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ABSTRACT
Selecting relevant features associated with a given response variable is an important problem in many
scientific fields. Quantifying quality and uncertainty of a selection result via false discovery rate (FDR)
control has been of recent interest. This article introduces a data-splitting method (referred to as “DS”)
to asymptotically control the FDR while maintaining a high power. For each feature, DS constructs a test
statistic by estimating two independent regression coefficients via data splitting. FDR control is achieved by
taking advantage of the statistic’s property that, for any null feature, its sampling distribution is symmetric
about zero; whereas for a relevant feature, its sampling distribution has a positive mean. Furthermore, a
Multiple Data Splitting (MDS) method is proposed to stabilize the selection result and boost the power.
Surprisingly, with the FDR under control, MDS not only helps overcome the power loss caused by data
splitting, but also results in a lower variance of the false discovery proportion (FDP) comparedwith all other
methods in consideration. Extensive simulation studies and a real-data application show that the proposed
methods are robust to the unknown distribution of features, easy to implement and computationally
efficient, and are often the most powerful ones among competitors especially when the signals are weak
and correlations or partial correlations among features are high. Supplementarymaterials for this article are
available online.
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1. Introduction

1.1. Background: FDR Control in RegressionModels

Scientific researchers nowadays often have the privilege of col-

Q1

lecting a large number of explanatory features targeting a spe-
cific response variable. For instance, population geneticists often
profile thousands of single nucleotide polymorphisms (SNPs) in
genome-wide association studies. A ubiquitous belief, however,
is that the response variable depends only on a small fraction of
the collected features. It is thus important to identify these rele-
vant features so that the computability of the downstream anal-
ysis, the reproducibility of the reported results, and the inter-
pretability of the scientific findings can be greatly enhanced.
Throughout, we denote the explanatory features as {X1, . . . ,Xp},
with p being potentially large, and denote the response variable
as y.

Many advances in feature selection methods for regression

Q2

analyses have been made in the past few decades, such as step-
wise regressions (Efroymson 1960), Lasso regression (Tibshi-
rani 1996), and Bayesian variable selection methods (O’Hara
and Sillanpää 2009). A desirable property of a feature selection
procedure is its capability of controlling the number of false pos-
itives, which can be mathematically formulated as controlling
the false discovery rate (FDR) (Benjamini and Hochberg 1995),
that is, keeping the FDR below a targeted level. FDR is defined
as

CONTACT Jun S. Liu jliu@stat.harvard.edu Department of Statistics, Harvard University, Cambridge, MA.
∗These authors contribute equally to this work.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

FDR = E[FDP], FDP = #{j : j ∈ S0, j ∈ Ŝ}
#{j ∈ Ŝ} ∨ 1

,

where S0 denotes the index set of the null features (irrelevant
features, see the formal definition in Section 2). Ŝ denotes the
set of the selected features, and FDP stands for “false discovery
proportion.” The expectation is taken with respect to the ran-
domness in both the data and the selection procedure (if it is
stochastic).

One popular class of FDR control methods is based on
the Benjamin-Hochberg (BHq) procedure (Benjamini and
Hochberg 1995). BHq requires p-values and guarantees exact
FDR control when all the p-values are independent. Benjamini
and Yekutieli (2001) generalized BHq to handle dependent p-
values. They proved that BHq achieves FDR control under
positive dependence, and also works under any arbitrary
dependence structure if a shrinkage of the control level by∑p

j=1 1/j is applied. Further discussions on generalizing BHq
can be found in Sarkar (2002) for stepwise multiple testing
procedures with positive dependence, Storey, Taylor, and
Siegmund (2004) for weak dependence, Wu (2008) and Clarke
and Hall (2009) for Markov models and linear processes.

