
How Useful Is Delayed Feedback in AoI

Minimization — A Study on Systems With Queues

in Both Forward and Backward Directions

Chih-Chun Wang, Email: chihw@purdue.edu

Elmore Family School of ECE, Purdue University, USA

Abstract—One canonical example of Age-Of-Information (AoI)
minimization is the update-through-queues models. Existing re-
sults fall into two categories: The open-loop setting for which
the sender is oblivious of the actual packet departure time,
versus the closed-loop setting for which the decision is based on
instantaneous Acknowledgement (ACK). Neither setting perfectly
reflects modern networked systems, which almost always rely
on feedback that experiences some delay. Motivated by this
observation, this work subjects the ACK traffic to an independent
queue so that the closed-loop decision is made based on delayed
feedback. Near-optimal schedulers have been devised, which
smoothly transition from the instantaneous-ACK to the open-
loop schemes depending on how long the feedback delay is. The
results thus quantify the benefits of delayed feedback for AoI
minimization in the update-through-queues systems.

I. INTRODUCTION

Supporting low-latency applications is a top mission of

modern communication networks, with 5G NR aiming for 1ms

latency and even shorter delay (100µs) for 6G and beyond.

One example application is remote control in cyber-physical

systems (CPS). For example, [1] studies linear quadratic

Gaussian control systems [2] with random delay, and shows

that the control performance deteriorates exponentially fast

with respect to the Age of (the measurement) Information

(AoI) at the controller. The intuition is that any control action

at time t based on measurements that are ∆-time old inevitably

leaves the state disturbance accumulated during time interval

(t−∆, t] unchecked, which incurs exponential cost ec∆ since

the system state drifts exponentially in time if unchecked.

With strong relationships between AoI and underlying

system performance [3]–[5], AoI minimization has attracted

significant research attention. One earliest canonical example

is information update through queues [6]–[17]. Specifically,

source s sends update packets through a queue to destination d.

The AoI at d is defined as

∆(t) ≜ t−max{Si : ∀i s.t. Di < t} (1)

where Si is the send time of the i-th packet Pi (the time of

injecting Pi into the queue) and Di is the delivery time (the

time Pi departs the queue). The objective is to design {Si : i}
that minimizes the average AoI.

This work was supported in parts by NSF Grants CCF-1618475, CCF-
1816013, CCF-2008527, CNS-2107363, and also by National Spectrum
Consortium (NSC) under grant W15QKN-15-9-1004.

Source Destination

Fig. 1. System with Queues in Both Forward and Backward Directions.

Existing results of this model generally fall into two cat-

egories: Open loop versus closed loop. In the open loop

settings [6], [7], [13], [14], [16], the sender is oblivious of

the actual packet departure time. Performance analysis has

been conducted for different service policies, e.g., Last-Come-

First-Serve (LCFS), and the scheduling scheme generally

follows a stationary randomized design. In the closed-loop

settings [8]–[12], [15], [17] s has instantaneous ACK of the

packet departure time. Optimal {Si : ∀i} are analyzed for

different variations, including AoI penalty functions [8], [10],

transmission cost [11], [12], and provably optimal distribution-

oblivious online algorithm [10].

Nonetheless, modern network protocols almost always rely

on feedback that experiences some (random) delay, espe-

cially in a remote estimation/control environment. It remains

unclear whether one should employ a scheme designed for

instantaneous ACK while knowing the feedback being used

is actually stale, or one should take an open-loop approach

that discards the delayed feedback completely. Intuitively, even

though delayed feedback is not as valuable as instantaneous

ACK, it should still contain some information that can assist

scheduling. The question to answer, though, is how to design

schemes that take full advantage of the delayed feedback.

With this motivation, this work subjects the ACK traffic to

an independent queue so that the closed-loop decision is based

on delayed ACK. See Fig. 1. The main contributions are:

(1) With delayed feedback, source s sometimes has to make

a decision before the arrival of ACK since ACK may arrive

too late due to feedback delay. However, it was not clear how

to define the “information” when s has not received the ACK.

This work rigorously formulates the problem via the stopping-

time terminology, which includes both the instantaneous-ACK

[8] and open-loop settings [6] as special cases.

