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Interactions govern the flow of information and the formation of correlations between
constituents of many-body quantum systems, dictating phases of matter found in
nature and forms of entanglement generated in the laboratory. Typical interactions

decay with distance and thus produce a network of connectivity governed by
geometry—such as the crystalline structure of amaterial or the trapping sites of atoms
in a quantum simulator'? However, many envisioned applications in quantum
simulation and computation require more complex coupling graphsincluding
non-localinteractions, which feature in models of information scrambling in black
holes*®and mappings of hard optimization problems onto frustrated classical

magnets™™

.Here we describe the realization of programmable non-local interactions

inan array of atomic ensembles within an optical cavity, in which photons carry
information between atomic spins*™*°. By programming the distance dependence of
theinteractions, we access effective geometries for which the dimensionality,
topology and metric are entirely distinct from the physical geometry of the array.

As examples, we engineer an antiferromagnetic triangular ladder, aMobius strip with
sign-changinginteractions and a treelike geometry inspired by concepts of quantum

gravity>*° 2 The tree graph constitutes a toy model of holographic duality

222 inwhich

the quantum system lies on the boundary of a higher-dimensional geometry that
emerges from measured correlations?. Our work provides broader prospects for
simulating frustrated magnets and topological phases?, investigating quantum
optimization paradigms'®*%2¢ and engineering entangled resource states for sensing

and computation

27,28

Controllable quantum systems of cold atoms constitute powerful
platforms for applications ranging from quantum simulation? to
entanglement-enhanced measurement'>**'>?, Positioning atoms
in optical tweezers and inducing local interactions by excitation
to Rydberg states enables simulations of lattice spin models® and
bottom-up control of entanglement®. In acomplementary top-down
paradigm, collective entangled states have beengeneratedinensembles
ofupto5 x10°atoms with all-to-all interactions mediated by photonsin
optical cavities' ™ or by collisions in Bose-Einstein condensates®>*,
For photon-mediated interactions, or analogous phonon-mediated
interactions among trapped ions***¢, using multiple bosonic modes
further enables tuning of the interaction range®.

Yet many objectives demand more versatile control of the graph
of interactions>*#°2*38 including couplings that are neither local nor
global. Engineering a wider range of non-local graphs opens up pros-
pects foraccessing spin-glass phases®® and new topologically ordered
states®, exploring analogue approaches to combinatorial optimiza-
tion'"%2¢ and probing toy models of quantum gravity>**. These goals
have motivated proposals for programming the distance dependence
of spin-exchangeinteractionsinarrays of atoms orions by tailoring the

frequency spectrum of a drive field>***8, which couples the spins to a
single mode of light or motion.

Werealize programmable spin-exchange interactions inanarray of
atomic ensembles within an optical cavity. Our scheme (Fig.1) produces
aclass of spin models described by an effective Hamiltonian

Hegr=~ Z -/(ryv)f;f; + Hq' (0))
wy

Heref," and f,” denote the raising and lowering operators for the
Zeemanspin ofatoms g andyv, respectively; the distance between atoms
isr,,and H,represents the quadratic Zeeman energy. The spin-exchange
coupling/arises from a process in which one atom flips its spin down
while scattering a photon fromadrive field into the cavity and asecond
atomrescatters this photonto flip its spin up. We focus on a system
of spin-latomsinitialized in the m = 0 Zeeman state, in which the effect
of this ‘flip-flop’interactionis to produce correlated atom pairsin states
m==+1(refs. 17,27,31,33,34,40).

Whereas the single-mode cavity ordinarily mediates interactions
among all sites, we break this all-to-all connectivity by introducing a
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Fig.1|Engineering distance-dependentinteractions.a, Anarray of atomic
ensemblesinitialized inthe m = 0 Zeemanstateis trapped inside an optical cavity.
Weapplyamagneticfield gradient AB, whichleads to adifference AE=hrw,inthe
Zeeman splittings of atoms separated by a distance r. By modulating the

magnetic field gradient along the cavity axis. The gradientintroduces
an energy difference hw; between the Zeeman splittings on adjacent
sites, such that spin-exchange processes are off-resonant for spatially
separated spins. To controllably reintroduce interactions between
ensembles spaced by a distance of r sites, we modulate the intensity
ofthedrivefield at frequency rwg, thus modulating theinstantaneous
spin-exchange coupling J(¢)asa function of time . More generally, to
obtain a specified set of couplings J(r) j (-r)inequation (1), we set a
drive waveform

Jo= 2;_ e "B(r) Q)

according to the Fourier transform of the couplings. The drive wave-
formthus determinesthe dispersionrelation X == 2NJ (k/wg) for spin
waves with momentum k, in dimensionless units of inverse sites, in a
system of N atoms per site.

Webenchmark theinteractionsinaone-dimensional array of M =18
ensembles of N=10* rubidium-87 atoms, initializing all atoms in state
m = 0. Thisinitial state with no average magnetization would classically
have trivial dynamics. However, quantum fluctuations are amplified
by the cavity-mediated interactions, producing correlated growth and
macroscopic fluctuations in the populations of states m = +1 (ref. 7).
The spatial correlations of these amplified fluctuations reveal the con-
nectivity of interactions.

To implement distance-dependent interactions, we optically drive
the cavity for100t0 200 ps, thereby transferring 30-50% of the atoms
intothe states m = 1. Subsequently, we perform state-sensitive imag-
ing to obtain the correlations

om_ Cov(N, ;, N J)
i [Var(N, )Var(N_ )

for each pair of sites (i, /), in the populations N, , N_; of states m = £1.
Here, Cov and Var denote the covariance and the varlance, respec-
tively. Figure 1b shows the measured correlations for three different
scenarios. For amonochromatic drive field, ina uniform magnetic field,
we observe correlations of equal strength between all sites, indicating
the expected all-to-all interactions. By contrast, adding a magnetic
field gradientresultsin correlations beinglocalized to individual sites.
Finally, modulating the intensity of the drive light at frequency rw,
produces correlations between all pairs of sites separated by a distance
li—jl=r,as shown forr=10.

