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We consider the reaction diffusion problem and present efficient ways to discretize and precondition in the
singular perturbed case when the reaction term dominates the equation. Using the concepts of optimal test
norm and saddle point reformulation, we provide efficient discretization processes for uniform and non-uniform
meshes. We present a preconditioning strategy that works for a large range of the perturbation parameter.
Numerical examples to illustrate the efficiency of the method are included for a problem on the unit square.

1. Introduction

We consider the singularly perturbed reaction diffusion problem

{—6Au+cu=f in Q,

u= 0 onoQ, an

for non-negative constant ¢ and ¢, > c¢(x) > ¢,;, >0 on Q, a bounded
domain in R?. We focus on the reaction dominated case, i.e., € < 1.
The discretization of the equation arises in solving practical PDE mod-
els, such as heat transfer problems in thin domains [2] as well as when
using small step sizes in implicit time discretizations of parabolic re-
action diffusion type problems [35]. The solutions to these problems
are characterized by exponential boundary layers and pose numerical
challenges due to the e-dependence of the error estimates and of the
stability constants.

Analysis and numerical methods to aproximate the solutions of (1.1)
can be found in [3,23,36,38,39]. Recent work involving a reformulation
of the problem as a first order system is presented in [21,28]. Error es-
timates for higher order reaction diffusion problems have been recently
investigated in [29].

The standard variational formulation for (1.1) is: Find u € Hé (Q)
such that

e(Vu, Vo) + (cu,v)=(f,v) forallve Hé (Q). 1.2)
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A standard discretization of (1.2) can be solved by using a PCG algo-
rithm on V), C H(; (Q) with the BVP or the simplified preconditioner we
introduce. The process is efficient for a certain range of ¢ > ¢,. To im-
prove the rate of convergence (in the energy norm) for the case € < ¢,
we proceed by using two main tools. The first is a mixed formula-
tion that is suitable to Saddle Point Least Squares (SPLS) discretization
[8-10,12]. This allows for a higher order approximation of the flux
Vu using the same discretization spaces as in the standard discretiza-
tion of (1.1). The second tool is based on using refined meshes towards
the boundary layer(s) of the problem. Even though the refinement ap-
proach presented in this paper is focused on the case in which Q is
the unit square in R?, as well as the use of Shiskin meshes, the ideas
of mixed reformulation and multilevel preconditioning extend to more
general cases of Q C R4,

More recent Petrov-Galerkin approaches based on least squares
methods for the reaction diffusion problem can be found in [1,21,35].
However, our approach of saddle point least squares reformulation is
different. We reformulate the standard variational formulation (1.2) as
a mixed variational formulation first, and then further reformulate it
as a saddle point problem that allows preconditioning and extra ap-
proximability of the flux by using standard finite element spaces. The
approach is related to the Lagrange multiplier approach that leads to
Stokes type systems. In our case, the Lagrange multiplier is the vari-
able of interest. This idea was used before in other particular problems,
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see e.g., [11,24,27,31]. Many aspects of the SPLS formulation are also
common to the DPG approach [14,20,25,26,30,33].

The SPLS method as a general method for solving mixed varia-
tional formulations is presented in [8-10,12]. Discretizing (1.2), by
SPLS allows for efficient preconditioning. We introduce a simplified
version of the Bramble, Pasciak, and Xu (BPX) and Bramble, Pasciak,
and Vasilevski (BPV) multilevel preconditioner [15,16] that works for
nested spaces corresponding to uniform refinement meshes and, in some
cases, could be more efficient than the standard multigrid algorithm.

In this paper, we combine SPLS formulation with the concept of
optimal test norm [19,22,24,25,30,31,33] and a general precondition-
ing technique, introduced in [8], in order to improve the stability and
approximability of the final discretization process. Using optimal test
norms and a preconditioned SPLS formulation, we provide an efficient
iterative process for solving (1.2) that, in the case of a projection trial
space, allows for optimal order of approximation in a balanced norm.
The approach could be extended to problems on 3D domains, where the
method could benefit from using efficient preconditioning when dealing
with large linear systems that involve parameters.

The paper is organized as follows. In Section 2, we introduce the
notation and review the SPLS formulation, discretization, precondition-
ing, and the concept of optimal test norms. Sections 3 and 4 detail how
to apply the general SPLS theory to the reaction diffusion problem. In
Section 5, we review the Bramble-Pasciak-Vasilevski multilevel precon-
ditioning technique, and introduce a simplified preconditioner for the
reaction diffusion equation. Numerical results are included in Section 6.

2. The notation and the general SPLS approach

We now review the main ideas and concepts for the SPLS formula-
tion, discretization, and preconditioning of a general mixed variational
formulation. Let ¥ and M be Hilbert spaces and F € V*. We are inter-
ested in problems of the form: Find p € M such that
b(v, p)=(F,v)

forallveV, 2.1)

where b(-,-) is a continuous bilinear form on V x M satisfying the fol-
lowing inf — sup condition on V' x M:

b(o.p)
nf sup =
reM pey [0l lIpll

(2.2)

We view M, the trial space in (2.1), as a subspace of larger (host)
space M and equip M with the induced inner product and norm from
M. The extra space M is needed for the SPLS non-conforming discretiza-
tion. We assume the inner products aq(:,-) and (-,-) 5y induce the norms
-1y =1-1=ag)"2and |- g =1l -1l = (.,.)'A(f. We denote the dual of
V by V* and the dual pairing on V*XxV by (-, ). We further assume that
b(-,-) has a continuous extension to a bilinear form on V x M satisfying

b(v.p) _
[l llpll

sup sup (2.3)

peEM VEV

With the form b, we associate the operator B : ¥ — M defined by

(Bv,q);y=b(v,q) forallveV,qe M.

