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We consider the reaction diffusion problem and present efficient ways to discretize and precondition in the 
singular perturbed case when the reaction term dominates the equation. Using the concepts of optimal test 
norm and saddle point reformulation, we provide efficient discretization processes for uniform and non-uniform 
meshes. We present a preconditioning strategy that works for a large range of the perturbation parameter. 
Numerical examples to illustrate the efficiency of the method are included for a problem on the unit square.
1. Introduction

We consider the singularly perturbed reaction diffusion problem{
−𝜀Δ𝑢+ 𝑐𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω, (1.1)

for non-negative constant 𝜀 and 𝑐𝑚𝑎𝑥 ≥ 𝑐(𝑥) ≥ 𝑐𝑚𝑖𝑛 > 0 on Ω, a bounded 
domain in ℝ𝑑 . We focus on the reaction dominated case, i.e., 𝜀 ≪ 1. 
The discretization of the equation arises in solving practical PDE mod-
els, such as heat transfer problems in thin domains [2] as well as when 
using small step sizes in implicit time discretizations of parabolic re-
action diffusion type problems [35]. The solutions to these problems 
are characterized by exponential boundary layers and pose numerical 
challenges due to the 𝜀-dependence of the error estimates and of the 
stability constants.

Analysis and numerical methods to aproximate the solutions of (1.1)
can be found in [3,23,36,38,39]. Recent work involving a reformulation 
of the problem as a first order system is presented in [21,28]. Error es-
timates for higher order reaction diffusion problems have been recently 
investigated in [29].

The standard variational formulation for (1.1) is: Find 𝑢 ∈ 𝐻1
0 (Ω)

such that

𝜀(∇𝑢,∇𝑣) + (𝑐𝑢, 𝑣) = (𝑓, 𝑣) for all 𝑣 ∈𝐻1
0 (Ω). (1.2)
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A standard discretization of (1.2) can be solved by using a PCG algo-
rithm on 𝑉ℎ ⊂𝐻1

0 (Ω) with the BVP or the simplified preconditioner we 
introduce. The process is efficient for a certain range of 𝜀 ≥ 𝜀0. To im-
prove the rate of convergence (in the energy norm) for the case 𝜀 < 𝜀0, 
we proceed by using two main tools. The first is a mixed formula-
tion that is suitable to Saddle Point Least Squares (SPLS) discretization 
[8–10,12]. This allows for a higher order approximation of the flux 
∇𝑢 using the same discretization spaces as in the standard discretiza-
tion of (1.1). The second tool is based on using refined meshes towards 
the boundary layer(s) of the problem. Even though the refinement ap-
proach presented in this paper is focused on the case in which Ω is 
the unit square in ℝ2, as well as the use of Shiskin meshes, the ideas 
of mixed reformulation and multilevel preconditioning extend to more 
general cases of Ω ⊂ℝ𝑑 .

More recent Petrov-Galerkin approaches based on least squares 
methods for the reaction diffusion problem can be found in [1,21,35]. 
However, our approach of saddle point least squares reformulation is 
different. We reformulate the standard variational formulation (1.2) as 
a mixed variational formulation first, and then further reformulate it 
as a saddle point problem that allows preconditioning and extra ap-
proximability of the flux by using standard finite element spaces. The 
approach is related to the Lagrange multiplier approach that leads to 
Stokes type systems. In our case, the Lagrange multiplier is the vari-
able of interest. This idea was used before in other particular problems, 
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see e.g., [11,24,27,31]. Many aspects of the SPLS formulation are also 
common to the DPG approach [14,20,25,26,30,33].

The SPLS method as a general method for solving mixed varia-
tional formulations is presented in [8–10,12]. Discretizing (1.2), by 
SPLS allows for efficient preconditioning. We introduce a simplified 
version of the Bramble, Pasciak, and Xu (BPX) and Bramble, Pasciak, 
and Vasilevski (BPV) multilevel preconditioner [15,16] that works for 
nested spaces corresponding to uniform refinement meshes and, in some 
cases, could be more efficient than the standard multigrid algorithm.

In this paper, we combine SPLS formulation with the concept of 
optimal test norm [19,22,24,25,30,31,33] and a general precondition-
ing technique, introduced in [8], in order to improve the stability and 
approximability of the final discretization process. Using optimal test 
norms and a preconditioned SPLS formulation, we provide an efficient 
iterative process for solving (1.2) that, in the case of a projection trial 
space, allows for optimal order of approximation in a balanced norm. 
The approach could be extended to problems on 3D domains, where the 
method could benefit from using efficient preconditioning when dealing 
with large linear systems that involve parameters.

The paper is organized as follows. In Section 2, we introduce the 
notation and review the SPLS formulation, discretization, precondition-
ing, and the concept of optimal test norms. Sections 3 and 4 detail how 
to apply the general SPLS theory to the reaction diffusion problem. In 
Section 5, we review the Bramble-Pasciak-Vasilevski multilevel precon-
ditioning technique, and introduce a simplified preconditioner for the 
reaction diffusion equation. Numerical results are included in Section 6.

2. The notation and the general SPLS approach

We now review the main ideas and concepts for the SPLS formula-
tion, discretization, and preconditioning of a general mixed variational 
formulation. Let 𝑉 and  be Hilbert spaces and 𝐹 ∈ 𝑉 ∗. We are inter-
ested in problems of the form: Find 𝑝 ∈ such that

𝑏(𝑣, 𝑝) = ⟨𝐹 ,𝑣⟩ for all 𝑣 ∈ 𝑉 , (2.1)

where 𝑏(⋅, ⋅) is a continuous bilinear form on 𝑉 × satisfying the fol-
lowing inf − sup condition on 𝑉 ×:

inf
𝑝∈ sup

𝑣∈𝑉

𝑏(𝑣, 𝑝)|𝑣| ‖𝑝‖ =𝑚> 0. (2.2)

We view , the trial space in (2.1), as a subspace of larger (host) 
space ̃ and equip  with the induced inner product and norm from 
̃. The extra space ̃ is needed for the SPLS non-conforming discretiza-
tion. We assume the inner products 𝑎0(⋅, ⋅) and (⋅, ⋅)̃ induce the norms | ⋅ |𝑉 = | ⋅ | = 𝑎0(⋅, ⋅)1∕2 and ‖ ⋅ ‖̃ = ‖ ⋅ ‖ = (⋅, ⋅)1∕2̃ . We denote the dual of 
𝑉 by 𝑉 ∗ and the dual pairing on 𝑉 ∗ ×𝑉 by ⟨⋅, ⋅⟩. We further assume that 
𝑏(⋅, ⋅) has a continuous extension to a bilinear form on 𝑉 × ̃ satisfying

sup
𝑝∈̃

sup
𝑣∈𝑉

𝑏(𝑣, 𝑝)|𝑣| ‖𝑝‖ =𝑀 <∞. (2.3)

With the form 𝑏, we associate the operator 𝐵 ∶ 𝑉 → ̃ defined by

(𝐵𝑣, 𝑞)̃ = 𝑏(𝑣, 𝑞) for all 𝑣 ∈ 𝑉 , 𝑞 ∈ ̃.

In this paper, we assume that 𝑉0 ∶= 𝐾𝑒𝑟(𝐵) = {0}. Most of the con-
siderations in this section extend to a nontrivial kernel 𝑉0, see [10]. It is 
well known that if a bounded form 𝑏 ∶ 𝑉 × → ℝ satisfies (2.2), then 
problem (2.1) has a unique solution, see e.g., [4,5]. The standard sad-
dle point reformulation of (2.1) (see [11–13,24]) is: Find (𝑤, 𝑝) ∈ (𝑉 , )
such that

𝑎0(𝑤,𝑣) + 𝑏(𝑣, 𝑝) = ⟨𝐹 ,𝑣⟩ for all 𝑣 ∈ 𝑉 ,
𝑏(𝑤,𝑞) = 0 for all 𝑞 ∈.

(2.4)
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2.1. The concept of optimal test norm

If we assume that Range(𝐵) ⊂ and that the operator 𝐵 ∶ 𝑉 →
is injective (𝑉0 = 𝐾𝑒𝑟(𝐵) = {0}) then, as in [19,22,24,25,31], we can 
define an equivalent norm on 𝑉

|𝑣|𝑜𝑝𝑡 ∶= sup
𝑝∈

𝑏(𝑣, 𝑝)‖𝑝‖ = sup
𝑝∈

(𝐵𝑣, 𝑝)‖𝑝‖ = ‖𝐵𝑣‖ = ‖𝐵𝑣‖̃,
that is operator dependent. We will refer to this as the optimal test norm. 
By replacing the form 𝑎0(⋅, ⋅) in (2.4) with the inner product induced by 
the optimal test norm, i.e., 𝑎𝑜𝑝𝑡(𝑢, 𝑣) ∶= (𝐵𝑢, 𝐵𝑣), we obtain that both 
the continuity constant 𝑀 and the inf − sup constant 𝑚 are equal to 1. 
Thus, the stability (at the continuous level) of the new saddle point 
formulation is optimal.