(2) We explicitly design a new near-optimal achievability

scheme and a genie-aided converse result. Jointly, these new

bounds tightly bracket the optimal AoI with delayed feedback.

The results characterize a smooth transition such that the

shorter the feedback delay, the closer the optimal performance



is to the closed-loop setting; and the longer the feedback delay,

the performance becomes similar to the open-loop setting.

(3) Our results quantify the benefits of closed-loop over

open-loop schemes, a critical piece of information for system

designers. E.g., numerical evaluation shows that if the forward

and feedback queues have comparable service time, then the

benefits of delayed feedback almost vanish completely and

we can use the (simpler) open-loop approach to achieve near-

optimal performance. On the other hand, if the feedback delay

is roughly half of the forward delay, then significant gain can

still be achieved under a closed-loop design.

II. PROBLEM FORMULATION

This work assumes slotted time axis, i.e., the injection and

departure times of both queues in Fig. 1 are integers. Such

an assumption is not restrictive since most numerical methods

do quantize the time axis [5]. At time 0, both queues are

empty. For any i ≥ 1, source s would inject packet Pi to the

forward queue at the send time Si. Pi will leave the forward

queue and arrive at destination d at the delivery time Di.

Once delivered, the ACK packet of Pi, denoted by Acki, is

immediately injected to the backward queue (thus at time Di).

Acki will leave the backward queue at the ACK time Ai. Once

arrived, Acki will inform s the exact delivery time Di.

For each packet Pi (and its corresponding Acki) we denote

the i.i.d. service times of the forward and backward queues

by Yi ∼ PY and Zi ∼ PZ , respectively. PY and PZ can

be arbitrary distributions with bounded supports [1, ymax] and

[0, zmax], respectively. The assumption of Yi ≥ 1 is to avoid

the complication of instantaneous forward delivery. Initialize

S0 = D0 = A0 = 0. Under the FIFO-queue model, we have

Di = max(Si, Di−1) + Yi (2)

Ai = max(Di, Ai−1) + Zi (3)

For any i ≥ 1, define a random process ack.deli(t) ≜ Di ·
1{Ai≤t}, which jumps from 0 to Di at ACK time Ai and

stays at Di afterward, i.e., ack.deli(t) is the acknowledged-

delivery-time at time t. Define F
(i) ≜ {F

(i)
t : t ∈ [1,∞)}

as the filtration generated by random processes {ack.delj(t) :

j ∈ [1, i−1]}. I.e., σ-algebra F
(i)
t contains all the information

available to s when making the Si decision at time t.

This work studies the following AoI minimization problem:

avg.aoi∗ ≜ min
{Si:i≥1}

lim
T→∞

1

T

T
∑

t=1

∆(t) (4)

subject to ∀i ∈ [1,∞), Si−1 ≤ Si and (5)

Si is a stopping time w.r.t. F(i) (6)

where the AoI ∆(t) is defined in (1); and (5) ensures that the

packet index i is the chronological order of transmission, i.e.,

Pi−1 is, by definition, sent at an earlier time than Pi.

Our model is general. For example, we can choose PZ to

be instantaneous ACK P(Zi = 0) = 1 [8], to be deterministic

but non-zero, to be (truncated) log-normal distribution, or to be

P(Zi = zmax) = 1 for a large zmax that mimics the open-loop

setting in which feedback never arrives.

We now present a straightforward lemma.

Lemma 1: ∃B < ∞, the value of which depends on ymax and

zmax, such that the optimal scheme must satisfy Si ≤ Si−1+B.

The intuition behind is as follows. With bounded support

ymax and zmax, if we wait long enough, Acki−1 will return to

s and the previous packet Pi−1 will be fully ACK’ed. Since [8]

shows that under some mild assumptions the optimal waiting

time is bounded in a fully ACK’ed system, the optimal waiting

time must also be bounded for the delayed feedback system.

A. Four existing upper and lower bounds of avg.aoi∗

Zero-Wait-After-ACK (ZWAA) is a scheme for which s

sends Pi immediately after receiving Acki−1, i.e., Si = Ai−1.