In this paper, we assume that V;, := Ker(B) = {0}. Most of the con-
siderations in this section extend to a nontrivial kernel v}, see [10]. It is
well known that if a bounded form b : ¥V x M — R satisfies (2.2), then
problem (2.1) has a unique solution, see e.g., [4,5]. The standard sad-
dle point reformulation of (2.1) (see [11-13,24]) is: Find (w,p) € (V, M)
such that

=(F,v)
=0

forallveV,
for all g € M.

ag(w,v) + b(v,p)

2.4
b(w, q) @4
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2.1. The concept of optimal test norm

If we assume that Range(B) C M and that the operator B : V - M
is injective (V) = Ker(B) = {0}) then, as in [19,22,24,25,31], we can
define an equivalent norm on V'

bw.p) _ - (Bop)

llpl il

[0y = =||Bvll oy = | Bull ¢,

sup
PE. PEM
that is operator dependent. We will refer to this as the optimal test norm.
By replacing the form a(-,-) in (2.4) with the inner product induced by
the optimal test norm, i.e., a,,(u,v) := (Bu, Bv),,, we obtain that both
the continuity constant M and the inf —sup constant m are equal to 1.
Thus, the stability (at the continuous level) of the new saddle point

formulation is optimal.
2.2. The abstract variational formulation at the discrete level

The non-conforming (trial space) SPLS discretization of (2.1) is de-
fined as a saddle point discretization of (2.4) with ¥, c V' and with M,,
a subspace of M, but in general not necessarily a subspace of M. As-
sume that standard discrete sup—sup and inf —sup conditions hold for
the pair (V},, M,,) with constants M, and m,, respectively. The discrete
mixed variational formulation of (2.1) is: Find p, € M,, such that

b(vy,, pp) = (F,vp) (2.5)

In general, this might not have a unique solution. However, discretiza-
tion of (2.4): Find (wy,, p,) € V), X M,, such that

for all v, € V.

=(F,vp)
=0

for all v, €V},
for all g, € M,

ag(wp,vp)  + by, py)

2.6
b(wy,, q,) 2.6)

always has a unique solution. We remind the reader that the inner prod-
uct on V), is the same inner product from V, qy(-,-). The variational
formulation (2.6) is the non-conforming saddle point least squares (n-c
SPLS) discretrization of (2.1).

Using (-, -), another (weaker) inner product on V', we can define the
discrete operator A, : ¥}, — V), associated with the form g (-,-) on V}, by

(Ao, wp) = ag(vy, wy)  for all v, wy, €V,

and the linear operators B, : V;, > M, and B, : M;, >V}, by

(BpUp> ap) m,, = b0, ap) = (Byq,vy) forallv, €Vy, geM,,.

The Schur complement of (2.6) is denoted by .S, = B, A;lBZ. In what
follows, V,, ¢ ¥ will be chosen as a standard conforming finite element
space. On the other hand, each choice of the space M,, possibly non-
conforming to M, leads to a new SPLS discretization for which p, €
M, Cc M.

2.3. Constructing a discrete trial space from a general test space

Let V,, be a finite element subspace of V. Following [9,10], we provide
a general construction of discrete trial spaces M,, defined using the
operator B associated with the original problem (2.1). Let Mh cMbea
finite dimensional subspace equipped with the inner product (-, -),. The
corresponding induced norm on M,, will be denoted by || - ||,,. Define
the representation operator R;, : M — M, by

Ryp,ap)p :=(p.ap) 5y forall g, € Mh.

In the case when (-,-),, coincides with the inner product on M, we have
that R, is precisely the orthogonal projection onto M,,. Since the space
M,, is finite dimensional, there exist constants k,, k, such that

killapll < llgplly < ksllgpll  for all g, € J\;lh- 2.7)

Using the operator R, we define M,, as
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M,, := R, BV), C M, C M.

The following proposition, see [5] and [10], gives a sufficient condition
on R, to ensure that the family {(V,, R, BV},)} is stable.

Proposition 2.1. Assume that

IRyqnllp = Cllgnll  for all g, € BV, (2.8)
with a constant ¢ independent of h. Then
b(vy,,
inf OnaPr) o 0, (2.9)

€My g,evy, gl lPplln

where m is defined in (2.2).

As a consequence of Proposition 2.1, we have that (2.6) has a unique
solution (wy,, p,) € (V},, M) and w;, = 0. Regarding the approximability
property of the projection type trial space, the following proposition was
proved in [10].

Proposition 2.2. If p is the solution of (2.1) and p,, is the second compo-
nent of the solution of (2.6), then

— <C inf - s
llp = pall qhthllp anll

with C=1+ ﬁ, where k, and ¢ were introduced in (2.7) and (2.8), re-
1
spectively.

Remark 2.3. The choice of M,, is important. In practice, V}, is a space of
continuous piecewise polynomials, and by applying the (differentiation)
operator B we obtain discontinuous functions. The representation op-
erator R, : M — M,, acting on BV}, can be viewed also as a smoothing
operator, as the range M,, is a subspace of M consisting of continuous
functions. The SPLS discretization with M, as trial space can be viewed
as a (smoothing type) recovery or post-processing process.