2.2. The abstract variational formulation at the discrete level

The non-conforming (trial space) SPLS discretization of (2.1) is de-
fined as a saddle point discretization of (2.4) with 𝑉ℎ ⊂ 𝑉 and with ℎ

a subspace of ̃, but in general not necessarily a subspace of . As-
sume that standard discrete sup− sup and inf − sup conditions hold for 
the pair (𝑉ℎ, ℎ) with constants 𝑀ℎ and 𝑚ℎ respectively. The discrete 
mixed variational formulation of (2.1) is: Find 𝑝ℎ ∈ℎ such that

𝑏(𝑣ℎ, 𝑝ℎ) = ⟨𝐹 ,𝑣ℎ⟩ for all 𝑣ℎ ∈ 𝑉ℎ. (2.5)

In general, this might not have a unique solution. However, discretiza-
tion of (2.4): Find (𝑤ℎ, 𝑝ℎ) ∈ 𝑉ℎ ×ℎ such that

𝑎0(𝑤ℎ,𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ) = ⟨𝐹 ,𝑣ℎ⟩ for all 𝑣ℎ ∈ 𝑉ℎ,
𝑏(𝑤ℎ, 𝑞ℎ) = 0 for all 𝑞ℎ ∈ℎ,

(2.6)

always has a unique solution. We remind the reader that the inner prod-
uct on 𝑉ℎ is the same inner product from 𝑉 , 𝑎0(⋅, ⋅). The variational 
formulation (2.6) is the non-conforming saddle point least squares (n-c 
SPLS) discretrization of (2.1).

Using (⋅, ⋅), another (weaker) inner product on 𝑉 , we can define the 
discrete operator 𝐴ℎ ∶ 𝑉ℎ → 𝑉ℎ associated with the form 𝑎0(⋅, ⋅) on 𝑉ℎ by

(𝐴ℎ𝑣ℎ,𝑤ℎ) = 𝑎0(𝑣ℎ,𝑤ℎ) for all 𝑣ℎ,𝑤ℎ ∈ 𝑉ℎ

and the linear operators 𝐵ℎ ∶ 𝑉ℎ →ℎ and 𝐵∗
ℎ
∶ℎ → 𝑉ℎ by

(𝐵ℎ𝑣ℎ, 𝑞ℎ)ℎ
= 𝑏(𝑣ℎ, 𝑞ℎ) = (𝐵∗

ℎ
𝑞, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ, 𝑞 ∈ℎ.

The Schur complement of (2.6) is denoted by 𝑆ℎ = 𝐵ℎ 𝐴−1
ℎ
𝐵∗
ℎ
. In what 

follows, 𝑉ℎ ⊂ 𝑉 will be chosen as a standard conforming finite element 
space. On the other hand, each choice of the space ℎ, possibly non-
conforming to , leads to a new SPLS discretization for which 𝑝ℎ ∈ℎ ⊂ ̃.

2.3. Constructing a discrete trial space from a general test space

Let 𝑉ℎ be a finite element subspace of 𝑉 . Following [9,10], we provide 
a general construction of discrete trial spaces ℎ, defined using the 
operator 𝐵 associated with the original problem (2.1). Let ̃ℎ ⊂ ̃ be a 
finite dimensional subspace equipped with the inner product (⋅, ⋅)ℎ. The 
corresponding induced norm on ̃ℎ will be denoted by ‖ ⋅ ‖ℎ. Define 
the representation operator 𝑅ℎ ∶ ̃→ ̃ℎ by

(𝑅ℎ𝑝, 𝑞ℎ)ℎ ∶= (𝑝, 𝑞ℎ)̃ for all 𝑞ℎ ∈ ̃ℎ.

In the case when (⋅, ⋅)ℎ coincides with the inner product on ̃, we have 
that 𝑅ℎ is precisely the orthogonal projection onto ̃ℎ. Since the space ̃ℎ is finite dimensional, there exist constants 𝑘1, 𝑘2 such that

𝑘1‖𝑞ℎ‖ ≤ ‖𝑞ℎ‖ℎ ≤ 𝑘2‖𝑞ℎ‖ for all 𝑞ℎ ∈ ̃ℎ. (2.7)

Using the operator 𝑅ℎ, we define ℎ as
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ℎ ∶=𝑅ℎ𝐵𝑉ℎ ⊂ ̃ℎ ⊂ ̃.

The following proposition, see [5] and [10], gives a sufficient condition 
on 𝑅ℎ to ensure that the family {(𝑉ℎ, 𝑅ℎ𝐵𝑉ℎ)} is stable.

Proposition 2.1. Assume that

‖𝑅ℎ𝑞ℎ‖ℎ ≥ 𝑐 ‖𝑞ℎ‖ for all 𝑞ℎ ∈ 𝐵𝑉ℎ, (2.8)

with a constant 𝑐 independent of ℎ. Then

inf
𝑝ℎ∈ℎ

sup
𝑣ℎ∈𝑉ℎ

𝑏(𝑣ℎ, 𝑝ℎ)|𝑣ℎ| ‖𝑝ℎ‖ℎ ≥ 𝑐 𝑚 > 0, (2.9)

where 𝑚 is defined in (2.2).

As a consequence of Proposition 2.1, we have that (2.6) has a unique 
solution (𝑤ℎ, 𝑝ℎ) ∈ (𝑉ℎ, ℎ) and 𝑤ℎ = 0. Regarding the approximability 
property of the projection type trial space, the following proposition was 
proved in [10].

Proposition 2.2. If 𝑝 is the solution of (2.1) and 𝑝ℎ is the second compo-
nent of the solution of (2.6), then

‖𝑝− 𝑝ℎ‖ ≤ 𝐶 inf
𝑞ℎ∈ℎ

‖𝑝− 𝑞ℎ‖,
with 𝐶 = 1 + 1

𝑘1 𝑐
, where 𝑘1 and 𝑐 were introduced in (2.7) and (2.8), re-

spectively.

Remark 2.3. The choice of ̃ℎ is important. In practice, 𝑉ℎ is a space of 
continuous piecewise polynomials, and by applying the (differentiation) 
operator 𝐵 we obtain discontinuous functions. The representation op-
erator 𝑅ℎ ∶ ̃→ ̃ℎ acting on 𝐵𝑉ℎ can be viewed also as a smoothing 
operator, as the range ̃ℎ is a subspace of ̃ consisting of continuous 
functions. The SPLS discretization with ̃ℎ as trial space can be viewed 
as a (smoothing type) recovery or post-processing process.

2.4. An Uzawa CG iterative solver

Note that a global linear system may be difficult to assemble when 
solving (2.6) on (𝑉ℎ, ℎ = 𝑅ℎ𝐵𝑉ℎ), especially if the operator 𝑅ℎ in-
volves a global projection. In this case, bases for the trial spaces ℎ

might be difficult to find. One can solve (2.6) and avoid building a ba-
sis for ℎ by using an Uzawa Conjugate Gradient (UCG) algorithm.

Algorithm 2.4. (UCG) Algorithm

Step 1: Choose any 𝑝0 ∈ℎ. Compute 𝑤1 ∈ 𝑉ℎ, 𝑞1, 𝑑1 ∈ℎ by

𝑎0(𝑤1, 𝑣ℎ) = ⟨𝑓ℎ, 𝑣ℎ⟩− 𝑏(𝑣, 𝑝0) for all 𝑣ℎ ∈ 𝑉ℎ,

(𝑞1, 𝑞)ℎ = 𝑏(𝑤1, 𝑞) for all 𝑞 ∈ℎ, 𝑑1 ∶= 𝑞1.

