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Programmable interactions and emergent 
geometry in an array of atom clouds

Avikar Periwal1,4, Eric S. Cooper1,4, Philipp Kunkel1,2,4, Julian F. Wienand1,3, Emily J. Davis1 & 
Monika Schleier-Smith1,2 ✉

Interactions govern the flow of information and the formation of correlations between 
constituents of many-body quantum systems, dictating phases of matter found in 
nature and forms of entanglement generated in the laboratory. Typical interactions 
decay with distance and thus produce a network of connectivity governed by 
geometry—such as the crystalline structure of a material or the trapping sites of atoms 
in a quantum simulator1,2. However, many envisioned applications in quantum 
simulation and computation require more complex coupling graphs including 
non-local interactions, which feature in models of information scrambling in black 
holes3–6 and mappings of hard optimization problems onto frustrated classical 
magnets7–11. Here we describe the realization of programmable non-local interactions 
in an array of atomic ensembles within an optical cavity, in which photons carry 
information between atomic spins12–19. By programming the distance dependence of 
the interactions, we access effective geometries for which the dimensionality, 
topology and metric are entirely distinct from the physical geometry of the array.  
As examples, we engineer an antiferromagnetic triangular ladder, a Möbius strip with 
sign-changing interactions and a treelike geometry inspired by concepts of quantum 
gravity5,20–22. The tree graph constitutes a toy model of holographic duality21,22, in which 
the quantum system lies on the boundary of a higher-dimensional geometry that 
emerges from measured correlations23. Our work provides broader prospects for 
simulating frustrated magnets and topological phases24, investigating quantum 
optimization paradigms10,11,25,26 and engineering entangled resource states for sensing 
and computation27,28.
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Controllable quantum systems of cold atoms constitute powerful 
platforms for applications ranging from quantum simulation2 to 
entanglement-enhanced measurement12,14,15,29. Positioning atoms 
in optical tweezers and inducing local interactions by excitation 
to Rydberg states enables simulations of lattice spin models2 and 
bottom-up control of entanglement30. In a complementary top-down 
paradigm, collective entangled states have been generated in ensembles 
of up to 5 × 105 atoms with all-to-all interactions mediated by photons in 
optical cavities12–15 or by collisions in Bose–Einstein condensates29–34. 
For photon-mediated interactions, or analogous phonon-mediated 
interactions among trapped ions35,36, using multiple bosonic modes 
further enables tuning of the interaction range35–37.

Yet many objectives demand more versatile control of the graph 
of interactions5,6,8,9,24,38, including couplings that are neither local nor 
global. Engineering a wider range of non-local graphs opens up pros-
pects for accessing spin-glass phases8,9 and new topologically ordered 
states24, exploring analogue approaches to combinatorial optimiza-
tion10,11,25,26 and probing toy models of quantum gravity5,6,39. These goals 
have motivated proposals for programming the distance dependence 
of spin-exchange interactions in arrays of atoms or ions by tailoring the 

frequency spectrum of a drive field5,24,38, which couples the spins to a 
single mode of light or motion.

We realize programmable spin-exchange interactions in an array of 
atomic ensembles within an optical cavity. Our scheme (Fig. 1) produces 
a class of spin models described by an effective Hamiltonian

∑H J r f f H= − ( ) + . (1)
μ ν

μν μ νeff
,

+ −
q

Here fμ
+ and fν

− denote the raising and lowering operators for the  
Zeeman spin of atoms μ and v, respectively; the distance between atoms 
is rμν and Hq represents the quadratic Zeeman energy. The spin-exchange 
coupling J arises from a process in which one atom flips its spin down 
while scattering a photon from a drive field into the cavity and a second 
atom rescatters this photon to flip its spin up17,18. We focus on a system 
of spin-1 atoms initialized in the m = 0 Zeeman state, in which the effect 
of this ‘flip-flop’ interaction is to produce correlated atom pairs in states 
m = ±1 (refs. 17,27,31,33,34,40).

Whereas the single-mode cavity ordinarily mediates interactions 
among all sites, we break this all-to-all connectivity by introducing a 
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magnetic field gradient along the cavity axis. The gradient introduces 
an energy difference ħωB between the Zeeman splittings on adjacent 
sites, such that spin-exchange processes are off-resonant for spatially 
separated spins. To controllably reintroduce interactions between 
ensembles spaced by a distance of r sites, we modulate the intensity 
of the drive field at frequency rωB, thus modulating  the instantaneous 
spin-exchange coupling J t( )∼  as a function of time t. More generally, to 
obtain a specified set of couplings J(r) = J*(−r) in equation (1), we set a 
drive waveform

∑J t J r( ) = e ( ) (2)
r

rω t−i B∼

according to the Fourier transform of the couplings. The drive wave-
form thus determines the dispersion relation χ NJ k ω= − 2 ( / )k B

∼  for spin 
waves with momentum k, in dimensionless units of inverse sites, in a 
system of N atoms per site.

We benchmark the interactions in a one-dimensional array of M = 18 
ensembles of N ≈ 104 rubidium-87 atoms, initializing all atoms in state 
m = 0. This initial state with no average magnetization would classically 
have trivial dynamics. However, quantum fluctuations are amplified 
by the cavity-mediated interactions, producing correlated growth and 
macroscopic fluctuations in the populations of states m = ±1 (ref. 17). 
The spatial correlations of these amplified fluctuations reveal the con-
nectivity of interactions.

To implement distance-dependent interactions, we optically drive 
the cavity for 100 to 200 μs, thereby transferring 30–50% of the atoms 
into the states m = ±1. Subsequently, we perform state-sensitive imag-
ing to obtain the correlations

C
N N

N N
N N=

Cov( , )

Var( )Var( )
≡ Corr( , ), (3)ij

i j

i j
i j

pm +, −,

+, −,
+, −,

for each pair of sites (i, j), in the populations N+,i, N−,j of states m = ±1. 
Here, Cov and Var denote the covariance and the variance, respec-
tively. Figure 1b shows the measured correlations for three different 
scenarios. For a monochromatic drive field, in a uniform magnetic field, 
we observe correlations of equal strength between all sites, indicating 
the expected all-to-all interactions. By contrast, adding a magnetic 
field gradient results in correlations being localized to individual sites. 
Finally, modulating the intensity of the drive light at frequency rωB 
produces correlations between all pairs of sites separated by a distance 
|i − j| = r, as shown for r = 10.

