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Auxin is a crucial growth regulator that governs plant development and responses to envi-
ronmental perturbations. It functions at the heart of many developmental processes, from
embryogenesis to organ senescence, and is key to plant interactions with the environment,
including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act
alone, but rather solicits the help of, or is solicited by, other endogenous signals, including
the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid,
jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other
hormones occur at multiple levels: hormones regulate one another’s synthesis, transport,
and/or response; hormone-specific transcriptional regulators for different pathways physical-
ly interact and/or converge on common target genes; etc. However, our understanding of
this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly estab-
lished. In this review, we provide a glimpse into the complexity of hormone interactions that

involve auxin, underscoring how patchy our current understanding is.

The plant hormone auxin is an essential
growth regulator central to a wide variety
of developmental processes, environmental ad-
aptation, and phenotypic plasticity (for review,
see Enders and Strader 2015 and Lavy and Es-
telle 2016). The name auxin comes from the
Greek word “auxein,” meaning “to grow.” The
best-studied form of auxin, indole-3-acetic acid
(IAA), is synthesized from the amino acid
tryptophan (Trp) through a simple, two-step
pathway. Trp aminotransferases of the Trp
AMINOTRANSFERASE OF ARABIDOPSISI
(TAA1)/TAA1-RELATED (TAR) family con-
vert Trp to indole-3-pyruvic acid (IPyA), which

is then metabolized to IAA by flavin-containing
monooxygenases, YUCCAs (YUCs). The avail-
ability of biologically active IAA is controlled
by auxin-catabolizing enzymes of the DIOXY-
GENASE OF AUXIN OXIDATION (DAO) fam-
ily that oxidize IAA to 2-oxindole-3-acetic
acid, auxin-conjugating enzymes such as the
IAA amidosynthetases GRETCHEN HAGEN3
(GH3) and glucosyltransferases that inactivate
auxin by linking it to amino acids or sugars,
respectively, and by auxin transporters that
move auxin in and out of the cell and between
cells (for review, see Enders and Strader 2015).
Free IAA can enter plant cells passively or be
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actively imported via AUXIN1 (AUX1)/LIKE
AUX1 (LAX) influx carriers. [AA can also exit
cells via efflux carriers of the PIN-FORMED
(PIN) and P-GLYCOPROTEIN/ATP-BIND-
ING CASETTE transporter families. Auxin
perception takes place inside the cell, predomi-
nantly in the nucleus, where IAA binds to
the TRANSPORT INHIBITOR-RESISTANT1
(TIR1)/AUXIN SIGNALING F-BOX (AFB)
family of auxin receptors and promotes their in-
teraction with the auxin coreceptors, Aux/IAAs.
In the absence of the hormone, Aux/IAAs asso-
ciate with AUXIN RESPONSE FACTOR (ARF)
transcription factors (TFs) and block their tran-
scriptional activity via the recruitment of TOP-
LESS (TPL) and chromatin-remodeling machin-
ery. In the presence of IAA, Aux/IAAs undergo
ubiquitin-mediated proteasomal degradation
triggered by the SKP-CULLIN-F-BOX (SCF™™®)
E3-ligase complex, releasing ARFs and enabling
ARF-mediated transcriptional regulation of aux-
in-response genes (for review, see Enders and
Strader 2015 and Lavy and Estelle 2016).

While auxin governs multiple aspects of
plant development, physiology, and environ-
mental competence, it does not act in isolation.
In every process where the contributions of aux-
in have been explored, it appears to enlist or be
enlisted by other endogenous signals and exter-
nal cues, enabling the plant to tailor its growth
and development to the specific conditions it
happens to be in. This article aims to present
the current state of knowledge in the area of
auxin interactions with other plant hormones,
specifically abscisic acid (ABA), brassinosteroid
(BR), cytokinin (CK), ethylene (ET), gibberellic
acid (GA), jasmonate (JA), salicylic acid (SA),
and strigolactone (SL). We chose to structure
this manuscript by the pairs of plant hormones,
with the caveat that in many processes multiple
players are involved and we are only beginning
to untangle the full complexity of signal crosstalk
in plants. We have included graphical represen-
tations of key auxin interactions with other hor-
mones during the processes of seed germination,
root, shoot, and fruit development in Figures 1-4,
respectively. Given the breadth of the auxin in-
teraction network, we were unable to discuss all
relevant studies and wish to apologize to those

researchers whose work we could not describe in
light of space limitations in this article.

AUXIN-ABA INTERACTIONS

ABA, originally named “abscisin II” for its role in
the abscission of cotton fruits (Addicott et al.
1968), is a sequisterpene that belongs to the
terpenoid class of metabolites. It is primarily syn-
thesized in the vasculature and guard cells and
transported by ABA transporters (for review,
see Emenecker and Strader 2020). ABA is
perceived by soluble PYRABACTIN RESIS-
TANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULA-
TORY COMPONENT OF ABA RECEPTOR
proteins, leading to the inhibition of PROTEIN
PHOSPHATASE 2C (PP2C). Formation of the
ABA-PYR-PP2C complex causes the accumula-
tionof phosphorylated protein kinases in subclass
III of the SNF1-RELATED PROTEIN KINASE2
(SnRK2) family, which phosphorylates various
target proteins, including ABA-RESPONSIVE
ELEMENT-BINDING FACTORs, to achieve
the appropriate cellular response (for review, see
Emenecker and Strader 2020).

Seed Dormancy and Germination

ABA is the major hormone involved in the es-
tablishment and maintenance of seed dormancy
(Fig. 1; for review, see Bentsink and Koornneef
2008). Among ABA signaling components in
Arabidopsis, TFs ABA-INSENSITIVE3 (ABI3),
ABI4, and ABI5 were identified as positive reg-
ulators of ABA signaling and negative regulators
of seed germination (for review, see Emenecker
and Strader 2020).

The B3-domain TF ABI3 is transcriptionally
induced by ABA, and disruption of this gene’s
function reduces seed dormancy and allows ger-
mination in the presence of exogenous ABA
(Koornneef et al. 1984). Remarkably, ABI3 tran-
scription is also induced by exogenous IAA and
positively regulated by ARF10 and ARF16 (Liu
etal. 2013b), which are both believed to function
as transcriptional repressors (Fig. 1; Wang et al.
2005b). Even though a potential auxin response
element (AuxRE) is present in the ABI3 pro-
moter, neither ARF10 nor ARF16 directly bind
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Figure 1. Auxin interactions with abscisic acid (ABA)
in the control of seed germination. Seed dormancy is
primarily controlled by the balance between ABA and
gibberellic acid (GA), which oppose one another in
the regulation of seed germination: ABA inhibits,
whereas GA promotes seed sprouting. Auxin, acting
through IAA8 and ARF10/ARF16, works to enhance
seed dormancy by inducing ABI3 expression. ABI3,in
turn, down-regulates miR160, an miRNA that inhib-
its ARF10/16, enabling feedback regulation of ARF
activity by ABI3. Transcription factors (TFs) ABI3,
ABI4, and ABI5 all contribute to blocking seed ger-
mination. ABI4 regulates ABA production and GA
metabolism by inducing an ABA biosynthesis gene,
NCEDS6, and a GA catabolism gene, GA20x7. Addi-
tional interactions that take place between ABA and
GA, but do not involve auxin, are omitted in this
schematic. Arrowheads represent positive regulation;
blunt arrows represent negative regulation; solid and
interrupted lines represent direct and indirect regula-
tion, respectively; dashes between proteins represent
direct interaction. Colors represent auxin (red), ABA
(orange), and GA (green) pathway components.
Black is used to depict genes/proteins that do not
belong to a specific hormone pathway, as well as the
developmental processes the network regulates.

the ABI3 promoter, suggesting indirect action of
these TFs by repressing a repressor of ABI3 (Liu
et al. 2013b). In addition, a loss-of-function mu-
tant of IAAS, iaa8-1, shows delayed seed germi-
nation, and the TAA8 protein can associate with
an AuxRE within the ABI3 promoter, suggesting
that [AA8 may bind to the ABI3 promoter via
yet unidentified ARFs to regulate seed germina-
tion (Hussain et al. 2020). Previous studies
revealed the ability of ARFs, including ARF16,
to interact with IAA8 (Piya et al. 2014), but it
remains to be determined which specific ARF-
Aux/TAA combinations bind the ABI3 promot-

Auxin’s Interactions with Other Hormones

er to regulate its transcription. Interestingly, an
older study discovered that ABI3 directly re-
presses the transcription of miR160B, an
miRNA that targets ARFIO and ARFI6, and
thus up-regulates ABI3 through a potentially
complex feedback loop (Fig. 1; Tian et al. 2004).

ABI4, an APETALA2 (AP2)-domain TF,
controls various developmental processes (for
review, see Chandrasekaran et al. 2020). It regu-
lates seed dormancy by directly activating an
ABA biosynthetic gene, NINE-CIS-EPOXY-
CAROTENOID DIOXYGENASE6 (NCEDS),
and a GA catabolic gene, GA 2-BETA-DIOXY-
GENASE7 (GA20x7) (Fig. 1; Shu et al. 2013,
2016). Furthermore, abi4 mutant seeds are in-
sensitive to auxin-mediated inhibition of seed
germination and show reduced dormancy
(Rohde et al. 2000). The prospective role of
ABI4 in mediating auxin effects on germination
is further supported by a recent study that
showed that YUC4-overexpressing plants dis-
play enhanced sensitivity to ABA during seed
germination, whereas the same construct in the
abi4 background leadsto wild-type germination,
indicating that ABI4 is required for the ABA
hypersensitivity of YUC4-overexpressing lines
during germination (Munguia-Rodriguez et al.
2020). Thus, ABI4 is another convergence point
between ABA and auxin during inhibition of
germination (Fig. 1).

Finally, ABI5, a bZIP TE functions down-
stream of ABI3 and is also a substrate of activated
SnRK2s (Fig. 1; Yu et al. 2015). It binds ABA-
responsive element (ABRE)-containing promot-
ers (Finkelstein and Lynch 2000; Hossain et al.
2010; Zhou et al. 2013). While the Arabidopsis
abi5 mutant shows seed germination defects,
rice plants with mutations in the ABI5-LIKE]
(OsABL1I) gene, which is induced by both ABA
and auxin, show normal seed germination but
suppressed ABA-triggered root growth inhibition
and hypersensitivity to exogenous auxin (Yang
et al. 2011). In addition, the OsABL1 protein
can directly bind ABREs in vitro and the expres-
sion levels of several ABRE-containing genes po-
tentially related to auxin metabolism or signaling
are altered in abll mutants, indicating that
OsABLI1 plays a role in the crosstalk between
ABA and auxin (Yang et al. 2011).
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Figure 2. Auxin interactions with other hormones in
roots. (A) Hormone interactions regulating auxin
biosynthesis, transport, and signaling during lateral
root (LR) formation and root meristem mainte-
nance. The minus sign signifies repression of the
root processes by the hormones listed on the left
side of the root. The plus sign signifies promotion
of the root processes by the hormones listed on the
right side of the root. (B) Molecular network of the
hormone interactions mediating LR formation. Ab-
scisic acid (ABA) induces LR growth through PYLS.
The interaction of PYL8, PYL9, with MYB77 pro-
motes the crosstalk with the auxin signaling pathway
via ARF7 and ARF19. ABA up-regulates the expres-
sion of ABI4, which represses the expression of PIN1
to modify auxin transport. The negative effect of this
network on LR formation can be reinforced by the
cytokinin (CK)-mediated repression of PINI or
weakened by auxin-mediated inhibition of ABI4.
Ethylene induces the expression of PIN3 and
PIN7, which reduce the local accumulation of auxin
in the LR initiation sites, and thereby decrease LR
formation. Jasmonate (JA) boosts the formation of
LRs by inducing the expression of ERF109, which
promotes auxin biosynthesis by up-regulating the
expression of ASAl and YUC2. Brassinosteroid
(BR) has a positive effect on the formation of LRs
by inducing the expression of PIN2 and PIN4. (C)
Molecular network of hormone interactions in root
meristem maintenance. Ethylene (ET) induces auxin
transport and biosynthesis, promoting the accumu-
lation of auxin and enabling root meristem mainte-
nance. Auxin dampens the negative effect of the
EBFs on ET, reinforcing meristem function. CK
and gibberellic acid (GA) have opposite effects on
meristem maintenance by increasing and decreasing
the activity of ARRI/ARR12 CK signaling compo-
nents, respectively, which in turn represses the ex-
pression of PINs through SHY2 and DAR2. The
JA-mediated repression of PLTs reduces the expres-
sion of the YUCs and lowers the production of aux-
in, thus negatively affecting root meristem mainte-
nance. Arrowheads and blunt arrows represent
positive and negative regulation, respectively. Solid
and interrupted lines in panel A are used to depict
direct and indirect effects, respectively. A dash be-
tween two proteins in panel B indicates direct phys-
ical interaction. Hormones, protein/genes in these
hormonal pathways, and their actions are denoted
by the following color pallet, ABA is orange, BR is
turquoise, CK is blue, ET is gray, GA is green, IAA is
red, JA is brown, salicylic acid (SA) is purple, and
strigolactone (SL) is pink. Black is used to depict
genes/proteins that do not belong to a specific hor-
mone pathway, as well as the developmental pro-
cesses the network regulates.
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Figure 3. Auxin interactions with other hormones during shoot development. (A) Auxin and cytokinin (CK)
oppose one another in the regulation of shoot branching. Strigolactone (SL) acts as a second messenger for auxin
signaling: auxin from the shoot promotes SL production in the root and shoot, which then acts to inhibit
branching. (B) Auxin acts to promote differentiation in the shoot apical meristem while CK promotes stem
cell division. (C) During branching, shoot-derived auxin travels down the main stem where it promotes SL
biosynthesis. This SL then travels up the shoot and inhibits CK production and polar auxin transport (PAT) in
the shoot, thereby blocking branching. Auxin regulates local metabolism of CK, reducing CK levels, while CK
promotes auxin efflux from the developing bud. CK signaling in the bud promotes bud release and branch
outgrowth. CK and SL also oppose one another in regulating the expression of BRC1, a negative regulator of bud
outgrowth. Red denotes auxin and its actions; blue denotes CK and its actions; magenta denotes SL and its
actions. Arrowheads represent positive regulation; blunt arrows represent negative regulation; in panels B and C,

dashed lines represent indirect regulation.