Step 2: For 𝑗 = 1, 2, …, compute ℎ𝑗 , 𝛼𝑗 , 𝑝𝑗 , 𝑤𝑗+1, 𝑞𝑗+1, 𝛽𝑗 , 𝑑𝑗+1 by

(𝐔𝐂𝐆𝟏) 𝑎0(ℎ𝑗 , 𝑣ℎ) = − 𝑏(𝑣ℎ, 𝑑𝑗 ) for all 𝑣ℎ ∈ 𝑉ℎ

(𝐔𝐂𝐆𝛼) 𝛼𝑗 =−
(𝑞𝑗 , 𝑞𝑗 )ℎ
𝑏(ℎ𝑗 , 𝑞𝑗 )

(𝐔𝐂𝐆𝟐) 𝑝𝑗 = 𝑝𝑗−1 + 𝛼𝑗 𝑑𝑗

(𝐔𝐂𝐆𝟑) 𝑤𝑗+1 = 𝑤𝑗 + 𝛼𝑗 ℎ𝑗

(𝐔𝐂𝐆𝟒) (𝑞𝑗+1, 𝑞)ℎ = 𝑏(𝑤𝑗+1, 𝑞) for all 𝑞 ∈ℎ

(𝐔𝐂𝐆𝛽) 𝛽𝑗 =
(𝑞𝑗+1, 𝑞𝑗+1)ℎ
(𝑞𝑗 , 𝑞𝑗 )ℎ

(𝐔𝐂𝐆𝟔) 𝑑 = 𝑞 + 𝛽 𝑑 .
𝑗+1 𝑗+1 𝑗 𝑗

272
Remark 2.5. From (UCG4), we have that 𝑞𝑗+1 =𝐵ℎ𝑤𝑗+1. Thus, 𝑞𝑗+1 can 
be computed by inverting the Gram matrix corresponding to a basis of 
̃ℎ, which in our applications is component-wise a space of continuous 
piecewise linear functions. The Gram matrix corresponding to a basis of 
ℎ =𝑅ℎ𝐵𝑉ℎ is not needed for the computation of 𝑞𝑗+1 in (UCG4) or 𝑞1
in Step 1.

The main inversion needed at each step involves 𝑎0(⋅, ⋅) in Step 1 or 
(UCG1). In operator form, these steps become

𝑤1 =𝐴−1
ℎ
(𝑓ℎ −𝐵∗

ℎ
𝑝0), and ℎ𝑗 = −𝐴−1

ℎ
(𝐵∗
ℎ
𝑑𝑗 ). (2.10)

In order to build an efficient solver for (2.1), we modify Algorithm 2.4

by replacing the action of 𝐴−1
ℎ
with the action of a suitable precondi-

tioner.

2.5. Preconditioning the SPLS discretization

We summarize a general preconditioning framework to approximate 
the solution of (2.1) that is presented in [6,8]. We plan to combine this 
framework with the new concept of optimal test norm. Let 𝑃ℎ ∶ 𝑉ℎ → 𝑉ℎ
be a general (preconditioning) operator that is equivalent to 𝐴−1

ℎ
in the 

sense that

(𝑃ℎ𝑓ℎ, 𝑔ℎ) = (𝑓ℎ𝑃ℎ𝑔ℎ) for all 𝑓ℎ, 𝑔ℎ ∈ 𝑉ℎ, (2.11)

and

𝑚2
1|𝑣ℎ|2 ≤ 𝑎0(𝑃ℎ𝐴ℎ𝑣ℎ, 𝑣ℎ) ≤𝑚2

2|𝑣ℎ|2, (2.12)

where the positive constants 𝑚2
1, 𝑚

2
2 are the smallest and largest eigen-

values of 𝑃ℎ𝐴ℎ, respectively. Condition (2.12) is equivalent with the 
fact that the condition number of 𝑃ℎ𝐴ℎ satisfies

𝜅(𝑃ℎ𝐴ℎ) =
𝑚2
2

𝑚2
1

. (2.13)

It was proved in [6,8] that the saddle point discretization (2.6)
would not lose stability and approximability properties if 𝜅(𝑃ℎ𝐴ℎ) is 
independent of ℎ and 𝐴−1

ℎ
is replaced by 𝑃ℎ. The replacement of the 

action of 𝐴−1
ℎ
leads to solving

𝑤ℎ = 𝑃ℎ(𝑓ℎ −𝐵∗
ℎ
𝑝ℎ),

𝐵ℎ𝑤ℎ = 0.
(2.14)

The Schur complement associated with the modified problem (2.14) is

𝑆̃ℎ = 𝐵ℎ𝑃ℎ𝐵∗
ℎ
.

The corresponding version of Algorithm 2.4 to solve (2.14) is the fol-
lowing Uzawa Preconditioned Conjugate Gradient (UPCG) algorithm.

Algorithm 2.6. (UPCG) Algorithm for Mixed Methods

Step 1: Choose any 𝑝0 ∈ℎ. Compute 𝑢1 ∈ 𝑉ℎ, 𝑞1, 𝑑1 ∈ℎ by

𝑢1 =𝑃ℎ(𝐹ℎ −𝐵∗
ℎ
𝑝0)

𝑞1 =𝐵ℎ𝑢1, 𝑑1 ∶= 𝑞1.

Step 2: For 𝑗 = 1, 2, …, compute ℎ𝑗 , 𝛼𝑗 , 𝑝𝑗 , 𝑢𝑗+1, 𝑞𝑗+1, 𝛽𝑗 , 𝑑𝑗+1 by

(𝐏𝐂𝐆𝟏) ℎ𝑗 =− 𝑃ℎ(𝐵∗
ℎ
𝑑𝑗 )

(𝐏𝐂𝐆𝛼) 𝛼𝑗 =−
(𝑞𝑗 , 𝑞𝑗 )𝑄
𝑏(ℎ𝑗 , 𝑞𝑗 )

(𝐏𝐂𝐆𝟐) 𝑝𝑗 = 𝑝𝑗−1 + 𝛼𝑗 𝑑𝑗

(𝐏𝐂𝐆𝟑) 𝑢𝑗+1 = 𝑢𝑗 + 𝛼𝑗 ℎ𝑗

(𝐏𝐂𝐆𝟒) 𝑞𝑗+1 =𝐵ℎ𝑢𝑗+1,

(𝐏𝐂𝐆𝛽) 𝛽𝑗 =
(𝑞𝑗+1, 𝑞𝑗+1)𝑄
(𝑞𝑗 , 𝑞𝑗 )𝑄

(𝐏𝐂𝐆𝟔) 𝑑 = 𝑞 + 𝛽 𝑑 .
𝑗+1 𝑗+1 𝑗 𝑗



C. Bacuta, D. Hayes and J. Jacavage Computers and Mathematics with Applications 109 (2022) 270–279
According to [8], the UPCG iterations 𝑝𝑗 converge to the solution 𝑝ℎ
of (2.14), and the rate of convergence for ‖𝑝𝑗 − 𝑝ℎ‖𝑆̃ℎ depends on the 
condition number of 𝑆̃ℎ that satisfies

𝜅(𝑆̃ℎ) ≤ 𝜅(𝑆ℎ) ⋅ 𝜅(𝑃ℎ𝐴ℎ). (2.15)

3. SPLS formulation for the reaction diffusion problems

In this section, we consider the SPLS discretization for the reaction 
diffusion problem using an optimal test norm. The goal is to empha-
size how stability and approximability for the mixed formulation can 
be gained by using the SPLS approach and provide a way of choosing 
appropriate preconditioners to find an efficient iterative solver. In what 
follows, (⋅, ⋅) and ‖ ⋅ ‖ will denote the standard 𝐿2 inner product and 
norm, respectively.

To place equation (1.1) into the general SPLS framework, we define 
the spaces 𝑉 ∶=𝐻1

0 (Ω), ̃ ∶= 𝐿2(Ω) × 𝐿2(Ω)𝑑 , and  as the graph of 
the operator 𝜀∇ ∶𝐻1

0 (Ω) →𝐿2(Ω)𝑑 , i.e.,

 ∶=𝐺(𝜀∇) =
{(

𝑣

𝜀∇𝑣

) |𝑣 ∈𝐻1
0 (Ω)

}
.

Since the operator 𝜀∇ is bounded from 𝐻1
0 (Ω) to 𝐿

2(Ω)𝑑 , the space 
is closed by the Closed Graph Theorem. We define 𝑏 ∶ 𝑉 × ̃→ℝ as

𝑏(𝑣,
(
𝑞

𝐪

)
) ∶= (𝑐𝑞, 𝑣) + (𝐪,∇𝑣) for all 𝑣 ∈ 𝑉 ,

(
𝑞

𝐪

)
∈ ̃,

and the linear functional 𝐹 ∈ 𝑉 ∗ as

⟨𝐹 ,𝑣⟩ ∶= (𝑓, 𝑣) for all 𝑣 ∈𝐻1
0 (Ω).

With this setting, the SPLS formulation of (1.2) is: Find 𝐩 =
(

𝑢

𝜀∇𝑢

)
∈

such that

𝑏(𝑣,𝐩) = (𝑐𝑢, 𝑣) + (𝜀∇𝑢,∇𝑣) = (𝑓, 𝑣) for all 𝑣 ∈ 𝑉 .