The dependence of spatial correlations on modulation fre- 
quency is shown in Fig. 2a. There, we plot the average correlation 

C d C M d( ) = ∑ /( − | |)i i i d
pm

, +
pm  of sites separated by distance d. Plotting 

Cpm(d) as a function of modulation frequency rωB, for integer values r, 
reveals correlations at distances d = ±r and d = 0. While the correlations 
at d = 0 indicate on-site pair creation that is resonant even for a single 
drive frequency, the correlations at d = ±r confirm the presence of 
interactions at the distance set by the modulation frequency.  
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Fig. 1 | Engineering distance-dependent interactions. a, An array of atomic 
ensembles initialized in the m = 0 Zeeman state is trapped inside an optical cavity. 
We apply a magnetic field gradient ΔB, which leads to a difference ΔE = ħrωB in the 
Zeeman splittings of atoms separated by a distance r. By modulating the 

intensity of the drive field at a frequency rωB, we generate correlated atom pairs 
in states m = ±1 at distance r. b, Measured correlations Cpm for three different 
combinations of magnetic field gradient, shown by the dependence of ΔE on 
distance (red circles) and drive field spectrum (blue lines).
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Fig. 2 | Pair creation at programmable distance. a, Correlations Cpm versus 
modulation frequency ω and distance. Setting ω = rωB generates correlations 
Cpm at a distance r. Inset, correlations Cpm appearing only when satisfying a 
resonance condition ω = rωB for integer r. b, Measurements of cxx for sinusoidal 
modulation at frequency 3ωB reveal spreading of correlations to integer 
multiples of the distance r = 3 after time T Bloch periods. c, Magnitude of the 
structure factor F F F| | = ⟨ ⟩1/2
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 after 1, 2 and 3 Bloch periods, illustrating the 
relationship between the drive waveform J t( )∼  and the momentum-space 
dynamics. Error bars show s.e.m. and curves show model F J k ω| | ∝ | ( / )|Tk

x∼ ∼ , with 
amplitude as the only free parameter. d, Pulsing the drive waveform at 
frequency MωB generates periodic boundary conditions, evidenced by 
correlations at distances r and M − r.
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The interactions are spectrally well resolved as a function of drive fre-
quency (Fig. 2a, inset), highlighting the precise control of the coupling 
distance.

To sensitively probe the growth and spreading of correlations, we 
examine the transverse magnetization, which provides an enhanced 
signal at early times. Specifically, we evaluate the normalized covari-
ance c F F N= Cov( , )/xx

i
x

i d
x
+

2 , where F f= ∑i μ i μ∈  denotes the collective 
magnetization on site i in a rotating frame set by the local magnetic 
field. Figure 2b shows cxx as a function of time and distance d, averaged 
over all sites i, for a system programmed to interact at distance r = 3. 
Correlations first appear between nearest neighbours on the coupling 
graph and spread over time to further neighbours at multiples  
of the distance r. We additionally compute the structure factor 
F F M= ∑ e /k

x
l

kl
l
xi∼ , plotting its root mean square value in Fig. 2c.  

We observe narrowing in momentum space as a function of time, com-
plementary to the observed spreading of correlations in position space.

The growth of the structure factor is consistent with an analytical 
model in which spin waves of momentum k are amplified by a factor 
proportional to |χk| per Bloch period of evolution. Equivalently, the 
growth in F| |k

x∼  for each momentum mode k is proportional to the drive 
intensity ∼J t( ) at time t = k/ωB. The amplification is notably strongest 
at minima of the dispersion relation χk < 0. Pair creation thus drives the 
system towards states of minimal interaction energy, while increasing 
the quadratic Zeeman energy Hq to compensate.

Engineering the dispersion relation via the drive waveform enables 
the realization of periodic boundary conditions, despite the physical  
geometry of our array as an open chain. For a chain of M sites with periodic 
boundary conditions, the domain of the dispersion relation is a discrete set 
of points in momentum space, spaced by Δk = 2π/M. Correspondingly, we 
break the drive waveform into a train of short pulses with spacing τB/M in 

time, where τB = 2π/ωB is the Bloch oscillation period for spin excitations. 
For an initial sinusoidal modulation designed to introduce interactions 
at distance r, the pulsed variant has a frequency spectrum that includes 
peaks at both rωB and (M − r)ωB. The resulting correlations Cpm, shown 
in Fig. 2d, are strongest at distances d = ±r and d = ±(M − r), indicating 
that the system now behaves as though the sites were situated on a ring.

We verify the periodic boundary conditions by directly reconstruct-
ing the effective geometry of the system from measured spin correla-
tions C F F= Corr( , )ij

xx
i
x

j
x . Adopting an ansatz that correlations decay as 

a Gaussian function C ρρ ρρ| | ∝ exp( − | − | )ij
xx

i j
2  of distance |ρi − ρj| in a 

D-dimensional space, we seek a mapping of the array sites to effective 
coordinates ρi that best fit the distances d C= − log | |ij ij

xx  inferred from 
the correlations (Methods). We obtain the coordinates ρi from the 
distance matrix dij by metric multidimensional scaling. The result is 
shown in Fig. 3a for a system with nearest-neighbour interactions and 
periodic boundary conditions. We additionally calculate an inferred 
coupling matrix J′ = (Cxx)−1. Colouring the edges between all pairs of 
sites according to J′ corroborates the ring-like coupling graph.

Tailoring the drive waveform enables versatile control over the geom-
etry and topology of the coupling graph, as we illustrate by the same 
black-box reconstruction technique. We first observe that introducing 
interactions at a distance r > 1, with open boundary conditions, produces 
a set of r disjoint chains, as depicted in Fig. 3b for r = 3. Linking such chains 
with a second modulation frequency generates a two-dimensional graph, 
as shown by the triangular ladder in Fig. 3c, formed by interactions at 
distances r1 = 1 and r2 = 2. Furthermore, adding periodic boundary con-
ditions enables the realization of non-trivial topologies. For example, 
Fig. 3d shows a square-lattice cylinder, whereas Fig. 3e shows a Möbius 
ladder. The characteristic twist of the Möbius strip is evident in the cross-
ing of two bonds in the reconstructed geometry.