2.4. An Uzawa CG iterative solver

Note that a global linear system may be difficult to assemble when
solving (2.6) on (V},, M,, = R, BV}), especially if the operator R, in-
volves a global projection. In this case, bases for the trial spaces M,
might be difficult to find. One can solve (2.6) and avoid building a ba-
sis for M, by using an Uzawa Conjugate Gradient (UCG) algorithm.
Algorithm 2.4. (UCG) Algorithm

Step 1: Choose any p, € M,,. Compute w, €V, q,,d, € M,, by

= <fhaUh> = b(v, py)

= b(wy,q)

ap(wy,vp) for all v, €V},

(q1sDn forallge M,, d,:=gq.

Step 2: For j=1,2,..., compute h;,a;,p;,w;,1,q;41.5;.d;1, by

(UCGY)  ag(h;,v) =—b(vy,d;)  forall v, €V,
(4;,9))n

UCGa) = TR

( / b(hj»qj')

(UCG2) pj=pj_1ta;d;

(UCG3) Wiy =w;+a; h;

(UCGH) (@41, Dp = bWjy1,9) for all g € M,

(@j11-9j41)

(UCGH) By = Al A UR
(‘Ij»qj)h

(UCGH) dj+l =4dj41 +ﬂjd/'-

272
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Remark 2.5. From (UCG4), we have that ¢;,, = B,w) ;. Thus, ¢;,, can
be computed by inverting the Gram matrix corresponding to a basis of
M,,, which in our applications is component-wise a space of continuous
piecewise linear functions. The Gram matrix corresponding to a basis of
M,;, = R, BV, is not needed for the computation of g, in (UCG4) or ¢,
in Step 1.

The main inversion needed at each step involves a,(-,-) in Step 1 or
(UCG1). In operator form, these steps become

==

w;=A;'(f,— Bipp), and  h;=—A;'(Bid)). (2.10)
In order to build an efficient solver for (2.1), we modify Algorithm 2.4
by replacing the action of A;l with the action of a suitable precondi-

tioner.
2.5. Preconditioning the SPLS discretization

We summarize a general preconditioning framework to approximate
the solution of (2.1) that is presented in [6,8]. We plan to combine this
framework with the new concept of optimal test norm. Let P, : V;, = V,,
be a general (preconditioning) operator that is equivalent to A;l in the
sense that

(Pyfn-8n)=(fnPrgy) forall fy,g, €V, (2.11)
and
m%lvhlzSaO(PhAhvh,vh)§m§|vh|2, (2.12)

where the positive constants m%, m% are the smallest and largest eigen-

values of P,A,, respectively. Condition (2.12) is equivalent with the
fact that the condition number of P, A, satisfies

k(P,Ap) = (2.13)

—EI\J | NEN

It was proved in [6,8] that the saddle point discretization (2.6)
would not lose stability and approximability properties if x(P,A,) is
independent of 4 and A;l is replaced by P,. The replacement of the
action of A;l leads to solving

wp = Py(fy - BZPh)a

B,w;, =0.

(2.14)

The Schur complement associated with the modified problem (2.14) is
S, =B, P,B;.
The corresponding version of Algorithm 2.4 to solve (2.14) is the fol-

lowing Uzawa Preconditioned Conjugate Gradient (UPCG) algorithm.

Algorithm 2.6. (UPCG) Algorithm for Mixed Methods
Step 1: Choose any p, € M,,. Compute u; €V, q,,d, € M, by
=P,(F, — BZpO)

=Bjuy, d;

i
q =q.

Step 2: For j = 1,2,..., compute h;,a;,p;. ;1,411 8;-d; 41 by

(PCG1) h; =— P,(B,d;)
4;.9/)0
(PCGa) ==
/ b(hjvqj)
(PCG2) pj=pj_1+a;d;
PCG3) Ui =u;+aj hj
PCG4) 41 =Bjujyp,
(4j+1,95+1)
(PCGp) p; = G dHle
(4;.9))0
(PCG6)  d;y, = qj4y +fyd;.
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According to [8], the UPCG iterations p; converge to the solution p,
of (2.14), and the rate of convergence for ||p; — p, |l 5, depends on the
condition number of S, that satisfies

K(Sh)SK(Sh)'K(PhAh)~ (2.15)

3. SPLS formulation for the reaction diffusion problems

In this section, we consider the SPLS discretization for the reaction
diffusion problem using an optimal test norm. The goal is to empha-
size how stability and approximability for the mixed formulation can
be gained by using the SPLS approach and provide a way of choosing
appropriate preconditioners to find an efficient iterative solver. In what
follows, (-,-) and || - || will denote the standard L? inner product and
norm, respectively.

To place equation (1.1) into the general SPLS framework, we define
the spaces V := Hé (Q), M := L*(Q) x L*(Q)?, and M as the graph of
the operator €V : H(} (Q) - L2 (Q), i.e.,

M:=6eN={(,q,) l0eH)@}.

Since the operator £V is bounded from Hé (Q) to L2(Q)?, the space M
is closed by the Closed Graph Theorem. We define b : ¥ x M — R as

b(u,(fl)) :=(cq,v)+(q,Vv) for all ueV,(fl) en,

and the linear functional F € V* as

(F,v):=(f,v) forallve Hy(Q).

u

With this setting, the SPLS formulation of (1.2) is: Find p = (Evu

such that

) eEM
b(v,p) = (cu,v) + (eVu,Vo)=(f,v) forallveV.

On M, we consider the weighted inner product
(¢ (€R))
which gives us the corresponding norm

() = (1e 2l + lle™2q?) /2.

The operator B : V — M is then given by

)+ (5 st = o)+ a.p) =@ P + (@B,

Bv= <£§U> forallveV.

We note that

Vo =Ker(B) = {v € Hj(Q)| Bv=0} = {0}.

Thus, the optimal test norm on V is induced by the inner product
@, (4, 0) = (Bu, Bv) \q = (eVu, Vv) + (cu, v) forallu,veV,

which gives rise to the norm

opt —

(e 20l + 1 2vo)2) /2.