Root Development

Primary root (PR) growth regulated by auxin
depends on Aux/IAA-ARF signaling modules.
ARF?2 directly binds to AuxREs in the promoter
of the zinc finger homeodomain TF HOMEO-
BOX PROTEIN33 (HB33) and negatively regu-
lates its expression (Wang et al. 2011). Trans-
genic plants overexpressing HB33 or RNAi lines
with reduced HB33levels are more sensitive and
more resistant to ABA respectively in the seed
germination and PR growth assays, indicating
that HB33 is a positive regulator in the ABA-
mediated processes of seed germination and PR
growth (Wang et al. 2011). Likewise, in wheat,
TaARF4 targets TaHB33 and two TaGH3 genes

to concomitantly regulate ABA sensitivity and
IAA homeostasis to control root growth (Wang
etal. 2019).

Auxin-ABA crosstalk is also involved in lat-
eral root (LR) development (Fig. 2A,B). The
ABA receptor mutant pyl8 shows reduced LR
growth in the presence of exogenous ABA, indi-
cating that ABA signaling through PYL8 pro-
motes LR growth (Fig. 2B). When pyI8 seedlings
are exposed to both ABA and IAA, LR growth is
rescued, suggesting that pyl8 seedlings may have
an auxin deficiency or reduced auxin response
(Zhao et al. 2014). A previous study showed that
PYL8 interacts with MYB77 (Arabidopsis Inter-
actome Mapping Consortium 2011) that can
promote LR growth by interacting with ARF7
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Figure 4. Auxin interactions with other hormones in fruit development. (A) Hormone interactions in flower
development and fruit set. Auxin and ethylene (ET) promote pollen germination and pollen tube growth. Auxin
induces and ET represses stamen development. ET positively regulates pistil and ovule development. Auxin and
gibberellic acid (GA) promote fruit initiation. (Inset) Molecular network of the hormone crosstalk during tomato
fruit initiation. Fertilization triggers auxin-mediated GA synthesis. Auxin inhibits the ARF7-IAA9 complex,
releasing the repression of key GA biosynthetic genes. GA-auxin interaction promotes fruit growth by inducing
EXP5 and reduces the production of ET by repressing ACO4. (B) Auxin regulates early cell division and fruit
development phases. (C) Fruit ripening is promoted by ethylene and repressed by auxin. During ripening, a key
molecular interaction between ET and IAA is mediated by ERE.B3 and IAA27. Hormones and their actions are
denoted by the following colors: ET is gray, GA is green, and IAA is red. Arrowheads and blunt arrows represent

positive and negative regulation.

in the SOLITARY ROOT (SLR, IAA14)-ARF7/
ARF19 module (Fukaki et al. 2005; Shin et al.
2007). Furthermore, PYL8 is functionally redun-
dant with paralogous PYL9 (Xing et al. 2016)
and the two proteins interact with several
MYBs, including MYB77, in Arabidopsis to in-
tegrate ABA and auxin signals in the regulation
of LR growth (Fig. 2B; Zhao et al. 2014).

In addition to controlling LR growth
through the PYL-MYB77 interaction, ABA
also regulates LRs via the core ABA-SnRK2 sig-
naling pathway (Fig. 2B; for review, see Eme-
necker and Strader 2020). abi4 mutants possess
longer LRs, suggesting that ABI4 inhibits LR
growth. ABI4 expression in roots is induced by
ABA but repressed by auxin (Shkolnik-Inbar

and Bar-Zvi 2010). Furthermore, PIN1 levels
are decreased in ABI4-overexpression lines but
increased in abi4 mutants. Thus, ABI4 likely
mediates ABA-triggered inhibition of LR growth
by suppressing PIN1 expression. Similarly,
ABI5 also regulates root growth by modulating
the accumulation of PIN proteins (Yuan et al.
2014).

Under osmotic/salt stress conditions, an-
other TE, WRKY46, can bind the promoters of
the auxin-conjugating enzyme-encoding genes
UDP-GLYCOSYLTRANSFERASE 84B2, IN-
DOLE-3-ACETATE BETA-GLUCOSYLTRANS-
FERASE, and GH3.1, and an ABA signaling
gene ABI4. Importantly, loss-of-function wrky46
mutants and overexpression of WRKY46 signifi-
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cantly reduce and increase LR development, respec-
tively, suggesting that WRKY46 modulates LR de-
velopment through the coregulation of ABA signal-
ing and auxin homeostasis (Ding et al 2015).

Pathogen Resistance

Black spot disease, a major disease in oilseed
Brassica species, is caused by a group of patho-
gens including Alternaria brassicae, Alternaria
brassicicola, and Alternaria raphanin. Numer-
ous ABA and auxin mutants in Arabidopsis
show altered susceptibility to A. brassicicola,
suggesting that both ABA and auxinareinvolved
in the response against this pathogen (Adie et al.
2007; Qi et al. 2012). A recent study showed that
the auxin response factors ARF10, ARF16, and
ARF17 are up-regulated in the resistant species
Sinapis alba upon challenge with A. brassicicola,
but notin the susceptible species Brassica juncea
(Mukherjee et al. 2019). Pathogen-induced ex-
pression of Arabidopsis ARF10 in B. juncea en-
hances tolerance to A. brassicicola, and several
ABA-responsive genes, including ABI3, ABI4,
and ABIS5, are up-regulated in the most tolerant
transgenic lines. Furthermore, ARF10 interacts
with the AuxREs in the ABI5 promoter, suggest-
ing that thebinding of ARF10 to ABI5 modulates
auxin-ABA crosstalk to regulate resistance to
A. brassicicola (Mukherjee et al. 2019).

AUXIN-BR INTERACTIONS

BRs, so named because the first example was
identified in rapeseed (Brassica napus), are the
only class of steroid hormones found in plants
to date. BRs are a group of many compounds that
act as extracellular ligands. While there are mul-
tiple routes involved in BR production, all of
them proceed through triterpenoid pathways
from campesterol (for review, see Chung and
Choe 2013). BRs are believed to be synthesized
in the endoplasmic reticulum and DWARF4
(DWEF4) catalyzes a rate-limiting step of BR syn-
thesis (for review, see Planas-Riverola et al. 2019
and Nolan et al. 2020). Unlike other hormones
that can be transported throughout the plant,
BRs typically act locally. BRs bind to the plas-
ma membrane-localized receptor, BR-INSEN-

Auxin’s Interactions with Other Hormones

SITIVEl (BRI1), inducing a conformational
change that allows interaction with coreceptors,
such as BRI1-ASSOCIATED KINASE1 (BAK1).
This interaction initiates a signaling cascade that
leads to the activation of two TFs, BRASSINA-
ZOLE-RESISTANT1 (BZR1) and BRIl EMS
SUPPRESSORI1 (BES1). In the presence of BR,
BZR1 and BES] are stabilized by a PP2A-depen-
dent dephosphorylation and induce the tran-
scriptional program of BR-dependent genes. In
the absence of BR, signaling through the BRI1-
BAK1 complex is blocked by autoinhibition and
the association of inhibitory proteins, such as
BRI1 KINASE INHIBITOR, which disrupts the
BRI1-BAKI1 interaction. BZR1 and BES] are in-
activated via phosphorylation by BR-INSENSI-
TIVE2 (BIN2), leading to cytoplasmic retention
and degradation of these TFs (for review, see
Planas-Riverola et al. 2019 and Nolan etal. 2020).

BR-deficient plants have a dwarfed pheno-
type, consistent with the primary role of BRs in
cell elongation. BR signaling has also been im-
plicated in a broad range of plant biological pro-
cesses, from control of cell division to biotic and
abiotic stress responses (for review, see Lvand Li
2020 and Nolan et al. 2020) and, as outlined
below, this phytohormone coordinates with
auxin to regulate many aspects of plant devel-
opment.

Root Development

BR signaling is critical for both cell elongation
(Mouchel et al. 2004) and cell-cycle progression
in the root (Gonzalez-Garcia et al. 2011; Ha-
cham et al. 2011), with both BR-deficient and
BR-activated mutants displaying smaller root
meristems. In contrast to the synergy reported
in shoot elongation, transcriptomic analysis of
Arabidopsis root tips revealed that many auxin
and BR coresponsive genes are regulated in op-
posing directions, suggesting these two hor-
mones can act as checks on one another in the
root to define different root cell types or func-
tions (Chaiwanon and Wang 2015).

BR has a dose-dependent effect on PR elon-
gation (Clouse et al. 1996; Miissig et al. 2002)
and promotes the formation of LRs by regulat-
ing polar auxin transport (PAT) (Fig. 2A; Bao

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a039990 7


http://cshperspectives.cshlp.org/

m Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Boocd”

Downloaded from http://cshperspectives._cship.org/ on April 27, 2021 - Published by Cold Spring Harbor Laboratory Press

www.cshperspectives.org

S.M. Mazzoni-Putman et al.

et al. 2004). BR treatment enhances shoot and
root PAT in rapeseed (Li et al. 2005). Arabidop-
sis BR biosynthesis and signaling mutants (di-
minutol and bril) show decreased PAT, while
pinl mutants display decreased sensitivity to
BR-induced inhibition of root elongation, and
pin2 mutants are deficient in BR-induced LR
formation. These results point to the modula-
tion of PAT as a mechanism by which BR regu-
lates root development (Li etal. 2005). Studies in
Arabidopsis root meristems implicate transcrip-
tional and posttranscriptional regulation of
PIN2 and PIN4 as a potential mechanism for
BR-controlled cell growth and proliferation in
the root meristem (Hacham et al. 2012).

Another node of auxin-BR interaction dur-
ing root development is the transcriptional
coregulator BREVIS RADIX (BRX), which pro-
motes the expression of a crucial BR biosynthesis
gene, CONSTITUTIVE PHOTOMORPHOGEN-
ESIS AND DWARFISM (CPD). In Arabidopsis,
brx mutants have altered root meristems, with
increased root branching and shorter roots
(Mouchel et al. 2004). These plants also display
a BR-deficient phenotype and attenuated auxin
transcriptional program (Mouchel et al. 2006).
Exogenous BR treatment rescues the BR-deficient
phenotype and restores auxin-responsive gene
expression. Interestingly, auxin also induces the
expression of BRX, thus promoting BR produc-
tion (Mouchel et al. 2006). More recently, plas-
ma-membrane-associated BRX has been shown
to inhibit PIN protein activity in developing Ara-
bidopsis root protophloem sieve elements by neg-
atively regulating PROTEIN KINASE ASSOCI-
ATED WITH BRX (PAX) (which stimulates PIN
activity) (Marhava et al. 2018) and by promoting
the endocytic removal of PIN1 proteins from the
plasma membrane (Marhava et al. 2020).
Through its actions on PAX and PIN1, BRX in-
hibits auxin efflux. In turn, auxin has been shown
to promote BRX protein turnover (Scacchi et al.
2009), creating a check on BRX activity if local
auxin concentrations become too high.

Shoot Development

BR and auxin act cooperatively to promote leaf
lamina bending in rice, and cell elongation in

numerous species, including bean, cucumber,
maize, pea, rice, squash, and tomato (for review,
see Mandava 1988, Clouse and Sasse 1998, and
Park 1998). Further studies in Arabidopsis con-
firmed that these two hormones act synergisti-
cally to promote hypocotyl elongation under
many conditions (Tanaka, 2003; Nemhauser
et al. 2004). Accordingly, Arabidopsis Aux/
IAA gain-of-function mutants display reduced
BR sensitivity in hypocotyl elongation assays
(Nakamura et al. 2006) and BR treatment en-
hances shoot PAT in rapeseed (Li et al. 2005).
Coordinated BR signaling and PAT also control
vascular patterning in Arabidopsis shoots, with
auxin maxima defining the location and BR sig-
naling determining the number of vascular bun-
dles (Ibanes et al. 2009).

BR signaling is important for proper light
responses, and Arabidopsis BR mutants, such as
de-etiolated2 and cpd, display a constitutive pho-
tomorphogenic phenotype (Li et al. 1996; Sze-
keres et al. 1996). Both auxin and BR signaling
are required for shade avoidance (Keuskamp
et al. 2011). In response to low blue light condi-
tions, each hormone regulates a distinct set of
genes, the full complement of which is needed
for a proper shade avoidance response. While no
direct link was established, the NAC TF ATAR2,
which regulates auxin biosynthesis (Huh et al.
2012), was also found to regulate BR turnover
in Arabidopsis by binding to the promoters and
suppressing the expression of two BR catabolic
enzyme genes, PHYB-4 ACTIVATION-TAGGED
SUPPRESSORI and SUPPRESSOR OF PHYB-4 7
(Peng et al. 2015). In this way, ATAF2 promotes
hypocotyl elongation by stimulating auxin bio-
synthesis and inhibiting BR degradation, whereas
light and BR suppress ATFAF2 expression, creat-
ing a feedback regulatory circuit (Peng et al.
2015).