On ̃, we consider the weighted inner product

(
(
𝑞

𝐪

)
,

(
𝑝

𝐩

)
)̃ = (𝑐𝑞, 𝑝) + (𝜀−1𝐪,𝐩) ∶= (𝑞, 𝑝)𝑐 + (𝐪,𝐩)𝜀−1 , (3.1)

which gives us the corresponding norm

‖( 𝑞𝐪)‖̃ =
(‖𝑐1∕2𝑞‖2 + ‖𝜀−1∕2𝐪‖2)1∕2 .

The operator 𝐵 ∶ 𝑉 → ̃ is then given by

𝐵𝑣 =
(

𝑣

𝜀∇𝑣

)
for all 𝑣 ∈ 𝑉 .

We note that

𝑉0 = Ker(𝐵) = {𝑣 ∈𝐻1
0 (Ω) |𝐵𝑣 = 0} = {0}.

Thus, the optimal test norm on 𝑉 is induced by the inner product

𝑎𝑜𝑝𝑡(𝑢, 𝑣) = (𝐵𝑢,𝐵𝑣) = (𝜀∇𝑢,∇𝑣) + (𝑐𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 ,

which gives rise to the norm

|𝑣|𝑜𝑝𝑡 = (‖𝑐1∕2𝑣‖2 + ‖𝜀1∕2∇𝑣‖2)1∕2 .
In addition, according to Section 2.1, we have that the continuity 

constant 𝑀 of the bilinear form 𝑏 and the inf − sup constant 𝑚 are equal 
to 1. One can also directly check that

sup
𝑣∈𝑉

𝑏(𝑣,
(

𝑢

𝜀∇𝑢

)
)|𝑣|𝑜𝑝𝑡 = ‖( 𝑢

𝜀∇𝑢

)‖, (3.2)

for any 
(

𝑢

𝜀∇𝑢

)
∈ . While this does lead to optimal continuity and 

inf − sup constants, inverting the operator associated with | ⋅ |𝑜𝑝𝑡 coin-
cides with solving the original problem. Fortunately, at the discrete 
level we can replace the action of the discrete operator corresponding 
to 𝑎𝑜𝑝𝑡(⋅, ⋅) by a preconditioner, as presented in Section 5.
273
4. SPLS discretization for the reaction diffusion problems

In this section, we outline choices for the test and trial spaces in-
volved in SPLS discretization. We take 𝑉ℎ ⊂ 𝑉 =𝐻1

0 (Ω) to be the space 
of continuous piecewise linear polynomials with respect to the mesh 
ℎ vanishing on the boundary of Ω. To construct a trial space ℎ, as 
discussed in Section 2.3, we first define ̃ℎ ⊂ ̃ =𝐿2(Ω) ×𝐿2(Ω)𝑑 as

̃ℎ ∶=𝑀ℎ × 𝜀𝐌ℎ,

where 𝑀ℎ consists of continuous piecewise linear polynomials with re-
spect to the mesh ℎ (with no restrictions on the boundary) and 𝐌ℎ

is the vector-valued product space in which each component consists 
of continuous piecewise linear polynomials. Let {𝜙1, … , 𝜙𝑁} denote a 
nodal basis for 𝑀ℎ with respect to the mesh ℎ and {𝚽1, ..., 𝚽2𝑁} de-
note a nodal basis for 𝐌ℎ, where 𝚽𝑗 = (𝜙𝑗 , 0)𝑇 and 𝚽𝑁+𝑗 = (0, 𝜙𝑗 )𝑇 for 
𝑗 = 1, … , 𝑁 . Two different choices the projection type trial space, based 
on the inner product chosen for ̃ℎ, are considered. More details about 
the construction of these trial spaces can be found in [7].

For the first choice of projection trial space, we equip ̃ℎ with the 
inner product induced from ̃. In this case, 𝑅ℎ is the orthogonal pro-
jection from ̃ onto ̃ℎ, and we define the trial space as

ℎ ∶=𝑅orth
ℎ

𝐵𝑉ℎ,

where we use the notation 𝑅orth
ℎ

to signify equipping ̃ℎ with the in-
duced inner product from ̃.

For the second choice of projection trial space, we equip ̃ℎ with 
an inner product related to lumping the mass matrix. More precisely, 
for two elements 

(
𝑞ℎ

𝐪ℎ

)
, 
(
𝑝ℎ

𝐩ℎ

)
∈ ̃ℎ, where

𝐪ℎ =
2𝑁∑
𝑖=1
𝛼𝑖𝜀𝚽𝑖, and 𝐩ℎ =

2𝑁∑
𝑖=1
𝛽𝑖𝜀𝚽𝑖,

we define((
𝑞ℎ

𝐪ℎ

)
,

(
𝑝ℎ

𝐩ℎ

))
ℎ
∶= (𝑐𝑞ℎ, 𝑝ℎ) +

2𝑁∑
𝑖=1
𝛼𝑖𝛽𝑖(1, 𝜀𝚽𝑖).

In this case, the action of 𝑅ℎ ∶ ̃→ ̃ℎ is given by

𝑅ℎ

(
𝑞

𝐪

)
=

(
𝑄ℎ𝑞

𝑄
lump
ℎ

𝐪

)
,

where 𝑄ℎ ∶𝐿2(Ω) →𝑀ℎ is the orthogonal projection with respect to the 
weighted inner product (⋅, ⋅)𝑐 and

𝑄
lump
ℎ

𝐪 =
2𝑁∑
𝑖=1

(𝐪, 𝜀𝚽𝑖)𝜀−1
(1, 𝜀𝚽𝑖)

𝜀𝚽𝑖 =
2𝑁∑
𝑖=1

(𝐪,𝚽𝑖)
(1,𝚽𝑖)

𝚽𝑖.

We then define the trial space as

ℎ ∶=𝑅
lump
ℎ

𝐵𝑉ℎ,

where we use the notation 𝑅 lump
ℎ

to signify equipping ̃ℎ with this 
type of inner product. For the remainder of this section, we will write 
𝑅ℎ without the superscript for simplicity as the results hold for either 
choice of inner product.

The discrete mixed variational formulation is: Find 𝐩ℎ =𝑅ℎ𝐵𝑢ℎ, with 
𝑢ℎ ∈ 𝑉ℎ, such that

𝑏(𝑣ℎ,𝐩ℎ) = (𝑓, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ,

and the corresponding SPLS discretization, with optimal test norm, is: 
Find (𝑤ℎ, 𝐩ℎ =𝑅ℎ𝐴∇𝑢ℎ) ∈ 𝑉ℎ ×ℎ such that

𝑎𝑜𝑝𝑡(𝑤ℎ,𝑣ℎ) + 𝑏(𝑣ℎ,𝐩ℎ) = (𝑓, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ,
𝑅ℎ𝐵𝑤ℎ = 𝟎. (4.1)

In the above problem, as mentioned we can replace the action of the 
discrete operator corresponding to 𝑎𝑜𝑝𝑡(⋅, ⋅) by a preconditioner. The fol-
lowing result regarding the stability of these spaces was proved in [7].
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Theorem 4.1. Let Ω ⊂ ℝ2 be a polygonal domain and {𝑇ℎ} be a family 
of locally quasi-uniform meshes for Ω. For each ℎ, let 𝑉ℎ be the space of 
continuous linear functions with respect to the mesh {ℎ} that vanish on 𝜕Ω
and ℎ =𝑅ℎ𝐵𝑉ℎ. Then the family of spaces {(𝑉ℎ, ℎ)} is stable.

Remark 4.2. While the above result assumes Ω ⊂ ℝ2 is a polygonal 
domain, the result can be extended to polyhedral domains in ℝ3.

5. A simplified Bramble-Pasciak-Vassilevski (BVP) multilevel 
preconditioner

In this section, we introduce a simplified preconditioner for the re-
action diffusion problem based on Bramble-Pasciak-Vassilevski work in 
[15]. Assume 𝑉 =𝐻1

0 (Ω) is equipped with the standard inner product

𝑎(𝑢, 𝑣) = ∫
Ω

∇𝑢 ⋅∇𝑑𝑥 for all 𝑢, 𝑣 ∈ 𝑉 ,

and that we have nested spaces 𝑉0 ⊂ 𝑉1 ⊂⋯ ⊂ 𝑉𝐽 = 𝑉ℎ ⊂ 𝑉 . Even though 
some of our considerations work for more general sequences of nested 
spaces, in what follows we consider the nested sequence of spaces 
{𝑉𝑘}𝑘=0,𝐽 of continuous piecewise linear functions associated with the 
uniformly refined meshes {𝑘}𝑘=0,𝐽 on Ω.