Another class of powerful methods is based on the “knockoff
filter” idea, which achieves FDR control by creating “knock-
off” features in a similar spirit as adding spike-in controls in

© 2022 American Statistical Association
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biological experiments instead of resorting to p-values. Barber
and Candès (2015) first proposed the fixed-design knockoff
filter, which achieves exact FDR control for low-dimensional
Gaussian linear models regardless of the dependency structure
among features. The model-X knockoff filter (Candès et al.
2018) further extends the applicability of knockoff filtering to
high-dimensional problems and can be applied without having
to know the underlying true relationship between the response
and features. However, it requires the exact knowledge of the
joint distribution of features. If this distribution is unknown,
Barber, Candès, and Samworth (2020) showed that the infla-
tion of the FDR is proportional to the estimation error in the
conditional distribution of Xj given X−j

def= {X1, . . . ,Xp}\{Xj}.
For details on how to generate good knockoff features, see
Romano, Sesia, and Candès (2019), Jordon, Yoon, and Schaar
(2019) (using deep generative models) and Bates et al. (2020)
(using sequentialMCMCalgorithms).Huang and Janson (2020)
generalized the model-X knockoff filter using conditioning to
allow features following an exponential family distribution with
unknown parameters. Further developments include the mul-
tilayer knockoff filter (Katsevich and Sabatti 2019) for FDR
control at both group and individual levels, and DeepPINK (Lu
et al. 2018) which models the relationship between the response
and features by a neural network. Successful applications of the
knockoff filter in genetics have been recently reported (Sesia,
Sabatti, and Candès 2018; Sesia et al. 2020).

Data splitting has long been used for evaluating statistical
predictions (e.g., cross-validation) (Stone 1974) and selecting
efficient test statistics (Moran 1973; Cox 1975). Lately, data
splitting has been employed to overcome difficulties in high-
dimensional statistical inference. For example, Wasserman and
Roeder (2009) proposed to split the data into three parts to
implement a three-stagemethod: fits a suite of candidatemodels
to the first part of the data; uses the second part of the data
to select one of the models; and eliminates the null features
based on hypothesis testing using the third part of the data.
Other practices of data splitting in feature selection/multiple
hypotheses testing can be found in Rubin, Dudoit, and der Laan
(2006) (estimating the optimal cutoff for test statistics), Mein-
shausen, Meier, and Bühlmann (2009) (aggregating p-values
obtained via repeated sample splitting), and Ignatiadis et al.
(2016) (determining proper weights for individual hypotheses).
More recently, Barber and Candès (2019) extended the appli-
cability of the fixed-design knockoff filter to high-dimensional
linearmodels via data splitting, in which the first part of the data
is used to screen out enough null features so that the knockoff
filter can be applied to the selected features using the second part
of the data.

FDR control introduced by Benjamini and Hochberg (1995)
is formulated as a sampling property of the procedure. All
aforementionedmethods including our proposed ones take this
frequentist point of view. Empirical Bayes views of FDR control
have also been studied in the literature, such as the local FDR
control method of Efron (2005), which has been successfully
applied to analyze microarray data (Efron et al. 2001). The local
FDR control framework is more delicate in the sense that it
attaches each hypothesis/feature a probabilistic quantification of
being null based on efficient density estimation of the test statis-
tics. It is worth noting that there is also a Bayesian interpretation

of the positive FDR (i.e., E[FDP||̂S| > 0]), as pointed out by
Storey (2003).

1.2. Main Ideas

In high-dimensional regression, it can be challenging to either
construct valid p-values (even asymptotically) or estimate accu-
rately the joint distribution of features, thus, limiting the appli-
cability of both BHq and the model-X knockoff filter. The data-
splitting framework proposed here appears to fill in this gap.We
focus here on a single data-splitting procedure (DS, henceforth)
and its refinement the multiple data-splitting procedure (MDS,
henceforth).

Although the motivation of most existing data-splitting
methods is to handle the high dimensionality (e.g., to obtain
valid p-values or apply the fixed-design knockoff filter), DS aims
at obtaining two independent regression coefficients for each
feature via two potentially different statistical fitting procedures
applied to each part of the data. Using the two estimates, DS then
constructs a test statisticMj for each featureXj, referred to as the
“mirror statistic” or “symmetric statistic” in the literature, which
should possess the following two key properties as illustrated in
Figure 1:

(P1) A feature with a larger positive mirror statistic is more
likely to be a relevant feature.

(P2) The sampling distribution of themirror statistic of any null
feature is symmetric about zero.

Property (P1) suggests that we can rank the importance of each
feature by its mirror statistic, and select those features with
mirror statistics larger than a cutoff (τ in Figure 1). Property
(P2) implies that we can estimate (conservatively) the number
of false positives, that is, #{j : j ∈ S0, Mj > τ }, using the left tail
of the distribution, #{j : Mj < −τ }.