Unequal auxin distribution leads to the
curving of shoots seen in gravitropism, and BR
application promotes shoot gravitropism in
bean (Meudt 1987; Park 1998). Moreover, BR-
mediated enhancement of root gravitropic curv-
ing in maize requires PAT (Kim et al. 2000). In
Arabidopsis, BR treatment accelerates root and
shoot gravitropism and auxin reporter activity
following gravistimulation (Li et al. 2005). Fol-
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lowing BR treatment, PIN2 expression is en-
hanced and PIN2 protein localization mimics
the protein distribution seen with gravistimula-
tion. These findings suggest that the interaction
between BR and auxin in gravitropism con-
verges on PAT.

Another study found that in dark-grown
Arabidopsis seedlings, BRs inhibit shoot gravi-
tropism (Vandenbussche et al. 2011) and that
the mechanism of this inhibition involves a
complex interaction between BR, ET, and auxin
signaling (Vandenbussche et al. 2013). In par-
ticular, several Aux/[AA proteins and ARFs,
ARF7 and ARF19, are implicated in BR-regulat-
ed gravitropic responses. However, this inhibi-
tion is seen in seedlings grown in low sugar con-
ditions, and the effect is lost when germinating
the seedlings on vertical plates or supplement-
ing the growth media with sugar (Vandenbus-
sche et al. 2011). The authors speculate that the
impact of BR signaling on gravitropism is due to
a weakening of the hypocotyl cell wall. Indeed,
further investigation found interactions between
glucose, BRs, and potentially PAT during grav-
itropism and LR development (Singh et al. 2014;
Gupta et al. 2015). Clearly, the role of auxin-BR
interactions in shoot development is multi-
faceted, with tissue- and environment-specific
effects.

Other Contexts

The first identified BR-responsive gene, BURI,
was found to be also induced by auxin treatment
in soybean, albeit at a later time point (18 hvs.2

h) (Zurek and Clouse 1994). This potential over-
lap in transcriptional control has been further
investigated by many studies (Goda et al. 2002,
2004; Miissig et al. 2002; Yin et al. 2002; Nem-
hauser et al. 2004). Auxin and BR appear to
cooperatively regulate some genes, while they
are antagonistic in the control of others; this is
fitting, considering the variable roles these two
hormones play in different aspects of plant de-
velopment. While these common transcription-
al programs may be due to direct regulation of
BR biosynthesis or PAT, one study suggests that
these two hormones converge on common pro-
moter motifs found in coregulated genes (Nem-
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hauser et al. 2004) and ChIP data reveal that
BZR1/BES1 bind to many auxin-responsive
genes (Sun et al. 2010; Yu et al. 2011).

Inhibition of BR biosynthesis impairs the
growth-promoting action of auxin (Vert et al.
2008), but together the two hormones enhance
and potentiate the expression of common target
genes. Closer examination revealed that the
BIN?2 kinase regulates auxin signaling by phos-
phorylating ARF2 and suppressing DNA bind-
ing by this negative regulator of auxin responses,
thereby promoting transcription of its auxin tar-
get genes (Vert et al. 2008). BIN2, in turn, is
negatively regulated by BR (Peng et al. 2008),
supporting the hypothesis that BR blocks the
BIN2-mediated activation of the auxin tran-
scriptional program. Additionally, BR signaling
is implicated in the control of Aux/IAA gene
expression and activity in Arabidopsis (Naka-
mura et al. 2003, 2006; Cho et al. 2014). During
Arabidopsis LR development, the ARF7 and
ARF19 proteins become phosphorylated by
BIN2, disrupting their interaction with Aux/
IAAs and enhancing the auxin response (Cho
et al. 2014). A screen for auxin transport mu-
tants in Arabidopsis revealed that BR signaling
promotes the nuclear accumulation of auxin by
negatively regulating PIN-LIKES mRNA and
protein expression (Sun et al. 2020). BR has
also been shown to regulate auxin catabolism
in barley (Sadura et al. 2019). Mutants in key
BR biosynthetic (HvDWARF, HvCPD) and sig-
naling (HvBRI1) genes had wild-type levels of
total active auxins but altered levels of methyl-
ated and oxidized auxins.

Auxin signaling, in turn, increases BR sen-
sitivity by enhancing expression of the BR re-
ceptor BRI (Sakamoto et al. 2013). In rice, the
OsBRI1 promoter harbors an auxin-responsive
element (AuxRE) that is bound by OsARF11
and is required for the up-regulation of Os-
BRI1 and BR phenotypes, providing a direct
connection between auxin signaling and BR
perception (Sakamoto et al. 2013). DWF4,
which catalyzes a rate-limiting step in BR syn-
thesis, is transcriptionally induced by auxin in
Arabidopsis and many auxin-inducible genes
are not activated in the presence of a BR in-
hibitor (Chung et al. 2011), suggesting that the

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a039990 9


http://cshperspectives.cshlp.org/

m Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Boocd”

Downloaded from http://cshperspectives._cship.org/ on April 27, 2021 - Published by Cold Spring Harbor Laboratory Press

www.cshperspectives.org

S.M. Mazzoni-Putman et al.

full auxin transcriptional response requires in-
tact BR signaling,

AUXIN-CK INTERACTIONS

Auxin and CK work to balance one another in
regulating plant developmental processes. In
fact, CK was discovered based on its interaction
with auxin to promote the growth and division
of cultured plant cells (Miller et al. 1955, 1956).
The two hormones are generally antagonistic of
one another. For example, while both hormones
are required for callus formation in cell culture,
an excess of CK promotes shoot development,
whereas excess auxin favors root development.
These two hormones have a storied scientific
past (for review, see Schaller et al. 2015 and
Kieber and Schaller 2018). Here, we highlight
the many levels of interaction between them.
Most of the following studies take place in Ara-
bidopsis, and while it is known that CK and
auxin regulate one another in several plant spe-
cies, the extent to which the observations made
in Arabidopsis can be extrapolated to other spe-
cies remains to be discovered.

CKs are adenine-derived hormones that are
synthesized in a series of steps involving ISO-
PENTENYL TRANSFERASE (IPT), CYTO-
CHROME P450 FAMILY 735A, and LONELY
GUY (LOG) enzymes. CKs are inactivated by
conjugation to sugar molecules or by degra-
dation at the hands of enzymes such as the
CK OXIDASE/DEHYDROGENASE (CKXs).
When CK binds to its receptors, ARABIDOPSIS
HISTIDINE KINASEs (AHKs), the receptor
autophosphorylates, initiating a phosphoryla-
tion cascade. The ARABIDOPSIS HISTIDINE
PHOSPHOTRANSMITTER (AHP) proteins
transfer phosphates from the AHKs to the
type-B ARABIDOPSIS RESPONSE REGULA-
TORs (ARRs), activating them. AHP1,2,3,and 5
are believed to positively regulate CK signaling,
while AHP4 may be a negative regulator. AHPS,
which lacks the histidine kinase activity of the
other AHPs, also inhibits CK signaling through
an unclear mechanism. AHP-mediated phos-
phorylation of the type-B ARRs induces the
CK transcriptional response. One family of
genes that is rapidly induced by CK are the

type-A ARRs, a set of proteins that act in a
feedback manner to repress CK signaling
(Hutchison et al. 2006; for review, see Kieber
and Schaller 2018).

CK induces auxin biosynthesis in several
Arabidopsis tissues and this induction requires
CK signaling through AHPs and type-A ARRs
(Jones et al. 2010). These ARRs have also been
shown to be a node of auxin-mediated control
of CK signaling (Overvoorde et al. 2005; Miil-
ler and Sheen 2008; Lee et al. 2009; Zhao et al.
2010). Using several auxin and CK mutants,
mutually inhibitory effects of the two hor-
mones were found in a suite of developmental
phenotypes (Kurepa et al. 2019). The authors
proposed that the auxin signaling proteins
ARF7 and IAA17 promote type-A ARR expres-
sion to inhibit CK signaling. However, while
this route for auxin control of CK signaling
has been previously investigated, the findings
are not concordant; thus, the mechanism, and
even direction, of type-A ARR regulation by
auxin remains in question. It has also been
widely demonstrated that CK regulates auxin
signaling by altering the expression of PINs
(Ruzicka et al. 2009; for review, see Schaller
et al. 2015).

Likewise, auxin influences CK biosynthesis
in Arabidopsis and other species via regulation
of the IPT genes (Zhang et al. 1995; Miyawaki
et al. 2004; Nordstrom et al. 2004; Tanaka et al.
2006; Cheng et al. 2013). As is often the case, the
situation is probably far more complex, with
auxin shown to also promote CK turnover by
enhancing CKX expression (Palni et al. 1988;
Werner et al. 2006).

Root Development

CK and auxin generally oppose one another in
root development (Fig. 2; Kurepa et al. 2019)
and the balance between cell division and dif-
ferentiation relies on the interaction between
auxin and CK (for review, see Jing and Strader
2019). CK promotes a smaller meristem via dif-
ferentiation of cells in the transition zone, while
auxin favors a larger meristem by promoting cell
division (Blilou et al. 2005; Dello Ioio et al. 2007;
Moubayidin et al. 2010). This effect of CK on
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meristem size is dependent upon auxin trans-
port, as it is not observed in a pin2/3/7 triple
mutant (Dello Ioio et al. 2007). Additionally,
Arabidopsis CKX-overexpressing lines have re-
duced PIN2 and PIN4 expression and abnormal
roots with expanded auxin maxima and larger
columella cells, suggesting that CK acts to regu-
late the expression of PIN genes and auxin trans-
port, thereby balancing elongation and cell di-
vision (Pernisova et al. 2009).

The Aux/IAA SHORT HYPOCOTYL2
(SHY2,IAA3) has been implicated in the regula-
tion of auxin transport by CK (Fig. 2C). SHY2
transcription is induced by CK, presumably
through the type-B ARRs, ARR1 and ARRI12
(Dello Ioio et al. 2008; Moubayidin et al. 2010).
SHY2 reduces the expression of PINI, PIN3, and
PIN?7 transcripts and protein, as assessed by the
accumulation of translational fusion reporters
(Dello Ioio et al. 2008). The SHY2-dependent
decrease in PIN protein levels results in a local
redistribution of auxin, cell differentiation, and a
smaller meristem (Dello Ioio et al 2008; Mou-
bayidin et al. 2010). SHY?2, in turn, inhibits the
auxin-induced expression of an IPT5 promoter
reporter fusion construct, completing an auxin-
CK regulatory circuit (Dello Ioio et al. 2008).

Auxin, on the other hand, promotes SHY2
degradation (Fig. 2C; Tian et al. 2002), restoring
PIN expression, auxin localization, and cell di-
vision (Dello Ioio et al. 2008). SHY2 may target
PIN genes directly or it could be an indirect
interaction through repression of the ubig-
uitin-binding protein DAI-RELATED PRO-
TEIN2 (DAR2) (Peng et al. 2013). The effects
of auxin or CK on root meristem size are lost in
dar2 mutants and genetic analyses place DAR2
downstream of CK signaling and SHY2. Fur-
ther, dar2 mutants have reduced auxin trans-
port toward the root meristem, and reduced CK
regulation of PIN3 and PIN7 translational
fusions (Peng et al. 2013). Studies of the Arabi-
dopsis root meristem and developing vascula-
ture found that the CK-induced reduction of
PIN proteins (via induction of SHY2) involved
the transcriptional coregulator BRX (Scacchi
et al. 2010). Whereas the mechanism is unclear,
it likely involves reciprocal transcriptional
repression between SHY2 and BRX and com-
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petition for MONOPTEROS (MP, ARF5) bind-
ing.

Arabidopsis ARR7 and ARRI5, type-A feed-
back repressors of CK signaling, are up-regulat-
ed by auxin in the root stem cell niche (Miiller
and Sheen 2008). Type-A ARRs, in turn, regu-
late PIN proteins via an unknown mechanism.
The Arabidopsis arr3/4/5/6/7/8/9/15 mutant has
a smaller meristem and reduced PIN1, PIN3,
and PIN4 protein levels. PIN7 levels in the stele
are decreased, but are higher in the root cap,
suggesting that CK signaling acts on PIN pro-
teins to alter auxin distribution and regulate
meristem size and differentiation (Zhang et al.
2011). Furthermore, Arabidopsis type-B ARR1
and ARR12 inhibit the expression of the auxin
influx transporters LAX2and AUXI, with ARR1
directly binding the promoter of LAX2 (Zhang
et al. 2013). ARRI also promotes auxin biosyn-
thesis, at least in part via the transcriptional
activation of ANTHRANILATE SYNTHASE
BETA SUBUNIT1 (ASBI) that codes for a rate-
limiting enzyme in the biosynthesis of the auxin
precursor Trp (Moubayidin et al. 2013). ARRI
suppression by SCARECROW (SCR), a critical
regulator of root meristem activity, down-regu-
lates auxin biosynthesis to maintain the root
meristem (Moubayidin et al. 2013). Additional-
ly, ARR12 works in concert with RETINO-
BLASTOMA-RELATED (RBR) protein to acti-
vate ARFI9 transcription in the root apical
meristem, promoting cell differentiation (Rade-
macher et al. 2011; Perilli et al. 2013).