0 6 12
Site i

0

6

12

S
ite

 j

–1

0

1
Cxx

–4

0

4 –4

0

4

–2

0

2

40123
4

5

6

7
8 9

10

11

12

13

14
15

x y

z

0

1

2

17
16

9

8

10

7
6

11
12 14

15
13

5 4
3

0 3 6 9 12 15

7 10 13 16

8 11 14 17

1

2

4

5

0 6 12
Site i

0

6

12

S
ite

 j

–1

0

1
Cxx

−4

0

4

–2
0

2

−2

0

2

0
1

2

3
4

5

6
7

8

9
10

11

12
13

14

15
16

17

x

y

z

0
2

4
6

8
10 12 14

161
3 5

7
9

11
13

15
17

0 6 12
Site i

0

6

12

S
ite

 j

–1

0

1
Cxx

–101 –101

–1

0

1

0

1

2

3

4

5

6

7

8
9

10
11

12
13

14
15 1617

x y

z

0 6 12
Site i

0

6

12

S
ite

 j

–1

0

1
Cxx

0

6

12

7

1

13 17161514

109 118

5432

–2
0

2 –2
0

2

–2

0

2

0

1

2

34
5

6 7

8

9
10

11
12 13

14

15
1617

x
y

z

0

1

2

17
16

9

8

10

7
6

11
12 14

15
13

5 4 3

0 6 12
Site i

0

6

12

S
ite

 j

–1

0

1
Cxx

–1 0 1

–2

0

2

–2

0

2

0

1
2

3

4

5

67

8

9

10
11

12

13

14

1516

17

x

y

z

0 π 2π
k

0
0 π 2π

k

0
0 π 2π

k

0

k
2 Fk

0 π 2π
k

0
0 π 2π

k

0

ea b c d

~
k
2 Fk

~
k
2 Fk

~
k
2 Fk

~
k
2 Fk

~

Fig. 3 | Geometry extracted from correlations. a–e, Ring (a), disconnected 
chains (b), triangular antiferromagnetic ladder (c), cylinder with anisotropic 
sign of interactions (d) and Möbius ladder with oppositely signed interactions 
along the edge and width (e). Top row, connectivity graphs, with red (blue) 
bonds indicating ferromagnetic (antiferromagnetic) couplings between sites 
labelled by position in array. Second row, structure factor (purple circles) 

measured after T = 2 Bloch periods is proportional to squared dispersion 
relation χk

2 (blue shaded region). Third row, correlations Cxx. Bottom row, 
reconstructed geometries in D = 3 dimensions, with Cartesian coordinates ρ. 
Colour and opacity of bonds indicate sign and magnitude of the inferred 
coupling J′, respectively.
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For a given coupling graph, the sign of the interaction J(r) at each 
distance r is set by the phase of the modulation at frequency rωB. We 
always choose the on-site interaction to be ferromagnetic, favouring 
a large spin polarization on each site, and choose a phase 

J r πarg[ ( )] ∈ {0, } to set either ferromagnetic or antiferromagnetic cou-
plings at each non-zero distance r. Figure 3 includes examples with 
ferromagnetic (Fig. 3a, b), anti-ferromagnetic (Fig. 3c) and 
sign-changing (Fig. 3d, e) couplings.

The antiferromagnetic triangular ladder in Fig. 3c constitutes a 
fully frustrated XY model41. In the classical ground state, adjacent 
spins have a relative angle of approximately 120° (white arrows in 
Fig. 3c (top row)). The measured spin correlations in Fig. 3c are con-
sistent with the predicted ordering, with two degenerate minima in 
the spin-wave dispersion χk producing peaks in the structure factor 
at k = ±0.58π (Fig. 3c (second row)), corresponding to the two pos-
sible directions of phase winding. The correct reconstruction of the 
ladder edges J′ ≈ J in Fig. 3c (bottom row) further highlights that the 
pair creation dynamics generate an approximate low-temperature 
state of the XY model (Methods).

Our approach also enables the specification of interactions that 
change sign as a function of distance, as we illustrate for the cylinder and 
the Möbius ladder in Fig. 3d, e. In each case, by choosing opposite signs 
of interaction for two distances r1 and r2 between sites in the atom array, 
we obtain an anisotropic sign of the interaction on the two-dimensional 
manifold representing the effective geometry (Fig. 3d, e (bottom row)). 
For example, in the Möbius strip, the ferromagnetic interactions at dis-
tance r1 = 1 give rise to ferromagnetic correlations (red bonds) all along 
the singular edge of the strip, whereas the antiferromagnetic couplings 
at distance r2 = 9 are manifest in the antiferromagnetic correlations 
(blue bonds) across the width of the strip (Fig. 3e (bottom row)). The 
measured correlations are indicative of the transverse magnetization 
winding by 2π along the closed loop formed by the edge of the strip.

Engineering non-local couplings enables radically different geom-
etries to be explored, beyond those that can be visualized by an embed-
ding of sites in a Euclidean space. Inspired by models of quantum 
gravity21,22, we proceed to simulate a non-Archimedean geometry5,42, 
for which the points on the real line are best viewed as leaves on an 
infinite regular tree graph. Such tree graphs feature in a version of the 
anti-de Sitter/conformal field theory correspondence (p-adic AdS/
CFT)21,22, in models of information scrambling in black holes20 and 
in tensor-network representations of strongly correlated states43,44.
To access a treelike geometry, we engineer couplings





Z
J i j

i j i j n
( − ) ∝

| − | | − | = 2 , ∈

0 otherwise,
(4)

s n

depicted in Extended Data Fig. 1, where the parameter s enables tuning 
between Archimedean and non-Archimedean regimes5. For s < 0 the 
system is approximately a one-dimensional chain (Fig. 4a (top)), 
whereas setting s > 0 theoretically produces the treelike geometry 
shown in Fig. 4a (bottom) (refs. 5,42). Each leaf represents an array site, 
the position of which in the tree is determined by branching left or 
right at level a if the ath bit of the site index i is 0 or 1. Starting from the 
base of the tree, the first branching is governed by the least significant 
bit. Thus, the order of sites in the tree is rearranged from the physical 
order by the Monna map i( )M , which reverses the order of bits in the 
site index i.

We confirm the transition from an Archimedean to a treelike geom-
etry by measuring correlations Cxx for s = ±1. We implement both mod-
els for M = 16 sites with periodic boundary conditions, using the drive 
waveforms in Fig. 4a (top), (bottom). For each value of s, we show Cxx 
as a function of physical positions i, j (Fig. 4b) and as a function of posi-
tions M Mi j( ), ( )  on the tree (Fig. 4c). Whereas for s = −1 the correlations 
decay smoothly as a function of physical distance, for s = 1 we observe 

eb c da

0 6 12
0

6

12

−1

0

1
Cxx

1
8

1
4

1
2

1
|i – j|2

0

1

C
xx

0 6 12
Site i

0

6

12

S
ite

 j

–1

0

1
Cxx

0 4 8 12
|i – j|

0

1

C
xx

0 6 12
Site i

0

6

12

S
ite

 j

–1

0

1
Cxx

0 4 8 12
|i – j|

0

1

C
xx

0 6 12
(i)

0

6

12

–1

0

1
Cxx

1
8

1
4

1
2

1
|i − j|2

0

1

C
xx0 2 4 6 71 3 5

0 2 1 3 74 6 5

10

0 1 0 1
10 10

Archimedean s = –1

Treelike s = 1

Time

Time0 B

J(t)

0 B

J(t)

–2 0 2

–2

0

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

–2 0 2

–2

0

2

0

1

2

3 4
5

6

7

8

9

10

11
12

13

14

15

x

y

x

y

07

6

5

4 3

2

1

0 2 1 3 74 6 5

Cb

Cb

s

Cb

1

0
–1

1

10

~

~

(j)
(j)

(i)

Fig. 4 | Treelike geometry. a, Waveforms J t( )∼  generating Archimedean (top) 
and treelike (bottom) interactions. The two geometries are related via the 
Monna map M (green arrows). b, c, Archimedean (b) and treelike (c) orderings 
of Cxx. Correlations decay smoothly only as a function of Archimedean distance 
|i − j| for s = −1, and only as a function of treelike distance |i − j|2 for s = 1.  
d, Black-box bulk reconstructions from Cxx reveal no bulk for s = −1 and a binary 

tree structure for s = 1. e, Coarse-grained bipartite correlation Cb versus 
exponent s for partitions according to Archimedean (blue circles) and treelike 
(green squares) ordering of sites. The minimal correlation over all possible 
bipartitions (purple triangles) is peaked at s = 0, signifying a breakdown of 
locality. Error bars denote s.d. estimated by jackknife resampling.
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a non-monotonic dependence on physical distance due to the highly 
non-local structure of interactions. The Monna-mapped correlations 
for s = 1, however, are strongest near the diagonal—indicating a new 
sense of locality in the non-Archimedean geometry—and exhibit blocks 
consistent with the hierarchical structure of the tree.