When p < n/2, coefficient estimates for both parts/splits of
the data can be obtained by the ordinary least squares (OLS). For
high-dimensional cases, we can implement a Lasso+OLS proce-
dure, which screens out some null features by Lasso using one
part of the data and obtains the OLS estimates for the selected
features using the other part of the data. Themirror statistics are
then constructed using the Lasso and OLS estimates.

Although sharing similar properties (see Section 3.2 in Can-
dès et al. 2018), the mirror statistic and the knockoff statistic
are motivated by different philosophies. Specifically, the mirror
statistic is free from constructing the matching “fake,” which
can be challenging and computationally expensive in high-
dimensional settings. This also leads to different use of con-
ditions and theoretical implications. Our framework relies on
the model assumption of y|X for asymptotic FDP and FDR
control, whereas the knockoff filter requires (almost) the exact
knowledge of the joint distribution of features to achieve finite
sample FDR control. DS also differs from the work on inference
after selection (Berk et al. 2013; Lockhart et al. 2014; Lee et al.
2016), which attempts to construct p-values and confidence
intervals for the selected features conditioning on the selected
model. The objects of the inference thus depend on the initial
selection step. In contrast, DS (including its refinement MDS)
aims at selecting the relevant features with a reasonably low
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Figure 1. A cartoon illustration of the mirror statistic. Mj denotes the mirror statistic of feature Xj . S0 and S1 denote the index set of the null features and the relevant
features, respectively. Features with mirror statistics larger than the cutoff τ are selected.

FDR, and does not require two separate steps for selection and
inference adjustment.

MDS is built upon multiple independent replications of DS,
aiming at reducing the variability of the selection result. Instead
of ranking features by their mirror statistics, MDS ranks fea-
tures by their inclusion rates, that is, the selection frequency
adjusted by the selection sizes among multiple DS replications.
Empirically, we observe that MDS simultaneously reduces the
FDR and boosts the power, suggesting that MDS yields better
rankings of features than DS. We provide some useful insights
on MDS by analyzing the Normal means model and prove
that MDS achieves nearly the optimal detection power (see
Section 2.3). MDS is conceptually most similar to the stability
selection method (Meinshausen and Bühlmann 2010), and a
more detailed discussion on them is deferred to Section 2.2.
MDS also differs from the recently proposed de-randomizing
procedure for the model-X knockoff filter (Ren et al. 2020),
whose goal is to control the per family error rate (PFER) and
the k family-wise error rate (k-FWER). Methods designed for
linear models are also applicable to Gaussian graphical models
using the linear representation of its conditional dependence
structure (Lauritzen 1996). Given a nominal level q, we apply
DS or MDS to each nodewise regression targeting at an FDR
control level q/2, and then combine the nodewise selection
results using the “OR” rule (Meinshausen and Bühlmann 2006).
We show that both DS and MDS achieve FDR control for linear
and graphical models under standard assumptions including
sparsity conditions, regularity conditions on the design matrix,
and signal strength conditions.

The rest of the article is organized as follows. Section 2.1
introduces DS with a detailed discussion on the construction
of the mirror statistic. Sections 2.2 and 2.3 focus on MDS, in
which we show that MDS achieves nearly the optimal detec-
tion power for the Normal means model. The desired FDR
control properties for DS and MDS in a model-free setting are
also proved in Section 2 under certain conditions. Section 3
discusses applications of DS and MDS to linear and Gaussian
graphical models. Sections 4.1 and 4.2 demonstrate through
extensive simulations that DS and MDS control the FDR prop-
erly, and MDS achieves the best or near-best power in almost

all cases for linear and graphical models. Section 4.3 applies DS
and MDS to the task of identifying mutations associated with
drug resistance using an HIV-1 dataset. Section 5 concludes
with a few final remarks. Proofs and more simulation details are
deferred to supplementary materials. An R implementation of
DS and MDS can be found at here.

