 0; Γ

r
ri ¼ Oð1=rÞ; Γ

i
rj ¼ Oð1=rÞ; ðB1eÞ

Γ
u
ij ¼ OðrÞ; Γ

r
ij ¼ OðrÞ; Γ

i
jk ¼ Oð1Þ: ðB1fÞ

Using these equations in the geodesic equation and the
equations of parallel transport, one can recover Eqs. (2.12)
and (2.16), respectively.

APPENDIX C: DERIVATIVES OF RELATIVE

ACCELERATION

In this Appendix, we provide a proof of Eq. (3.8), which
relates derivatives of the relative acceleration aa to deriv-
atives of the acceleration ̈γ̄ā of the worldline γ̄. To do so, we
first note that, for arbitrary τ1 > τ0,

aa
0
¼ ga

0

ā0
̈γ̄ā

0
;

¼ γg
a0

ag
a
ā γ̄g

ā
ā0ðΛ

−1Þā
0

b̄0ðγ̄; γ; τ0Þ̈γ̄
b̄0 ; ðC1Þ

where ðΛ−1Þā
0

b̄0ðγ̄; γ; τ0Þ is the holonomy that corresponds
to parallel transport around the loop

γ̄ðτ1Þ → γðτ1Þ → γðτ0Þ → γ̄ðτ0Þ → γ̄ðτ1Þ ðC2Þ

(the specific notation for this holonomy matches that of
paper I). From the discussion in paper I, the difference
between this holonomy and the identity is a correction of
Oðξ; _ξ; ̈γ̄Þ, which we can neglect as it is being multiplied by
̈γ̄ā in Eq. (C1). It follows that

aa
0
¼ γg

a0
ag

a
ā γ̄g

ā
ā0
̈γ̄ā

0
þOðξ; _ξ; ̈γ̄Þ2: ðC3Þ
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The definition of the parallel propagator is such that

D
dτ1

γg
a0

a ¼ 0;
D
dτ1

γ̄g
ā
ā0 ¼ 0; ðC4Þ

which implies that, taking the nth derivative of Eq. (C3)
with respect to τ1,

Dnaa
0

dτn1
¼ γg

a0
ag

a
ā γ̄g

ā
ā0
Dn ̈γ̄ā

0

dτn1
þOðξ; _ξ; ̈γ̄Þ2: ðC5Þ

Taking the limit τ1 → τ0, we recover Eq. (3.8).

APPENDIX D: INTEGRATIONS BY PARTS

In this Appendix, we prove Eqs. (3.13) and (3.14),
showing exactly the manipulations that are used in deriving
them from Eqs. (3.9b) and (3.9c), respectively. This is
mostly performed by integrations by parts.
Consider an arbitrary function fðuÞ. We start with the

following expression, for arbitrary u0 ≤ u2 ≤ u1:

Z

u1

u2

du3

Z

u3

u2

du4ðu4 − u2Þ _fðu4Þ

¼

Z

u1

u2

du3

�

ðu3 − u2Þfðu3Þ −

Z

u3

u2

du4fðu4Þ

�

; ðD1Þ

which follows from an integration by parts. Moreover, we
have that

ðu1 − u3Þfðu3Þ ¼
d
du3

�

ðu1 − u3Þ

Z

u3

u

du4fðu4Þ

�

þ

Z

u3

u

du4fðu4Þ; ðD2Þ

for any u. Setting u ¼ u2, we find that the term in brackets
vanishes when u3 ¼ u2 and when u3 ¼ u1; thus, we have
that

Z

u1

u2

du3

Z

u3

u2

du4fðu4Þ ¼
Z

u1

u2

du3ðu1 − u3Þfðu3Þ: ðD3Þ

Combining this with Eq. (D1), we find that

Z

u1

u2

du3

Z

u3

u2

du4ðu4 − u2Þ _fðu4Þ

¼

Z

u1

u2

du3½ðu3 − u2Þ − ðu1 − u3Þ�fðu3Þ;

¼ 2

Z

u1

u2

du3ðu3 − u0Þfðu3Þ

− ½ðu2 − u0Þ þ ðu1 − u0Þ�

Z

u1

u2

du3fðu3Þ: ðD4Þ

We now apply Eq. (D4) to Eq. (3.9b), noting that the
integral in that equation takes the form of Eq. (D4), with
u2 ¼ u0. Here, the function f is given by the news Ni

j, and
so we find

Z

u1

u0

du2

Z

u2

u0

du3ðu3 − u0Þ _N
i
jðu4Þ

¼ 2N
ð1Þ

i
jðu1; u0Þ − ðu1 − u0ÞN

ð0Þ

i
jðu1; u0Þ: ðD5Þ

Using this equation, together with Eqs. (3.9b) and (2.17),
we find Eq. (3.13).
In order to prove Eq. (3.14) from Eq. (3.9c), we note that

the integral on the left-hand side of Eq. (D4) appears in
Eq. (3.9c), but multiplied by a factor of ðu2 − u0Þ

n and
integrated from u0 to u1. We then use the fact that

ðu2 − u0Þ
n

Z

u2

u

du3fðu3Þ

¼
d
du2

�

ðu2 − u0Þ
nþ1

nþ 1

Z

u2

u

du3fðu3Þ

�

−
ðu2 − u0Þ

nþ1

nþ 1
fðu2Þ; ðD6Þ

for any u; applying this equation to the case u ¼ u1 and
noting (once again) that the term in brackets on the right-
hand side vanishes when u2 ¼ u0 or u2 ¼ u1, we find that

Z

u1

u0

du2ðu2 − u0Þ
n

Z

u1

u2

du3fðu3Þ

¼
1

nþ 1

Z

u1

u0

du2ðu2 − u0Þ
nþ1fðu2Þ: ðD7Þ

We can then combine several expressions to find that

1

n!

Z

u1

u0

du2ðu2 − u0Þ
n

Z

u1

u2

du3

Z

u3

u2

du4ðu4 − u2Þ _N
i
jðu4Þ ¼

2

n!

Z

u1

u0

du2ðu2 − u0Þ
n

Z

u1

u2

du3ðu3 − u0ÞN
i
jðu3Þ

−
1

n!

Z

u1

u0

du2ðu2 − u0Þ
nþ1

Z

u1

u2

du3Ni
jðu3Þ

−
1

n!
ðu1 − u0Þ

Z

u1

u0

du2ðu2 − u0Þ
n

Z

u1

u2

du3Ni
jðu3Þ;

¼ ðnþ 3Þ N
ðnþ2Þ

i
jðu1; u0Þ − ðu1 − u0Þ N

ðnþ1Þ

i
jðu1; u0Þ: ðD8Þ
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The first equality follows directly from using Eq. (D4), and the second follows by applying Eq. (D6) to each of the three
terms on the right-hand side of the first line, using fðuÞ ¼ Ni

jðuÞ in the second and third terms, and fðuÞ ¼ ðu − u0ÞN
i
jðuÞ

in the first term. Using this equation, together with Eqs. (3.9c) and (2.17), recovers Eq. (3.14).
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