To corroborate the realization of a non-Archimedean geometry, we 
plot the dependence of correlations on a treelike measure of distance 
in Fig. 4c. The natural metric for the treelike geometry is the 2-adic 
norm |i − j|2 = 2–a, where a is the largest integer such that 2a divides |i − j|. 
Intuitively, a represents the level of the tree—counting up from the 
base—at which the leaves representing sites i and j connect. As a func-
tion of 2-adic distance, we observe a smooth decay of correlations.

A key feature of the tree graph is that only the vertices on the boundary 
represent physical sites, whereas the interior vertices constitute a holo-
graphic bulk geometry embodying the effective distance between sites. 
To investigate the validity of this holographic description, we perform a 
black-box reconstruction of the bulk geometry from spin correlations.  
We begin by mapping the physical sites to effective coordinates in 
a Euclidean space, as before. Next, we draw bonds between pairs of 
maximally correlated sites and perform a coarse-graining procedure, 
treating each group of connected sites as a new larger site, and drawing 
new connections, until there is a path through the bulk between any 
two sites on the boundary.

The bulk reconstructions are shown in Fig. 4d for both the Archi-
medean (s = −1) and non-Archimedean (s = 1) cases. For s = −1, where 
interactions between physical neighbours dominate, the reconstruc-
tion produces only a one-dimensional loop. By contrast, for s = 1, a tree 
emerges from the reconstruction as a bulk geometry encapsulating the 
structure of spin correlations. This emergent geometry is analogous 
to the gravitational bulk in the p-adic AdS/CFT correspondence, in 
which the tree serves as a discretized version of hyperbolic space21,22.

The transition between two radically different geometries depending 
on the sign of the exponent s suggests that all sense of locality is lost as 
s approaches zero. To probe the breakdown of locality, we consider  
different possible bipartitions of the M = 16 sites into 8-site subsystems 
I and J and examine correlations between the subsystems (Fig. 4e). Spe-
cifically, we plot a bipartite correlation Cb = Corr(FI

x, FJ
x), where F F= ∑I

x
i I i

x
∈  

denotes a coarse-grained spin, as a function of s. For s < 0, the correlation 
Cb is smaller for a cut that is local according to the physical ordering of 
sites (blue circles) than for a cut that is local on the tree (green squares), 
whereas for s > 0 the situation is reversed, consistent with the change in 
effective geometry. Further plotting the minimum correlation Cb over 
all possible bipartitions (purple triangles) reveals a peak at s = 0, indicat-
ing the absence of any geometry providing a sense of locality.

The breakdown of locality at s = 0 paves the way for studies of fast 
scrambling5, the generation of system-wide entanglement at a conjec-
tured maximal rate characteristic of black holes3. More broadly, our 
work provides a starting point for quantum simulations to investigate 
the conjecture that space–time geometry and gravity emerge from 
entanglement23. The treelike geometry can serve as a model for probing 
transport through the holographic bulk and enable implementations of 
holographic error-correcting codes22,45. Furthermore, our reconstruc-
tion of the bulk offers a blueprint for seeking gravitational duals in a 
wide range of quantum many-body systems.

Future experiments will probe entanglement generated by program-
mable pair creation, which theoretically produces multimode 
spin-nematic squeezed states27,31, analogous to continuous-variable 
cluster states28. Applying these states to image spatially extended fields 
with quantum-enhanced sensitivity will allow the quantification of 
entanglement depth40 and the characterization of the structure of 
multipartite entanglement28. In our current system, the large collective 
cooperativity Nη = 3 × 104 per subensemble, which parameterizes the 
coherence of atom–light interactions, theoretically permits metro-
logical gains scaling as Nη  (see Supplementary Information). Quan-
tifying metrological gain to demonstrate entanglement will require 

an accurate calibration of the quantum projection noise level, 
high-fidelity state detection and measurements in additional bases.

The antiferromagnetic and sign-changing interactions demonstrated 
here open up new opportunities for studies of frustrated magnetism. 
Introducing disorder will allow the realization of spin-glass models8,9 
that map to NP hard problems in pattern recognition25,46 and optimiza-
tion11. Our observation that pair creation generates low-temperature 
states of the classical XY model suggests applications to gain-based 
optimization, building on past experiments with networks of polari-
ton condensates11 or optical parametric oscillators10. Our scheme also 
generalizes to implementing synthetic gauge fields by introducing 
complex-valued couplings24,47,48, for explorations of topological phys-
ics. Extensions to an array with a single spin per site may allow strongly 
correlated states to be acessed. This regime could be explored with 
individually trapped atoms in a cavity or waveguide with state-of-the-art 
single-atom cooperativity η ~ 100, and in extensions of our method to 
Rydberg superatoms49, colour centres50 or trapped ions38.
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Methods

Experimental sequence
We begin by loading rubidium-87 atoms from a magneto-optical trap 
into an array of microtraps, in which we use optical pumping and adi-
abatic microwave sweeps to prepare the atoms in the |F = 1, m = 0⟩ state. 
We then transfer the atoms into a 1,560 nm optical lattice supported 
by the cavity, resulting in a set of M = 16 or 18 discrete ensembles. To 
generate programmable interactions between the ensembles, we apply 
a magnetic field gradient and drive the optical cavity along its axis with 
a modulated intensity. After the interaction time, we load the atoms 
back into the microtraps and use state-selective fluorescence imaging 
to measure the population in each Zeeman state. To measure the trans-
verse magnetization, we apply a series of local spin rotations before 
the imaging sequence. Extended Data Figure 2a shows a schematic of 
the experimental sequence.