The dependence of spatial correlations on modulation fre-
quency is shown in Fig. 2a. There, we plot the average correlation

=Corr(N, ;,N_)), (3)
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intensity of thedrive field at afrequency rw,;, we generate correlated atom pairs
instates m = t1atdistancer.b, Measured correlations C°" for three different
combinations of magnetic field gradient, shown by the dependence of AEon
distance (red circles) and drive field spectrum (blue lines).

CP™(d) =Y, CPh/(M~|d|) of sites separated by distance d. Plotting
C"™(d) as afunction of modulation frequency rw;, for integer valuesr,
reveals correlations atdistances d = +rand d = 0. While the correlations
atd = 0indicate on-site pair creation that is resonant even for a single
drive frequency, the correlations at d = +r confirm the presence of

interactions at the distance set by the modulation frequency.
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Fig.2|Pair creation at programmable distance. a, Correlations C°" versus
modulation frequency w and distance. Setting w = rw  generates correlations
C*™atadistancer. Inset, correlations C°™ appearing only when satisfying a
resonance condition w =rwgforinteger r.b, Measurements of ¢ for sinusoidal
modulation at frequency 3w, reveal spreading of correlations tointeger
multiples of the distances = 3 after time T Bloch periods. ¢, Magnitude of the
structure factorlF ¢/ = <FkF-k>1/2 after1,2and 3 Bloch periods, illustrating the
relationship between the drive waveform J(¢)and the momentum-space
dynamics. Error bars show s.e.m. and curves show model |f:| o< [J (k/w)I", with
amplitude asthe only free parameter. d, Pulsing the drive waveform at
frequency Mw,generates periodic boundary conditions, evidenced by
correlations atdistancesrand M -r.
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Fig.3|Geometry extracted from correlations. a-e, Ring (a), disconnected
chains (b), triangular antiferromagnetic ladder (c), cylinder with anisotropic
signofinteractions (d) and Mobius ladder with oppositely signed interactions
alongthe edge and width (e). Top row, connectivity graphs, withred (blue)
bondsindicating ferromagnetic (antiferromagnetic) couplings betweensites
labelled by positioninarray. Second row, structure factor (purple circles)

Theinteractions are spectrally well resolved as a function of drive fre-
quency (Fig.2a, inset), highlighting the precise control of the coupling
distance.

To sensitively probe the growth and spreading of correlations, we
examine the transverse magnetization, which provides an enhanced
signal at early times. Specifically, we evaluate the normalized covari-
ance c™ =Cov(F", F£4)/N?, whereF,= 2 4ei f, denotes the collective
magnetization on site / in a rotating frame set by the local magnetic
field. Figure 2b shows c™as afunction of time and distance d, averaged
over all sites i, for a system programmed to interact at distance r = 3.
Correlationsfirstappear between nearest neighbours on the coupling
graph and spread over time to further neighbours at multiples
of the distance r. We additionally compute the structure factor
Fri=3,e"F}/JM , plotting its root mean square value in Fig. 2c.
We observe narrowing in momentum space as a function of time, com-
plementary to the observed spreading of correlationsin position space.

The growth of the structure factor is consistent with an analytical
model in which spin waves of momentum k are amplified by a factor
proportional to |y,| per Bloch period of evolution. Equivalently, the
growthin |I-'z| for each momentum mode kis proportional to the drive
intensity J (¢) at time ¢ = k/w,. The amplification is notably strongest
atminima of the dispersionrelation, < 0. Pair creation thus drives the
system towards states of minimal interaction energy, while increasing
the quadratic Zeeman energy H, to compensate.

Engineering the dispersion relation via the drive waveform enables
the realization of periodic boundary conditions, despite the physical
geometry of ourarray asanopenchain. For achain of Msites with periodic
boundary conditions, thedomainofthedispersionrelationisadiscrete set
of pointsinmomentum space, spaced by Ak =21i/M. Correspondingly, we
break the drive waveformintoatrain of short pulses with spacing 7;/Min
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measured after T=2Bloch periodsis proportional to squared dispersion
relationy,? (blue shaded region). Third row, correlations C**. Bottom row,
reconstructed geometriesin D =3 dimensions, with Cartesian coordinates p.
Colour and opacity of bonds indicate sign and magnitude of the inferred
coupling /’, respectively.

time, where 7 = 21t/wj is the Bloch oscillation period for spin excitations.
For an initial sinusoidal modulation designed to introduce interactions
atdistancer, the pulsed variant has a frequency spectrum that includes
peaks at both rwgz and (M - r)w,. The resulting correlations C°™, shown
in Fig. 2d, are strongest at distances d = +r and d = +(M - r), indicating
that the system now behaves as though the sites were situated on aring.

We verify the periodic boundary conditions by directly reconstruct-
ing the effective geometry of the system from measured spin correla-
tionsC,?jfx =Corr(F}, Fj). Adopting anansatz that correlations decay as
a Gaussian function |C;*| < exp(-Ip; - pjlz) of distance |p;,—p;lina
D-dimensional space, we seek amappingof the array sites to effective
coordinates p;thatbestfit the distancesdy = |- log|C;"|inferred from
the correlations (Methods). We obtain the coordinates p, from the
distance matrix d; by metric multidimensional scaling. The result is
showninFig.3aforasystemwith nearest-neighbourinteractions and
periodic boundary conditions. We additionally calculate an inferred
coupling matrix /)’ = (C*)". Colouring the edges between all pairs of
sitesaccording to/' corroborates the ring-like coupling graph.