We let (⋅, ⋅) be the standard 𝐿2(Ω) inner product on 𝑉 , and denote by 
𝑄𝑗 ∶ 𝑉 → 𝑉𝑗 the orthogonal projection with respect to the inner product 
(⋅, ⋅) for 𝑗 = 0, 1, ⋯ , 𝐽 . Following [15], we have that the following norm 
equivalence

𝐽∑
𝑘=0

𝜆𝑘‖(𝑄𝑘 −𝑄𝑘−1)𝑣‖2 ≃ 𝑎(𝑣, 𝑣), (5.1)

holds on the entire space 𝑉ℎ = 𝑉𝐽 . Here, the 𝜆𝑗 ’s are positive constants, 
𝑄−1 = 0, and 𝑄𝐽 coincides with the identity on 𝑉𝐽 . Furthermore, we 
assume the equivalence constants associated with the symbol “≃” are 
independent of ℎ or 𝐽 .

Let 𝑐(⋅, ⋅) be another symmetric bilinear form defined on 𝑉 and de-
fine the operators 𝐴ℎ ∶ 𝑉ℎ → 𝑉ℎ and 𝐶ℎ ∶ 𝑉ℎ → 𝑉ℎ by

(𝐴ℎ𝑢, 𝑣) = 𝑎(𝑢, 𝑣), (𝐶ℎ𝑢, 𝑣) = 𝑐(𝑢, 𝑣) for all 𝑣 ∈ 𝑉ℎ.

We assume that there are positive constants 𝜇1, … , 𝜇𝐽 such that
𝐽∑
𝑘=0

𝜇𝑘‖(𝑄𝑘 −𝑄𝑘−1)𝑣‖2 ≃ 𝑐(𝑣, 𝑣), (5.2)

with equivalent constants independent of ℎ or 𝐽 . The goal of this sec-
tion is to construct a simplified BVP multilevel preconditioner for the 
following problem: Find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎̃(𝑢ℎ, 𝑣) ∶= 𝜖𝑎(𝑢ℎ, 𝑣) + 𝑐(𝑢ℎ, 𝑣) = (𝑓, 𝑣) for all 𝑣 ∈ 𝑉ℎ,

or in operator form

(𝜖𝐴ℎ +𝐶ℎ)𝑢ℎ = 𝑓ℎ ∶=𝑄ℎ𝑓.

5.1. Bramble-Pasciak-Vassilevski multilevel preconditioner

Based on standard multilevel theory, see e.g., [15,17], we have

𝑄𝑘𝑄𝑗 =𝑄𝑗𝑄𝑘 =𝑄𝑗, 𝑗 ≤ 𝑘
(𝑄𝑘 −𝑄𝑘−1)(𝑄𝑗 −𝑄𝑗−1) = (𝑄𝑗 −𝑄𝑗−1)𝛿𝑗,𝑘,

and the equivalences (5.1) and (5.2) can be written in the operator 
forms

𝐿ℎ ∶ =
𝐽∑
𝑗=0
𝜆𝑗 (𝑄𝑗 −𝑄𝑗−1) ≃𝐴𝐽 =𝐴ℎ,

𝐾ℎ ∶ =
𝐽∑
𝜇𝑗 (𝑄𝑗 −𝑄𝑗−1) ≃ 𝐶𝐽 = 𝐶ℎ,
𝑗=0

274
respectively. Using the above the properties and the spectral represen-
tations of 𝐿ℎ and 𝐾ℎ, we obtain that

𝜖𝐿ℎ +𝐶ℎ =
𝐽∑
𝑗=0

(𝜖𝜆𝑗 + 𝜇𝑗 )(𝑄𝑗 −𝑄𝑗−1) ≃ 𝜖𝐴ℎ +𝐶ℎ,

𝑃ℎ ∶ =
𝐽∑
𝑗=0

(𝜖𝜆𝑗 + 𝜇𝑗 )−1(𝑄𝑗 −𝑄𝑗−1) = (𝜖𝐿ℎ +𝐶ℎ)−1,

are symmetric positive definite (discrete) operators on 𝑉ℎ. In addition, 
𝑃ℎ is a (uniform) preconditioner for 𝜖𝐴ℎ +𝐶ℎ.

The BPV approach further modifies 𝑃ℎ by using another (sum of 
local projections type) operator that avoids computing the action of 𝑄𝑘
(hence mass matrix inversion). In the BPV approach, the projections 
𝑄𝑘 −𝑄𝑘−1 are replaced by (𝑄̃𝑘 − 𝑄̃𝑘−1)2, where 𝑄̃𝑘 is given by

𝑄̃𝑘 𝑣ℎ ∶=
𝑛𝑘∑
𝑖=1

(𝑣ℎ,𝜑𝑘𝑖 )

(1, 𝜑𝑘
𝑖
)
𝜑𝑘
𝑖

for all 𝑣ℎ ∈ 𝑉ℎ, (5.3)

where {𝜑𝑘
𝑖
, 𝑖 = 1, 2, ⋯ , 𝑛𝑘} is the nodal basis for 𝑉𝑘.

5.2. A simplified BVP (sBVP) preconditioner

A more general form of the preconditioner 𝑃ℎ is given by

𝑃ℎ =
𝐽∑
𝑗=0
𝛾𝑗 (𝑄𝑗 −𝑄𝑗−1),

where 𝛾𝑗 is a positive real number for each 𝑗. We further note that by 
using “summation by parts” for the general form of 𝑃ℎ, we obtain

𝑃ℎ 𝑓ℎ =
𝐽∑
𝑘=0

𝛾𝑘(𝑄𝑘 −𝑄𝑘−1)𝑓ℎ

=

(
𝐽∑
𝑘=0

𝛾𝑘𝑄𝑘 −
𝐽∑
𝑘=1

𝛾𝑘𝑄𝑘−1

)
𝑓ℎ

=

(
𝐽∑
𝑘=0

𝛾𝑘𝑄𝑘 −
𝐽−1∑
𝑘=0

𝛾𝑘+1𝑄𝑘

)
𝑓ℎ

= 𝛾𝐽 𝑓ℎ +
𝐽−1∑
𝑘=0

(𝛾𝑘 − 𝛾𝑘+1)𝑄𝑘𝑓ℎ.

We are able to further simplify the preconditioner 𝑃ℎ under three 
assumptions that are easily satisfied in our applications. We first assume 
that {𝛾𝑗} is a decreasing sequence of positive numbers:

(𝐴1) 𝛾0 ≥ 𝛾1 ≥⋯ ≥ 𝛾𝐽 > 0.

Second, we let {𝑄̃𝑘 ∶ 𝑉ℎ → 𝑉𝑘}, with 𝑘 = 0, 1, ⋯ , 𝐽 − 1, be any family of 
linear operators satisfying

(𝐴2) (𝑄̃𝑘𝑣ℎ,𝑤ℎ) = (𝑣ℎ, 𝑄̃𝑘𝑤ℎ) for all 𝑣ℎ,𝑤ℎ ∈ 𝑉ℎ,

and

(𝐴3) 𝑐1(𝑄𝑘𝑣ℎ, 𝑣ℎ) ≤ (𝑄̃𝑘𝑣ℎ, 𝑣ℎ) ≤ 𝑐2(𝑄𝑘𝑣ℎ, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ,

where 𝑐1, 𝑐2 are positive constants independent of ℎ. We define a new 
operator 𝑃ℎ ∶ 𝑉ℎ → 𝑉ℎ by

𝑃ℎ 𝑓ℎ = 𝜆𝐽 𝑓ℎ +
𝐽−1∑
𝑘=0

(𝛾𝑘 − 𝛾𝑘+1)𝑄̃𝑘𝑓ℎ.

Lemma 5.1. Under assumptions (𝐴1), (𝐴2) and (𝐴3), we have that

𝑐1(𝑃ℎ𝑣ℎ, 𝑣ℎ) ≤ (𝑃ℎ𝑣ℎ, 𝑣ℎ) ≤ 𝑐2(𝑃ℎ𝑣ℎ, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ. (5.4)

Consequently, if 𝑃ℎ is a uniform preconditioner for 𝐴ℎ, then 𝑃ℎ is also a 
uniform preconditioner for 𝐴ℎ.
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Proof. First, we note that due to (𝐴1) and (𝐴2) we have that 𝑃ℎ is a 
symmetric positive definite operator on 𝑉ℎ. Multiplying the inequalities 
in (𝐴3) by the appropriate positive scalars and summing up the new 
inequalities, we obtain (5.4). □

5.3. Preconditioning the reaction diffusion problem

The standard variational formulation of problem (1.1) is: Find 𝑢 ∈
𝐻1

0 (Ω) such that

𝜖(∇𝑢,∇𝑣) + (𝑐𝑢, 𝑣) = (𝑓, 𝑣) for all 𝑣 ∈𝐻1
0 (Ω),

where (⋅, ⋅) denotes the standard 𝐿2(Ω) inner product for scalar or vector 
functions. We consider the standard nested sequence of spaces {𝑉𝑘}𝑘=0,𝐽
of continuous piecewise linear functions associated with the uniformly 
refined meshes {𝑘}𝑘=0,𝐽 on Ω, with
(𝐴ℎ𝑢, 𝑣) = (∇𝑢,∇𝑣) for all 𝑢, 𝑣 ∈ 𝑉ℎ,

and define the operator

(𝐶ℎ𝑢, 𝑣) = (𝑐𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉ℎ.

That is, 𝐴ℎ is the discrete Laplacian operator and 𝐶ℎ is the discretization 
of the multiplication by the function 𝑐(𝑥) operator. It is well known, see 
[15,18], that for 𝜆𝑗 = 1∕ℎ2

𝑗
≈ 4𝑗 we have

𝐿ℎ ∶=
𝐽∑
𝑖=0
𝜆𝑗 (𝑄𝑗 −𝑄𝑗−1) ≃𝐴𝐽 =𝐴ℎ.

Using that ∑𝐽

𝑗=0(𝑄𝑗 −𝑄𝑗−1) = 𝐼 , for 𝜇𝑗 ∶= 𝑐∗, where 𝑐∗ is any value in 
[𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥], we obtain

𝐾ℎ ∶=
𝐽∑
𝑗=0
𝜇𝑗 (𝑄𝑗 −𝑄𝑗−1) ≃ (𝑐∗𝐼) ≃ 𝐶ℎ.

Thus, the BPV preconditioner for 𝜀𝐴ℎ +𝐶ℎ becomes

𝐵𝐵𝑉 𝑃
𝐽

∶=
𝐽∑
𝑗=0

(𝜖∕ℎ2
𝑗
+ 𝑐∗)−1(𝑄𝑗 −𝑄𝑗−1)

= 𝛾𝐽 𝐼 +
𝐽−1∑
𝑗=0

(𝛾𝑗 − 𝛾𝑗+1)𝑄𝑗,

(5.5)

where 𝛾𝑗 = (𝜖∕ℎ2
𝑗
+ 𝑐∗)−1.

It was proved in [15] that 𝐵𝐵𝑉 𝑃
𝐽

is a uniform preconditioner for 
𝜖𝐴ℎ +𝐶ℎ. Using the family {𝑄̃𝑘 ∶ 𝑉ℎ → 𝑉𝑘}𝑘=0,𝐽−1 defined in (5.3), with 
{𝜑𝑘

𝑖
, 𝑖 = 1, 2, ⋯ , 𝑛𝑘} the standard nodal basis on 𝑉𝑘, we can define the 

simplified BPV (sBVP) preconditioner for the reaction diffusion problem

𝐵𝑠𝐵𝑉 𝑃
𝐽

∶= 𝛾𝐽 𝐼 +
𝐽−1∑
𝑗=0

(𝛾𝑗 − 𝛾𝑗+1)̃𝑗 , (5.6)

where 𝛾𝑗 = (𝜖∕ℎ2
𝑗
+ 𝑐∗)−1. To prove that 𝐵𝑠𝐵𝑉 𝑃

𝐽
is a uniform precondi-

tioner for 𝜖𝐴ℎ +𝐶ℎ, we only need to check that (𝐴1) −(𝐴3) are satisfied. 
Assumption (𝐴1) is satisfied as the function ℎ → (𝜖∕ℎ2 + 𝑐∗)−1 is decreas-
ing on (0, 1]. From the definition of 𝑄̃𝑘 in (5.3), one can easily verify 
(𝐴2). We will prove that (𝐴3) holds next.

Lemma 5.2. Let {𝑉𝑘}𝑘=0,𝐽 be a nested sequence of spaces of continuous 
piecewise linear functions associated with a set of quasi-uniform meshes 
{𝑘}𝑘=0,𝐽 on Ω, and assume that 𝑄̃𝑘 is defined as in (5.3). Then assumption 
(𝐴3) holds.

Proof. Define the diagonal matrix 𝐷 with entries 𝐷𝑖𝑖 = (1, 𝜑𝑘
𝑖
), and let 

𝑀 be the mass matrix for the basis {𝜑𝑘
𝑖
, 𝑖 = 1 ∶ 𝑛𝑘}. Using that the mesh 𝑘 is quasi-uniform (could be just locally), we obtain
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(𝑣ℎ, 𝑣ℎ) ≃
𝑛𝑘∑
𝑖=1

(1, 𝜑𝑖) 𝑣2ℎ(𝑧𝑖) for all 𝑣ℎ ∈ 𝑉ℎ,

where the uniformity constants are independent of 𝑘. Here, 𝑧𝑖 corre-
sponds to the nodal function 𝜑𝑘

𝑖
, i.e., 𝜑𝑘

𝑖
(𝑧𝑗 ) = 𝛿𝑖𝑗 . This is equivalent to

𝑀 ≃𝐷 or 𝐷−1 ≃𝑀−1, (5.7)

which implies

𝑀𝐷−1𝑀 ≃𝑀.

From (5.3), we obtain

(𝑄̃𝑘 𝑣ℎ, 𝑣ℎ) =
𝑛𝑘∑
𝑖=1

(𝑣ℎ,𝜑𝑘𝑖 )
2

(1, 𝜑𝑘
𝑖
)

=
𝑛𝑘∑
𝑖=1

(𝑄𝑘𝑣ℎ,𝜑𝑘𝑖 )
2

(1, 𝜑𝑘
𝑖
)

.

Let 𝑄𝑘𝑣ℎ =
∑𝑛𝑘
𝑗=1 𝛼

𝑘
𝑖
𝜑𝑘
𝑗
and 𝛼 = (𝛼𝑘

𝑗
)
𝑗=1∶𝑛𝑘

. Then, using 𝑀𝐷−1𝑀 ≃𝑀 ,

(𝑄̃𝑘 𝑣ℎ, 𝑣ℎ) =
𝑛𝑘∑
𝑖=1

(
∑𝑛𝑘
𝑗=1 𝛼

𝑘
𝑗
𝜑𝑘
𝑖
,𝜑𝑘
𝑖
)2

(1, 𝜑𝑘
𝑖
)

= (𝐷−1𝑀𝛼,𝑀𝛼)𝑒 ≃ (𝑀𝛼,𝛼)𝑒,

where (⋅, ⋅)𝑒 is the Euclidian inner product. Since

(𝑀𝛼,𝛼)𝑒 = (𝑄𝑘𝑣ℎ,𝑄𝑘𝑣ℎ) = (𝑄𝑘𝑣ℎ, 𝑣ℎ),

assumption (𝐴3) holds. □

Remarks on the implementation of 𝐵𝑠𝐵𝑉 𝑃
𝐽

are included in the Ap-
pendix. Other related works on preconditioning singularly perturbed 
reaction-diffusion problem can be found in [32] for the finite element 
discretization on quasi-uniform meshes, where a more general Additive 
Schwartz preconditioner is proposed, and in [37] for finite difference 
discretization on fitted meshes where a block-structured precondition-
ing approach is proposed.

6. Numerical results

We considered equation (1.1) on the unit square with variable coef-
ficient 𝑐 = 2(1 + 𝑥2 + 𝑦2) and 𝑓 computed such that the exact solution is 
given by

𝑢(𝑥, 𝑦) = 𝑥(1 − 𝑥)
(
1 − 𝑒−𝑦∕

√
𝜀
)(

1 − 𝑒(𝑦−1)∕
√
𝜀
)

+ 𝑦(1 − 𝑦)
(
1 − 𝑒−𝑥∕

√
𝜀
)(

1 − 𝑒(𝑥−1)∕
√
𝜀
)
,

as considered in [34]. For this problem, the solution has boundary lay-
ers on all sides of the unit square. The test space 𝑉ℎ =⊂ 𝐻1

0 (Ω) was 
chosen to be the space of continuous piecewise linear polynomials with 
respect to the mesh ℎ and ℎ =𝑅ℎ𝐵𝑉ℎ as described in Section 4. We 
used Algorithm 2.6 to solve (4.1) with two types of preconditioners: the 
sBPV preconditioner introduced in Section 5.2 and a multigrid precon-
ditioner with Gauss-Seidel smoother. We applied the method on both a 
uniform mesh as well as a Shishkin type mesh, introduced in [40]. De-
tails on the implementation of the sBVP preconditioner can be found in 
the Appendix.