The role of auxin-CK interactions in LR de-
velopment has been extensively studied (for re-
view, see Jing and Strader 2019). In Arabidopsis
LRs, CK regulates the expression level and pattern
of PIN genes (Laplaze et al. 2007), and mutants for
several CK signaling components display improp-
er PIN localization (Marhavy et al. 2011; Chang
etal. 2013; Moreira et al. 2013). CK was found to
direct endocytic recycling of PIN1 toward degra-
dation in LR primordia, thereby reducing the ac-
cumulation of PIN1 proteins on the plasma mem-
brane and inhibiting LR initiation (Fig. 2A,B;
Marhavy et al. 2011). During later stages of LR
formation, CK was found to deplete anticlinal
PIN1 protein accumulation, directing auxin flow
to promote LR growth (Marhavyetal. 2014). Ara-
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bidopsis ahp6 mutant plants display a mild defect
in LR emergence and cell division in LR primor-
dia, and have abnormal PIN1 protein localization,
all reminiscent of CK treatment effects (Moreira
etal. 2013). The ahp6 mutant phenotype is lost in
combination with CKX-overexpressing lines, sug-
gesting that AHP6 may function to reduce CK
signaling and maintain proper LR cell division.
The AHP6 gene is transcriptionally up-regulated
by auxin in vascular tissues, pointing to auxin-
triggered inhibition of CK signaling (via AHP6)
during vascular patterning in Arabidopsis roots
(Bishopp et al. 2011). If AHP6 is also auxin regu-
lated in LR primordia, it could serve as a general
point of integration for auxin and CK signaling.
More recently, CK was shown to exert its effects
on LR root formation through TRANSPORTER
OF IBA1 (TOB1) that blocks LR formation
(Michniewicz et al. 2019). TOB1 is an indole-3-
butyruc acid (IBA) transporter transcriptionally
induced by CK signaling. IBA is an auxin precur-
sor, suggesting that CK signaling may alter auxin
distribution by promoting the relocalization of
auxin intermediates.

Auxin plays a well-established role in gravi-
tropism and regulates differential cell expansion
to achieve root turning. In Arabidopsis, CK
modifies the distribution of auxin by enhancing
asymmetric localization of PIN1 proteins to the
basal side of cells, redirecting the flow of auxin to
promote root gravitropism (Marhavy et al
2014). Enhancement of an AUXI1 fluorescent
reporter signal was also reported in CKX2- and
CKX3-overexpression lines in Arabidopsis, sug-
gesting that CK also regulates auxin influx (Per-
nisova et al. 2016).

During LR formation, emerging roots estab-
lish an angle of growth with a characteristic dis-
placement from the gravity vector (the so-called
gravitropic set point angle). This allows the root
system to expand outward from the PR. CK sig-
naling has also been shown to act in the gravi-
tropic response by opposing bending toward the
gravity vector (Waidmann et al. 2019). A ge-
nome-wide association study (GWAS) screen
identified CKX2 variants as a factor in determin-
ing LR angle. CK treatment increases the angle
of LRs in Arabidopsis and rapeseed, whereas
Arabidopsis CK receptor mutants show de-

creased LR angles. Enhanced CK signaling was
observed on the topside of the emerging LR and
inhibited root growth, complementing the aux-
in-mediated growth repression on the underside
of the root. Whereas a direct interaction was not
defined, treatment with the auxin transport in-
hibitor naphthylphthalamic acid (NPA) re-
duced CK reporter activity and blocked the for-
mation of a CK signaling gradient. The balanced
repression from auxin and CK promotes radial
expansion of the root system by preventing the
LR from completing a full 90° turn to align with
gravity, demonstrating how these two hormones
coordinate to fine-tune LR angles (Waidmann
etal. 2019).

Similarly, this auxin-CK competition is be-
lieved to be at play in LR hydrotropism. The ER-
associated MIZU-KUSSEI1 (MIZ1) protein is
essential for a proper hydrotropic response (Ko-
bayashi et al. 2007; Yamazaki et al. 2012). When
overexpressed in Arabidopsis, MIZ1 increases
CK sensitivity, reduces LR number, and lowers
free auxin levels, but exogenous auxin supple-
mentation rescued the LR phenotype (Moriwaki
et al. 2011). Interestingly, CK promotes the lo-
calization of MIZ1 protein at root primordia,
suggesting that MIZ1 serves as a node for aux-
in-CK crosstalk during LR formation.

Several other genes have been implicated as
nodes of auxin-CK communication during root
developmental processes. AUXIN UP-REGU-
LATED F-BOX PROTEINT1 is transcriptionally
induced by auxin and proposed to mediate CK-
regulated cell expansion in the root by regulating
PIN expression and, possibly, by targeting ARR1
for degradation (Zheng et al. 2011). The TF
TMOS5 is transcriptionally up-regulated by aux-
in (Schlereth et al. 2010) and enhances the ex-
pression of the CK-biosynthesis gene, LOG4,
helping determine vascular patterning in the
Arabidopsis root (De Rybel et al. 2014). Of
note, the PLETHORA (PLT) TFs, key regulators
of root development that are induced by auxin
(Aida et al. 2004; Blilou et al. 2005; Galinha et al.
2007) and regulate both auxin transport and
synthesis (Pinon et al. 2013; Santuari et al.
2016), are repressed by CK in Arabidopsis roots
(Dello Ioio et al. 2008). Finally, CK has been
implicated in promoting auxin responses dur-
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ing nodulation in Lotus japonicas and Medicago
truncatula (for review, see Kohlen et al. 2018),
with nodule formation defects observed in loss-
of-function mutants for CK signaling and aux-
in biosynthesis genes. On the other hand, CK
treatment, CK signaling gain-of-function mu-
tants, and chemical inhibition of PAT lead to
the formation of nodule-like structures in the
absence of rhizobia in L. japonicas and alfalfa
(Medicago sativa) (for review, see Kohlen et al.
2018).

Shoot Development

In contrast to their roles in root meristem devel-
opment, auxin acts to promote shoot apical mer-
istem differentiation while CK promotes division
of undifferentiated cells (for review, see Azizi
et al. 2015). There is a general theme of high
auxin levels reducing CK biosynthesis or promot-
ing CK turnover, while rising CK levels disrupt
auxin distribution by modulating PIN proteins
(Fig. 3A). In Arabidopsis hypocotyl explants,
CK up-regulates PIN3 and PING6, but reduces
the expression of PIN2, shaping auxin distribu-
tion, and thus altering the cell division versus
differentiation balance (Pernisova et al. 2009).
On the other hand, during shoot induction
from callus, auxin production increases, activat-
ing ARF3, which in turn suppresses IPT5 (Cheng
et al. 2013). In this way, auxin acts to restrict CK
activity to the site of future meristems. Accord-
ingly, decapitation of pea plants, thereby remov-
ing young expanding leaves, which are a major
auxin source in the stem, induces PsIPT1 and
PsIPT2, while exogenous auxin inhibits them
(Tanaka et al. 2006). In Cremastra appendiculata
pseudobulbs, decapitation results in a turnover of
auxin and induction of CK biosynthesis (Lv et al.
2018). Treatment with the auxin transport inhib-
itors NPA and 2,3,5-triiodobenzoic acid up-reg-
ulated CalPT, and reduced the expression of
CaCKX, promoting an accumulation of CK and
pseudobulb branching.

Auxin and CK are spatially regulated and
dependent upon one another to organize the
formation of axillary meristems in multiple spe-
cies (Wang et al. 2014; Dierck et al. 2016; Qiu
et al. 2019). To confer apical dominance, auxin
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blocks axillary growth and CK promotes it.
Auxin originating from the shoot apex down-
regulates CK biosynthesis in stems, reducing CK
levels in axillary buds, and CK regulates auxin
efflux from branches (Fig. 3A; for review, see
Miiller and Leyser 2011). For example, in pea,
CK promotes polarization of PIN1 protein in
axillary buds (Kalousek et al. 2010) and in-
creases levels of PIN3, 4, and 7 fluorescent fu-
sion proteins in the xylem parenchyma of Ara-
bidopsis main stems (Waldie and Leyser 2018).
Correspondingly, CK was found to regulate both
auxin transport and bud activation during
branching in pea (Kotov and Kotova 2018).

The type-A ARRs ARR7 and ARRIS5 are in-
duced by CK in the Arabidopsis shoot apical
meristem but repressed by ARF5 (Fig. 3B;
Zhao et al. 2010). As type-A ARRs inhibit CK
signaling, this interaction reveals an important
point of coordination for these two hormones in
maintenance of the shoot stem cell niche. The
roles of CK and auxin in regulating axillary
branching are not yet fully elucidated and
some studies of type-A and type-B ARRs seem
to present paradoxical findings (Miiller et al.
2015; Xu et al. 2015; Waldie and Leyser 2018;
Zha et al. 2019). How these two hormones co-
ordinate branching is surely complex, involving
signals from other hormones and/or nutrients.

CK and auxin signaling also interact during
secondary shoot vasculature development in
Populus, where CK was found to regulate the
auxin gradients that induce cambium forma-
tion, but the underlying molecular mechanism
was not determined. Overproduction of CK pro-
moted the formation of cambium through in-
creased meristem cell divisions and TAA accu-
mulation (Immanen et al. 2016), while CK
treatment of wild-type plants reduced IAA ac-
cumulation and favored phloem development
following injury (Chen et al. 2019).

The maize aberrant phyllotaxyl (abphl)
mutant displays altered phyllotaxis (Giulini
et al. 2004) and reduced auxin levels (Lee et al.
2009). ZmABPHI encodes a type-A ARR that is
up-regulated by auxin and whose action de-
pends on auxin transport (Lee et al. 2009).
Both CKand ABPH1 induce ZmPIN1 transcrip-
tion, and ZmPIN1 localizes to sites of incipient

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a039990 13


http://cshperspectives.cshlp.org/

m Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Boocd”

Downloaded from http://cshperspectives._cship.org/ on April 27, 2021 - Published by Cold Spring Harbor Laboratory Press

www.cshperspectives.org

S.M. Mazzoni-Putman et al.

leaf primordium formation, highlighting a link
between auxin, CK, and the control of leaf pri-
mordia formation (Lee et al. 2009). Leaf shape is
also modulated by auxin-CK interaction. To-
mato Sliaa9 antisense plants exhibit a range of
phenotypes with simpler, rather than com-
pound, leaf morphology and less lobed, even
entire, leaf margins (Wang et al. 2014). Further
studies revealed that compound leaf develop-
ment in tomato is regulated by CK signaling,
and this effect of CK is dependent upon proper
SIPIN localization (Shani et al. 2010).

Regulation of auxin signaling by CK is also
critical during flower development. Treatment of
Arabidopsis plants with CK or NPA results in sim-
ilar gynoecium phenotypes with disrupted apico-
basal patterns (Zuniga-Mayo et al. 2014). A PIN1
translational GREEN FLUORESCENT PRO-
TEIN (GFP) fusion, which normally displays re-
stricted expression, was detected throughout the
developing inflorescence after CK treatment, sug-
gesting that CK mediates its effect on Arabidopsis
gynoecium patterning at least in part by modulat-
ing PIN1 expression and localization (Zuniga-
Mayo et al 2014). Indeed, Arabidopsis CK recep-
tor mutants show that CK perception is necessary
for proper PINI expression during ovule develop-
ment (Bencivenga et al. 2012). This effect on PIN1
is dependent upon the TFs SPOROCYTELESS
and BELL1, which are transcriptionally up-regu-
lated and down-regulated by CK, respectively
(Bencivenga et al. 2012). More recently, both CK
and the TF SPATULA (SPT) were found to induce
the expression of the auxin genes TAAI and PIN3
during Arabidopsis gynoecium development
(Reyes-Olalde et al. 2017). The effects of CK
were found to be mediated by SPT, which up-reg-
ulates the expression of type-B ARRI and ARRI2.
These ARRs, in turn, induce the transcription of
TAA1 and PIN3, although it is unclear whether
they bind alone or cooperatively with SPT.

On the other hand, auxin was found to pro-
mote the expression of AHP6, which inhibits CK
signaling, to dictate the patterning of developing
inflorescences in Arabidopsis (Besnard et al.
2014). And in floral meristems, auxin acts
through ARF3 to inhibit CK signaling by re-
pressing IPT, LOG, and AHK4 (Zhang et al
2018). During sepal formation, DEVELOP-

MENT RELATED MYB-LIKE1 (DRMY1)
helps regulate auxin and CK signaling to define
sepal initiation and size (Zhu et al. 2020). Ara-
bidopsis drmyl-2 plants display weaker and
more diffuse auxin reporter activity, but stron-
ger and more diffuse CK reporter activity. This
lack of proper spatiotemporal signaling results
in delayed and smaller sepals (Zhu et al. 2020).
These findings paint a complex picture of how
auxin and CK regulate one another to create the
patterns of hormone signaling required for
proper flower development.

Other Contexts

Auxin-CK crosstalk has been implicated in myr-
iad additional processes, including coregulation
of common target genes (Hurny et al. 2020) and
responses to various biotic (Boivin et al. 2016;
Hurny et al 2020) and abiotic (Wang et al.
2006; Tognetti et al. 2017; Bielach et al. 2017;
Yang et al. 2017) factors. Whether these interac-
tions are coincidental or true crosstalk requires
further exploration. A greater understanding of
the interplay between these two hormones could
be informative for adapting crops to unfavorable
and changing growth conditions.