Tailoring the drive waveform enables versatile control over the geom-
etry and topology of the coupling graph, as we illustrate by the same
black-box reconstruction technique. We first observe that introducing
interactionsatadistancer>1, withopenboundary conditions, produces
asetof rdisjoint chains, as depicted inFig. 3b for r=3. Linking such chains
withasecond modulation frequency generates atwo-dimensional graph,
as shown by the triangular ladder in Fig. 3¢, formed by interactions at
distances r,=1and r,=2.Furthermore, adding periodic boundary con-
ditions enables the realization of non-trivial topologies. For example,
Fig. 3d shows asquare-lattice cylinder, whereas Fig. 3e shows aMdbius
ladder. The characteristic twist of the Mobius strip is evidentin the cross-
ing of two bondsin the reconstructed geometry.
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Fig.4|Treelike geometry. a, Waveforms J(t) generating Archimedean (top)
and treelike (bottom) interactions. The two geometries arerelated viathe
Monnamap M (greenarrows). b, ¢, Archimedean (b) and treelike (c) orderings
of C*. Correlations decay smoothly only as a function of Archimedean distance
|i-jlfors=-1,and onlyasafunction of treelike distance i —j|,fors=1.

d, Black-box bulk reconstructions from C**reveal no bulk for s=-1and abinary

For a given coupling graph, the sign of the interaction /(r) at each
distance ris set by the phase of the modulation at frequency rw;. We
always choose the on-site interaction to be ferromagnetic, favouring
a large spin polarization on each site, and choose a phase
arg[/(r)] € {0, m}to set either ferromagnetic or antiferromagnetic cou-
plings at each non-zero distance r. Figure 3 includes examples with
ferromagnetic (Fig. 3a, b), anti-ferromagnetic (Fig. 3c) and
sign-changing (Fig. 3d, e) couplings.

The antiferromagnetic triangular ladder in Fig. 3c constitutes a
fully frustrated XY model*. In the classical ground state, adjacent
spins have a relative angle of approximately 120° (white arrows in
Fig.3c (top row)). The measured spin correlations in Fig. 3c are con-
sistent with the predicted ordering, with two degenerate minimain
the spin-wave dispersion y, producing peaks in the structure factor
at k=+0.581 (Fig. 3¢ (second row)), corresponding to the two pos-
sible directions of phase winding. The correct reconstruction of the
ladder edges /' = /in Fig. 3c (bottom row) further highlights that the
pair creation dynamics generate an approximate low-temperature
state of the XY model (Methods).

Our approach also enables the specification of interactions that
changesignasafunction of distance, as we illustrate for the cylinder and
the Mobius ladderinFig.3d, e.Ineach case, by choosing opposite signs
ofinteraction for two distances r,and r,betweensites inthe atomarray,
we obtain an anisotropic sign of the interaction onthe two-dimensional
manifold representing the effective geometry (Fig. 3d, e (bottom row)).
Forexample, inthe Mobius strip, the ferromagneticinteractions at dis-
tancer, =1giverise toferromagnetic correlations (red bonds) allalong
thesingular edge of the strip, whereas the antiferromagnetic couplings
at distance r, =9 are manifest in the antiferromagnetic correlations
(blue bonds) across the width of the strip (Fig. 3e (bottom row)). The
measured correlations are indicative of the transverse magnetization
winding by 2 along the closed loop formed by the edge of the strip.

-1 2 0 2 -1 0 1
P s

treestructure fors=1.e, Coarse-grained bipartite correlation C, versus
exponent s for partitions according to Archimedean (blue circles) and treelike
(greensquares) ordering of sites. The minimal correlation over all possible
bipartitions (purple triangles) is peaked ats = 0, signifying a breakdown of
locality. Error bars denote s.d. estimated by jackknife resampling.

Engineering non-local couplings enables radically different geom-
etries to be explored, beyond those that can be visualized by an embed-
ding of sites in a Euclidean space. Inspired by models of quantum
gravity???, we proceed to simulate a non-Archimedean geometry>*?,
for which the points on the real line are best viewed as leaves on an
infiniteregular tree graph. Such tree graphs feature inaversion of the
anti-de Sitter/conformal field theory correspondence (p-adic AdS/
CFT)?%, in models of information scrambling in black holes?® and
in tensor-network representations of strongly correlated states***,
To access atreelike geometry, we engineer couplings

li—=jI* li-j1=2", nez
0 otherwise,

JG=)) “{ 4)

depictedin Extended DataFig.1, where the parameter senables tuning
between Archimedean and non-Archimedean regimes®. For s < O the
system is approximately a one-dimensional chain (Fig. 4a (top)),
whereas setting s > 0 theoretically produces the treelike geometry
shownin Fig. 4a (bottom) (refs.>*?). Each leaf represents an array site,
the position of which in the tree is determined by branching left or
rightatlevel aifthe ath bit of the siteindexiis O or 1. Starting from the
base ofthetree, the first branching is governed by the least significant
bit. Thus, the order of sites in the tree is rearranged from the physical
order by the Monna map M(i), which reverses the order of bits in the
siteindex .

We confirmthe transition from an Archimedean to atreelike geom-
etry by measuring correlations C*for s = +1. We implement both mod-
els for M =16 sites with periodic boundary conditions, using the drive
waveforms in Fig. 4a (top), (bottom). For each value of s, we show C*
asafunctionof physical positions,j (Fig. 4b) and as afunction of posi-
tions M (i), M(j) onthetree (Fig.4c). Whereas for s = -1the correlations
decay smoothly as afunction of physical distance, for s =1we observe
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anon-monotonic dependence on physical distance due to the highly
non-local structure of interactions. The Monna-mapped correlations
for s=1, however, are strongest near the diagonal—indicating a new
sense of locality in the non-Archimedean geometry—and exhibit blocks
consistent with the hierarchical structure of the tree.

To corroborate the realization of anon-Archimedean geometry, we
plotthe dependence of correlations on a treelike measure of distance
in Fig. 4c. The natural metric for the treelike geometry is the 2-adic
norm/li—jl,=2" whereaisthelargestinteger such that2*divides|i - .
Intuitively, a represents the level of the tree—counting up from the
base—at which the leaves representing sites i andj connect. As a func-
tion of 2-adic distance, we observe asmooth decay of correlations.

Akeyfeatureofthetreegraphisthatonly theverticesontheboundary
represent physical sites, whereas the interior vertices constitute a holo-
graphicbulk geometry embodying the effective distance between sites.
Toinvestigate the validity of this holographic description, we perform a
black-boxreconstruction of the bulk geometry from spin correlations.
We begin by mapping the physical sites to effective coordinates in
aEuclidean space, as before. Next, we draw bonds between pairs of
maximally correlated sites and performa coarse-graining procedure,
treating each group of connected sites asanew larger site, and drawing
new connections, until there is a path through the bulk between any
two sites on the boundary.