By analyzing its performance, we derive an upper bound

zwaa = E(Y ) + 0.5 +
E(Y 2) + 2E(Y )E(Z) + E(Z2)

2 · (E(Y ) + E(Z))
(7)

Best-After-ACK (BAA) [10] adds an additional constraint

Si ≥ Ai−1 to (4)–(6) and then solves the optimal value of the

restricted problem. The result is an upper bound, which we

denote by baa. By definition, we always have baa ≤ zwaa.

Optimal periodic (Opt.Per) is an open-loop scheme which

chooses Si = ⌊(i − 1) · c⌋ where c > 0 is the real-valued

period being used. We numerically select the optimal c∗ that

leads to the smallest avg.aoi in Monte-Carlo simulation. The

result is an upper bound, which we denote by opt.per.

Instantaneous ACK (Inst.ACK) hardwires P(Zi = 0) = 1
and uses [8] to compute the optimal value. The result is a

lower bound of avg.aoi∗, which we denote by inst.ack.

As will be shown later, none of zwaa, baa, opt.per, and

inst.ack is tight for avg.aoi∗ in a general setting.

III. MAIN RESULT #1: A NEW LOWER BOUND

Our lower bound is derived by analyzing the performance

of a genie-aided scheme. Specifically, for any i ≥ 1, at time

t = max(Si−1, Di−2) the genie will temporarily take over1 the

backward queue and deliver all ACKs in the backward queue,

including Acki−2, to source s instantaneously. Note that the

genie does not alter the forward queue in any way. We now

argue that the optimal genie-aided scheme must satisfy

Rule 1: During time t ∈ (Si−1,max(Si−1, Di−2)], source s

waits and does not generate/send the current packet Pi.

The reason is as follows. If Ai−2 ≤ Si−1−1, then s knows

the value of Di−2 at time Ai−2. If s has not received Acki−2

by time Si−1−1, then our special genie will deliver Acki−2 to

s at time max(Si−1, Di−2). In either case, s knows the value

of max(Si−1, Di−2) either by the normal delivery of Acki−2

or by the genie-assisted delivery at time max(Si−1, Di−2).
By (2), the previous packet Pi−1 will only be delivered

after time max(Si−1, Di−2). Equipped with the knowledge

1In our model, both the forward and backward FIFO queues are beyond the
control of the sender, the same as in [3]–[5], [8]–[12]. However, when deriving
an impossibility result (a lower bound), we utilize a genie who is not limited
by this constraint and can directly manipulate/circumvent the backward queue.
Its performance thus serves as a lower bound of our original problem.



of max(Si−1, Di−2), s should always delay the transmission

of Pi to be after max(Si−1, Di−2) and make sure Pi is not

stuck behind Pi−1, which is bad for AoI minimization.

Note that when s is deciding whether to send the current Pi,

it keeps accumulating more and more knowledge via observing

{ack.delj(t) : j ∈ [1, i− 1]} over time. Further dissecting this

knowledge accumulation enables us to prove that the optimal

scheme must have the following additional structure.

Consider two “waiting time functions” φna : [0, ymax] 7→
[0, B] and φa : [1, 2ymax + zmax] 7→ [0, B].

Rule 2: At time t = max(Si−1, Di−2), source s com-

putes the value of x∗
na

≜ φna ((Di−2 − Si−1)
+) where

(·)+ ≜ max(·, 0). If Acki−1 has not arrived by time

max(Si−1, Di−2) + x∗
na

, then s will send Pi at that

time. Namely, x∗
na

is the additional waiting time after

max(Si−1, Di−2) if Acki−1 has not arrived by then.

Rule 3: If Acki−1 has arrived at an earlier time than

max(Si−1, Di−2)+x∗
na

, i.e., Ai−1 ≤ max(Si−1, Di−2)+x∗
na

,

then at time t = Ai−1, source s computes x∗
a
≜ φa(Ai−1 −

Si−1) and will send Pi at time Ai−1 + x∗
a
. Namely, x∗

a
is the

additional waiting time after Ai−1.

In sum, we use Rule 2 initially, but would switch to Rule 3

at time Ai−1 if the precomputed send-time max(Si−1, Di−2)+
x∗
na

has not been “committed” by the time Acki−1 arrives.