2. Data Splitting for FDR Control

2.1. Single Data Splitting

Suppose a set of features (X1, . . . ,Xp) follows a p-dimensional
distribution. Denote the n independent observations of these
features as Xn×p = (X1, . . . ,Xp), also known as the design
matrix, where Xj = (X1j, . . . ,Xnj)ᵀ is the vector containing
n independent realizations of feature Xj. This random-design
assumption is nonessential and our methods also apply to the
fixed-design scenario (see Remark 3.1). We assume that all
features except the intercept (a vector with all 1’s) have been
normalized to have zero mean and unit variance. For each set
of the observed features (Xi1, . . . ,Xip), there is an associated
response variable yi for i ∈ {1, . . . , n}. Let y = (y1, . . . , yn)ᵀ
be the vector of n independent responses. We assume that the
response variable y only depends on a subset of features XS1 =
{Xj : j ∈ S1}, and the task of feature selection is to identify the set
S1. Mathematically, a feature Xj is considered to be irrelevant or
null if and only if y ⊥ Xj|X−j following the definition in Candès
et al. (2018). Let S0 be the index set of the null features, and let
p0 = |S0|, p1 = |S1| be the numbers of the null and relevant
features, respectively.

Feature selection commonly relies on a set of coefficients
β̂ = (β̂1, . . . , β̂p)ᵀ to measure the importance of each feature.
The larger |β̂j| is, themore likely featureXj is useful in predicting
y (since features have been normalized). For example, in linear
regressions, β̂ can be the vector of coefficients estimated viaOLS
or some shrinkage methods. In contrast to common practices
that select features based on a single set of estimated coefficients,
we construct two independent sets of estimates, ̂β

(1)
and ̂β

(2)
,

potentially with two different statistical procedures, in order to
set up an FDR control framework. The independence between
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̂β
(1)

and ̂β
(2)

is ensured by employing a data-splitting strategy.
More precisely, we split the n observations into two groups,
denoted as (y(1),X(1)), and (y(2),X(2)), and then estimate ̂β

(1)

and ̂β
(2)

using each part of the data. The data-splitting proce-
dure is flexible, as long as it is independent of the response vector
y. The sample sizes for the two groups can also be potentially
different. Empirically we find that the half-half sample splitting
leads to the highest power. To achieve FDR control, the two
sets of coefficients shall satisfy the following assumption besides
being independent.

Assumption 2.1 (Symmetry). For each null feature index j ∈ S0,
the sampling distribution of at least one of β̂

(1)
j and β̂

(2)
j is

symmetric about zero.

Note that the symmetry assumption is only required for the
null features and can be further relaxed to asymptotic symmetry.
Furthermore, for j ∈ S0, it is sufficient that only one of β̂

(1)
j

and β̂
(2)
j is symmetric about zero. In Section 3, we propose a

Lasso+OLS procedure for linear and Gaussian graphical models
so that the symmetry assumption can be satisfied with probabil-
ity approaching one under certain conditions. Our FDR control
framework starts with the construction of amirror statistic that
satisfies Properties (P1) and (P2) as discussed in Section 1.2.

A general form of the mirror statisticMj is

Mj = sign
(
β̂

(1)
j β̂

(2)
j

)
f
(|β̂(1)

j |, |β̂(2)
j |), (1)

where function f (u, v) is nonnegative, symmetric with respect
to u and v, and monotonically increasing in both u and v. For a
relevant feature, the two coefficient estimates tend to be large in
magnitude and have the same sign if the estimation procedures
are reasonably efficient. Since f (u, v) is monotonically increas-
ing in both u and v, the corresponding mirror statistic tends
to be positive and relatively large, which implies Property (P1).
In addition, the independence between the two coefficients,
together with the symmetry assumption, imply Property (P2).

Lemma 2.1. Under Assumption 2.1, regardless of the data-
splitting procedure, the sampling distribution ofMj is symmet-
ric about zero for j ∈ S0.

The proof is elementary and thus omitted. Three convenient
choices of f (u, v) are:

f (u, v) = 2min(u, v), f (u, v) = uv, f (u, v) = u + v. (2)

The first choice equals to the mirror statistic proposed in Xing,
Zhao, and Liu (2021), and the third choice corresponds to the
“sign-max” of

∣∣β̂(1)
j + β̂

(2)
j

∣∣ and ∣∣β̂(1)
j − β̂

(2)
j

∣∣, and is optimal in
a simplified setting as described in Proposition 2.1.