The bulk reconstructions are shown in Fig. 4d for both the Archi-
medean (s =-1) and non-Archimedean (s =1) cases. For s = -1, where
interactions between physical neighbours dominate, the reconstruc-
tion produces only aone-dimensional loop. By contrast, fors=1,atree
emerges fromthereconstructionas abulk geometry encapsulating the
structure of spin correlations. This emergent geometry is analogous
to the gravitational bulk in the p-adic AdS/CFT correspondence, in
which the tree serves as a discretized version of hyperbolic space??.

Thetransition between two radically different geometries depending
on the sign of the exponent s suggests that all sense of locality is lost as
sapproaches zero. To probe the breakdown of locality, we consider
different possible bipartitions of the M = 16 sites into 8-site subsystems
Iand/and examine correlations between the subsystems (Fig. 4€). Spe-
cifically, weplotabipartite correlation C, = Corr(F/", "), where F{ = 3 ., F{
denotesa coarse-grained spin, asafunctionof's. Fors < 0, the correlation
C,issmaller for a cut that is local according to the physical ordering of
sites (bluecircles) thanforacutthatislocalonthetree (greensquares),
whereas fors > 0 thesituationisreversed, consistent with the changein
effective geometry. Further plotting the minimum correlation C, over
allpossible bipartitions (purple triangles) reveals a peak at s = 0, indicat-
ing the absence of any geometry providing a sense of locality.

The breakdown of locality at s = 0 paves the way for studies of fast
scrambling’, the generation of system-wide entanglement at a conjec-
tured maximal rate characteristic of black holes®. More broadly, our
work provides astarting point for quantum simulations to investigate
the conjecture that space-time geometry and gravity emerge from
entanglement®, The treelike geometry can serve asamodel for probing
transport through the holographicbulk and enable implementations of
holographicerror-correcting codes?*. Furthermore, our reconstruc-
tion of the bulk offers a blueprint for seeking gravitational dualsin a
wide range of quantum many-body systems.

Future experiments will probe entanglement generated by program-
mable pair creation, which theoretically produces multimode
spin-nematic squeezed states®”*, analogous to continuous-variable
cluster states®. Applying these states to image spatially extended fields
with quantum-enhanced sensitivity will allow the quantification of
entanglement depth* and the characterization of the structure of
multipartite entanglement®, In our current system, the large collective
cooperativity Ni = 3 x10* per subensemble, which parameterizes the
coherence of atom-light interactions, theoretically permits metro-
logical gains scaling as ./Nn (see Supplementary Information). Quan-
tifying metrological gain to demonstrate entanglement will require
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an accurate calibration of the quantum projection noise level,
high-fidelity state detection and measurements in additional bases.

The antiferromagnetic and sign-changing interactions demonstrated
here open up new opportunities for studies of frustrated magnetism.
Introducing disorder will allow the realization of spin-glass models®’
thatmap to NP hard problems in pattern recognition®*¢ and optimiza-
tion'. Our observation that pair creation generates low-temperature
states of the classical XY model suggests applications to gain-based
optimization, building on past experiments with networks of polari-
ton condensates™ or optical parametric oscillators'. Our scheme also
generalizes to implementing synthetic gauge fields by introducing
complex-valued couplings**"*8, for explorations of topological phys-
ics. Extensionsto anarray withasingle spin per site may allow strongly
correlated states to be acessed. This regime could be explored with
individually trapped atomsina cavity or waveguide with state-of-the-art
single-atom cooperativity n - 100, and in extensions of our method to
Rydberg superatoms*’, colour centres*® or trapped ions>:.
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Methods

Experimental sequence

We begin by loading rubidium-87 atoms from a magneto-optical trap
into an array of microtraps, in which we use optical pumping and adi-
abatic microwave sweepsto prepare theatomsinthe|F=1,m = 0) state.
We then transfer the atoms into a 1,560 nm optical lattice supported
by the cavity, resulting in a set of M =16 or 18 discrete ensembles. To
generate programmable interactions between the ensembles, we apply
amagnetic field gradient and drive the optical cavity alongits axis with
amodulated intensity. After the interaction time, we load the atoms
backintothe microtraps and use state-selective fluorescence imaging
to measure the populationin each Zeeman state. To measure the trans-
verse magnetization, we apply a series of local spin rotations before
the imaging sequence. Extended Data Figure 2a shows a schematic of
the experimental sequence.

Microtraps and lattice transfer

Our experiments use a hybrid trapping scheme: whereas we perform
cooling, internal state preparation and imaging in a microtrap array,
we transfer the atoms to an intracavity optical lattice before inducing
cavity-mediated interactions. The 1,560 nmintracavity latticeisinreg-
istry with the standing wave of 780 nm light used to drive interactions
and thus maximizes the atom-light coupling. However, because the
1,560 nm light produces a strong and inhomogeneous a.c. Stark shift
of the 5P, state®, we instead use the 808 nm microtrap array during
the parts of the experimental sequence requiring near-resonant light,
namely cooling, optical pumping and fluorescence imaging.

We initially turn on a two-dimensional array of M x 2 optical micro-
traps at 808 nm during magneto-optical trap loading. The long axis
ofthe array is aligned with the cavity axis, with 60 pum between traps.
Thetwo transverse traps are designed to double the total trap volume
and, correspondingly, the number of atoms loaded into the cavity
for a fixed microtrap waist. Each microtrap has a waist of 6 pmand a
depth of A x 4 MHz, where A is Planck’s constant. During the loading
phase the transverse microtrap spacing is 100 um. After loading the
microtraps, the transverse spacing is reduced to 8 pum, so that both
transverse traps fit within the 25 pumwaist of the intracavity lattice. We
adiabatically transfer the atoms from the microtraps to the intracavity
lattice, increasing the lattice power fromaninitial depth of h x 200 kHz
to h x 3.5 MHz and then ramping off the microtraps. This preparation
results in a one-dimensional array of M ensembles at a temperature
of 100 pK, with each ensemble containing N = 10* atoms spread over
10 lattice sites.