In addition, according to Section 2.1, we have that the continuity
constant M of the bilinear form » and the inf — sup constant m are equal
to 1. One can also directly check that

) llats

for any (g;u> € M. While this does lead to optimal continuity and

vl

u

b(v, (EVM

)i

evu 3.2)

sup

veV |U|0p,

inf —sup constants, inverting the operator associated with |- |,, coin-
cides with solving the original problem. Fortunately, at the discrete
level we can replace the action of the discrete operator corresponding

to a,,(-,-) by a preconditioner, as presented in Section 5.
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4. SPLS discretization for the reaction diffusion problems

In this section, we outline choices for the test and trial spaces in-
volved in SPLS discretization. We take V,, CV = Hé (Q) to be the space
of continuous piecewise linear polynomials with respect to the mesh
T, vanishing on the boundary of Q. To construct a trial space M, as
discussed in Section 2.3, we first define M,, ¢ M = L>(Q) x L*>(Q)? as

M, := M, x eM,,,

where M), consists of continuous piecewise linear polynomials with re-
spect to the mesh 7, (with no restrictions on the boundary) and M,,
is the vector-valued product space in which each component consists
of continuous piecewise linear polynomials. Let {¢,...,¢5} denote a
nodal basis for M, with respect to the mesh 7, and {®,...,®,y} de-
note a nodal basis for M,,, where ®; = (¢;,0)” and ®y; = (0,¢,)T for
j=1,...,N. Two different choices the projection type trial space, based
on the inner product chosen for M,,, are considered. More details about
the construction of these trial spaces can be found in [7].

For the first choice of projection trial space, we equip M,, with the
inner product induced from M. In this case, R, is the orthogonal pro-
jection from M onto M, and we define the trial space as

My, =R BV,

where we use the notation ~R;””h to signify equipping M, with the in-
duced inner product from M.
For the second choice of projection trial space, we equip M,, with

an inner product related to lumping the mass matrix. More precisely,
qn Ph ~
a ) s (ph ) € M,;,, where

2N

a;e®;, and pj, = 2 Pie®;,

i=1

for two elements (

2N
qp =

i=1

we define

((a)-(

In this case, the action of R, : M — M,, is given by

o (2)-(2,)

where Q,, : L?>(Q) — M, is the orthogonal projection with respect to the
weighted inner product (-,-), and

an
an

Ph
Pn

N
))h 1= (cqp, pp) + ; a;p;(1,e®;).

Onq

lump
9,

q
q

2N

(q.6®)), 1

2T o, =
(Led) Z:,

We then define the trial space as

(q’q)l)d)
1,

i

2N
0,"a=Y

i=1

i

My, = R,"™ BV,

where we use the notation R,llump to signify equipping M, with this
type of inner product. For the remainder of this section, we will write
R, without the superscript for simplicity as the results hold for either
choice of inner product.

The discrete mixed variational formulation is: Find p,, = R, Bu;,, with
uy €V, such that

b(vy,pp) = (f,vp)

and the corresponding SPLS discretization, with optimal test norm, is:
Find (wy,, p;, = R, AVuy,) € V;, X M,, such that

= (fsvh)
=0.

for all v, €V,

Ao (Wps0p)  + (Vg Py) for all v, €V},

R B, (4.1)

In the above problem, as mentioned we can replace the action of the
discrete operator corresponding to a,, (-, -) by a preconditioner. The fol-
lowing result regarding the stability of these spaces was proved in [7].



C. Bacuta, D. Hayes and J. Jacavage

Theorem 4.1. Let Q C R? be a polygonal domain and {T},} be a family
of locally quasi-uniform meshes for Q. For each h, let V), be the space of
continuous linear functions with respect to the mesh {T,,} that vanish on 0Q
and M, = R;, BV},. Then the family of spaces {(V},, M},)} is stable.

Remark 4.2. While the above result assumes Q c R? is a polygonal
domain, the result can be extended to polyhedral domains in R>.

5. A simplified Bramble-Pasciak-Vassilevski (BVP) multilevel
preconditioner

In this section, we introduce a simplified preconditioner for the re-
action diffusion problem based on Bramble-Pasciak-Vassilevski work in
[15]. Assume V = HJ (Q) is equipped with the standard inner product

a(u,u):/Vu-de forallu,veV,
Q

and that we have nested spaces V, C V| C --- C V; =V}, C V. Even though
some of our considerations work for more general sequences of nested
spaces, in what follows we consider the nested sequence of spaces
(V) =07 of continuous piecewise linear functions associated with the
uniformly refined meshes {7} } =07 On Q.

We let (-, ) be the standard L2(Q) inner product on ¥, and denote by
Q; : V - V; the orthogonal projection with respect to the inner product
(-,+) for j=0,1,---,J. Following [15], we have that the following norm
equivalence

J
Y 4@y = O )vll? = a(w, v),

k=0

(5.1)

holds on the entire space V, = V;. Here, the 4;’s are positive constants,
Q_, =0, and Q, coincides with the identity on V. Furthermore, we
assume the equivalence constants associated with the symbol “~” are
independent of & or J.

Let ¢(-,-) be another symmetric bilinear form defined on V and de-
fine the operators A, : V,, > V,, and C,, : V}, > V), by
(Aju,v) = a(u,v),

(Cpu,v)=c(u,v) forallveV,.