We now explain why the optimal scheme must satisfy

Rules 2 and 3. At time max(Si−1, Di−2), source s is still

waiting for Acki−1 due to (2). If Acki−1 had not arrived

for some interval, then no additional “variable” is revealed

to s during that interval. Therefore, s can anticipate the

situation and pre-compute the decision Si at time as early

as t = max(Si−1, Di−2), assuming Acki−1 arrives later than

that decision. See Rule 2.

Furthermore, at time max(Si−1, Di−2), packet Pi−1 has

just started to be processed in the forward queue, the “state”

of the system is thus how much the AoI has grown when Pi−1

was idled in the forward queue, which is max(Si−1, Di−2)−
Si−1 = (Di−2 − Si−1)

+. That is why we compute x∗
na

by

φna ((Di−2 − Si−1)
+) in Rule 2.

Similarly for Rule 3, if Acki−1 were delivered before time

max(Si−1, Di−2) + x∗
na

, then at time Ai−1, source s would

know with 100% certainty that both the forward and backward

queues are empty at that moment, a new piece of information

“revealed” to s at time Ai−1. As a result, s switches to a new

waiting time decision x∗
a
. The system state at time Ai−1 is

again how much the AoI has grown, which is Ai−1 − Si−1,

and we use it to compute x∗
a

by φa(Ai−1 − Si−1).

The ranges of φna and φa are both [0, B] because of

Lemma 1. The domain of φna is [0, ymax]. The reason is that

Rule 1 implies that Si−1 ≥ max(Si−2, Di−3). By (2) we have

Di−2 ≤ Si−1 + ymax and thus (Di−2 − Si−1)
+ ∈ [0, ymax].

Similar reasons can show that Ai−1−Si−1 ∈ [1, 2ymax+zmax],
which is the domain of φa.

Using Rules 1 to 3, one can convert (4)–(6) to an average

cost per stage (ACPS) problem of semi-Markov decision pro-

cess (semi-MDP) [18]. Specifically, we define two functions

to be used shortly:

m+
Y (x) ≜ E(Y ) + E

(

(Y − x)+
∣

∣Y + Z > x
)

(8)

γ(δ, y) ≜
δ2

2
+ δ · (y + 0.5) (9)

and use ā = Ai−1 − Si−1 and d̄ = (Di−2 − Si−1)
+

as short-

hand for the state values used in the waiting time functions

φa and φna, respectively. We denote the value functions of the

semi-MDP by fa(ā) and fna(d̄), where the former (resp. the

latter) corresponds to Rule 3 (resp. Rule 2). Then the Bellman

equations become: ∀ā ∈ [1, 2ymax + zmax] we have

fa(ā) = min
x∈[0,B]

γ(ā+ x,E(Y ))− v · (ā+ x) + fna(0) (10)

and ∀d̄ ∈ [0, ymax] we have

fna(d̄) = min
x∈[0,B]

{ x
∑

k=1

P(Y + Z = k) · fa(d̄+ k) (11)

+ P(Y + Z > x) ·

(

γ
(

d̄+ x,m+
Y (x)

)

− v · (d̄+ x) (12)

+

ymax
∑

y=1

P(Y = y|Y + Z > x) · fna
(

(y − x)+
)

)}

(13)

For the readers who are familiar with the AoI derivations in

[8], [10], the function γ(δ, y) in (9) is the AoI cost of letting

the total waiting time to be δ when the forward delay is y.

Recall that fa is the value function after receiving Acki−1 at

time t = Ai−1. In this case, any additional waiting time will

result in the total waiting time being Ai−1−Si−1+x = ā+x.

The resulting AoI cost is thus γ(ā+x,E(Y )) since the forward

queue is empty at time Ai−1 and the new packet Pi will take,

in average, E(Y ) to go through the empty forward queue. This

leads to the first half of the expression of fa(ā) in (10).