AUXIN-ET INTERACTIONS

ET is a gaseous plant hormone first discovered
for its effects on leaf abscission and ripening (for
review, see Abeles et al. 1973). The crosstalk be-
tween ET and auxin is key for proper plant de-
velopment and manifests itself in a wide range of
processes. Plants produce ET from the amino
acid L-methionine (Met) that is converted into
S-adenosyl-L-methionine (AdoMet) by Ado-
Met synthetase (Giovanelli et al. 1985). The first
committed and rate-limiting step in the ET
biosynthesis pathway is the conversion of Ado-
Met into 1l-aminocyclopropane-1-carboxylate
(ACC) by ACC SYNTHASE (ACS). In a second
step, ACC OXIDASE (ACO) turns ACC into ET
(for review, see Yang and Hoffman 1984). Once
synthesized, ET moves from cell to cell by dif-
fusion without requiring specific transporters.
ET is sensed by ER- and Golgi-localized re-
ceptors of the ET RECEPTOR/ET RESPONSE
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SENSOR/ET-INSENSITIVE4 (EIN4) trans-
membrane protein family (for review, see
Binder 2020). In the absence of ET, the receptors
continuously activate CONSTITUTIVE TRI-
PLE RESPONSE1 (CTR1), a serine/threonine
protein kinase that phosphorylates and inacti-
vates the transmembrane ER-localized protein
EIN2 (for review, see Binder 2020). Phosphor-
ylated EIN2 is targeted for degradation by two F-
Box EIN2-TARGETING PROTEINs and the
master TFs of the ET response, EIN3/EIN3-
LIKE1 (EIL1), are targeted for degradation by
the F-Box EIN3-BINDING F-BOX PROTEINs
(EBFs) (for review, see Ju and Chang 2015 and
Binder 2020). In the presence of ET, the recep-
tors are turned off, inactivating CTRI, reducing
the phosphorylation of EIN2, and triggering the
cleavage of the carboxy-terminal end of EIN2.
The EIN2 C-end blocks translation of EBF1 and
EBF2 in the cytoplasm and promotes the activity
of EIN3/EIL1 in the nucleus (Merchante et al.
2015; for review, see Binder 2020), eliciting the
transcriptional regulation of thousands of
downstream genes that mediate ET responses
(Binder et al. 2004).

The first clue to the importance of auxin-ET
crosstalk came from an observation that a re-
markable number of auxin mutants are ET-in-
sensitive, including auxin transport mutants
such as auxl and pin2 (eirl); mutants with
impaired auxin biosynthesis, such as weak ET-
insensitive2 (wei2), wei7, and wei8; auxin per-
ception mutants, such as tirl; and mutants in
components of auxin signal transduction, in-
cluding axr2 (iaa7) and axr3 (iaal7) (for review,
see Merchante and Stepanova 2017). These find-
ings suggest that proper levels of auxin biosyn-
thesis, transport, signaling, and response are re-
quired for the normal response of plants to ET.

Root Development

ET promotes local auxin biosynthesis in roots,
locally inducing TAAI and TAR2 and several
YUC genes, which contributes to ET-triggered
PR shortening (Fig. 2A,C; Razicka et al. 2007;
Stepanova et al. 2007; Swarup et al. 2007). The
identification of the small molecule L-kynure-
nine (Kyn) (He et al. 2011) as a potent inhibitor

Auxin’s Interactions with Other Hormones

of auxin biosynthesis provides an illustrative ex-
ample of the intricate crosstalk between auxin
and ET. Kyn blocks the conversion of L-Trp
into IPyA, catalyzed by TAAI, inhibiting ET-
induced auxin production. Kyn suppresses the
short-root phenotype of ET-treated wild-type
plants and of untreated cir] mutants that dis-
play constitutive ET responses, supporting the
notion that the root growth inhibition triggered
by ET is mediated by TAAl-dependent auxin
biosynthesis. Elevated levels of auxin, on the
other hand, promote the stabilization of EIN3
in the nucleus by suppressing its EBF-depen-
dent degradation. Thus, blocking auxin accu-
mulation with Kyn inhibits EIN3 nuclear accu-
mulation and represses root responses to ET
(He et al. 2011).

The epidermis of the root elongation zoneisa
key site for ET-induced root growth inhibition
(Vaseva et al. 2018). ET promotes the transition
from the mitotic cycle to endoreduplication, re-
ducing cell division and, therefore, the size of the
meristem and root growth (Street et al. 2015).
The increased activity of the auxin reporter
DR5 in the root elongation zone in ET-treated
plants is linked to the ability of ET to arrest cell
elongation and, thus, PR growth (Razicka et al.
2007; Stepanova et al. 2007; Swarup et al. 2007).
ET inhibits PR growth by transcriptionally
up-regulating genes involved in auxin biosynthe-
sis and auxin transport, thereby stimulating
auxin translocation from the meristem to the
elongation zone and increasing local auxin levels
above the physiological threshold required for the
cells to become fully sensitized to ET (Razicka
et al. 2007; Stepanova et al. 2007; Swarup et al.
2007).

Auxin plays a pivotal role in stimulating LR
formation by priming pericycle cells, inducing
cell division, and promoting root emergence
and elongation (for review, see Lavenus et al.
2013). ET reduces local accumulation of auxin
required for LR formation by increasing the ex-
pression levels of PIN3 and PIN7 and, thus,
shifting auxin away from the initiation sites
(Fig. 2A,B). Correspondingly, ET causes a
prominent decrease of DR5 reporter levels in
the regions of LR emergence, leading to a reduc-
tion in LR emergence (Lewis et al. 2011).
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Shoot Development

Shortly after germination, seedlings form the api-
cal hook to protect the shoot apical meristem
while emerging through the soil. ET up-regulates
the expression of auxin biosynthetic genes such as
TAA1, TAR2, and several YUC genes in the hy-
pocotyl. ET also modulates auxin transport, in-
ducing AUX1, LAXI, and PIN3 and inhibiting
PINI and PIN4 expression, to achieve preferential
auxin localization on the inner side of the hook.
This ET-mediated auxin gradient initiates and
maintains the temporary hook structure (Van-
denbussche et al. 2010; Zddnikova et al. 2010).
Consistent with the role of auxin-ET interactions
in apical hook formation, the ET-insensitive mu-
tant ein2 displays a defective hook that can be
corrected with exogenous auxin application, con-
sistent with the notion that ET induces the boost
in auxin production required for proper hook
development (Vandenbussche etal. 2010). More-
over, ET stimulates the transcription of an N-ace-
tyltransferase-like gene HOOKLESS1 (HLSI),
which down-regulates the expression of ARF2, a
repressor of the auxin response (Li et al. 2004).
This repression of a repressor results in the gen-
eral induction of auxin responses. Accordingly,
hls1 mutants do not form a hook, highlighting
another point of integration of the auxin and
ET cues during apical hook development (Leh-
man et al. 1996).

Fruit Development

Auxin-ET crosstalk is fundamental for the devel-
opment of the male and female reproductive or-
gans (An et al. 2012). Auxin induces, whereas ET
represses, stamen development, and both pro-
mote pollen germination and the growth of the
pollen tube (Fig. 4A; for review, see An et al.
2020). Genes involved in ET and auxin biosyn-
thesis and signaling are highly expressed during
pistil development and specifically in ovules at
anthesis, suggesting that these two hormones
coregulate the process of fruit set, but act at dif-
ferent time points (for review, see An et al. 2020).
In tomato, auxin governs theinitial phases of fruit
development and ET controls the ripening of the
fruit by promoting the degradation of chloro-

phylls, conversion of xanthophylls to carotenes,
initiation of the climacteric ET production, etc.
(Fig. 4B,C; Fraser et al. 1994). Fruits treated with
auxin exhibit a delay in the climacteric transition
to the ET-mediated ripening processes, preserva-
tion of high levels of xanthophylls and chloro-
phyll, and the inhibition of genes involved in
carotenoid biosynthesis (Su et al. 2015).

Tomato transgenic lines with reduced ex-
pression of SIIAA3 exhibit auxin and ET pheno-
types, with delayed ripening and reduced apical
dominance, auxin sensitivity, and petiole epi-
nasty, suggesting that SITAA3 is a link between
the auxin and ET response pathways (Chaa-
bouni et al. 2009). Furthermore, both ET and
auxin induce the expression of the TF ET
RESPONSE FACTOR.B3 (SIERF.B3), a major
player in the regulation of ET responses and fruit
ripening (Liu et al. 2013a). SIERF.B3 integrates
ET and auxin signals by binding to the promoter
and inducing the expression of SIIAA27 (Fig.
4C; Liu et al. 2018).

Other Contexts

As mentioned above, in the IPyA pathway of
auxin biosynthesis, TAA1 and TARs catalyze
the conversion of Trp into IPyA that is subse-
quently used by the YUCs to produce auxin
(Mashiguchi et al. 2011; Stepanova et al. 2011;
Won et al. 2011). The VAS] enzyme directs
IPyA away from the YUCs, using it and the ET
biosynthetic precursor, Met, to produce Trp and
2-ox0-4-methylthiobutyric acid, reducing IPyA
availability and, in turn, auxin production. Cor-
respondingly, vasl mutants exhibit elevated lev-
els of both IAA and the ET precursor ACC.
VAS] therefore represents a point of interaction
at the metabolic level between auxin and ET
biosynthesis (Zheng et al. 2013).

AUXIN-GA INTERACTIONS

GAs take their name from the growth-modifying
fungus Gibberella fujikuroi that triggers a “foolish
seedling disease” in rice. Since GA was first iden-
tified in the 1930s, more than 130 GAs have been
discovered in plants, fungi, and bacteria. Howev-
er, only a handful, GA,, GA;, GA,, and GA, are
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biologically active, and most nonbioactive GAs
are precursors or deactivated catabolites of the
bioactive forms. GAs are derived from trans-ger-
anylgeranyl diphosphate (GGPP), a common
C20 precursor for diterpenoids. First, GGPP is
converted to the tetracyclic hydrocarbon inter-
mediate, ent-kaurene, by the diterprene cyclases
ENT-COPALYL DIPHOSPHATE SYNTHASE
and ENT-KAURENE SYNTHASE. Then, ent-
kaurene is converted to GA, by a plastid mem-
brane-bound ENT-KAURENE OXIDASE and
an endoplasmic reticulum-bound ENT-KAUR-
ENOIC ACID OXIDASE. In the third step, the
conversion of GA, , to various intermediates and
bioactive GAs is mediated in the cytosol by
GA20-OXIDASE and GA3-OXIDASE through
two parallel pathways. Bioactive GAs can be de-
activated by GA2-OXIDASE (GA2ox) (for re-
view, see Binenbaum et al. 2018).

The soluble receptor GIBBERELLIN-INSEN-
SITIVE DWARF1 (GID1) binds to GA in the nu-
cleus triggering a conformational change that
promotes association with the transcriptional reg-
ulators DELLAs. The formation of the GID1-GA-
DELLA complex enhances DELLA binding to
GID2/SLY1 F-box proteins, which triggers the
degradation of DELLA via the 26S proteasome
pathway, activating the GA response. In the ab-
sence of GA, DELLA proteins bind to TFs, repress-
ing the GA response (for review, see Herndndez-
Garcia etal. 2020). As the sites of GA biosynthesis
are not always colocalized with the expression do-
mains of GA perception genes, GA movement is
thought to be essential. Although GA efflux trans-
portershavenot been identified yet, the NITRATE
TRANSPORTER1/PEPTIDE TRANSPORTER
family of proteins in Arabidopsis have been de-
scribed as bona fide influx carriers (for review,
see Binenbaum et al. 2018). In addition, two mem-
bers of the SWEET transporter family (SWEET13
and SWEET14) are also capable of transporting
GA (for review, see Binenbaum et al. 2018).

While auxin plays essential roles in almost
all developmental processes (for review, see Gal-
leietal. 2020), GAs play important roles in both
cell division and cell elongation, such as seed
germination, stem/shoot elongation, and floral
organ development (Ubeda-Tomas et al. 2012).
It is generally considered that auxin acts up-
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stream of GA by activating GA biosynthesis
(Hu et al. 2018a), but there are many levels of
interaction between these two hormones, as re-
viewed below.

Root Development

As described above, the auxin-CK regulatory cir-
cuit ARRI-SHY2-PIN controls root meristem
size by balancing cell differentiation with cell di-
vision (Fig. 2C; Moubayidin et al. 2010). ARR1
physically interacts with DELLA proteins GA-
INSENSITIVE (GAI) and REPRESSOR OF GA
(RGA) and this interaction enhances its transac-
tivation activity (Rosa et al. 2015). Thus, during
the meristem growth phase, a high level of GA
represses ARRI expression by promoting degra-
dation of the DELLA proteins, which results ina
low level of SHY2, thus promoting cell division
(Fig. 2G; Rosa et al. 2015).

Shoot Development

In the absence of light, seedlings undergo
skotomorphogenesis/etiolation, resulting in an
elongated hypocotyl, presence of an apical
hook and small and closed cotyledons (Von
Arnim and Deng 1996). Several PHYTO-
CHROME-INTERACTING FACTORs (PIFs)
including PIF1, PIF3, PIF4, and PIF6, play a
critical role in etiolation (Huq and Quail 2002;
Kim et al. 2003; Hugq et al. 2004; Monte et al.
2004). DELLAs physically interact with PIFs,
preventing PIF binding to their targets, which
results in inhibition of hypocotyl growth (de Lu-
cas et al. 2008; Feng et al. 2008). On the other
hand, ARF6 and ARFS also regulate hypocotyl
elongation (Tian et al. 2004; Nagpal et al. 2005).
Genome-wide analyses indicate that ARF6
shares a large number of target genes with the
BR signaling TF BZR1 and with the light/tem-
perature-regulated TF PIF4 (Oh et al. 2014), two
components of the PIF4-BZR1-DELLA module
that integrates signals from light, BR, and GA
(Bai et al. 2012a)b), suggesting that ARF6 may
interact with DELLA. ARF6, ARF7, and ARF8
were confirmed to physically associate with the
DELLA protein RGA. Through this interaction,
RGA blocks ARF6 binding to the promoters of
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its target genes, suggesting that GA promotes
cell elongation in the Arabidopsis hypocotyl by
enhancing auxin/ARF-mediated responses (Oh
et al. 2014).