Microtraps and lattice transfer
Our experiments use a hybrid trapping scheme: whereas we perform 
cooling, internal state preparation and imaging in a microtrap array, 
we transfer the atoms to an intracavity optical lattice before inducing 
cavity-mediated interactions. The 1,560 nm intracavity lattice is in reg-
istry with the standing wave of 780 nm light used to drive interactions 
and thus maximizes the atom–light coupling. However, because the 
1,560 nm light produces a strong and inhomogeneous a.c. Stark shift 
of the 5P3/2 state51, we instead use the 808 nm microtrap array during 
the parts of the experimental sequence requiring near-resonant light, 
namely cooling, optical pumping and fluorescence imaging.

We initially turn on a two-dimensional array of M × 2 optical micro-
traps at 808 nm during magneto-optical trap loading. The long axis 
of the array is aligned with the cavity axis, with 60 μm between traps. 
The two transverse traps are designed to double the total trap volume 
and, correspondingly, the number of atoms loaded into the cavity 
for a fixed microtrap waist. Each microtrap has a waist of 6 μm and a 
depth of h × 4 MHz, where h is Planck’s constant. During the loading 
phase the transverse microtrap spacing is 100 μm. After loading the 
microtraps, the transverse spacing is reduced to 8 μm, so that both 
transverse traps fit within the 25 μm waist of the intracavity lattice. We 
adiabatically transfer the atoms from the microtraps to the intracavity 
lattice, increasing the lattice power from an initial depth of h × 200 kHz 
to h × 3.5 MHz and then ramping off the microtraps. This preparation 
results in a one-dimensional array of M ensembles at a temperature 
of 100 μK, with each ensemble containing N ≈ 104 atoms spread over 
10 lattice sites.

For imaging, we transfer the atoms from the optical lattice back 
into the microtrap array by first switching on the M × 2 microtraps 
before reducing the lattice depth to h × 200 kHz. Subsequently, we 
adiabatically move the microtraps away from the optical lattice by 
approximately 15 μm to avoid a.c. Stark shifts during imaging. The 
efficiency of this transfer from the lattice to microtraps is 80–90%. 
Additionally, the 808 nm trapping light causes 20% of the atoms to 
undergo state-changing scattering events before the end of the imag-
ing sequence.

Imaging and spin readout
We detect the atoms in a sequence of four fluorescence images designed 
to independently measure the populations of all three Zeeman states 
within the F = 1 manifold and any residual atoms in F = 2. For each fluo-
rescence image we apply a retro-reflected laser beam resonant with the 
microsecond transition of the D2 line for 100 μs and collect the result-
ing fluorescence signal on an electron multiplying charge-coupled 
device (EMCCD) camera. With the first imaging pulse, we measure 
the population in the F = 2 manifold, expelling these atoms from the 
microtraps by heating. For state-selective imaging of the F = 1 mani-
fold, we sequentially apply three microwave sweeps that adiabatically 

transfer the atoms from each magnetic substate to F = 2 and perform 
fluorescence imaging after each sweep. A typical fluorescence signal of 
the atoms is shown in Extended Data Fig. 2b. For background subtrac-
tion we use a method from Xu et al.52 based on a principal component 
analysis of approximately 100 images without atoms. Technical noise 
in the measurement is approximately 1–2% of the total atom number.

To measure the transverse spin component Fi
x we sequentially per-

form local spin rotations at each site i before the imaging sequence. 
For this purpose, we focus a circularly polarized laser onto each site 
by controlling the position of the beam with an acousto-optic deflec-
tor. By modulating the intensity of the laser at the local Larmor fre-
quency, we induce a resonant Raman coupling between adjacent 
magnetic sublevels. We apply a 3 μs Raman pulse to produce a π/2 
spin rotation. This locally maps Fi

x onto the measurable population 
difference N N−i i+, −, , illustrated in Extended Data Fig. 2c. Here, Fi

x is 
defined in a rotating frame that depends on the local Larmor frequency 
at site i. Shot-to-shot fluctuations in the Larmor frequency lead to a 
reduction in the measurable correlations between two sites, for which 
the reduction depends on the time between the corresponding Raman 
pulses. Thus, to suppress any bias in the measured correlations, we 
randomize the order of the local spin rotations in each experimental 
realization.

Computation of correlations
When visualizing the distance dependence of interactions, reconstruct-
ing effective geometries or probing bipartite correlations, we compute 
correlation functions Cpm, Cxx and Cb from a minimum of 50 measure-
ments (see Extended Data Fig. 3 and the Supplementary Information 
for the effects of finite statistics). Each correlation function is defined 
in the main text in terms of specified observables A and B as

A B
A B

A B
Corr( , ) =

Cov( , )
Var( )Var( )

, (5)

where A B AB A BCov( , ) ≡ ⟨ ⟩ − ⟨ ⟩⟨ ⟩ and A A AVar( ) ≡ Cov( , ). These correla-
tions are normalized to the shot-to-shot variance, which provides the 
relevant spatial information while being agnostic to the total amount 
of pair creation. Effects of finite statistics on the measured correlations 
Cpm are examined in Extended Data Fig. 3.

To quantify pair creation dynamics, we measure in the x̂-basis and 
normalize the covariance matrices to the population of atoms on each 
site rather than their variance,

c
F F
N

F F
N

=
Cov( , )

≈
⟨ ⟩

. (6)ij
xx l

x
m
x

l
x

m
x

2 2

For this correlator, the measurement in the x̂-basis provides a 
high sensitivity at early times and a large dynamic range for meas-
urements over time. The normalization is chosen such that the 
extracted correlation is sensitive to the total amount of pair creation, 
allowing us to visualize the growth of correlations as a function of 
time.

Interaction parameters
To enable the programmable interactions, we apply a magnetic field 
gradient parameterized by the difference ωB in Zeeman splittings 
between adjacent array sites. This gradient is superposed on an overall 
bias field B0 perpendicular to the cavity axis, which produces a Zeeman 
splitting of ω B/ = 2π × 700 kHz Gz 0

−1 and a quadratic Zeeman shift of 
q B/ = 2π × 72 Hz G0

2 −2. We work in a regime in which ω M ω q/ > >z B , that 
is, the variation in the magnetic field is small compared with the aver-
age field yet results in a Bloch oscillation frequency larger than the 
quadratic Zeeman shift. Specifically, we choose a magnetic field 
between 2 G and 4 G (as detailed in Extended Data Table 1 for each data-
set) and a typical gradient ω = 2π × 1.52(1) kHzB  per site, where paren-



theses denote one s.d. uncertainty on the last digit. For measurements 
of Cpm in Figs. 1 and 2, we increase the ratio ωB/q. This is accomplished 
either by increasing ωB to 2π × 12.47(2) kHz per site, or by reducing the 
effective quadratic Zeeman shift to q = 2π × 70 Hz by applying an a.c. 
Stark shift to the 1, 0⟩ state. To induce an a.c. Stark shift, we 
off-resonantly couple the states 1, 0⟩ and 2, 0⟩ via blue-detuned micro-
wave radiation. The resulting energy shift is given by q Ω δ= /4mw mw

2
mw, 

where Ω = 2π × 10 kHzmw  is the resonant Rabi frequency and 
δ = 2π × 115 kHzmw  is the detuning.