Proposition 2.1. Consider a prototype model in which (a) for
j ∈ S0, the two coefficients β̂

(1)
j and β̂

(2)
j follow N(0, 1) inde-

pendently; (b) for j ∈ S1, the two coefficients β̂
(1)
j and β̂

(2)
j

follow N(ω, 1) independently; (c) for k ∈ {1, 2}, the set of coef-
ficients {β̂(k)

1 , . . . , β̂(k)
p } are weakly correlated in the sense that

||R(k)||1 → 0 as p → ∞, where R(k) is the correlation matrix of

̂β
(k)

and ||R(k)||1 = p−2 ∑
i,j |R(k)

ij |; and (d) p1/p0 → r > 0 as
p → ∞. Then, f (u, v) = u + v is the optimal choice that yields
the highest power.

The proof of Proposition 2.1 (see supplementary materials)
might be of independent interest. We rephrase the FDR control
problem under the hypothesis testing framework and prove
the optimality using the Neyman–Pearson lemma. The form
f (u, v) = u+v is derived based on the rejection rule of the corre-
sponding likelihood ratio test. The intention of Proposition 2.1
is to give readers some intuitions and insights on what may be
optimal in certain canonical cases. The optimality of the sign-
max mirror statistic for the knockoff filter has also been empiri-
cally observed by Barber andCandès (2015) and recently proved
by Ke, Liu, and Ma (2020) based on a more delicate analysis
under the weak-and-rare signal setting (Donoho and Jin 2004).
For linear models in more realistic settings (see Section 4.1), we
empirically compare the three choices of f (u, v) listed in (2) and
observe that the optimality of f (u, v) = u + v holds broadly
across various settings.

The symmetry property of the mirror statistics for the null
features gives us anupper boundof the number of false positives:

#{j ∈ S0 : Mj > t} ≈ #{j ∈ S0 : Mj < −t} ≤ #{j : Mj < −t},
∀ t > 0.

(3)

The FDP(t) of the selection Ŝt = {j : Mj > t}, as well as an “over
estimate” of it, referred to as F̂DP(t) in the following, are thus
given by

FDP(t) = #{j : Mj > t, j ∈ S0}
#{j : Mj > t} ∨ 1

, F̂DP(t) = #{j : Mj < −t}
#{j : Mj > t} ∨ 1

.

For any designated FDR control level q ∈ (0, 1), we can choose
the data-driven cutoff τq as follows:

τq = min{t > 0 : F̂DP(t) ≤ q},

and the final selection is Ŝτq = {j : Mj > τq}. This data-driven
cutoff and the final selection set are motivated by the knockoff
filter (Barber and Candès 2015; Candès et al. 2018). The pro-
posed FDR control procedure is summarized in Algorithm 1.

In order to obtain a good estimate of the number of false
positives via (3), the mirror statistics of the null features cannot
be too correlated. We thus require the following weak depen-
dence assumption, which holds with high probability in certain
common settings (see Section 3).

Assumption 2.2 (Weak dependence). The mirror statistics M′
j s

are continuous random variables, and there exist constants c >

0 and α ∈ (0, 2) such that

var
( ∑

j∈S0
1(Mj > t)

)
≤ cpα

0 , ∀ t ∈ R, where p0 = |S0|.

Assumption 2.2 only restricts the correlations among the
null features in consideration, regardless of the correlations
associated with the relevant features.
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Algorithm 1 False discovery rate control via a single data split.
1. Split the data into two groups (y(1),X(1)) and (y(2),X(2)), independent of the response y.
2. Estimate the coefficients ̂β

(1)
and ̂β

(2)
using each part of the data. The two estimation procedures can be different.

3. Calculate the mirror statistics following (1).
4. For a nominal FDR level q ∈ (0, 1), select the features {j : Mj > τq} where the cutoff τq is

τq = min
{
t > 0 : F̂DP(t) = #{j : Mj < −t}

#{j : Mj > t} ∨ 1
≤ q

}
. (4)

In Section 3.1, we show that for linear models, this assump-
tion holds as long as the covariance matrix of the null features
satisfies some regularity condition (e.g., the eigenvalues are dou-
bly bounded). A significant case that Assumption 2.2 is violated
is when the null features can be partitioned into a fixed number
of groups so that the within-group pairwise correlations of their
mirror statistics are a constant. Empirically, however, we observe
that even in these cases, DS and MDS still perform well, often
outperforming BHq and the knockoff filter (see Figure 4 in
supplementary materials).