We assume that there are positive constants y, ..., u; such that

J
D Qg = QoI = e(w,v),

k=0

(5.2)

with equivalent constants independent of 4 or J. The goal of this sec-
tion is to construct a simplified BVP multilevel preconditioner for the
following problem: Find u;, € V,, such that

a(uy,v) 1= ea(uy,v) +c(uy,v)=(f,v) forallveV,,

or in operator form
(€Ap+Cpuy, = f, :==0,f.
5.1. Bramble-Pasciak-Vassilevski multilevel preconditioner

Based on standard multilevel theory, see e.g., [15,17], we have
Qij = Qij = Qjaj <k
(Qk - Qk_1)(Qj - Qj_l) = (Q/ - Qj_1)5j,k,

and the equivalences (5.1) and (5.2) can be written in the operator
forms

J
Ly:i=3000;-0, )= Ay = Ay,
Jj=0

J
K, : :ZM/(Q,' -0, N)=C;=Cy,
=0

Computers and Mathematics with Applications 109 (2022) 270-279

respectively. Using the above the properties and the spectral represen-
tations of L, and K, we obtain that

J
eLy+Cy= Y (€d;+pu)Q; - Q; ) =eA,+Cy,
j=0

J
Pyi= D (ed;+u) Q= Q) = (L, +Cp) 7!,
=0
are symmetric positive definite (discrete) operators on V. In addition,
P, is a (uniform) preconditioner for €A, + C,.

The BPV approach further modifies P, by using another (sum of
local projections type) operator that avoids computing the action of O,
(hence mass matrix inversion). In the BPV approach, the projections
Q, — Q,_, are replaced by (O, — 0,_;)?, where 0, is given by

Nk

Oy vy :ZZ

i=1

(Uh’(/’,{() k

(5.3)
LeH

for all v, €V,

where {(pf.‘,i =1,2,---,n;} is the nodal basis for V.
5.2. A simplified BVP (sBVP) preconditioner

A more general form of the preconditioner P, is given by
J
P, = ZY,‘(Q] - Qj_1)7
j=0

where y; is a positive real number for each j. We further note that by
using “summation by parts” for the general form of P,, we obtain

J
Py fr= 2 1(Qx = Qx_)f

k=0

J J
= <Z TkQk = Z?’ka—1>fh
k=0 k=1

J J-1
= <2 kO = 2 7k+1Qk> I
k=0 k=0
J-1

=y fn+ 2= 7es)Qi Fi-
k=0

We are able to further simplify the preconditioner P, under three
assumptions that are easily satisfied in our applications. We first assume
that {y;} is a decreasing sequence of positive numbers:

(AD) ypzrz-27;>0.

Second, we let {Q, : V,, = V}.}, with k=0,1, -
linear operators satisfying

,J — 1, be any family of
(A2) (Qyvp, wy) = (vy, Qgwy)  for all vy, w, €V,

and

(A43) ¢ (Quvp.vp) < Q4 vp,0p) < €3(Quvyp,vp)  forall v, €V,

where ¢|,c, are positive constants independent of 4. We define a new
operator P, : V,, — V}, by

J-1

Py fn=2;fn+ Z(}’k —7e41)@x fh-

k=0
Lemma 5.1. Under assumptions (Al),(A2) and (A3), we have that

¢ (Pyvp, vp) < (Pyvp, vp) < ¢y(Pyop,vp)  fordl v, €V, (5.4

Consequently, if P, is a uniform preconditioner for A,, then P, is also a
uniform preconditioner for A,,.
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Proof. First, we note that due to (A1) and (A2) we have that P, is a
symmetric positive definite operator on V. Multiplying the inequalities
in (A3) by the appropriate positive scalars and summing up the new
inequalities, we obtain (5.4). [

5.3. Preconditioning the reaction diffusion problem

The standard variational formulation of problem (1.1) is: Find u €
Hé (Q) such that

e(Vu, Vo) + (cu,v) = (f,v)  for all v e H(Q),

where (-,-) denotes the standard L?(Q) inner product for scalar or vector
functions. We consider the standard nested sequence of spaces {V, } Py
of continuous piecewise linear functions associated with the uniformly
refined meshes {7} } =07 O Q, with

(Apu,v)=(Vu,Vov) forallu,veV,,

and define the operator

(Cpu,v) = (cu,v) forallu,veV,.

That is, A, is the discrete Laplacian operator and C,, is the discretization
of the multiplication by the function c(x) operator. It is well known, see
[15,18], that for 4, = l/hjz. ~ 4/ we have

J
L= ij(Qj -0, D=A;=A,
i=0

Using that ZfZO(Qj -0;,_n=1, for uji=ct, where ¢* is any value in

[Cmins Cmax], We Obtain

J
Kh = Zﬂj(Qj _ijl):(C*I):Ch'

Jj=0

Thus, the BPV preconditioner for €4, + C, becomes

J
B;WP 1= 2(6‘/}’!}2. +c*)_1(Qj -0,1)
j=0 . (5.5)

= 7/]]+ Z(}’j - Yj+1)Qj,
Jj=0

where y; = (e/hjz. +c*)7L

It was proved in [15] that is a uniform preconditioner for
€Ay, + Cy. Using the family {Q, : V, = Vi }, g7 defined in (5.3), with
{(pf.‘,i =1,2,---,n.} the standard nodal basis on V,, we can define the
simplified BPV (sBVP) preconditioner for the reaction diffusion problem

BV P
BJ

J-1

BVP . -
Bj ':“I"'z(”j_}’jﬂ)M/’
i=0

(5.6)

where y; = (¢/ hjz. +¢*)7L. To prove that BS8”* is a uniform precondi-
tioner for €A, + C;,, we only need to check that (A1) — (A3) are satisfied.
Assumption (Al) is satisfied as the function 7 — (¢/h% +c*)~! is decreas-
ing on (0, 1]. From the definition of Qk in (5.3), one can easily verify
(A2). We will prove that (A3) holds next.