For imaging, we transfer the atoms from the optical lattice back
into the microtrap array by first switching on the M x 2 microtraps
before reducing the lattice depth to h x 200 kHz. Subsequently, we
adiabatically move the microtraps away from the optical lattice by
approximately 15 pm to avoid a.c. Stark shifts during imaging. The
efficiency of this transfer from the lattice to microtraps is 80-90%.
Additionally, the 808 nm trapping light causes 20% of the atoms to
undergo state-changing scattering events before the end of the imag-
ing sequence.

Imaging and spinreadout

Wedetect theatomsinasequence of four fluorescenceimages designed
toindependently measure the populations of all three Zeeman states
within the F=1manifold and any residual atomsin F=2.Foreach fluo-
rescenceimage we apply aretro-reflected laser beam resonant with the
microsecond transition of the D2 line for 100 ps and collect the result-
ing fluorescence signal on an electron multiplying charge-coupled
device (EMCCD) camera. With the first imaging pulse, we measure
the population in the F =2 manifold, expelling these atoms from the
microtraps by heating. For state-selective imaging of the F =1 mani-
fold, we sequentially apply three microwave sweeps that adiabatically

transfer the atoms from each magnetic substate to F =2 and perform
fluorescenceimaging after each sweep. A typical fluorescence signal of
theatomsisshownin Extended DataFig.2b. For background subtrac-
tion we use a method from Xu et al.** based on a principal component
analysis of approximately 100 images without atoms. Technical noise
in the measurement is approximately 1-2% of the total atom number.

Tomeasure the transverse spin component F; we sequentially per-
form local spin rotations at each site i before the imaging sequence.
For this purpose, we focus a circularly polarized laser onto each site
by controlling the position of the beam with an acousto-optic deflec-
tor. By modulating the intensity of the laser at the local Larmor fre-
quency, we induce a resonant Raman coupling between adjacent
magnetic sublevels. We apply a 3 s Raman pulse to produce a /2
spin rotation. This locally maps F} onto the measurable population
difference N, ;— N_;, illustrated in Extended Data Fig. 2c. Here, F}' is
definedin arotating frame that depends on the local Larmor frequency
at site i. Shot-to-shot fluctuations in the Larmor frequency lead to a
reductioninthe measurable correlations between two sites, for which
thereduction depends onthe time between the corresponding Raman
pulses. Thus, to suppress any bias in the measured correlations, we
randomize the order of the local spin rotations in each experimental
realization.

Computation of correlations

Whenvisualizing the distance dependence of interactions, reconstruct-
ing effective geometries or probing bipartite correlations, we compute
correlation functions C°™, C* and C, from a minimum of 50 measure-
ments (see Extended Data Fig. 3 and the Supplementary Information
for the effects of finite statistics). Each correlation functionis defined
in the main text in terms of specified observables A and B as

Cov(4, B)

JVar(4)var(B) ’ ©)

where Cov(4, B) =(AB) - (A){B)and Var(A) = Cov(A, A). These correla-
tions are normalized to the shot-to-shot variance, which provides the
relevant spatial information while being agnostic to the total amount
of pair creation. Effects of finite statistics on the measured correlations
C"™are examined in Extended Data Fig. 3.

To quantify pair creation dynamics, we measure in the X-basis and
normalize the covariance matrices to the population ofatoms oneach
site rather than their variance,

Corr(A,B) =

Cij{x:Cov(sz‘,Fﬁ) _(Ff 2@). 6)
N N
For this correlator, the measurement in the X-basis provides a
high sensitivity at early times and a large dynamic range for meas-
urements over time. The normalization is chosen such that the
extracted correlationis sensitive to the totalamount of pair creation,
allowing us to visualize the growth of correlations as a function of
time.

Interaction parameters

To enable the programmable interactions, we apply a magnetic field
gradient parameterized by the difference wg in Zeeman splittings
between adjacentarray sites. Thisgradientis superposed onanoverall
bias field B, perpendicular to the cavity axis, which produces aZeeman
splitting of w,/B, =21 x 700 kHz G ' and a quadratic Zeeman shift of
q/B%=2mx 72 Hz G2 Weworkinaregimeinwhichw,/M> wj > g, that
is, the variation in the magnetic field is small compared with the aver-
age field yet results in a Bloch oscillation frequency larger than the
quadratic Zeeman shift. Specifically, we choose a magnetic field
between2 Gand 4 G (as detailed in Extended Data Table1for each data-
set) and a typical gradient wg = 21t x 1.52(1) kHz per site, where paren-



theses denote one s.d. uncertainty on the last digit. For measurements
of C"™inFigs.1and 2, we increase the ratio w,/q. This is accomplished
either byincreasing w,to 21 x 12.47(2) kHzper site, or by reducing the
effective quadratic Zeeman shift to g =21 x 70 Hz by applying an a.c.
Stark shift to the [1,0) state. To induce an a.c. Stark shift, we
off-resonantly couple the states|1, O)and|2, 0)viablue-detuned micro-
waveradiation. Theresultingenergy shiftisgivenbyq_ = Q2 /A6
where Q,,=2nx10kHz is the resonant Rabi frequency and
Omw =21 x 115 kHz is the detuning.

Weinduce spin-exchange interactions among the atoms by applying
adrive field detuned from cavity resonance. After accounting for a
resonance shift due to the presence of atoms, we choose a typical
drive-cavity detuning between §.= - 2 x 4 MHzand §.= —2nx 7 MHz
The cavity mode itself has alarge detuning of 4=-2mx 11 GHz from
atomic resonance. The drive field is linearly polarized at an angle of
55° with respect to the magnetic field, which is chosen to eliminate
tensor light shifts. The instantaneous spin-exchange coupling is given
by -J(¢) = ny(1)Q?/(28,), where Q=21 x 13 Hz is the vector a.c. Stark
shift per circularly polarized photonin the cavity and n,,(¢) is the mean
intracavity photon number due the control field driving the cavity. The
average intracavity photon number over a full period of the drive wave-
formistypically 7z, ~ 2 x 10> Thisresultsin anaverage collective inter-
action strength of 2\J =21t x 0.6 kHz between ensembles of N = 10*
atoms.