The term “−v · (ā + x)” in (10) is a generalization of the

average-cost adjustment term of ACPS-MDP to its counterpart

for ACPS-semi-MDP. Finally, since Si = Ai−1 + x ≥ Di−1,

when transmitting the next packet Pi+1, we will face a new

d̄ = (Di−1 − Si)
+ = 0. That is why in (10) the “next state

value” is always fna(0). The argmin x∗ value in (10) gives us

the optimal waiting time function φa(ā).
Now consider Rule 2. Suppose we choose to waiting x slots

after time max(Si−1, Di−2). We first consider the event that

Ai−1 ≤ max(Si−1, Di−2)+x. Because of the genie, we have

Ai−1 = max(Si−1, Di−2) + Yi−1 + Zi−1. The event is thus

equivalent to Yi−1+Zi−1 = k for some k ≤ x, i.e., the events

described in (11). Under these events, the scheme will switch

to the new policy φa. Because Ai−1 = max(Si−1, Di−2)+ k,

we have ā = Ai−1 − Si−1 = d̄ + k, which is why we use

fa(ā+ k) in (11) as the next state value.

The terms in (12) and (13) consider the event that s sends Pi

at time max(Si−1, Di−2)+x before the arrival of Acki−1. The

AoI cost in (12) is γ(d̄+x,m+
Y (x)). Comparing it to (10), the

difference is that without the arrival of Acki−1, when sending

Pi at time max(Si−1, Di−2) + x, source s cannot be 100%

certain that the forward queue is empty. There is a chance



that Pi−1 may “block” Pi and the expected delay of Pi is

thus enlarged from E(Y ) to m+
Y (x) in (8). Therefore we use

m+
Y (x) in the AoI cost term γ(·) of (12).

The term “−v · (d̄ + x)” in (12) is again the average-cost

adjustment term for ACPS-semi-MDP. (13) computes the next

state values. Specifically, when transmitting the next packet

Pi+1, the new state value d̄ for Pi+1 becomes

d̄ = (Di−1 − Si)
+

=
(

(max(Si−1, Di−2) + Yi−1)− (max(Si−1, Di−2) + x)
)+

After simplification, we have d̄ = (Yi−1 − x)+ and thus the

next state values specified in (13). The argmin x∗ value in

(11)–(13) gives us the optimal waiting time function φna(d̄).
We use value iteration to find a scalar v and functions fa(ā)

and fna(d̄) that satisfy (10)–(13) with the ground state value

hardwired to fna(0) = 0. The final v value is the optimal AoI

of the genie-aided scheme, thus a new lower bound lbnew.

IV. MAIN RESULT #2: A NEW UPPER BOUND

Our upper bound is derived by adding the constraint:

Si ≥ Ai−2, ∀i ≥ 1. (14)

to (4)–(6) and then characterizing the optimal value of the

restricted problem. Compared to the BAA scheme in Sec. II-A,

our scheme can send Pi before Ai−1 if desired, but must be

after Ai−2. We argue that the optimal scheme of the restricted

problem (4)–(6) plus (14) must respect the following rules:

Rule 1: During time t ∈ (Si−1,max(Si−1, Ai−2)], by (14)

source s waits and must not send the current packet Pi.

Consider two “waiting time functions” θna : [0, D]2 7→
[0, B] and θa : [1, D] 7→ [0, B]. Both the domains and ranges

are finite with D and B being explicit functions of ymax and

zmax. We omit their expressions due to space constraints.

Recall that we use ā ≜ Ai−1 − Si−1 as shorthand, see the

discussion after (9). Define two additional ones:

ã ≜ (Ai−2 − Si−1)
+ and d̃ ≜ ã− (Di−2 − Si−1)

+. (15)

Rule 2: At time t = max(Si−1, Ai−2), source s com-

putes x∗
na

≜ θna

(

ã, d̃
)

. If Acki−1 has not arrived by time

max(Si−1, Ai−2) + x∗
na

, then s will send Pi at that time, i.e.,

x∗
na

is the additional waiting time after max(Si−1, Ai−2) if

Acki−1 has not arrived by then.

Rule 3: If Acki−1 has arrived at an earlier time than

max(Si−1, Ai−2) + x∗
na

, then at time t = Ai−1, s computes

x∗
a
≜ θa(ā) and will send Pi at time Ai−1 + x∗

a
.

Rules 1 to 3 have the same structure as the genie-aided

scheme in Sec. III. The main difference lies in Rule 2, for

which the state value now consists of a pair (ã, d̃). The ã value

is how much the AoI has grown at time max(Si−1, Ai−2), an

important piece of information when minimizing AoI.