We induce spin-exchange interactions among the atoms by applying 
a drive field detuned from cavity resonance. After accounting for a 
resonance shift due to the presence of atoms, we choose a typical 
drive-cavity detuning between δ = − 2π × 4 MHzc  and δ = − 2π × 7 MHzc . 
The cavity mode itself has a large detuning of Δ = − 2π × 11 GHz from 
atomic resonance. The drive field is linearly polarized at an angle of 
55o with respect to the magnetic field, which is chosen to eliminate 
tensor light shifts. The instantaneous spin-exchange coupling is given 
by J t n t Ω δ− ( ) ≈ ( ) /(2 )ph

2
c

∼ , where Ω = 2π × 13 Hz is the vector a.c. Stark 
shift per circularly polarized photon in the cavity and nph(t) is the mean 
intracavity photon number due the control field driving the cavity. The 
average intracavity photon number over a full period of the drive wave-
form is typically n ≈ 2 × 10ph

3. This results in an average collective inter-
action strength of NJ2 = 2π × 0.6 kHz∼  between ensembles of N = 104 
atoms.

To produce a set of couplings J(r), we modulate the intensity of the 
drive field via an acousto-optic modulator as

∼ ∑J t rω t ϕ J r( ) = 2 [cos( + ) + 1]| ( )| (7)
r

B r
>0

where we use the phases ϕ ∈ {0, π}r  to set the sign of the interactions. 
The coupling at r = 0 is given by J J r(0) = 2 ∑ | ( )|r >0 . To produce periodic 
boundary conditions in the system of M sites, we additionally pulse 
the drive at a frequency of MωB . Each pulse has a duration of 

τ M0.3 / = 11 μsB . To keep the average interaction strength constant, we 
increase the drive strength during these pulses so that the number of 
drive photons in the cavity reaches a peak of up to n ≈ 10ph

4.
We choose the total duration of the interactions to be at least one 

Bloch period such that dynamics are localized to single ensembles. In 
general, the Fourier limit for the resolution of the interactions (meas-
ured in sites) is given by the ratio 1/T of the Bloch period to the total 
interaction time. After a single Bloch period, interactions are thus local-
ized to less than the spacing between sites, as shown in the inset to 
Fig. 2a for an interaction duration of T = 2.5 Bloch periods. A beneficial 
effect of Fourier broadening is to delocalize the interactions to more 
than the spatial extent of each ensemble. As the extent of each ensem-
ble is approximately one-eighth of the distance between ensembles, 
we limit the duration of the drive pulse to T < 8 Bloch periods for all 
experiments.

Localization of interactions to specified distances also requires pre-
cise calibration of the magnetic field gradient such that the uncertainty 
in the target drive frequency rωB is less than the Fourier broadening of 
the drive field spectrum. In some measurements, the gradient can drift 
by up to 1.5%. This most strongly affects the resonance condition at 
longer distances, for example r > 15 in Fig. 2a. We model this effect in 
Supplementary Fig. 1.

Cavity parameters
The atoms are coupled to a near-concentric Fabry–Perot cavity with a 
length of 5 cm and an 18 μm waist at 780 nm. The cavity has vacuum 
Rabi frequency of g2 = 2π × 2.6 MHz and linewidth κ = 2π × 250(20) kHz
, yielding a single-atom cooperativity η = = 4.5

g
κ

4
Γ

2
, where 

Γ = 2π × 6.07 MHz  is the linewidth of the P5 3/2 state in rubidium. Our 
drive field is detuned by Δ = − 2π × 11 GHz from the S F P|5 , = 1⟩ → |5 ⟩1/2 3/2  
transition, which produces a vector light shift per circularly polarized 

photon of Ω = − = 2π × 26 Hz
g

Δ0 6

2
 on a maximally coupled atom at cav-

ity centre. For an average atom this dispersive coupling is reduced to 
Ω = 2π × 13 Hz , primarily by thermal motion. This reduction is 
accounted for in our measurements of the collective cooperativity 
Nη = 3 × 104. The Rayleigh range of the cavity is z = 1.3 mm,R  and each 
ensemble is within z0.4 = 520 μmR  of the cavity centre. Displacement 
from the cavity centre contributes up to a 20% reduction in coupling 
for the most distant atoms.

The cavity cooperativity together with the detuning δc determines 
the relative strength of coherent interactions and two dissipation path-
ways: spontaneous emission into free space and collective emission 
into the cavity. Collective emission can be suppressed at fixed interac-
tion strength by increasing the detuning δc from cavity resonance. This 
suppression is possible because the collective decay rate scales as 

δΓΓ ∝± c
−2 , whereas the interaction strength for each mode scales as 

χ δ∝k c
−1. However, decreasing collective decay comes at the cost of 

increasing the rate of free-space scattering Γsc, which is independent 
of δc. Both interaction and decay via the cavity are enhanced with 
respect to free-space scattering by the collective cooperativity ≫Nη 1, 
which determines an optimal detuning for minimizing the combined 
rate of single-particle and collective decay. In our system, this optimal 
detuning is given by δ κ| / | = Nη

opt 192
 (as derived in the Supplementary 

Information).
At the optimal detuning, the overall interaction-to-decay ratio 

depends on the collective cooperativity as χ NηΓΓ ΓΓ ΓΓ| |/( + + ) ∝k + − sc . As 
a result, large collective cooperativity Nη 1≫  enables entangled states 
to be generated53. In the Supplementary Information, we analyse the 
role of the cooperativity in producing spin-nematic squeezed states, 
showing that the attainable metrological gain due to entanglement 
scales as Nη .

Our experiments operate at approximately twice the theoretical 
optimum detuning to reduce sensitivity to atom number fluctuations. 
These fluctuations change the frequency shift 4N MΩ of the cavity 
resonance and thus the detuning δc and interaction strength χk. Within 
a single set of measurements, the total atom number varies by up to 
3%, resulting in shot-to-shot fluctuations in the collective interaction 
strength of 20%. This is a small contribution to the variability of the 
pair creation process, which naturally produces fluctuations with 
standard deviations on the same order as the expected population in 
the states m = ± 1 (ref. 17).

Working at a detuning that is larger than the optimum means that 
dissipation is primarily due to scattering to free space. For typical 
parameters, the scattering rate is 0.2 scattering events per atom per 
Bloch period, corresponding to a coherence time of 5 Bloch periods. 
The effect of this scattering is primarily evident in measurements of 
covariance and the structure factor. For example, at the latest times in 
Fig. 2b, c approximately 50% of the atoms have scattered at least once. 
This causes much of the reduction in the magnitude of the structure 
factor as compared to the idealized simulations using the truncated 
Wigner approximation seen in Extended Data Fig. 4. For the correla-
tions that are shown in other figures, the normalization scheme cho-
sen minimizes the impact of atom number and interaction strength 
fluctuations on the extracted spatial structure.