To produce a set of couplings /(r), we modulate the intensity of the
drive field via an acousto-optic modulator as

J®©)=2 ) [cos(razt+g,) +11J(r)

r>0

)

where we use the phases ¢, €1{0,mjtoset the sign of the interactions.
Thecouplingatr=0isgivenby J(0) =23 ., |/(r)| To produce periodic
boundary conditions in the system of M sites, we additionally pulse
the drive at a frequency of Mwg. Each pulse has a duration of
0.373/M =11 ps. To keep the average interaction strength constant, we
increase the drive strength during these pulses so that the number of
drive photons in the cavity reaches a peak of up to n, = 10*.

We choose the total duration of the interactions to be at least one
Bloch period such that dynamics are localized to single ensembles. In
general, the Fourier limit for the resolution of the interactions (meas-
ured in sites) is given by the ratio 1/T of the Bloch period to the total
interaction time. After asingle Bloch period, interactions are thus local-
ized to less than the spacing between sites, as shown in the inset to
Fig.2aforaninteraction duration of 7=2.5Bloch periods. A beneficial
effect of Fourier broadening is to delocalize the interactions to more
thanthe spatial extent of each ensemble. As the extent of each ensem-
ble is approximately one-eighth of the distance between ensembles,
we limit the duration of the drive pulse to 7T < 8 Bloch periods for all
experiments.

Localization ofinteractions to specified distances also requires pre-
cise calibration of the magnetic field gradient such that the uncertainty
inthe target drive frequency rwgis less than the Fourier broadening of
thedrivefield spectrum. Insome measurements, the gradient can drift
by up to 1.5%. This most strongly affects the resonance condition at
longer distances, for example r>15in Fig. 2a. We model this effect in
Supplementary Fig. 1.

Cavity parameters

The atoms are coupled to anear-concentric Fabry-Perot cavity with a

length of 5 cm and an 18 um waist at 780 nm. The cavity has vacuum

Rabifrequency of 2g =2m x 2.6 MHzand linewidth x = 21t x 250(20) kHz
, yielding a single-atom cooperativity n= % =4.5, where

I'=2mx6.07 MHz is the linewidth of the 5P, , state in rubidium. Our

drivefieldis detuned by 4 = — 21 x 11 GHzfrom thel5S1/2 F =1 > 15P35)
transition, which produces a vector light shift per circularly polarized

photonof Qy=- % =2m x 26 Hzonamaximally coupled atom at cav-
ity centre. For an average atom this dispersive coupling is reduced to
0=2nx13 Hz, primarily by thermal motion. This reduction is
accounted for in our measurements of the collective cooperativity
Nn =3 x10* The Rayleigh range of the cavity is z; =1.3 mm, and each
ensemble is within 0.4z; = 520 pmof the cavity centre. Displacement
from the cavity centre contributes up to a20% reduction in coupling
for the most distant atoms.

The cavity cooperativity together with the detuning 6. determines
therelative strength of coherentinteractions and two dissipation path-
ways: spontaneous emission into free space and collective emission
into the cavity. Collective emission can be suppressed at fixed interac-
tionstrength by increasing the detuning 6, from cavity resonance. This
suppression is possible because the collective decay rate scales as
I, 6;2, whereas the interaction strength for each mode scales as
X & 6;1. However, decreasing collective decay comes at the cost of
increasing the rate of free-space scattering I',,, which is independent
of 6.. Both interaction and decay via the cavity are enhanced with
respect tofree-space scattering by the collective cooperativity Np > 1,
which determines an optimal detuning for minimizing the combined
rate of single-particle and collective decay. In our system, this optimal
detuning is given by |6pe /Kl = ,jg (as derived in the Supplementary
Information).

At the optimal detuning, the overall interaction-to-decay ratio
depends on the collective cooperativity as|y, |/(F, + [_+Ig) & W As
aresult, large collective cooperativity Ni > 1enables entangled states
to be generated®. In the Supplementary Information, we analyse the
role of the cooperativity in producing spin-nematic squeezed states,
showing that the attainable metrological gain due to entanglement
scalesas.[Np.

Our experiments operate at approximately twice the theoretical
optimum detuningto reduce sensitivity toatom number fluctuations.
These fluctuations change the frequency shift 4N MQ of the cavity
resonance and thus the detuning 6. and interaction strength x,. Within
asingle set of measurements, the total atom number varies by up to
3%, resulting in shot-to-shot fluctuations in the collective interaction
strength of 20%. This is a small contribution to the variability of the
pair creation process, which naturally produces fluctuations with
standard deviations on the same order as the expected population in
the states m=+1(ref.?).

Working at a detuning that is larger than the optimum means that
dissipation is primarily due to scattering to free space. For typical
parameters, the scattering rate is 0.2 scattering events per atom per
Bloch period, corresponding to a coherence time of 5 Bloch periods.
The effect of this scattering is primarily evident in measurements of
covariance and the structure factor. Forexample, at the latest timesin
Fig.2b, capproximately 50% of the atoms have scattered at least once.
This causes much of the reduction in the magnitude of the structure
factor as compared to the idealized simulations using the truncated
Wigner approximation seen in Extended Data Fig. 4. For the correla-
tions that are shown in other figures, the normalization scheme cho-
sen minimizes the impact of atom number and interaction strength
fluctuations on the extracted spatial structure.

Interaction Hamiltonian

In equation (1), we describe the distance-dependent spin-exchange
interactions by astatic effective Hamiltonian H,, with the spin on each
sitedefined in arotating frame set by the local magnetic field. Here we
summarize the derivation of the effective Hamiltonian starting from
the full time-dependent Hamiltonian H,,in the laboratory frame. The
Hamiltonian H,,, for the spin system, obtained by adiabatically elimi-
nating the cavity mode8, is given by

Hio==J(0) Y, F{Fp+ Y hFi+H,

Lm 4

(8)
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interms of the collectivespinF, =}, f, oneachsite/, thelocal mag-
netic fields h; = wgl and the quadratic Zeeman shift H,=q%, (f” )2,in
unitswhere /1 =1. Moving toarotating frame with H, = Z, h,F,, theHam-
iltonian becomes

HO=-J(0) ). e FiF,+H, ©)
I, m

To obtain a form of the effective Hamiltonian that provides intuition
about the spatial structure of the interactions, we consider the limitin
whichthe collective interaction strength and quadratic Zeemanshiftare
weak compared with the gradient (N/, g < wp). In this limit, the effective
Hamiltonianisgiventofirst order by the time average ofequation (9). The
interaction component of the resulting effective Hamiltonian H, + H, is

- ;m JU-m)F{F,, (10)

where

T H ~
J0y=7 [ deesg. (1)

The dependence J(r) of the couplings on distance is thus given by
the Fourier transform of the drive waveform.