Lemma 5.2. Let {V;}, 57 be a nested sequence of spaces of continuous
piecewise linear functions associated with a set of quasi-uniform meshes
{7} y=d7 O Q, and assume that O « is defined as in (5.3). Then assumption
(A3) holds.

Proof. Define the diagonal matrix D with entries D;; = (1,(p{.‘), and let

M be the mass matrix for the basis {(pl’,‘,i =1 : n;}. Using that the mesh
T is quasi-uniform (could be just locally), we obtain

Computers and Mathematics with Applications 109 (2022) 270-279

3
W)= Y (Lg) vi(z)  forall v, €V,

i=1
where the uniformity constants are independent of k. Here, z; corre-
sponds to the nodal function (pf.‘, ie., (pf.‘(z ;)= 6,;. This is equivalent to

M~DorD'~M1, (5.7)

which implies

MD'M~M.

From (5.3), we obtain

Nk

(O Uh»Uh)ZZ

i=1

Let Qv = X%,

Nk

2

i=1

(kah,(P,l-C)z
(Lo}

(Uh,(Pllvc)z _

(1,05

a:‘qajf and a = (a¥) . Then, using MD™'M ~ M,

J7j=1iny

N

(O vp>vp) = Z

i=1

X%, ool o))
L.ob)

where (-,-), is the Euclidian inner product. Since

=(D"'Ma,Ma), ~ (Ma,a),,

(Ma,a)e = (QkUh,QkUh) = (QkUh,Uh)7

assumption (A3) holds. []

Remarks on the implementation of B$#¥” are included in the Ap-
pendix. Other related works on preconditioning singularly perturbed
reaction-diffusion problem can be found in [32] for the finite element
discretization on quasi-uniform meshes, where a more general Additive
Schwartz preconditioner is proposed, and in [37] for finite difference
discretization on fitted meshes where a block-structured precondition-
ing approach is proposed.

6. Numerical results

We considered equation (1.1) on the unit square with variable coef-
ficient ¢ = 2(1 + x> + y?) and f computed such that the exact solution is
given by

u(x,y) = x(1 = x) (1 —e’y/\/;) (1 _e<y—1wz)
+y(1—y) (1 - efx/\/?) (1 _ e(x—l)/\/Z)’

as considered in [34]. For this problem, the solution has boundary lay-
ers on all sides of the unit square. The test space V,, =C Hé (Q) was
chosen to be the space of continuous piecewise linear polynomials with
respect to the mesh 7, and M,, = R, BV, as described in Section 4. We
used Algorithm 2.6 to solve (4.1) with two types of preconditioners: the
sBPV preconditioner introduced in Section 5.2 and a multigrid precon-
ditioner with Gauss-Seidel smoother. We applied the method on both a
uniform mesh as well as a Shishkin type mesh, introduced in [40]. De-
tails on the implementation of the sBVP preconditioner can be found in
the Appendix.

For the Shishkin mesh, we followed the construction outlined in
[39]. We add it here for completion. We first assume the parameter
N is an integer multiple of 8. This refers to the number of mesh inter-
vals in the x and y directions. The mesh itself is the tensor product of
two one-dimensional Shishkin meshes 7, x 7. The process for obtain-
ing 7, (and Ty) is as follows. The interval [0, 1] is first decomposed into
three subintervals [0, 1], [4,1 — A], and [1 — 4, 1], where

l:min{%,Z %lnN} with 0<c* <e.
\ &

The intervals [0, A] and [1 — A, 1] are then partitioned into N /4 subinter-

(6.1)

vals of length ﬂ, while the interval [4,1 — A] is partitioned into N /2

2(1-24)

subintervals of length . The triangular mesh is obtained by
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Exact Solution

X 1.0 y
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SPLS Solution
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Fig. 6.1. Left: The exact solution for ¢ = 107°. Right: The SPLS approximation on a Shiskin mesh for N =27.

Table 1
Uniform mesh with test space M, = BV,.

Lev/e 107! 1072 1073

Error Order It Error Order It Error Order It
1 0.1080 - 6 0.1090 - 6 0.1520 - 4
2 0.0527 1.03 24 0.0469 1.22 15 0.0733 1.05 7
3 0.0262 1.01 41 0.0221 1.09 31 0.0323 1.19 12
4 0.0131 1.00 53 0.0109 1.02 48 0.0145 1.15 23
5 0.0065 1.00 58 0.0054 1.01 60 0.0070 1.06 39
6 0.0033 1.00 60 0.0027 1.00 64 0.0034 1.02 53
7 0.0016 1.00 60 0.0014 1.00 66 0.0017 1.00 60
8 0.0008 1.00 61 0.0007 1.00 66 0.0009 1.00 62
Lev/e 1074 1073 10-¢

Error Order It Error Order It Error Order It
1 0.1820 - 3 0.1920 - 2 0.1960 - 2
2 0.1090 0.74 4 0.1250 0.62 3 0.1290 0.60 2
3 0.0621 0.82 5 0.0821 0.61 3 0.0889 0.54 2
4 0.0301 1.05 8 0.0509 0.69 4 0.0607 0.55 3
5 0.0132 1.19 14 0.0278 0.88 5 0.0396 0.62 3
6 0.0061 1.12 27 0.0128 1.12 9 0.0238 0.74 4
7 0.0030 1.04 43 0.0056 1.18 17 0.0122 0.96 5
8 0.0015 1.01 54 0.0027 1.09 31 0.0054 1.17 10

drawing diagonals from the top left to bottom right of each quadrilat-
eral.