Interaction Hamiltonian
In equation (1), we describe the distance-dependent spin-exchange 
interactions by a static effective Hamiltonian HI, with the spin on each 
site defined in a rotating frame set by the local magnetic field. Here we 
summarize the derivation of the effective Hamiltonian starting from 
the full time-dependent Hamiltonian Hlab in the laboratory frame. The 
Hamiltonian Hlab for the spin system, obtained by adiabatically elimi-
nating the cavity mode17,18, is given by

∑ ∑H J t F F h F H= − ( ) + + , (8)
l m

l m
l

l l
z

lab
,

+ −
q

∼
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in terms of the collective spin = ∑l μ l μ∈F f  on each site l, the local mag-

netic fields h ω l=l B  and the quadratic Zeeman shift H q f= ∑ ( )μ μ
z

q
2, in 

units where ħ = 1. Moving to a rotating frame with H h F= ∑l l l
z

0 , the Ham-
iltonian becomes

∼ ∑H t J t F F H( ) = − ( ) e + (9)
l m

l m ω t
l m

,

i( − ) + −
q

B

To obtain a form of the effective Hamiltonian that provides intuition 
about the spatial structure of the interactions, we consider the limit in 
which the collective interaction strength and quadratic Zeeman shift are 
weak compared with the gradient NJ q ω( , )B≪ . In this limit, the effective 
Hamiltonian is given to first order by the time average of equation (9). The 
interaction component of the resulting effective Hamiltonian HI + Hq is

∑H J l m F F= − ( − ) , (10)
l m

l mI
,

+ −

where

∼∫J r
T

t J t( ) =
1

d e ( ). (11)
T

rω t

0

i B

The dependence J r( ) of the couplings on distance is thus given by 
the Fourier transform of the drive waveform.

Even though the limits under which this effective Hamiltonian is 
derived, NJ q ω, B≪ , are not strictly valid for the pulsed drive waveforms 
used to produce periodic boundary conditions, the intuition provided 
by this model is corroborated by the more generically valid model of 
the Floquet dynamics presented in the following section.

Momentum-space dynamics
To analytically compute the dynamics of the system, we write the Ham-
iltonian without approximation in terms of spin-wave operators 

F F≡ ∑ ek ω t M l
kl

l=
+ 1 −i +

B

∼ , as

H t MJ t F F H( ) = − ( ) + . (12)ω t ω t−
+ −

qB B

∼ ∼ ∼

We can understand this Hamiltonian by recognizing that, in the 
laboratory frame, the magnetic field gradient causes spin waves to 
undergo Bloch oscillations at frequency ωB. Only spin waves with 
momentum k = 0 in the laboratory frame couple to the cavity. In the 
rotating frame set by the gradient, the same physics can be viewed as 
spin waves remaining static over time, and the mode to which the cav-
ity couples is given by k ωt= . The quadratic Zeeman shift is left 
unchanged by the change of reference frames.

Because the system is finite and discrete, there are only M orthogo-
nal momentum modes. To obtain a discrete set of momentum-space 
couplings ∼J χ N= − /2k k , we drive interactions with a pulsed drive 
∼ ∼J t J δ ω t k( ) = ∑ ( − )k M k B

2π  that only takes on non-zero values M times per 
Bloch period. We observe that the momentum modes decouple in the 
Hamiltonian,

∑H t J δ tω k F F H( ) = − 2π ( − ) + . (13)
k

k B k k−
+ −

q
∼ ∼ ∼

The evolution of any given momentum mode is discrete, with a short 
period of coupling to the optical cavity that induces spin–spin interac-
tions, followed by a longer period of time when the state evolves only 
under the quadratic Zeeman shift. In the limit of a large collective inter-
action strength χ ω| | >k B, each momentum mode grows by a factor of 
λ χ τ qτ≈ |2 |sin( )k B B after each Bloch period (Supplementary Information). 
This growth is reflected by the structure factor, with 

∼∼
F χ J k ω| | ∝ | | ∝ | ( / )|k

x

k
T

B
T  after T Bloch periods.

Even though our derivation of the growth of the structure factor 
assumes a pulsed drive field, which produces periodic boundary condi-
tions, the same relation provides a good approximation in the case of 
a continuous drive field that produces open boundary conditions. In 
the latter case, we expect small deviations from the model because the 
cavity couples to a continuum of non-orthogonal momentum modes. 
We compare the continuous and pulsed cases in a numerical simulation 
presented in Extended Data Fig. 4.

A key feature of the evolution in momentum space is that the modes 
with minimum energy are maximally amplified in our system with 
χk < 0. We can gain additional insight into this effect by considering 
the limit in which the dynamics are slow compared with the Bloch 
period and a time-averaged Hamiltonian is valid. In this case, the 
dynamics for each momentum mode are identical to the single-mode 
case that has been studied previously17,54. The system is unstable to 
pair creation when the collective interaction strength ∼χ NJ2 = − 4k k has 
a greater magnitude and opposite sign from the quadratic Zeeman 
shift q. This condition motivates our choice of ferromagnetic on-site 
interactions, such that χk < 0, in our system with q > 0. The opposite 
signs of χ and q allow the system to access low-energy states of the 
interaction Hamiltonian HI by transferring energy into Hq via pair 
creation.

Numerical modelling
We numerically simulate the dynamics in our system using the semi-
classical truncated Wigner approximation (TWA)55–57. To model quan-
tum effects, which are essential for the pair-creation dynamics, the 
TWA simulation treats each ensemble of three-level atoms as three 
bosonic modes and samples the vacuum fluctuations of the initially 
unoccupied modes m = ± 1. This corresponds to sampling the Wigner 
function of the initial state in phase space. Each sample is then propa-
gated according to the classical equations of motion based on the 
Hamiltonian in equation (9). This enables us to incorporate experi-
mental imperfections such as finite statistics (Extended Data Fig. 3) or 
finite system size (Extended Data Fig. 4) into the simulation, and to 
understand their effects on the measured data.

In the Supplementary Information we elaborate on the implemen-
tation of the TWA simulation and present additional simulations for 
comparison with our experimental data. In particular, we show effects 
of finite statistics for the reconstruction of the triangular ladder in 
Fig. 3c, and we examine the role of magnetic field fluctuations in the 
measurement of bipartite correlations in Fig. 4e.

Euclidean reconstruction
 To reconstruct effective coordinates ρ and inferred couplings J′ directly 
from measured correlations Cxx, we require an ansatz for the depend-
ence of correlations on distance in the effective geometry. Here we 
apply our analytical model for the growth of the structure factor to 
derive the Gaussian ansatz for the decay of correlations. The dynami-
cal evolution produces low energy states of the XY Hamiltonian, which 
additionally allows us to relate the inverse correlation matrix and the 
inferred couplings.