Even though the limits under which this effective Hamiltonian is
derived, N/, ¢ < wg are not strictly valid for the pulsed drive waveforms
used to produce periodic boundary conditions, the intuition provided
by this model is corroborated by the more generically valid model of
the Floquet dynamics presented in the following section.

Momentum-space dynamics
To analytically compute the dynamics of the system, we write the Ham-
iltonian without approximation in terms of spin-wave operators

~t

=1 -ikl -+
Fiewe= 755 21€ "Fi a8

H(©) == M (OF ", F oo+ H (12)

We can understand this Hamiltonian by recognizing that, in the
laboratory frame, the magnetic field gradient causes spin waves to
undergo Bloch oscillations at frequency wg. Only spin waves with
momentum k=0 in the laboratory frame couple to the cavity. In the
rotating frame set by the gradient, the same physics can be viewed as
spin waves remaining static over time, and the mode to which the cav-
ity couples is given by k=wt. The quadratic Zeeman shift is left
unchanged by the change of reference frames.

Because the systemis finite and discrete, there are only M orthogo-
nal momentum modes. To obtain a discrete set of momentum-space
couplmgs T = =-X,/2N, we drive interactions with a pulsed drive
Jo=3, Mjk 6(wgt - k) thatonly takes on non-zero values Mtimes per
Bloch period. We observe that the momentum modes decoupleinthe
Hamiltonian,

H(e)=-Y 210, 6(tws — K)F " F  + H. (13)
k

The evolution of any given momentum modeis discrete, withashort
period of coupling to the optical cavity thatinduces spin-spininterac-
tions, followed by a longer period of time when the state evolves only
under the quadratic Zeeman shift. In the limit of alarge collective inter-
action strengthly, | > wz, each momentum mode grows by a factor of
A=12x, glsin(grafter each Bloch period (Supplementary Information).
Th|s growth is reflected by the structure factor, with
|Fyl o X" o= I (k/wp)I" after TBloch periods.

Even though our derivation of the growth of the structure factor
assumes a pulsed drive field, which produces periodicboundary condi-
tions, the same relation provides a good approximation in the case of
acontinuous drive field that produces open boundary conditions. In
thelatter case, we expect small deviations from the model because the
cavity couples to a continuum of non-orthogonal momentum modes.
We compare the continuous and pulsed cases in anumerical simulation
presented in Extended DataFig. 4.

Akey feature of the evolutionin momentum spaceis that the modes
with minimum energy are maximally amplified in our system with
X« < 0. We can gain additional insight into this effect by considering
the limit in which the dynamics are slow compared with the Bloch
period and a time-averaged Hamiltonian is valid. In this case, the
dynamics for each momentum mode are identical to the single-mode
case that has been studied previously”>*. The system is unstable to
pair creation when the collective interaction strength 2y, = - 4\ has
a greater magnitude and opposite sign from the quadratic Zeeman
shift g. This condition motivates our choice of ferromagnetic on-site
interactions, such that y, < 0, in our system with g > 0. The opposite
signs of y and g allow the system to access low-energy states of the
interaction Hamiltonian H, by transferring energy into H, via pair
creation.

Numerical modelling

We numerically simulate the dynamics in our system using the semi-
classical truncated Wigner approximation (TWA)**, To model quan-
tum effects, which are essential for the pair-creation dynamics, the
TWA simulation treats each ensemble of three-level atoms as three
bosonic modes and samples the vacuum fluctuations of the initially
unoccupied modes m = +1. This corresponds to sampling the Wigner
function of the initial state in phase space. Each sample is then propa-
gated according to the classical equations of motion based on the
Hamiltonian in equation (9). This enables us to incorporate experi-
mental imperfections such as finite statistics (Extended Data Fig. 3) or
finite system size (Extended Data Fig. 4) into the simulation, and to
understand their effects on the measured data.

In the Supplementary Information we elaborate on the implemen-
tation of the TWA simulation and present additional simulations for
comparisonwith our experimental data. In particular, we show effects
of finite statistics for the reconstruction of the triangular ladder in
Fig. 3c, and we examine the role of magnetic field fluctuations in the
measurement of bipartite correlations in Fig. 4e.

Euclidean reconstruction
Toreconstruct effective coordinates p and inferred couplings/ directly
from measured correlations C*, we require an ansatz for the depend-
ence of correlations on distance in the effective geometry. Here we
apply our analytical model for the growth of the structure factor to
derive the Gaussian ansatz for the decay of correlations. The dynami-
cal evolution produces low energy states of the XY Hamiltonian, which
additionally allows us to relate the inverse correlation matrix and the
inferred couplings.

Toanalytically motivate the Gaussian ansatz used for reconstructing
effective geometries, we begin by relating the structure factor to the
correlations we measure in the X basis,

NXNX
Cim~ ¢Ff f,p—M 2 U F )=
ki.k2

Z eik(l—m)llez' 14)
k

The final equality holds when the momentum modes are independ-
entfromone another, such that cross terms with k; # k,go to zero. This
is true either when periodic boundary conditions are imposed or in
the limit of aninfinite system. Equation (14) enables the prediction of
the form of spatial correlations from the dispersionrelation x,, which
governs the growth of the structure factor.