Note that at time t = max(Si−1, Ai−2), using Acki−2,

source s knows with 100% certainty the value of Di−2, the

time when Pi−2 left the forward queue. Therefore, the past ã

slots (counted from the injection of Pi−1 to the current time

max(Si−1, Ai−2)) can be divided into two segments: Segment

1: The first (Di−2 − Si−1)
+ slots during which the forward

queue was still busy processing Pi−2 and thus cannot process

Pi−1; and Segment 2: The remaining d̃ slots, see definition

(15), during which the forward queue started to serve Pi−1.

As a result, the longer the Segment 2 is, the more time the

forward queue has devoted to serving Pi−1, the more likely

that Pi−1 has been delivered to d (though no arrival of Acki−1

yet), and the more likely that new packet Pi will face an empty

queue and thus a shorter delay. The value d̃ is thus another

critical information for s when deciding the send time Si.

Some careful analysis shows that the (ã, d̃) pair is indeed

the necessary and sufficient state values for the semi-MDP

problem. That is why we have θna(ã, d̃) in Rule 2.

Define the following function:

m̃+
Y (x, δ) ≜ E(Y ) + E

(

(Y − x− δ)+|(Y − δ)+ + Z > x
)

(16)

Using Rules 1 to 3, the Bellman equations can be written as

follows. ∀ā ∈ [1, D] we have

ga(ā) = min
x∈[0,B]

γ(ā+ x,E(Y ))− v·(ā+ x) + gna(0, 0) (17)

and ∀(ã, d̃) ∈ [0, D]2 we have

gna(ã, d̃) = min
x∈[0,B]

{ x
∑

k=0

P

(

(Y − d̃)+ + Z = k
)

· ga(ã+ k)

(18)

+ P

(

(Y − d̃)+ + Z > x
)

·
(

γ
(

ã+ x, m̃+
Y (x, d̃)

)

− v · (ã+ x) (19)

+
∑

y,z

P

(

Y = y, Z = z
∣

∣(Y − d̃)+ + Z > x
)

·

gna

(

ãnext, d̃next

)

)}

(20)

where ãnext ≜

(

(y − d̃)+ + z − x
)+

and d̃next ≜ ãnext − (y −

d̃−x)+. Eq. (17) is similar to (10), consisting of the AoI cost

term γ(ã + x,E(Y )), the ACPS adjustment term −v(ã + x),
and the next state value gna(0, 0), which is derived by noticing

that since Si ≥ Ai−1 in Rule 3, we have ã = (Ai−1−Si)
+ =

0 = d̃ = (Di−1 − Si)
+ for the next packet Pi+1.

Eqs. (18)–(20) follow the same structure as in (11)–(13).

Specifically, (18) depicts the event that Acki−1 arrives before

the send time decision ã+x. Eqs. (19)–(20) describe the event

that Acki−1 arrives after time ã+x. In particular, the AoI cost

term in (19) uses m̃+
Y (x, d̃) in (16), the enlarged expected

delay of Pi passing through the forward queue due to the

possibility being blocked by Pi−1. Eq. (20) analyzes the next

states when transmitting the next packet Pi+1. The derivation

is very similar to that of (11)–(13) and we thus omit the details.

We use value iteration to find a scalar v and functions

ga(ā) and gna(ã, d̃) that satisfy (17)–(20) and gna(0, 0) = 0.

The final v value is the optimal AoI of the new achievability

scheme, which we denote by ubnew. The argmin x∗ values in



0 5 10 15

Expected backward service time E(Z)

20

22

24

26

28
A

v
e
ra

g
e
 A

o
I

ZWAA

BAA

Opt.Per

ub
new

lb
new

Inst.ACK

Fig. 2. (lbnew, ubnew) versus existing results — log-normal PY

0 5 10 15

Expected backward service time E(Z)

18

20

22

24

26

28

A
v
e
ra

g
e
 A

o
I

ZWAA

BAA

Opt.Per

ub
new

lb
new

Inst.ACK

Fig. 3. (lbnew, ubnew) versus existing results — composite log-normal PY .

(17)–(20) give the optimal waiting time functions θa(ā) and

θna(ã, d̃). Once θa(ā) and θna(ã, d̃) are computed, the scheme

can be easily implemented following Rules 1 to 3. As will

be seen later, our achievability scheme exhibits near-optimal

performance and could have significant impact in practice.