Recall that FDP(t) refers to the FDP of the selection Ŝt = {j :
Mj > t}. The proposition below shows that for any nominal level
q ∈ (0, 1), both FDP(τq) and FDR(τq) are under control, where
τq is the data-dependent cutoff chosen following (4). Note that
we require that p0 → ∞ as p → ∞; otherwise, the FDR control
problem becomes trivial as we can just select all.

Proposition 2.2. Suppose var(Mj) is uniformly upper bounded
and also lower bounded away from zero. For any nominal FDR
level q ∈ (0, 1), assume that there exists a constant tq > 0
such that P(FDP(tq) ≤ q) → 1 as p → ∞. Then, under
Assumptions 2.1 and 2.2, the DS procedure in Algorithm 1
satisfies

FDP(τq) ≤ q + op(1) and lim sup
p→∞

FDR(τq) ≤ q.

We note that the existence of tq > 0 such thatP(FDP(tq) ≤
q) → 1 essentially guarantees the asymptotic feasibility of FDR
control based upon the rankings of features by their mirror
statistics. Similar assumptions also appear in Storey, Taylor, and
Siegmund (2004) andWu (2008) in order to achieve a high level
of generality. Specifically, it ensures that the data-dependent cut-
off τq is upper boundedwith probability approaching one, which
implies that lim inf p1/p0 > 0 given var(Mj) being bounded.
This may be an undesired assumption for high-dimensional
problems as it rules out the sparse case p1 � p0. However, this
is only a technical assumption for handling the most general
setting without specifying a parameteric model between the
response and features. When we apply DS to specific models
such as linear or Gaussian graphical models, τq is allowed to
diverge and this assumption can often be avoided (see Sec-
tion 3.1).

In Assumption 2.1, the exact symmetry can be relaxed to
uniform asymptotic symmetry. That is, for j ∈ S0, if the sampling
distribution of either β̂

(1)
j or β̂

(2)
j is asymptotically symmet-

ric about zero, and the resulting mirror statistics satisfy the

uniformity condition:

max
j∈S0

∣∣P(Mj > t) −P(Mj < −t)
∣∣ → 0, ∀ t,

Proposition 2.2 still holds. For high-dimensional generalized
linear models, one way to construct the mirror statistic is to use
the debiased Lasso estimator (VandeGeer et al. 2014; Zhang and
Zhang 2014; Javanmard and Montanari 2014), which is asymp-
totically Normal (thus symmetric) under certain conditions.
Further, the bias in the debiased Lasso estimator also vanishes
uniformly (see Dai et al. 2020 for more details).

Before concluding this section, we remark that DS is inspired
by the recently proposed Gaussian mirror method (Xing, Zhao,
and Liu 2021), whose main idea is to perturb features one
by one and examines the corresponding impact. Compared to
the Gaussian mirror method, DS is easier to implement and
computationally more efficient especially for large n and p. For
linear models, the Gaussian mirror method requires p linear
fittings. In contrast, DS perturbs all features simultaneously via
data splitting, thus, requiring only two linear fittings. The gain of
the computational efficiency can be more significant for graph-
ical models (see Section 3.2). DS requires 2p nodewise linear
fittings, whereas the Gaussian mirror method would require p2
nodewise linear fittings, which is generally unacceptable when
p is large. In addition, it is more convenient to adapt DS to other
statistical models thanks to its conceptual simplicity.

2.2. Multiple Data Splitting

There are two main concerns about DS. First, splitting the data
inflates the variances of the estimated regression coefficients,
thus, DS can potentially suffer from a power loss in comparison
with competingmethods that properly use the full data. Second,
the selection result of DS may not be stable and can vary sub-
stantially across different sample splits.

To remedy these issues, we propose a multiple data-splitting
(MDS) procedure to aggregate the selection results obtained
from independent replications of DS. For linear and Gaussian
graphical models, we prove that MDS achieves asymptotic FDR
control under certain conditions. Simulation results in Sec-
tion 4 confirm this and demonstrate a fairly universal power
improvement ofMDS overDS. Going beyond these twomodels,
we empirically found that MDS can work competitively for a
much wider class of models, and is also generally applicable
without requiring p-values or any knowledge regarding the joint
distribution of features.