Downstream from DELLA and PIF signal-
ing, the two Arabidopsis paralogous GATA TFs,
GATA NITRATE-INDUCIBLE CARBON-
METABOLISM INVOLVED (GNC) and
GNC-LIKE (GNL), were identified as direct
transcriptional targets of PIFs (Richter et al
2010). Single and double gnc and gnl mutant
seeds germinate faster than wild-type, with the
double mutant germinating even on plates con-
taining the GA biosynthesis inhibitor paclobu-
trazol (Richter et al. 2010). Furthermore, gnc gnl
partially suppresses the GA biosynthesis mutant
gal, suggesting that GNC and GNL are repres-
sors of GA signaling (Richter et al. 2010). gnc gnl
also suppresses arf2 phenotypes, suggesting
that, genetically, GNC and GNL act downstream
of ARF2 (Richter et al. 2013). Consistent with
this idea, ARF2 and ARF7 can directly bind to
the promoters of GNC and GNL and inhibit
their expression. Thus, GNC and GNL represent
another point of convergence for the crosstalk
between auxin and GA (Richter et al. 2013).

Another potential node of auxin-GA inter-
action is miR319, an important player in shoot
organ morphogenesis (Curaba et al. 2014) that
acts as a positive regulator of auxin signaling by
indirectly repressing SHY2 and SMALL AUXIN
UP RNA39 in leaf morphogenesis (Tian et al.
2002; Palatnik et al. 2003; Kant et al. 2009). In-
terestingly, miR319 can affect leaf cell differen-
tiation by targeting LANCEOLATE, which indi-
rectly inhibits GA biosynthesis (Ori et al. 2007;
Yanai et al. 2011), thus implicating miR319 in
the auxin-GA crosstalk controlling leaf organo-
genesis (Curaba et al. 2014).

Similar to primary stem growth, cambial
growth in secondary stems is also regulated by
auxin and GA. Consistent with previous studies
in Arabidopsis and in pea (Ross et al. 2000; Fri-
gerio et al. 2006), poplar PttGA200xI and
PttGA200x4 transcript levels are decreased in
the stem of decapitated trees and induced by
IAA, indicating that auxin stimulates the expres-
sion of GA biosynthesis genes in cambial
growth. Furthermore, GA-only treatment in-

creases cell division in the cambial zone of
decapitated poplar trees (i.e., under auxin deple-
tion) (Bjorklund et al. 2007). GA, in turn, in-
creases local auxin levels by promoting expres-
sion of a putative auxin efflux transporter,
PttPINI (Bjorklund et al. 2007). A recent study
demonstrated that GA can redirect protein traf-
ficking to the plasma membrane, thus coregulat-
ing multiple processes, including PIN-depen-
dent auxin fluxes (Salanenka et al. 2018).
GAsnot only promote vegetative growth, but
also induce developmental phase transitions. In
Arabidopsis, the GA pathway plays a major role in
flowering time under short-day conditions, pro-
moting flowering through the activation of flo-
ral integrator genes such as SUPPRESSION
OF OVEREXPRESSION OF CONSTANSI and
LEAFY (LFY) (Blazquez et al. 1998; Bonhomme
et al. 2000; Moon et al. 2007). On the other hand,
MP (ARF5) plays a critical role in flower primor-
dium initiation (Przemeck et al. 1996) and di-
rectly induces LFY (Yamaguchi et al. 2013; Wu
et al. 2015). Thus, LFY is yet another point of
convergence for the crosstalk between GA and
auxin. In addition, MP physically interacts with
BRAHMA (BRM) and SPLAYED, two related
Arabidopsis SWI/SNF-subgroup ATPases (Wu
et al. 2015), and BRM binds the promoters of
GA biosynthetic genes such as GA3oxI as an ac-
tivator (Archacki et al. 2013). Furthermore, sev-
eral DELLA proteins physically interact with an
SWI/SNF subunit SWI3C (Sarnowska et al.
2013). Thus, crosstalk between GA and auxin
during flowering may also be dependent on
MP- and DELLA-mediated interactions with
chromatin-remodeling complexes.

Fruit Development

Exogenous application of diverse plant growth
substances, mainly auxins and GAs, can induce
parthenocarpic fruit set and development (Gor-
guet et al. 2005; Srivastava and Handa 2005). Con-
sistent with these observations, mutations affect-
ing auxin signaling or GA biosynthesis genes
(such as AtARFS, SIARF7, SITAA9, and SIDELLA)
can also induce parthenocarpic fruits in Arabidop-
sis and tomato (Wang et al. 2005a, 2009, 2011;
Goetz et al. 2007; de Jong et al. 2009; Mounet
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et al 2012). It was proposed that fertilization trig-
gers auxin-mediated GA synthesis (Dorcey et al.
2009). A recent study in tomato showed that
SIARF7 and five other activator SIARFs interact
with SIDELLA and SIIAA9, and that SIARF7
and SIDELLA directly associate with the promot-
ers of GA biosynthesis (GA20ox1 and GA3oxI)
and auxin catabolism (GH3.2) genes (Fig. 4A;
Hu et al. 2018a). The direct interaction between
the activator SIARF7 and the repressor SIIAA9
may turn the SIARF7/SIIAA9 complex into atran-
scriptional repressor, whereas SIDELLA blocks
SIARF7 binding to the promoters of its target
genes, thus antagonizing the repression by
SIARF7/SIIAA9 of GA- and auxin-related genes
(Hu etal. 2018a). In contrast, the effect of SLARF7/
SITAA9 and SIDELLA on downstream growth-re-
lated genes, such as EXPANSIN5 (EXP5) and ACC
OXIDASE4 (ACO4), is additive (Fig. 4A). Taken
together, these findings reveal that direct crosstalk
between SIDELLA-mediated GA and SIARF7/
SITAA9-mediated auxin signaling events coregu-
lates fruit initiation in tomato (Hu et al. 2018a).
Interestingly, this DELLA/ARF-mediated
regulation central to fruit initiation in tomato
appears to be conserved in grape (Zhang et al.
2019b), also a true botanical fruit derived from
ovaries, and in strawberry (Zhou et al. 2020),
which makes accessory fruits derived from recep-
tacles. FveARF6 and FveARFS interact with the
DELLA repressor FveRGA1. Like SIARF7 (Hu
et al. 2018a; Zhou et al. 2020), Fve ARFS interacts
with FveRGA1 and FvelAA4 through distinct
protein domains, suggesting that FveARF8 may
be simultaneously repressed by FveRGAl and
FvelAA4 prior to fertilization (Zhou et al. 2020).
Furthermore, FveARF8 can directly bind to the
promoterand repress the expression of FveGIDIc,
suggesting that the auxin-GA crosstalk in straw-
berry fruits is multifaceted (Zhou et al. 2020).

AUXIN-JA INTERACTIONS

JA is a fatty-acid-derived hormone that takes its
name from jasmine oil of Jasminum grandiflo-
rum (Demole et al. 1962). JA regulates not only
plant stress responses but also plant growth and
development, in part through its tissue-specific
interactions with auxin. JA biosynthesis has
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been extensively reviewed (for review, see Fonse-
caetal. 2009 and Ruan etal. 2019). Briefly, JAs are
lipid-derived molecules produced via two main
pathways. The octadecane pathway uses linolenic
acid (18:3) as a precursor to produce 12-oxo-phy-
todienoic acid (OPDA) and the hexadecane path-
way uses hexadecatrienoic acid (16:3) yielding
dinor-oxo-phytodienoic acid (dn-OPDA) (Chini
etal. 2018). These first steps of both pathways take
placein the chloroplasts. Further reactionslead to
JA production in the peroxisomes and its modi-
fication to methyl-JA (MeJA) or conjugation to
isoleucine (Ile) to make JA-Ile in the cytoplasm.
The bioactive form of JA is JA-Ile, which mediates
plant responses to environmental and develop-
mental cues. JA-Ile can promote resistance to a
broad range of plant pathogenic bacteria, fungi,
and herbivores (Campos et al. 2014; Machado
et al. 2016, 2017).

JA biosynthesis and accumulation of JA-Ile
are promoted in response to specific endoge-
nous and environmental cues. JA-Ile binds to
the CORONATINE-INSENSITIVE1 (COI1) re-
ceptor, inducing the degradation of the JAS-
MONATE ZIM-DOMAIN (JAZ) proteins and
releasing the MYC2 TFs from the JAZ-MYC2
complex. The MYC2 TFs then induce the ex-
pression of JA-responsive genes (Chini et al.
2018).

The JA signaling pathway presents certain
similarities to the auxin signaling pathway.
COIl encodes an F-box protein, related to
TIR1/AFB family of F-box proteins that bind
auxin. Once JA-Ile is bound, COIl1 functions
in E3-ubiquitin ligase-mediated proteolysis of
the targeted JAZ proteins. The JAZ repressors
play a negative role in the JA signaling pathway
similar to the function of Aux/IAAs in auxin
signaling. Likewise, the MYC TFs up-regulate
the expression of downstream genes as activator
ARFs do in the auxin signaling pathway (Cam-
pos et al. 2016). Generally, while auxin is con-
sidered to be the growth-promoting hormone,
JA is known to repress plant growth.

Root Development

Auxin promotes PR meristem activity and cell
division but can also inhibit PR growth by reduc-
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ing cell elongation in the elongation zone (for
review, see Overvoorde et al. 2010 and Vaseva
et al. 2018). In contrast, JA treatments inhibit
PR meristem activity, decreasing cell number in
the root meristem, as well as reduce cell size in
both the meristem and the elongation zone, thus
leading to the reduction of the overall root growth
(Fig. 2A; for review, see Wasternack and Hause
2013). Auxin distribution defines the levels and
expression patterns of PLETHORAs (PLTs), AP2-
domain TFs that mediate the establishment and
maintenance of the root stem cell niche and cell
proliferation (Méhonen et al. 2014). ARF2 pos-
itively regulates PLTI and PLT2 expression
(Promchuea et al. 2017). In turn, PTLs stimulate
the production of auxin by inducing the expres-
sion of the auxin biosynthesis genes ANTHRA-
NILATE SYNTHASE ALPHA SUBUNITI
(ASAI), YUCI, and YUC4 (Pinon et al. 2013).
On the other hand, PLTs are also regulated by
JA (Chen et al. 2011). Upon JA perception, PLT
genes are repressed in the root stem cell niche
(Fig. 2C). In JA signaling mutants, such as coil
or myc2, JA-mediated regulation of PLT is abol-
ished, whereas in a Trp- and auxin-deficient mu-
tant asal and in an auxin overproducing mutant
yuclD, PLTs display normal responses to JA
(Chen et al. 2011). Furthermore, asal and
yuclD mutants are fully sensitive to JA in the
PR growth assay. These results argue that the
JA-triggered inhibition of the PLTs and the effect
of JA on root growth are independent of the ef-
fects of PLTs on auxin biosynthesis, and that aux-
in and JA coregulate root growth via PLTs inde-
pendently of one another (Chen et al. 2011).

In LR development, there is evidence for
direct crosstalk between JA and auxin (for re-
view, see Wasternack and Hause 2013). Exoge-
nous application of JA or an increase in endog-
enous JA levels caused by the induction of JA
biosynthetic genes result in enhanced auxin pro-
duction and signaling (Fig. 2A; Cai et al. 2015).
The coil-1 JA receptor mutant exhibits an
uneven distribution of LRs and is unable to pro-
mote the formation of additional LRs in re-
sponse to JA. In wild-type plants, JA treatment
boosts the formation of LRs by inducing the
expression of the ERFI09 TF in the LR pri-
mordium, and in the tip and base of LRs (Cai

et al. 2014). ERF109 binds to the promoters
of auxin biosynthesis genes such as YUC2
(Cheng et al. 2006) and ASAI (Sun et al
2009), increasing auxin levels and promoting
the emergence of LRs (Fig. 2B). Consistent
with the idea of auxin acting downstream of
JA in this process, mutants with compromised
auxin signaling, such as solitary root (iaal4)
and the double mutant arf7 arfl19, fail to in-
crease LR formation in response to JA (Raya-
Gonzilez et al. 2012). These observations sup-
port the idea that JA effects in LR development
are mediated by auxin.

The formation of adventitious roots (ARs) is
another developmental process affected by aux-
in-JA interactions (Gutierrez et al. 2012). Auxin
controls the levels of active JA-Ile by regulating
the expression of several GH3 genes, GH3.3,
GH3.5, and GH3.6, whose protein products are
believed to conjugate JA to amino acids, modu-
late the levels of both free JA and JA-Ile and, thus,
fine-tune AR formation (Gutierrez et al. 2012).
Auxin effects are mediated by several ARFs, with
ARF6 and ARF8 up-regulating and ARF17 re-
pressing these GH3s (Gutierrez et al. 2012). The
formation of JA conjugates by the GH3s reduces
the level of free, active JA-Ile and promotes the
formation of ARs. Furthermore, JA induces
ERF115, a TF that activates CK signaling by up-
regulating ARR5 and ARR7 and CK biosynthesis
by inducing the expression of IPT3, encoding one
of the rate-limiting enzymes in CK production.
Thus, JA represses AR formation by modifying
CK homeostasis through ERF115 activity (Lake-
hal et al. 2020).