V. NUMERICAL EVALUATION

For any given [ML,MU ], µ, and σ2 values, we say a

random variable Q is integer-quantized, [ML,MU ]-truncated,

log-normal with parameters (µ, σ2) if ∀q ∈ [ML,MU ],

P(Q = q) ∝ P(W ∈ (q − 0.5, q + 0.5])

where W is log-normal with parameters (µ, σ2). That is, we

first truncate the values outside [ML,MU ] and then propor-

tionally scale it so that the total probability is 1.

Fig. 2 plots (lbnew, ubnew) versus existing bounds zwaa, baa,

opt.per, and inst.ack, for which we assume Yi (resp. Zi)

is integer-quantized, [1, 24]-truncated (resp. [0, 24]-truncated),

log-normal with parameters (µY , σ
2
Y ) (resp. (µZ , σ

2
Z)). The

truncation intervals are slightly different since we assume

Yi ≥ 1 and Zi ≥ 0 in our setting, see Sec. II. We fix

(µY , σ
2
Y ) = (2.5, 0.62) and set σ2

Z = 0.62 while varying the

values of µZ to change the expected backward delay. A thin

vertical line E(Y ) = 11.86 is drawn in Fig. 2 to indicate the

average service time of the forward queue.

As can be seen, none of existing upper bounds zwaa, baa,

opt.per and lower bound inst.ack is tight for the general

cases, while lbnew and ubnew closely follow each other. In

fact, the smaller the E(Z), the smaller the gap ratio ubnew−lbnew

lbnew
.

Specifically, it is less than 0.28% when E(Z) ≤ 6.40 and it

grows to 1.24% when E(Z) = E(Y ) = 11.86. The bounds

do diverge for E(Z) ≥ E(Y ). Those situations are less

interesting in practice since each feedback usually consists

of a small(er) packet that experiences shorter delay than the

forward traffic. If desired, we can sharpen the upper bound by

ubnew ≜ min(ubnew, opt.per). The gap ratio ubnew−lbnew

lbnew
is less

than 1.36% for all E(Z). The pair (lbnew, ubnew) thus tightly

brackets the true avg.aoi∗ of (4)–(6) for all scenarios.

The very tight performance is because our achievability

scheme uses the conditional probabilities in (19) and (20) to

accurately represent “the information when Acki−1 has not

arrived”. Therefore, the scheme can send the current packet

Pi at the best possible time even before s has received Acki−1.

Note that the gap between opt.per versus lbnew (or ubnew)

diminishes gradually as the feedback delay E(Z) grows. When

E(Z) = E(Y ) = 11.86, the gap ratio between lbnew and

opt.per has diminished to 1.36%. That is, even with the best

possible closed-loop design, one can improve upon the simpler

Opt.Per scheme by at most 1.36%. Fig. 2 provides a useful

guideline on when one should consider switching to open loop

designs under delayed feedback scenarios.

Fig. 3 repeats the same experiment except that we let PY be

a (0.5, 0.5) mixture of two integer-quantized [1, 24]-truncated

log-normals with parameters (µY1
, σ2

Y1
) = (2.9, 0.22) and

(µY2
, σ2

Y2
) = (1.0, 0.72), respectively. That is, PY is bimodal

composite-log-normal. The thin vertical line indicates the new

E(Y ) = 10.71. The gap ratio between (lbnew, ubnew) is less

than 0.54% when E(Z) ≤ 5.83 and grows to 1.6% when

E(Z) = E(Y ) = 10.71. The largest gap ratio between lbnew

and ubnew ≜ min(ubnew, opt.per) is 1.9% for all E(Z).
Under the instantaneous ACK setting, the gap between

zwaa and baa is larger if P(Y ) happens to be bimodal, see

the diverging gap between zwaa and baa in Fig. 3 when

E(Z) = 0. This is also why we are interested in bimodal PY in

Fig. 3. Nonetheless, the gap between zwaa and baa diminishes

quickly with feedback delay. I.e., there is little room for AoI

improvement if we always wait for Acki−1 before sending

Pi. In contrast, the gap between zwaa and ubnew continues to

widen when E(Z) grows. Namely, the AoI improvement of

our new achievability scheme over the naive zero-wait policy

keeps getting bigger since our new scheme uses the delayed

feedback in a probabilistically near-optimal way.