For the Shishkin mesh, we followed the construction outlined in 
[39]. We add it here for completion. We first assume the parameter 
𝑁 is an integer multiple of 8. This refers to the number of mesh inter-
vals in the 𝑥 and 𝑦 directions. The mesh itself is the tensor product of 
two one-dimensional Shishkin meshes 𝑥 × 𝑦. The process for obtain-
ing 𝑥 (and 𝑦) is as follows. The interval [0, 1] is first decomposed into 
three subintervals [0, 𝜆], [𝜆, 1 − 𝜆], and [1 − 𝜆, 1], where

𝜆 =min
{

1
4
,2
√

𝜀

𝑐∗
ln𝑁

}
with 0 < 𝑐∗ < 𝑐. (6.1)

The intervals [0, 𝜆] and [1 −𝜆, 1] are then partitioned into 𝑁∕4 subinter-
vals of length 4𝜆

𝑁
, while the interval [𝜆, 1 − 𝜆] is partitioned into 𝑁∕2

subintervals of length 2(1 − 2𝜆)
. The triangular mesh is obtained by 
𝑁
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Fig. 6.1. Left: The exact solution for 𝜖 = 10−6 . Right: The SPLS approximation on a Shiskin mesh for 𝑁 = 27 .

Table 1

Uniform mesh with test space ℎ =𝐵𝑉ℎ .

Lev/𝜀 10−1 10−2 10−3

Error Order It Error Order It Error Order It

1 0.1080 - 6 0.1090 - 6 0.1520 - 4

2 0.0527 1.03 24 0.0469 1.22 15 0.0733 1.05 7

3 0.0262 1.01 41 0.0221 1.09 31 0.0323 1.19 12

4 0.0131 1.00 53 0.0109 1.02 48 0.0145 1.15 23

5 0.0065 1.00 58 0.0054 1.01 60 0.0070 1.06 39

6 0.0033 1.00 60 0.0027 1.00 64 0.0034 1.02 53

7 0.0016 1.00 60 0.0014 1.00 66 0.0017 1.00 60

8 0.0008 1.00 61 0.0007 1.00 66 0.0009 1.00 62

Lev/𝜀 10−4 10−5 10−6

Error Order It Error Order It Error Order It

1 0.1820 - 3 0.1920 - 2 0.1960 - 2

2 0.1090 0.74 4 0.1250 0.62 3 0.1290 0.60 2

3 0.0621 0.82 5 0.0821 0.61 3 0.0889 0.54 2

4 0.0301 1.05 8 0.0509 0.69 4 0.0607 0.55 3

5 0.0132 1.19 14 0.0278 0.88 5 0.0396 0.62 3

6 0.0061 1.12 27 0.0128 1.12 9 0.0238 0.74 4

7 0.0030 1.04 43 0.0056 1.18 17 0.0122 0.96 5

8 0.0015 1.01 54 0.0027 1.09 31 0.0054 1.17 10
drawing diagonals from the top left to bottom right of each quadrilat-
eral.

In the case of the Shishkin mesh, we also measured the SPLS error 
in a balanced norm instead of the norm on . This is due to the fact 
that for small 𝜀 the 𝐿2 part of the norm on  dominates, leading to 
an unbalanced norm not adequate to accurately measure the error, see 
[35,39]. More precisely, in this case, we compute

𝐸𝑟𝑟𝑜𝑟 ∶=
(‖𝑢− 𝑢ℎ‖2 + 𝜀1∕2‖∇𝑢−𝑅ℎ∇𝑢ℎ‖2)1∕2 .

In the Shishkin mesh case, we used a stopping criteria of ‖𝑞𝑗‖ ≤ 10−10
for 10−8 ≤ 𝜀 ≤ 10−4, and a stopping criteria of ‖𝑞𝑗‖ ≤ 10−16 for 10−14 ≤
𝜀 ≤ 10−10. In the case of a uniform mesh, we used a stopping criteria of ‖𝑞𝑗‖ ≤ 10−8 for 𝜀 ≥ 10−6. (See Fig. 6.1.)

Table 1 displays the results for uniform meshes with ℎ = 𝐵𝑉ℎ for 
the sBVP preconditioner. We see that order one is attained as expected 
due to the no projection type trial space. The iteration count contains 
some 𝜀 and ℎ dependence, but as 𝜀 decreases this becomes more ro-
bust. Table 2 displays results using uniform meshes, ℎ = 𝑅orth

ℎ
𝐴𝑉ℎ, 

and both the sBVP and multigrid preconditioner with a Gauss-Seidel 
smoother. Here, the error and the order for both preconditioners was 
the same. Thus, the columns marked (a) and (b) denote the iteration 
count for the sBVP preconditioner and the multigrid preconditioner, re-
spectively. For 𝜀 ≤ 10−3, it is shown that the sBVP preconditioner retains 
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a lower iteration count across all levels. The loss of order for small 𝜀 in 
the uniform mesh case is due to the boundary layers and would need 
further refinements to resolve them.

Tables 3 and 4 display results using Shishkin type meshes and the 
sBVP preconditioner along with both types of trial spaces outlined 
in Section 4. Here, 𝑁 is related to the level according to Level = 
log2(𝑁) − 1. According to [35,39], standard Galerkin methods for (1.2)
lead to a covergence rate of (𝑁−1 ln𝑁) using piecewise linear approx-
imation. As shown in Tables 3 and 4, we obtain a convergence rate 
of  

(
(𝑁−1 ln𝑁)2

)
using the SPLS method. The numerical tests appear 

to show that in the case of Shishkin meshes, the sBVP preconditioner 
appears to be robust with respect to 𝜀 for a fixed stopping criteria. In 
addition, one notable advantage of the preconditioner outlined in this 
paper is ease of implementation. All of the required parameters and ma-
trices needed to implement the sBVP preconditioner, given in (8.3) or 
(8.4), are naturally computed in a standard implementation aside from 
the matrix that relates bases between spaces.

We mention that for the sBPV preconditioner on a Shiskin mesh 
we took adavantage of the fact that the mesh is topologically equiva-
lent with a uniform mesh. We used a piecewise linear bijection (in each 
direction) to shift the uniform nodes to the Shiskin nodes. For the imple-
mentation of sBPV on Shiskin meshes, we used the same extension and 
restriction operators as in the case of uniform refinement. We plan to 
investigate the convergence of the new sBVP preconditioner on nonuni-
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Table 2

Uniform mesh with test space ℎ =𝑅orth
ℎ
𝐵𝑉ℎ, and two type of preconditioners: (a) It-sBPV, and (b) It-mgGS.

Lev/𝜀 10−1 10−2 10−3

Error Order (a) (b) Error Order (a) (b) Error Order (a) (b)

1 0.0511 - 6 6 0.0866 - 5 6 0.1490 - 3 5

2 0.0146 1.81 16 21 0.0260 1.74 9 14 0.0680 1.13 5 7

3 0.0041 1.85 30 34 0.0072 1.85 17 25 0.0248 1.46 7 11

4 0.0011 1.88 57 53 0.0019 1.92 31 40 0.0074 1.75 12 20

5 0.0003 1.90 98 81 0.0005 1.95 57 61 0.0020 1.89 22 34

6 7.9e-05 1.92 152 76 0.0001 1.96 99 85 0.0005 1.96 40 53

7 2.1e-05 1.92 215 72 3.2e-05 1.97 150 82 0.0001 1.99 71 76

8 6.1e-06 1.76 220 49 8.4e-06 1.95 190 58 3.2e-05 2.00 108 89

Lev/𝜀 10−4 10−5 10−6

Error Order (a) (b) Error Order (a) (b) Error Order (a) (b)

1 0.1820 - 3 3 0.1920 - 2 2 0.1960 - 2 2

2 0.1090 0.74 3 5 0.1250 0.62 2 4 0.1290 0.60 2 4

3 0.0605 0.85 4 6 0.0820 0.61 3 5 0.0889 0.54 2 5

4 0.0270 1.16 5 8 0.0505 0.70 3 5 0.0607 0.55 2 5

5 0.0092 1.56 7 13 0.0267 0.92 4 7 0.0395 0.62 3 5

6 0.0026 1.81 14 25 0.0108 1.30 5 9 0.0234 0.76 3 6

7 0.0007 1.92 25 41 0.0034 1.66 8 17 0.0114 1.04 4 8

8 0.0002 1.98 45 62 0.0009 1.86 16 30 0.0042 1.44 5 10

Table 3

Shishkin mesh with test space ℎ =𝑅orth
ℎ
𝐵𝑉ℎ .