As anillustrative example, we consider nearest-neighbour interac-
tions created by the drive waveform J(¢) < (cos wgt + 1), corresponding
to the dispersion relation

Xk o (eik/2+ e*ik/Z)Z. (15)

Asthe correlations are the Fourier transform of the sq}(Jared magni-

tude of the structure factor, we write an expansion ofIFkI2 in terms of

. . ~X . .
powers of e*. Recalling |F | < X, [" after T Bloch periods of evolution,
we compute

2T

X2 ik/2 | n-ik/2\4T ~ikd

[Fil? o (e*2+e7 )4 = 5 4T, e,
d=-2T

(16)

The coefficients in this expansion are Fourier components corre-
spondingto correlations at distance d. Thus, we have C**(d) (deT ).
This binomial coefficient tends to a Gaussian function of distance d
after several Bloch periods, analogously to a diffusion process.

More generally amultifrequency drive leads to diffusion within the
effective geometry set by the couplings. For a generic drive that pro-
duces adispersion relation , - Z,j(r)e”", correlations in position
space are given by terms in the multinomial expansion of [y, |*”.When

J(r) > 0thisdirectly corresponds to arandomwalk within the effective
geometry set by the couplings J(r). Motivated by the exact result for
spreading in one dimension, we use a Gaussian ansatz for the correla-
tion matrix to infer distances and hence the coordinates p within the
effective geometry.

We motivate the inferred coupling matrix J’ = (C**)™ by recalling
thatapopulation growthrategivenby |x,| generatesalow energy state
of the XY model, H,. We approximate the final state as thermal, with
large inverse temperature 5. We make use of the SO(2) symmetry to
note that ¢F;F}> and {F?F?}) are equivalent. Now, to compute ¢F;F}),
weintegrate over phase space, with aBoltzmannweightingexp( - SH)).
To constrain the overall spinlength, we introduce achemical potential
U, sothat

XX X\ EXEX, X
=l | aFFlFFsexp i - e ). a7

The chemical potential can be incorporated into amodified coupling
matrix Ji =) - ud; . Evaluating the integral yields C* «ji;.’l. For the
purposes of/the reconstruction in Fig. 3, where we colour bonds
between sites according to j”’ only the off-diagonal terms Of-li; are
relevant.

The inverse correlation matrix, also known as the concentration or
precision matrix, can also be interpreted as the partial correlation
matrix*®, up to normalization. For a given set of variables x,, the partial
correlation between x;and x; is the correlation after regressing out
every x,; . Inasystem with interactions at distancer, sites spaced by

rhave anon-zero partial correlation, but sites at distances that are
multiples of r have zero partial correlation, because the interactions
betweenthesites at distance rmediate all the variance. Thus, theinter-
pretation of the inverse correlation matrix as an inferred coupling
matrix J’ < (C**)'is well motivated even at early times, when correla-
tions are still spreading across the system.

Data availability

AlldatadisplayedinFigs.1-4 and Extended Data Figs.1-4 are available
from the corresponding author upon reasonable request.

Code availability

All code used for simulation and analysis is available from the corre-
sponding author upon reasonable request.
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Extended DataFig.1|Coupling graphs. Sketch of couplings J(i-j)for the thickness and transparency of thered lines. For s=1, reordering the sites
modelinequation (4) withlocalinteractions (s=-1, left) or treelike according to the Monna map makes the couplings morelocal, corroborating
interactions (s=1, right). The strengths of theinteractions are indicated by the the treelike geometry.
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Extended DataFig. 2| Experimental sequence and imaging. aSchematic of
experimental sequence for measurements of F;*. After driving the cavity to
induceinteractions, we apply spin rotations sequentially to the Msites of the
array and subsequently perform state-sensitive readout via fluorescence
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imaging. b Fluorescenceimages after spinrotation, showing the signal for the
F=2manifold and the three magnetic substates for the case of interactions at
distance r=3 with periodic boundary conditions. ¢ Transverse magnetization
F{andstructure factor Fz extracted fromtheimageinb.
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Experimental Data
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Extended DataFig. 3 | Effect of finite statistics. Left, correlation plot
reproduced from Fig. 1, showing C°"obtained from 50 realizations of the
experimentwithinteractions atdistance r=10. Right, simulation results
obtained fromatruncated Wigner approximation, where we either choose
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the same number of realisations as in the experiment or increase the number of
realisations by afactor of 10 to reduce statistical uncertainty. The simulations
indicate thatresidual correlationsin the experimental dataare mainly due to
the finite samplesize.
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Extended DataFig.4|Comparison between measured structure factor and
simulationresults. Theleft graph shows the measured structure factor after
T=3Bloch periods of evolution, whichis alsoshowninFig.2c. The two plots at
right show results of atruncated Wigner simulation with and without periodic
boundary conditions. For the simulated datawe used 100 realizations of the
TWA simulation, whichis four times higher than the number of experimental
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realizations to reduce statistical fluctuations. For open boundary conditions,
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we find that the simulation has an offset with respect to the theoretical
prediction (blueline). We attribute this offset to the finite system size, as the
modelisexactonly foraninfinite system or asystem with periodicboundary
conditions. Repeating the same simulation witha pulsed drive shown onthe
rightshows thatin this case the TWA simulationis consistent with the analytical
model. The error barsindicate the standard error of the mean.
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Extended Data Table 1| Experimental parameters

Data set Magnetic field By [G]| Gradient wp [kHz/site]| Quadratic Zeeman shift ¢ [Hz]| Interaction time T'7p [ms]
Fig. 1b all-to-all 2.8 0 27 x 580 0.1

Fig. 1b localized 3.8 2w x 12.46 2w x 1100 0.2

Fig. 1b distance 3.8 2w x 12.46 2m x 1100 0.2

Fig. 2a 3.8 2w x 12.46 27 x 1100 0.2

Fig. 2bc 2.0 2w x 1.53 2m x 290 up to 1.97

Fig. 2d 2.0 2m x 1.52 2w x 70 3.95

Fig. 3 2.0 27 x 1.52 27 x 290 1.32

Fig. 4 2.0 2m x 1.52 2w x 290 1.32

Magnetic offset field B,, Bloch oscillation frequency wg = 217 /15, effective quadratic Zeeman shift g, and interaction time Ttg for each of the data sets presented in Figs. 1-4. The effective
quadratic Zeeman shift is given by g = B3 x 72Hz/G2 + Omw. Where gy is the ac Stark shift of the state |1, 0) induced via off-resonant microwave coupling to |2, O) (see Methods).
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