In the case of the Shishkin mesh, we also measured the SPLS error
in a balanced norm instead of the norm on M. This is due to the fact
that for small ¢ the L? part of the norm on M dominates, leading to
an unbalanced norm not adequate to accurately measure the error, see
[35,39]. More precisely, in this case, we compute
2) 12

Error := (llu—upl® + &'/2||Vu = R, Vuy,|

In the Shishkin mesh case, we used a stopping criteria of ||¢;|| ,; < 10710
for 1078 <z < 107%, and a stopping criteria of ||q;| , < 107'¢ for 1014 <
£ < 10719, In the case of a uniform mesh, we used a stopping criteria of
llg;ll 1q < 1078 for £ > 1075. (See Fig. 6.1.)

Table 1 displays the results for uniform meshes with M, = BV, for
the sBVP preconditioner. We see that order one is attained as expected
due to the no projection type trial space. The iteration count contains
some ¢ and h dependence, but as ¢ decreases this becomes more ro-
bust. Table 2 displays results using uniform meshes, M, = R;l’”hAVh,
and both the sBVP and multigrid preconditioner with a Gauss-Seidel
smoother. Here, the error and the order for both preconditioners was
the same. Thus, the columns marked (a) and (b) denote the iteration
count for the sBVP preconditioner and the multigrid preconditioner, re-
spectively. For € < 1073, it is shown that the sBVP preconditioner retains

a lower iteration count across all levels. The loss of order for small € in
the uniform mesh case is due to the boundary layers and would need
further refinements to resolve them.

Tables 3 and 4 display results using Shishkin type meshes and the
sBVP preconditioner along with both types of trial spaces outlined
in Section 4. Here, N is related to the level according to Level =
log,(N) — 1. According to [35,39], standard Galerkin methods for (1.2)
lead to a covergence rate of O(N~!In N) using piecewise linear approx-
imation. As shown in Tables 3 and 4, we obtain a convergence rate
of O((N~'InN)?) using the SPLS method. The numerical tests appear
to show that in the case of Shishkin meshes, the sBVP preconditioner
appears to be robust with respect to ¢ for a fixed stopping criteria. In
addition, one notable advantage of the preconditioner outlined in this
paper is ease of implementation. All of the required parameters and ma-
trices needed to implement the sBVP preconditioner, given in (8.3) or
(8.4), are naturally computed in a standard implementation aside from
the matrix that relates bases between spaces.

We mention that for the sBPV preconditioner on a Shiskin mesh
we took adavantage of the fact that the mesh is topologically equiva-
lent with a uniform mesh. We used a piecewise linear bijection (in each
direction) to shift the uniform nodes to the Shiskin nodes. For the imple-
mentation of sSBPV on Shiskin meshes, we used the same extension and
restriction operators as in the case of uniform refinement. We plan to
investigate the convergence of the new sBVP preconditioner on nonuni-
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Table 2
Uniform mesh with test space M, = R}?"hBVh, and two type of preconditioners: (a) It-sBPV, and (b) It-mgGS.
Lev/e 107! 1072 1073
Error Order (a) (b) Error Order () (b) Error Order (@) (b)
1 0.0511 - 6 6 0.0866 - 5 6 0.1490 - 3 5
2 0.0146 1.81 16 21 0.0260 1.74 9 14 0.0680 1.13 5 7
3 0.0041 1.85 30 34 0.0072 1.85 17 25 0.0248 1.46 7 11
4 0.0011 1.88 57 53 0.0019 1.92 31 40 0.0074 1.75 12 20
5 0.0003 1.90 98 81 0.0005 1.95 57 61 0.0020 1.89 22 34
6 7.9e-05 1.92 152 76 0.0001 1.96 99 85 0.0005 1.96 40 53
7 2.1e-05 1.92 215 72 3.2e-05 1.97 150 82 0.0001 1.99 71 76
8 6.1e-06 1.76 220 49 8.4e-06 1.95 190 58 3.2e-05 2.00 108 89
Lev/e 1074 103 1076
Error Order (a) (b) Error Order (a) (b) Error Order (a) (b)
1 0.1820 - 3 3 0.1920 - 2 2 0.1960 - 2 2
2 0.1090 0.74 3 5 0.1250 0.62 2 4 0.1290 0.60 2 4
3 0.0605 0.85 4 6 0.0820 0.61 3 5 0.0889 0.54 2 5
4 0.0270 1.16 5 8 0.0505 0.70 3 5 0.0607 0.55 2 5
5 0.0092 1.56 7 13 0.0267 0.92 4 7 0.0395 0.62 3 5
6 0.0026 1.81 14 25 0.0108 1.30 5 9 0.0234 0.76 3 6
7 0.0007 1.92 25 41 0.0034 1.66 8 17 0.0114 1.04 4 8
8 0.0002 1.98 45 62 0.0009 1.86 16 30 0.0042 1.44 5 10
Table 3
Shishkin mesh with test space M,, = R™"BV,.
Lev/e 1074 107° 1078
Error Order It Error Order It Error Order It
1 0.2030 - 4 0.1970 - 3 0.1970 - 2
2 0.1570 0.89 5 0.1540 0.86 5 0.1540 0.86 4
3 0.1020 1.06 7 0.1020 1.03 6 0.1020 1.03 6
4 0.0539 1.36 11 0.0538 1.35 10 0.0538 1.35 9
5 0.0226 1.70 18 0.0226 1.70 17 0.0226 1.70 15
6 0.0079 1.94 30 0.0079 1.95 30 0.0079 1.95 28
7 0.0025 2.04 50 0.0025 2.04 55 0.0025 2.04 51
8 0.0008 2.05 88 0.0008 2.05 101 0.0008 2.05 95
Lev/e 10710 10712 10714
Error Order It Error Order It Error Order It
1 0.1970 - 3 0.1970 - 3 0.1970 - 2
2 0.1540 0.86 7 0.1540 0.86 7 0.1540 0.86 6
3 0.1020 1.03 11 0.1020 1.03 10 0.1020 1.03 9
4 0.0538 1.35 17 0.0538 1.35 16 0.0538 1.35 15
5 0.0226 1.70 28 0.0226 1.70 27 0.0226 1.70 25
6 0.0079 1.95 50 0.0079 1.95 47 0.0079 1.95 45
7 0.0025 2.04 90 0.0025 2.04 86 0.0025 2.04 83
8 0.0008 2.05 166 0.0008 2.05 159 0.0008 2.05 153