Upon root damage, the synergistic interac-
tion between JA and auxin signaling pathways
favors the activation of the root stem cell division
and tissue regeneration (Zhou et al. 2019). In
intact roots, ERF109 and ERF115 TFs keep the
quiescent center (QC) of the root undifferentiat-
ed (Zhou et al. 2019). These TFs work in con-
junction with auxin and CYCLIN Dé;l
(CYCD6;1) to prevent the QC from dividing,
while promoting cell division in other regions
of the root meristem. Root wounding triggers
the rapid systemic production of JA and the local
accumulation of auxin at the sites of injury due to
impaired PAT upon tissue damage. JA perception
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activates MYC2, which directly induces ERF109,
which in turn targets and up-regulates CYCD6;1
and promotes auxin biosynthesis by inducing
ASAI (Zhang et al 2019a) and YUC2 (Cai et al.
2014). JA and auxin cooperatively induce the ex-
pression of ERF115, a key TF in tissue regenera-
tion that promotes division of the cells directly
surrounding the wounded site to replenish the
damaged cells (Ye et al. 2020).

As both TAA and JA-Ile are sensed by SCF
E3-ligase complexes, SCE™™ and SCF™, re-
spectively, that share multiple components, dis-
ruptions of these complexes (e.g., defects in the
generic SCF subunits or in upstream players)
result in impaired responses to both hormones
(Dharmasiri et al. 2007; Moon et al. 2007). For
example, single auxin resistant1 (axrl) and dou-
ble axrl axrl-like mutants defective in the
RUBI1-activating enzyme E1 display PR insensi-
tivity to synthetic auxin 2,4-D and to methyl-JA
(Dharmasiri et al. 2007). RUB1 modification of
the Cullin SCF subunit promotes SCF activity.
Thus, the ability to assemble functional SCF
complexes is apparently necessary for both JA
and auxin signaling.

Shoot Development

Crosstalk between the auxin signaling pathway
and JA production regulates the development of
floral organs according to external cues and
flower phenology (Reeves et al. 2012). The auxin
response factors, ARF6 and ARF8, govern the
late stages of flower development leading to an-
thesis. The development of arf6 arf8 mutant
flowers is arrested at stage 12, resulting in flowers
with short petals and stamen filaments, and im-
mature anthers and gynoecium. The arf6 arf8
flowers never undergo anthesis and are largely
male and female sterile. ARF6 and ARFS8 regu-
late flower development, in part through the
TEOSINTE BRANCHED/CYCLOIDEA/PCF4-
mediated induction of JA synthesis, which in
turn up-regulates the expression of the JA-re-
sponsive TFs MYB21 and MYB24 that control
petal, stamen, and gynoecium development
(Reeves et al. 2012). Accordingly, mutants in
the JA biosynthesis or signaling pathways often
exhibit delayed anther dehiscence, low pollen
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viability, and compromised filament elongation
(for review, see Song et al. 2013). During flower
development, the arf6 arf8 mutant produces low
levels of JA (Tabata et al. 2010). Consequently,
application of exogenous JA can rescue the petal
elongation and anther dehiscence defects, but
not the stamen filaments or gynoecium devel-
opmental deficiencies of the arfé arf8 double
mutant (Nagpal et al. 2005), clearly indicating
that JA acts downstream of the auxin signaling
and response pathways with respect to petal and
stamen development.

Exogenous applications of JA or auxin in-
duce and repress leaf senescence, respectively.
JA promotes leaf senescence through the COI1
signaling pathway. The MYC TFs, including
MYC2, induce the expression of genes involved
in senescence and chlorophyll degradation (Qi
et al. 2015; Zhu et al. 2015). The WRKY57 TF
plays a major role repressing the expression of
senescence-associated genes (Jiang et al. 2014).
Upon JA application, WRKY57 transcription is
induced, whereas WRKY57 protein is rapidly
turned over by the 26S proteasome pathway
preventing its accumulation. In contrast,
auxin treatment promotes both WRKY57 tran-
script and protein accumulation. Furthermore,
WRKYS57 physically interacts with JAZ4 and
JAZS8, as well as with [AA29, negative regula-
tors of the JA and auxin signaling pathways,
respectively. This competition for WRKY57 be-
tween JAZs and IAA29 is thought to also con-
tribute to the antagonistic role of JA and auxin
in the regulation of leaf senescence (Jiang et al.
2014).

AUXIN-SA INTERACTIONS

SA is a phenolic compound produced by plants in
response to pathogen exposure and, along with
JA, plays a central role in plant defenses to biotic
stress (for review, see Lefevere et al. 2020). Re-
markably, auxin and SA share a common precur-
sor, chorismate, which is produced via the shiki-
mate pathway in the chloroplast (Pérez-Llorca
et al. 2019). Chorismate can be converted into
Trp to synthesize auxin or into isochorismate to
produce SA. The SA biosynthesis pathway is
thought to occur through two independent
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routes, one relying on PHENYLALANINE AM-
MONIA-LYASE (PAL) and the other on ISO-
CHORISMATE SYNTHASE (ICS), both resid-
ing in the cytosol (Dempsey and Klessig 2017).
In the first reaction of the PAL pathway, PAL
catalyzes the conversion of phenylalanine into
trans-cinnamic acid, which is later metabolized
to either ortho-coumaric acid or benzoic acid in-
termediates to finally produce SA. In the ICS
pathway, ICS is responsible for the conversion
of chorismate into isochorismate. Then, aviPphB
SUSCEPTIBLE3 (PBS3) conjugates isochoris-
mate with glutamate to produce isochorismate-
9-glutamate, which can be converted by the
acyltransferase ENHANCED PSEUDOMONAS
SUSCEPTIBILITY 1 (EPS1) or spontaneously
catabolized into SA (for review, see Lefevere
et al. 2020).

Members of the NON-EXPRESSOR OF
PATHOGENESIS-RELATED (NPR) gene family
are postulated to be SA receptors. In the absence
of SA, NPR1 is located in the cytoplasm in an
oligomeric state. Upon SA binding, NPR1 expe-
riences a conformational change that causes the
complexes to dissociate into monomers that mi-
grate to the nucleus where NPR1 interacts with
the TGACG-BINDING FACTOR (TGA) family
of TFs to induce the expression of PATHOGEN-
ESIS-RELATED genes (Wu et al. 2012). NPR3
and NPR4 bind SA and act as adaptor proteins
regulating the activity of the CUL3 E3 LIGASE
that degrades NPR1 depending on the SA con-
centration in the cell. In healthy plants, the low
levels of SA trigger the degradation of NPR1 by
NPR3, NPR4, and the proteasome, thus block-
ing the induction of defense genes. As SA levels
increase upon pathogen attack, SA-bound
NPR3 and NPR4 lose their ability to promote
the degradation of NPR1, enabling stabilized
NPR1 to induce PATHOGENESIS-RELATED
genes (Fu et al. 2012).

Besides the NPRs, additional SA-binding
proteins may be involved in specific NPR1-in-
dependent SA immune responses and in SA-
mediated regulation of growth. SA produced
by plants is involved not only in plant defenses
but also in plant growth and development
(Wang et al. 2007). Auxin and SA interact to
modulate these processes.

Root Development

Treatments with exogenous SA shape the devel-
opment of the root, at least in part by affecting
auxin production and distribution. PIN efflux
transporters are stabilized at the plasma mem-
brane by SA (Du et al. 2013). Low concentra-
tions of SA (below 50 pM) induce the formation
of ARs but reduce the size of the PR meristem,
whereas high concentrations of SA (above 50
pM) hamper all root developmental processes
(Pasternak et al. 2019). SA has an inhibitory
effect on root elongation, in part due to
the activation of auxin synthesis via TAAI in-
duction in the epidermis of the elongation zone
(Fig. 2A; Pasternak et al. 2019), similar to the
expression boost triggered by ET (Stepanova
et al. 2008).

The mechanisms governing AR formation
are defined by the crosstalk between SA, auxin,
ET, and JA (Pasternak et al. 2019). The amido-
synthases encoded by the GH3 gene family are
able to conjugate not only IAA, but also JA and
SA, to amino acids (for review, see Woodward
and Bartel 2005 and Zhang et al. 2007). The
activity of GH3 enzymes controls the endoge-
nous levels of active hormones, ultimately influ-
encing the number of ARs and other morpho-
metric traits (Staswick et al. 2005; Sorin et al.
2006; Gutierrez et al. 2012). For example, trans-
genic lines overexpressing GH3.5 exhibit re-
duced levels of free auxins and SA, but elevated
levels of their aspartate conjugated forms, and
show dramatic morphological defects including
severe dwarfism (Westfall et al. 2016). Further-
more, by regulating the levels of the [AA and
SA, GH3s affect plant responses to pathogens
(Zhang et al. 2007) and to a wide range of abiotic
stresses including drought, freezing, and salin-
ity, consistent with the central role of the GH3
substrates in these processes (Park et al. 2007).
In summary, the crosstalk between SA and aux-
in affects the architecture of the root and its
interaction with environmental cues.

Shoot Development

During apical hook formation, ET and GA en-
hance the uneven distribution of auxin, promot-
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ing the formation of an exaggerated apical hook,
whereas JA and SA disrupt the differential dis-
tribution of auxin and, thus, the formation of
the apical hook (Wang and Guo 2019). In the
presence of SA, NPR1 monomers migrate to the
nucleus and interact with EIN3 and EIL1, block-
ing the expression of EIN3- and EILI-target
genes, including those involved in auxin biosyn-
thesis and transport and, thus, the formation of
the apical hook (Huang et al. 2020). This SA-
mediated effect on the formation of the apical
hook is NPR1-dependent, with formation of the
apical hook being impaired in NPRI overexpres-
sion lines and enhanced in nprl loss-of-func-
tion mutants (Huang et al. 2020).

Pathogen Response

Auxin and SA exhibit antagonistic functions
during plant defense (Wang et al. 2007). A num-
ber of pathogens are capable of either producing
auxin or inducing auxin biosynthesis in the host
to modify the plant developmental programs to
their own benefit (Chen et al. 2007; for review,
see Robert-Seilaniantz et al. 2007). The extra
auxin loosens the cell walls and promotes cell
elongation, favoring pathogen attack and en-
abling the development of symptoms.

To counteract pathogens, plants have evolved
mechanisms to dampen the effects of the excess
auxin produced during an attack (Spaepen et al.
2007). One primary method is to accumulate high
levels of SA that inhibit the response to auxin at
multiple levels. SA down-regulates the expression
of several PIN genes, reducing auxin transport
(Armengot et al. 2014). Furthermore, SA damp-
ens auxin signaling by inhibiting the expression of
TIR1 and AFBs, stabilizing the Aux/IAA repres-
sors and, thus, blocking the global response to
auxin (Wang et al. 2007). In addition, mutants
that overaccumulate SA have lower TAA levels
relative to wild-type, suggesting that the inhibito-
ry effect of SA on auxin is in part due to a reduc-
tion in auxin signaling and response (Wang et al.
2007). SA impairs the production of auxin by
inhibiting CATALASE2 (CAT2) activity. CAT2 is
down-regulated in response to SA, leading to an
increase in hydrogen peroxide that triggers the
sulfenylation of TRP SYNTHETASE B SUB-
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UNIT1, reducing the production of Trp and,
thus, hampering the biosynthesis of auxin
(Yuan et al. 2017). CAT2 coordinates the action
of SA not only on auxin but also on JA produc-
tion, thus affecting plant susceptibility to patho-
gens (Yuan et al. 2017).

AUXIN-SL INTERACTIONS

SLs are the most recent addition to the phyto-
hormone family. They were discovered based on
their involvement in promoting the germination
of parasitic plants of the Striga genus (Cook et
al. 1966). SLs are produced from carotenoids.
While the complete picture of SL synthesis is
still unfolding, in general, SL synthesis starts
with the conversion of B-carotene to carlactone.
This process is catalyzed by three enzymes:
DWARF27 (D27), CAROTENOID CLEAV-
AGE7 (CCD7), and CCD8 (for review, see
Omoarelojie et al. 2019). Most SL production
takes place in the root, but the shoots also
make SL. SL can be transported to the shoot to
mediate shoot developmental processes, such as
branching (Gomez-Roldan et al. 2008; Umehara
et al. 2008), or secreted into the rhizosphere to
mediate symbiotic and parasitic relationships
(Cook et al. 1966; Akiyama et al. 2005).