To analytically motivate the Gaussian ansatz used for reconstructing 
effective geometries, we begin by relating the structure factor to the 
correlations we measure in the x̂ basis,

∑ ∑C F F
M

F F
M

F~ ⟨ ⟩ =
1

e ⟨ ⟩ =
1

e | | . (14)lm
xx

l
x

m
x

k k

k l k m
k
x

k
x

k

k l m
k
x

,

i( − )
−

i ( − ) 2

1 2

1 2
1 2

∼ ∼ ∼

The final equality holds when the momentum modes are independ-
ent from one another, such that cross terms with k k≠1 2 go to zero. This 
is true either when periodic boundary conditions are imposed or in 
the limit of an infinite system. Equation (14) enables the prediction of 
the form of spatial correlations from the dispersion relation χk, which 
governs the growth of the structure factor.



As an illustrative example, we consider nearest-neighbour interac-
tions created by the drive waveform J t ω t( ) ∝ (cos + 1)B

∼ , corresponding 
to the dispersion relation

χ ∝ (e + e ) . (15)k
k ki /2 −i /2 2

As the correlations are the Fourier transform of the squared magni-
tude of the structure factor, we write an expansion of ∼F| |k

x 2 in terms of 
powers of eik. Recalling ∼

F χ| | ∝ | |k
x

k
T  after T Bloch periods of evolution, 

we compute

∼ ∑F T| | ∝ (e + e ) = 4 e . (16)k
x k k T

d T

T

d T
kd2 i /2 −i /2 4

=−2

2

+2
−i

The coefficients in this expansion are Fourier components corre-
sponding to correlations at distance d. Thus, we have C d( ) ∝ ( ).xx T

d T
4
+ 2

This binomial coefficient tends to a Gaussian function of distance d 
after several Bloch periods, analogously to a diffusion process.

More generally a multifrequency drive leads to diffusion within the 
effective geometry set by the couplings. For a generic drive that pro-
duces a dispersion relation χ J r∝ − ∑ ( )ek r

kri , correlations in position 
space are given by terms in the multinomial expansion of χ| |k

T2 . When 
J(r) > 0 this directly corresponds to a random walk within the effective 
geometry set by the couplings J(r). Motivated by the exact result for 
spreading in one dimension, we use a Gaussian ansatz for the correla-
tion matrix to infer distances and hence the coordinates ρ within the 
effective geometry.

We motivate the inferred coupling matrix J C′ = ( )xx −1 by recalling 
that a population growth rate given by |χk| generates a low energy state 
of the XY model, HI. We approximate the final state as thermal, with 
large inverse temperature β. We make use of the SO(2) symmetry to 
note that F F⟨ ⟩i

x
j
x

 and F F⟨ ⟩i
y

j
y

 are equivalent. Now, to compute F F⟨ ⟩i
x

j
x

, 
we integrate over phase space, with a Boltzmann weighting βHexp( − ).I
To constrain the overall spin length, we introduce a chemical potential 
μ, so that

∫∏C
xx
ij

F F F β H μ F∝ d exp(− [ − ( ) ]). (17)
l

l
x

i
x

j
x

l
x

I
2





The chemical potential can be incorporated into a modified coupling 
matrix J J μδ′ = −ij ij ij . Evaluating the integral yields C J∝ ′xx

ij
−1 . For the 

purposes of the reconstruction in Fig. 3, where we colour bonds 
between sites according to J ′ij

, only the off-diagonal terms of J ′ij
 are 

relevant.
The inverse correlation matrix, also known as the concentration or 

precision matrix, can also be interpreted as the partial correlation 
matrix58, up to normalization. For a given set of variables xi, the partial 
correlation between xi and xj is the correlation after regressing out 
every xl i j≠ , . In a system with interactions at distance r, sites spaced by 

r have a non-zero partial correlation, but sites at distances that are 
multiples of r have zero partial correlation, because the interactions 
between the sites at distance r mediate all the variance. Thus, the inter-
pretation of the inverse correlation matrix as an inferred coupling 
matrix J C′ ∝ ( )xx −1 is well motivated even at early times, when correla-
tions are still spreading across the system.
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Extended Data Fig. 1 | Coupling graphs. Sketch of couplings J i j( − ) for the 
model in equation (4) with local interactions (s = − 1, left) or treelike 
interactions (s = 1, right). The strengths of the interactions are indicated by the 

thickness and transparency of the red lines. For s = 1, reordering the sites 
according to the Monna map makes the couplings more local, corroborating 
the treelike geometry.



Extended Data Fig. 2 | Experimental sequence and imaging. a Schematic of 
experimental sequence for measurements of F i

x. After driving the cavity to 
induce interactions, we apply spin rotations sequentially to the M sites of the 
array and subsequently perform state-sensitive readout via fluorescence 

imaging. b Fluorescence images after spin rotation, showing the signal for the  
F = 2 manifold and the three magnetic substates for the case of interactions at 
distance r = 3 with periodic boundary conditions. c Transverse magnetization 
F i

x and structure factor F k

x∼  extracted from the image in b.
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Extended Data Fig. 3 | Effect of finite statistics. Left, correlation plot 
reproduced from Fig. 1, showing C pm obtained from 50 realizations of the 
experiment with interactions at distance r = 10. Right, simulation results 
obtained from a truncated Wigner approximation, where we either choose  

the same number of realisations as in the experiment or increase the number of 
realisations by a factor of 10 to reduce statistical uncertainty. The simulations 
indicate that residual correlations in the experimental data are mainly due to 
the finite sample size.



Extended Data Fig. 4 | Comparison between measured structure factor and 
simulation results. The left graph shows the measured structure factor after  
T = 3 Bloch periods of evolution, which is also shown in Fig. 2c. The two plots at 
right show results of a truncated Wigner simulation with and without periodic 
boundary conditions. For the simulated data we used 100 realizations of the 
TWA simulation, which is four times higher than the number of experimental 
realizations to reduce statistical fluctuations. For open boundary conditions, 

we find that the simulation has an offset with respect to the theoretical 
prediction (blue line). We attribute this offset to the finite system size, as the 
model is exact only for an infinite system or a system with periodic boundary 
conditions. Repeating the same simulation with a pulsed drive shown on the 
right shows that in this case the TWA simulation is consistent with the analytical 
model. The error bars indicate the standard error of the mean.
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Extended Data Table 1 | Experimental parameters

Magnetic offset field B0, Bloch oscillation frequency =ω π τ2 /B B, effective quadratic Zeeman shift q, and interaction time TτB for each of the data sets presented in Figs. 1–4. The effective 
quadratic Zeeman shift is given by q B q72Hz/G2

mw0
2= × + , where qmw is the ac Stark shift of the state 1, 0  induced via off-resonant microwave coupling to 2, 0  (see Methods).
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