form refinements with suitable extension and restriction operators in a
future work. This seems to be a challenging problem by itself and, by
the best knowledge of the authors, has not been addressed in the case
of Shiskin refinements or more general cases of fitted meshes.

Remark 6.1. All numerical tests performed with the sBVP precondi-
tioner used the preconditioner given by (8.3) as it results in a lower
iteration count. At the expense of a slight increase in iteration count,
the form given by (8.4) can be implemented to reduce the computa-
tional time.

7. Conclusion

We presented a preconditioning technique for the singularly per-
turbed reaction diffusion problem. We considered the concept of saddle
point reformulation of the problem and the concept of optimal test
norm as presented in [30,33]. We showed the performance of our ap-
proach on a combination of two projection trial spaces and two different
preconditioners that efficiently cover a wide range of the parameter
€. The method is also robust with respect to ¢. The efficiency of the

Uzawa preconditioned CG solver depends on the robustness and effi-
ciency of preconditioners for the discrete optimal norm on the test space
V,,. For quasi-uniform meshes, we introduced a simplified version of
the Bramble-Pasciak-Vassilevski preconditioner. The numerical experi-
ments demonstrate the preconditioner performs well even in the case
of Shiskin type refinements. In the case of Shishkin meshes, we obtain
higher order approximation of the gradient of the solution.

8. Appendix: A note on sBVP implementation

Using the inner product (-,-) on V},, we can identify V,* with V. The
implementation of the sBVP preconditioner defined in (5.6) is done by
computing the coordinate vector of the action of B;BVP on dual vectors.
To be more precise, let M, be the mass matrix for the basis {(pf,i =
1:n}, and let D, be the diagonal matrix with entries D;; = (l,qyf,‘). We
define E, to be the n; x n; matrix that relates the bases on ¥ and V.
That is, for the bases {¢¥,i=1:n,} of V, and {¢],i=1:n;} of V;, we
have

@ @b = Ef @] 0]y )T 8.1)
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Table 4
Shishkin, M, = R,"™ BV;.

Lev/e 1074 10-¢ 10-8

Error Order It Error Order It Error Order It
1 0.2200 - 3 0.2140 - 3 0.2130 - 2
2 0.1800 0.70 4 0.1790 0.61 4 0.1790 0.60 4
3 0.1280 0.84 6 0.1280 0.84 6 0.1280 0.84 5
4 0.0776 1.07 8 0.0776 1.06 8 0.0777 1.06 7
5 0.0370 1.45 13 0.0369 1.45 12 0.0370 1.45 11
6 0.0138 1.84 24 0.0137 1.84 21 0.0137 1.84 20
7 0.0044 2.05 48 0.0043 2.06 39 0.0043 2.06 36
8 0.0013 2.08 100 0.0013 2.09 71 0.0013 2.09 67
Lev/e 10710 10712 10~

Error Order It Error Order It Error Order It
1 0.2130 - 3 0.2130 - 3 0.2130 - 2
2 0.1790 0.60 6 0.1790 0.60 6 0.1790 0.60 6
3 0.1280 0.84 9 0.1280 0.84 8 0.1280 0.84 8
4 0.0777 1.06 13 0.0777 1.06 12 0.0777 1.06 11
5 0.0370 1.45 21 0.0370 1.45 19 0.0370 1.45 18
6 0.0137 1.84 35 0.0137 1.84 34 0.0137 1.84 32
7 0.0043 2.06 64 0.0043 2.06 116 0.0043 2.06 58
8 0.0013 2.09 118 0.0013 2.09 113 0.0013 2.09 108

For f, € V,, the (dual) vector in R"* is defined by
In 1= e @D S @5 (F @ DT
~k

For w, = Y%, afl €V, C ¥}, the coordinate vector in R" is denoted
by

wy, :=(a{‘,ak kT,

2 Uy

Using (8.1) it is easy to check that

fa=ET fp, and w), = E, wy, (8.2)
~k ~J

and by letting w,, := M, f,, we have, due to (5.3) and (8.2),

~J —
wy, = E, D E] f;,.
~J

~J
To obtain the contribution of y, I in (5.6), we note that f;, = MJ‘1 -
~J
Thus, the matrix version of (5.6) is given by
J-1

BPVPf =y My f + Z(}’j - Yj+1)EjD;1Eij.l'
™ <G ™

(8.3)

To avoid mass matrix inversion, we can use the equivalence (5.7) and
further simplify s BV P to the (matrix) version

J-1
BV £y =y D7y + Yy = v )E; DTV E] £
2 A 2

8.4

This way, we avoid mass matrix inversion and the iterative process is
faster. We note that the matrix version of (5.5) just uses M f instead of
D; in (8.4).
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