The current model for SL signaling is that
the SL molecule binds to its receptor, o/p-hy-
drolase D14, initiating a signaling cascade. In
the presence of SL, D14 forms a complex with
an F-box protein D3 (in Arabidopsis, MORE
AXILLARY BRANCHES, MAX2). This com-
plex directs protein targets, such as rice D53
(in Arabidopsis, three redundant members of
the SUPPRESSOR OF MAX2 1-LIKE (SMXL)
family) for ubiquitin-mediated degradation.
The loss of these target proteins relieves the
transcriptional repression of SL-regulated genes,
triggering some SL-induced responses (for re-
view, see Omoarelojie et al. 2019 and Biirger and
Chory 2020). In the final step, D14 hydrolyzes
and inactivates the SL molecule (Seto et al.
2019). There is also evidence for feedback regu-
lation of SL signaling. In pea, the SL pathway
mutants ramosus (rms3, rms4, and rms5, defec-
tive in the orthologs of rice OsD14, OsD3, and
OsCCD7, respectively) show increased expres-
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sion of PsRMSI (OsCCDS), suggestive of
feedback regulation, but plants harboring the
rms2 mutation have reduced expression of
PsRMSI (Foo et al. 2005). PsRMS2 was found
to encode an ortholog of the TIR1 auxin recep-
tor that up-regulates SL biosynthesis, providing
further support for the connection between aux-
in response and SL biosynthesis in pea (Ligerot
et al. 2017).

Root Development

SL treatment of rapeseed seedlings promotes
both shoot and root growth and rapidly reduces
endogenous auxin levels, suggesting that auxin—
SL interactions are at play both above and below
ground (Ma et al. 2020). The Arabidopsis SL
mutants maxl, max2, and max4 (an ortholog
of OsCCDS8) have a shorter PR and fewer meri-
stematic cells relative to wild-type, as well as
expanded auxin reporter activity (Ruyter-Spira
et al. 2011). Application of a synthetic SL to the
roots of plants increases the size of the root mer-
istem and transition zone, blocks LR formation
and reduces the auxin content of leaves. SL treat-
ment also inhibits the expression of PIN 1, 3,
and 7 translational fusions with GFP in the
root tip, suggesting that an interaction between
SL and auxin transport is critical for balancing
root growth (Ruyter-Spira et al. 2011). Similarly,
SL promotes PIN2 expression and PIN2 polar
localization at the plasma membrane in Arabi-
dopsis root tips, implicating SL in the regulation
of PIN-mediated auxin transport in roots (Fig.
2A; Pandya-Kumar et al. 2014).

Arabidopsis max2, max3 (orthologous to
0sCCD?7), and max4 mutants all display an in-
creased number of LRs, and SL treatment re-
duces LR number and increases root hair length
in max3 and max4 (Kapulnik et al. 2011). SL
regulates LR development in rice via inhibition
of auxin transport (Fig. 2A; Sun et al. 2019). SL
signaling (d3) and biosynthesis (d10) mutants
display an increased number of LRs, which is
further enhanced by auxin treatment, but atten-
uated by NPA. The effect of auxin is abrogated
by application of SL in d10, but not in d3, pro-
viding evidence that SL acts to block auxin-me-
diated LR growth.

SHY2, involved in auxin and CK signaling,
promotes auxin accumulation to inhibit LR de-
velopment (Goh et al. 2012). The SL signaling
mutant max2 displays a similar LR phenotype as
a shy2 loss-of-function mutant, and both are
insensitive to SL treatment (Koren et al. 2013).
Conversely, wild-type plants and a shy2 gain-of-
function mutant are both sensitive to exogenous
SL. The authors propose that SHY?2 acts to inte-
grate signals from multiple hormone pathways,
including SL and auxin (Koren et al. 2013).

SL rice mutants have a decreased number of
ARs per tiller, but higher levels of endogenous
auxin and auxin reporter activity (Sun et al.
2015). Treatment of the d10 mutant with exog-
enous SL increases the number of ARs, decreases
the expression of auxin transport genes, and in-
hibits auxin reporter activity. Moreover, while
NPA treatment does not alter AR number in
the d3 or d10 mutants, it does reduce AR num-
ber in wild-type plants to alevel akin to SL mu-
tants. Together, these data show that, in rice, SL
promotes AR formation, which may be mediat-
ed by its actions on PAT. However, studies in
Arabidopsis and pea suggest that, unlike in rice,
SL and auxin might be largely independent of
one another in their control of AR development
(Rasmussen et al. 2012).

In tomato, SL treatment reduces the abun-
dance and length of root hairs, and blocks aux-
in-mediated inhibition of root elongation (Kol-
tai et al. 2010). Exogenous auxin is unable to
rescue the SL phenotype, but treatment with
2,4-D, a synthetic auxin analog that is a poor
substrate for auxin efflux carriers, rescues the
root hair and root elongation phenotypes, sug-
gesting that, in tomato, SL modulates root de-
velopment via effects on auxin transport.

SLs are exuded from plant roots as a signal to
stimulate arbuscular mycorrhizal (AM) coloniza-
tion (Akiyama et al. 2005). In tomato roots, AM
fungi induce SITAA27 expression (Bassa et al
2013) and silencing of SITAA27 reduces AM col-
onization (Guillotin et al. 2017). Interestingly,
silencing of SITAA27 also reduces the expression
of SL biosynthesis genes SINSPI, SID27, and
SIMAX1, and treatment with exogenous SL re-
stores the AM phenotype of SIIAA27-silenced
plants (Guillotin et al. 2017). Further evidence
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in pea supports the idea that auxin and SL interact
to promote AM symbiosis. An auxin-deficient
mutant, bushy (bsh), exhibits lower PsCCD8 ex-
pression, reduced SL in root exudates, and de-
creased mycorrhizal colonization (Foo 2013). In
wild-type plants, blocking endogenous auxin
transport to roots by stem girdling also reduces
SL levels in root exudates, and exogenous SL
treatment restores colonization in the bsh mutant,
suggesting that shoot-derived auxin acts through
SL to promote AM colonization.

Shoot Development

It has been proposed that SL inhibits branching
by acting like a second messenger for auxin: an
auxin signal from the young expanding leaves in
the primary shoot promotes SL production in
the main stem and root, and then SL travels up
into axillary meristems to influence branching
(Fig. 3A; Brewer et al. 2009). Auxin-mediated
apical dominance requires intact SL signaling
in pea (Beveridge et al. 2000) and Arabidopsis
(Sorefan et al. 2003), and SL treatment prevents
decapitation-induced branching in pea (Brewer
et al. 2009). Blocking PAT in the bud with
NPA takes days to have an effect, whereas SL
treatment rapidly inhibits bud outgrowth, sug-
gesting that SL, and not the establishment of
auxin export, regulates bud release (Brewer
et al. 2009). Auxin has been shown to promote
SL production during shoot branching by in-
creasing expression of the genes encoding
CCD7 and CCD8 in rice, pea, and Arabidopsis
(Fig. 3C; Sorefan et al. 2003; Bainbridge et al.
2005; Foo et al. 2005; Johnson et al. 2006; Zou
etal. 2006; Arite etal. 2007; Hayward et al. 2009).
In Arabidopsis, auxin-triggered induction of SL
biosynthesis is lost in the auxin-insensitive mu-
tant axr] (Hayward et al. 2009), but synthetic SL
can still inhibit axrl shoot branching (Brewer
et al. 2009), supporting the idea that auxin acts
through AXR1 to promote SL biosynthesis and,
thus, inhibit shoot development.

SLs have been shown to alter PAT by de-
creasing the expression of PIN genes and/or the
membrane abundance and localization of PIN
proteins, leading to the inhibition of bud devel-
opment in Arabidopsis (Fig. 3A,C; Bennett et al.
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2006; Crawford et al. 2010; Shinohara et al.
2013). Arabidopsis SL mutants have increased
auxin transport, up-regulated PIN protein ex-
pression, and enhanced branching (which is
lost upon NPA treatment or when an SL mu-
tant is crossed to the pinl mutant), indicating
that SL inhibits branching via regulation of aux-
in transport (Bennett et al. 2006; Lazar and
Goodman 2006). When the pin3/4/7 triple mu-
tant was crossed to highly branched SL mutants
(max2 and max4), the quadruple mutants had
reduced branching and less auxin transport in
the stem than the SL single mutants, bringing
their phenotypes closer to wild-type (van Ron-
gen et al. 2019). Likewise, the auxin transport
mutant abchbl9, when crossed to SL mutants,
displayed reduced branching. These findings
suggest that several auxin transporters interact
with SL to regulate auxin transport and branch-
ing. Similar to Arabidopsis, rice SL mutants ex-
hibit increased auxin levels (Arite et al. 2007).
However, conflicting experiments in pea found
that SL mutants do not have altered auxin
transport and SL did not require PAT to inhibit
branching (Brewer et al. 2009, 2015). This var-
iation could be due to differences in species,
the type of mutants analyzed, or experimental
design.

Auxin-SL interactions are at play in several
other plant species as well. In tall fescue roots
and leaves, expression of the SL signaling com-
ponent genes FaD3 and FaDI4 is up-regulated
by exogenous auxin, but down-regulated by
NPA, providing evidence for auxin-mediated
regulation of SL perception and signal transduc-
tion (Hu et al. 2018b, 2019). In peach, both aux-
in and SL inhibit axillary bud development
through actions involving CK (Li et al. 2018).
Auxin-treated plants show decreased expression
of PpIPTs after decapitation, and SL reduces
auxin transport by decreasing PpPIN1 expres-
sion (Fig. 3C). In turn, decreased auxin trans-
port inhibits CK biosynthesis and bud out-
growth. Likewise, in apple, SL treatment and
NPA treatment have similar phenotypic effects,
with both treatments decreasing the expression
of MsPIN1, in contrast to CK treatment that
enhances MsPIN1 transcript levels (Tan et al.
2019).
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Many of the seemingly irreconcilable results
may be due to the effects of a third hormone
critical to branching and apical dominance: CK.
CK and SL are both regulated by auxin, and con-
verge on the TF BRANCHED1 (BRC1) (Dun
et al. 2012), known to play a critical role in the
SL-mediated control of branching in multiple
species (Brewer et al. 2009; Minakuchi et al.
2010; Braun et al. 2012; Dun et al. 2012). CK
and SL oppose one another in regulating the ex-
pression of PsBRCI and branching (Fig. 3C; Dun
etal. 2012), adding another layer of complexity to
the interpretations of the auxin-SL relationship.
The interactions between auxin and CK are dis-
cussed in more detail in the Auxin-CK section
above.

Other Contexts

In Arabidopsis, low inorganic phosphate (Pi)
conditions increase root hair density (Ma et al.
2001) and LR density, which coincides with up-
regulation of the auxin receptor TIRI (Mayz-
lish-Gati et al. 2012). Induction of TIRI by low
Pi is lost in a max2 mutant, but IAA treatment
rescues the mutant root hair phenotype. While
this effect is specific to a certain developmental
time window, it suggests that SL can regulate
root hair formation in response to low Pi con-
ditions by up-regulating TIRI and enhancing
auxin signaling. Another study in Arabidopsis
found that SL mediates the low Pi response by
altering PIN2 polarity (Kumar et al. 2015), sug-
gesting that SL regulates not only auxin percep-
tion, but also auxin transport. Similarly, low
Pi or low N conditions in rice induce SL bio-
synthesis (Sun et al. 2014), and mutations in
SL signaling and biosynthesis genes (OsD3;
OsD10 and OsD27, respectively) lead to reduced
root responses to Pi or N deficiency. Low Pi, low
N, or SL treatment inhibit IAA transport from
shoot to root and reduce the activity of an auxin
reporter construct, suggesting that auxin-SL in-
teractions also mediate response to nutrient
availability in rice.

In tall fescue under heat stress, auxin inhib-
its root elongation, but SL promotes it (Hu et al.
2018b). SL and/or NPA treatment result in sim-
ilar root phenotypes and SL treatment inhibits

the expression of auxin transport genes (Fa-
TIR1, FaPIN1, FaPIN2, and FaPIN5) in root
tips, especially under heat stress conditions.
Nearly identical results were found in tall fescue
leaves (Hu et al. 2019), suggesting that SL and
auxin coordinate in a general heat stress re-
sponse.

CONCLUDING REMARKS

The complexity of the hormone crosstalk and
the fragmentary view that we have been able to
generate up to this point highlight the critical
need to balance the efforts of dissecting the
function of individual hormones with investi-
gating the molecular mechanisms of hormone
interactions. Although studying auxin and other
growth regulators individually has proven fruit-
ful, a more holistic outlook on signal interaction
is required to better understand the true com-
plexity of the role of these hormones in plant
growth and development. What has been hold-
ing plant biologists back from generating a more
comprehensive view of the hormone interaction
network and from uncovering the full complex-
ity of the signal crosstalk? Perhaps, one of the
existing limitations is the lack of adequate tools
to monitor multiple hormones in parallel with a
cellular resolution, which is a prerequisite for
identifying and implicating additional players
in the process of interest or explaining a pleio-
tropic phenotype of a mutant. To this end, the
development of multihormone reporters or bio-
sensors that enable simultaneous detection of
several hormones is clearly a pressing need.
The second major roadblock in studying hor-
mone crosstalk is the time and effort required
to generate desired multigene mutant combina-
tions to resolve gene functional redundancy and
to simultaneously deregulate several interacting
pathways. Fortunately, higher-order mutant
generation has now been significantly accelerat-
ed with the implementation of genome-editing
technologies in plants, paving the way to rapidly
make mutant combinations that were previously
difficult, or even impossible, to generate via tra-
ditional crosses (e.g., due to linkage). We hope
that the continuous optimization and wide
adoption of the latest molecular genetic tools

26 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a039990


http://cshperspectives.cshlp.org/

m Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Downloaded from http://cshperspectives._cship.org/ on April 27, 2021 - Published by Cold Spring Harbor Laboratory Press

Boged” www.cshperspectives.org

in plant biology, such as base editing, biosen-
sors, and single cell sequencing, will make the
study of hormone interactions less daunting,
will attract new talent, and shed much-needed
light on the web of signal crosstalk in plants.
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