Lev/𝜀 10−4 10−6 10−8

Error Order It Error Order It Error Order It

1 0.2030 - 4 0.1970 - 3 0.1970 - 2

2 0.1570 0.89 5 0.1540 0.86 5 0.1540 0.86 4

3 0.1020 1.06 7 0.1020 1.03 6 0.1020 1.03 6

4 0.0539 1.36 11 0.0538 1.35 10 0.0538 1.35 9

5 0.0226 1.70 18 0.0226 1.70 17 0.0226 1.70 15

6 0.0079 1.94 30 0.0079 1.95 30 0.0079 1.95 28

7 0.0025 2.04 50 0.0025 2.04 55 0.0025 2.04 51

8 0.0008 2.05 88 0.0008 2.05 101 0.0008 2.05 95

Lev/𝜀 10−10 10−12 10−14

Error Order It Error Order It Error Order It

1 0.1970 - 3 0.1970 - 3 0.1970 - 2

2 0.1540 0.86 7 0.1540 0.86 7 0.1540 0.86 6

3 0.1020 1.03 11 0.1020 1.03 10 0.1020 1.03 9

4 0.0538 1.35 17 0.0538 1.35 16 0.0538 1.35 15

5 0.0226 1.70 28 0.0226 1.70 27 0.0226 1.70 25

6 0.0079 1.95 50 0.0079 1.95 47 0.0079 1.95 45

7 0.0025 2.04 90 0.0025 2.04 86 0.0025 2.04 83

8 0.0008 2.05 166 0.0008 2.05 159 0.0008 2.05 153
form refinements with suitable extension and restriction operators in a 
future work. This seems to be a challenging problem by itself and, by 
the best knowledge of the authors, has not been addressed in the case 
of Shiskin refinements or more general cases of fitted meshes.

Remark 6.1. All numerical tests performed with the sBVP precondi-
tioner used the preconditioner given by (8.3) as it results in a lower 
iteration count. At the expense of a slight increase in iteration count, 
the form given by (8.4) can be implemented to reduce the computa-
tional time.

7. Conclusion

We presented a preconditioning technique for the singularly per-
turbed reaction diffusion problem. We considered the concept of saddle 
point reformulation of the problem and the concept of optimal test 
norm as presented in [30,33]. We showed the performance of our ap-
proach on a combination of two projection trial spaces and two different 
preconditioners that efficiently cover a wide range of the parameter 
𝜀. The method is also robust with respect to 𝜀. The efficiency of the 
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Uzawa preconditioned CG solver depends on the robustness and effi-
ciency of preconditioners for the discrete optimal norm on the test space 
𝑉ℎ. For quasi-uniform meshes, we introduced a simplified version of 
the Bramble-Pasciak-Vassilevski preconditioner. The numerical experi-
ments demonstrate the preconditioner performs well even in the case 
of Shiskin type refinements. In the case of Shishkin meshes, we obtain 
higher order approximation of the gradient of the solution.

8. Appendix: A note on sBVP implementation

Using the inner product (⋅, ⋅) on 𝑉ℎ, we can identify 𝑉 ∗
ℎ
with 𝑉ℎ. The 

implementation of the sBVP preconditioner defined in (5.6) is done by 
computing the coordinate vector of the action of 𝐵𝑠𝐵𝑉 𝑃

𝐽
on dual vectors. 

To be more precise, let 𝑀𝑘 be the mass matrix for the basis {𝜑𝑘𝑖 , 𝑖 =
1 ∶ 𝑛𝑘}, and let 𝐷𝑘 be the diagonal matrix with entries 𝐷𝑖𝑖 = (1, 𝜑𝑘

𝑖
). We 

define 𝐸𝑘 to be the 𝑛𝐽 × 𝑛𝑘 matrix that relates the bases on 𝑉𝑘 and 𝑉𝐽 . 
That is, for the bases {𝜑𝑘

𝑖
, 𝑖 = 1 ∶ 𝑛𝑘} of 𝑉𝑘 and {𝜑𝐽𝑖 , 𝑖 = 1 ∶ 𝑛𝐽 } of 𝑉𝐽 , we 

have

(𝜑𝑘,𝜑𝑘,… , 𝜑𝑘 )𝑇 =𝐸𝑇 (𝜑𝐽 ,𝜑𝐽 ,… , 𝜑𝐽 )𝑇 . (8.1)
1 2 𝑛𝑘 𝑘 1 2 𝑛𝐽
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Table 4

Shishkin, ℎ =𝑅
lump
ℎ

𝐵𝑉ℎ.

Lev/𝜀 10−4 10−6 10−8

Error Order It Error Order It Error Order It

1 0.2200 - 3 0.2140 - 3 0.2130 - 2

2 0.1800 0.70 4 0.1790 0.61 4 0.1790 0.60 4

3 0.1280 0.84 6 0.1280 0.84 6 0.1280 0.84 5

4 0.0776 1.07 8 0.0776 1.06 8 0.0777 1.06 7

5 0.0370 1.45 13 0.0369 1.45 12 0.0370 1.45 11

6 0.0138 1.84 24 0.0137 1.84 21 0.0137 1.84 20

7 0.0044 2.05 48 0.0043 2.06 39 0.0043 2.06 36

8 0.0013 2.08 100 0.0013 2.09 71 0.0013 2.09 67

Lev/𝜀 10−10 10−12 10−14

Error Order It Error Order It Error Order It

1 0.2130 - 3 0.2130 - 3 0.2130 - 2

2 0.1790 0.60 6 0.1790 0.60 6 0.1790 0.60 6

3 0.1280 0.84 9 0.1280 0.84 8 0.1280 0.84 8

4 0.0777 1.06 13 0.0777 1.06 12 0.0777 1.06 11

5 0.0370 1.45 21 0.0370 1.45 19 0.0370 1.45 18

6 0.0137 1.84 35 0.0137 1.84 34 0.0137 1.84 32

7 0.0043 2.06 64 0.0043 2.06 116 0.0043 2.06 58

8 0.0013 2.09 118 0.0013 2.09 113 0.0013 2.09 108
For 𝑓ℎ ∈ 𝑉ℎ, the (dual) vector in ℝ𝑛𝑘 is defined by

𝑓ℎ
∼𝑘

∶= ((𝑓ℎ,𝜑𝑘1), (𝑓ℎ,𝜑
𝑘
2),… , (𝑓ℎ,𝜑𝑘𝑛𝑘 ))

𝑇 .

For 𝑤ℎ =
∑𝑛𝑘
𝑖=1 𝛼

𝑘
𝑖
𝜑𝑘
𝑖
∈ 𝑉𝑘 ⊂ 𝑉ℎ, the coordinate vector in ℝ𝑛𝑘 is denoted 

by

∼𝑘
𝑤ℎ ∶= (𝛼𝑘1 , 𝛼

𝑘
2 ,… , 𝛼𝑘

𝑛𝑘
)𝑇 .

Using (8.1) it is easy to check that

𝑓ℎ
∼𝑘

=𝐸𝑇
𝑘
𝑓ℎ
∼𝐽
, and

∼𝐽
𝑤ℎ =𝐸𝑘

∼𝑘
𝑤ℎ, (8.2)

and by letting 𝑤ℎ ∶= ̃𝑘 𝑓ℎ, we have, due to (5.3) and (8.2),
∼𝐽
𝑤ℎ =𝐸𝑘 𝐷−1

𝑘
𝐸𝑇
𝑘
𝑓ℎ
∼𝐽
.

To obtain the contribution of 𝛾𝐽 𝐼 in (5.6), we note that 
∼𝐽
𝑓ℎ =𝑀−1

𝐽
𝑓ℎ
∼𝐽
. 

Thus, the matrix version of (5.6) is given by

𝐵𝑠𝐵𝑉 𝑃
𝐽

𝑓𝐽
∼

= 𝛾𝐽𝑀−1
𝐽
𝑓𝐽
∼

+
𝐽−1∑
𝑗=0

(𝛾𝑗 − 𝛾𝑗+1)𝐸𝑗𝐷−1
𝑗
𝐸𝑇
𝑗
𝑓𝐽
∼
. (8.3)

To avoid mass matrix inversion, we can use the equivalence (5.7) and 
further simplify 𝑠𝐵𝑉 𝑃 to the (matrix) version

𝐵𝑠𝐵𝑉 𝑃
𝐽

𝑓𝐽
∼

= 𝛾𝐽𝐷−1
𝐽
𝑓𝐽
∼

+
𝐽−1∑
𝑗=0

(𝛾𝑗 − 𝛾𝑗+1)𝐸𝑗𝐷−1
𝑗
𝐸𝑇
𝑗
𝑓𝐽
∼
. (8.4)

This way, we avoid mass matrix inversion and the iterative process is 
faster. We note that the matrix version of (5.5) just uses 𝑀𝑗 instead of 
𝐷𝑗 in (8.4).
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