Jointly, Figs. 2 and 3 show that our bounds are numerically

tight for two very different distributions, e.g., unimodal versus

bimodal. In our other not-reported experiments, the tightness

persists for uniform and geometric delay distributions as well.

VI. CONCLUSION

We have studied the AoI minimization problem with queues

in both the forward/feedback directions. Near-optimal sched-

ulers have been devised. The results have quantified the use-

fulness of delayed feedback in queue-based AoI minimization.



REFERENCES

[1] J. Zhang and C.-C. Wang, “On the rate-cost of Gaussian linear control
systems with random communication delays,” in Proc. IEEE Int’l Symp.

Inform. Theory. Vail, USA, June 2018.
[2] J. Doyle, “Guaranteed margins for LQG regulators,” IEEE Trans. Autom.

Control, vol. 23, no. 4, pp. 756–757, August 1978.
[3] Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener process

for remote estimation over a channel with random delay,” IEEE Trans.

Inf. Theory, vol. 66, no. 2, pp. 1118–1135, February 2019.
[4] T. Ornee and Y. Sun, “Sampling and remote estimation for the Ornstein-

Uhlenbeck process through queues: Age of information and beyond,”
IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 1962–1975, October 2021.

[5] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-
linear age functions,” J. Commun. Networks, vol. 21, no. 3, pp. 204–219,
June 2019.

[6] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE Int’l Symp. Inform. Theory. Hong
Kong, China, June 2015.

[7] V. Tripathi, R. Talak, and E. Modiano, “Age of information for discrete
time queues,” in arXiv:1901.10463, 2019.

[8] Y. Sun, E. Uysal-Biyikoglu, R. Yates, C. Koksal, and N. Shroff, “Update
or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory, vol. 63,
no. 11, pp. 7492–7508, December 2017.

[9] C.-H. Tsai and C.-C. Wang, “Unifying AoI minimization and remote es-
timation — optimal sensor/controller coordination with random two-way
delay,” in Proc. 39th IEEE Conference on Computer Communications

(INFOCOM). Toronto, Canada, July 2020, 10 pages.
[10] ——, “Age-of-information revisited: Two-way delay and distribution-

oblivious online algorithm,” in Proc. IEEE Int’l Symp. Inform. Theory.
Los Angeles, USA, June 2020, 6 pages.

[11] ——, “Unifying AoI minimization and remote estimation
– optimal sensor/controller coordination with random two-
way delay,” IEEE/ACM Trans. Netw., September 2021,
https://doi.org/10.1109/TNET.2021.3111495.

[12] ——, “Jointly minimizing AoI penalty and network cost among coexist-
ing source-destination pairs,” in Proc. IEEE Int’l Symp. Inform. Theory.
Melbourne, Australia, July 2021, 6 pages.

[13] R. Yates and S. Kaul, “The age of information: Real-time status updating
by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3, pp. 1807–
1826, March 2019.

[14] S. Kaul, R. Yates, and M. Gruteser, “Status updates through queues,” in
Proc. 46th Conf. Inform. Sciences and Systems. Princeton, NJ, USA,
March 2012.

[15] C. Kam, S. Kompella, and A. Ephremides, “Learning to sample a signal
through an unknown system for minimum AoI,” in Proc. IEEE Confer-

ence on Computer Communications Workshops (INFOCOM WKSHPS),
2019.

[16] A. Bedewy, Y.Sun, and N. Shroff, “Minimizing the age of information
through queues,” IEEE Trans. Inf. Theory, vol. 65, no. 8, pp. 5215–5232,
August 2019.

[17] A. Bedewy, Y.Sun, S. Kompella, and N. Shroff, “Optimal sampling and
scheduling for timely status updates in multi-source networks,” IEEE

Trans. Inf. Theory, vol. 67, no. 6, pp. 4019–4034, June 2021.
[18] D. Bertsekas, Dynamic Programming and Optimal Control, 4th ed. New

Hampshire, USA: Athena Scientific, 2017.