Given (X, y), suppose we independently repeat DS m times
with random sample splits. Each time the set of the selected
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features is denoted as Ŝ(k) for k ∈ {1, . . . ,m}. For each feature
Xj, we define the associated inclusion rate Ij and its estimate Îj as

Ij = E

[
1(j ∈ Ŝ)
|̂S| ∨ 1

∣∣∣∣ X, y
]
, Îj = 1

m

m∑
k=1

1(j ∈ Ŝ(k))

|̂S(k)| ∨ 1
, (5)

in which the expectation is taken with respect to the random-
ness in data splitting. Note that this rate is not an estimate
of the probability of being selected, but rather an importance
measurement of each feature relative to the DS procedure. For
example, if feature Xj is always selected by DS, and DS always
selects 20 features in each of the m independent replications,
the inclusion rate Ij equals to 1/20. MDS ranks the importance
of features by their inclusion rates, and is most useful if the
following informal statement is approximately true: if a feature
is selected less frequently in repeated sample splitting, it is less
likely to be a relevant feature. If this holds, we can choose a
proper inclusion-rate cutoff to control the FDR, as detailed in
Algorithm 2.

Algorithm2Aggregating the selection results frommultiple DS
replications.
1. Sort the estimated inclusion rates (see (5)): 0 ≤ Î(1) ≤ Î(2) ≤

· · · ≤ Î(p).
2. For a nominal FDR level q ∈ (0, 1), find the largest � ∈

{1, . . . , p} such that Î(1) + · · · + Î(�) ≤ q.
3. Select the features Ŝ = {j : Îj > Î(�)}.

Algorithm 2 suggests a backtracking approach to select the
cutoff based on the following argument: if we had m indepen-
dent datasets withm large enough, and applied DS to all of them
for feature selection, the average FDP would be no larger than
the designated FDR control level q. Although it is not possible
to generate new data, we can consider {̂S(k), k = 1, . . . ,m} as an
approximation to m independent selection results obtained via
data regeneration.We thus, find the largest cutoff such that, if we
assume the features with inclusion rates larger/smaller than the
cutoff are “true” relevant/null features, respectively, the average
FDP among {̂S(k), k = 1, . . . ,m} is no larger than q. Empirically,
we find that MDS often results in a lower FDR than the nominal
level but still enjoys a competitive power. The proposition below
gives some intuitions regarding how MDS controls the FDR
properly.

Proposition 2.3. Suppose DS asymptotically controls the FDP
for any designated level q ∈ (0, 1). Further, we assume that with
probability approaching one, the power of DS is bounded below
by some κ > 0. We consider the following two regimes with
n, p → ∞ at a proper rate.

(a) In the non-sparse regime where lim inf p1/p > 0, we
assume that the mirror statistics are consistent at ranking
features, that is, supi∈S1,j∈S0 P(Ii < Ij) → 0.

(b) In the sparse regime where lim sup p1/p = 0, we assume
that the mirror statistics are strongly consistent at ranking
features, that is, supi∈S1 P(Ii < maxj∈S0 Ij) → 0.

Then, for MDS (see Algorithm 2) in both the non-sparse and
the sparse regimes, we have

FDP ≤ q + op(1) and lim sup
n,p→∞

FDR ≤ q.

Remark 2.1. For any i ∈ S1, j ∈ S0, we have P(Ii < Ij) ≤
P(Ii < maxj∈S0 Ij), thus, the condition in Proposition 2.3(b) is
stronger than the condition in (a). Besides, in the sparse regime
where p0 
 p1, we can show that the number of false positives
is in the order of op(p1) under the strongly consistent condition.

Although some conditions in Proposition 2.3 are not directly
verifiable without invoking further modeling assumptions, the
proposition points out a key requirement for MDS to achieve
FDR control: The ranking consistency of the baseline algorithm.
In Section 3, we show that the ranking consistency condition
holds for linear and graphical models under more explicit con-
ditions.

The idea of replicating a procedure multiple times on per-
turbed data so as to stabilize the inference result and quan-
tify uncertainty is not new. For example, Meinshausen and
Bühlmann (2010) proposed a stability selection method, which
subsamples the data and runs a feature selection algorithm
multiple times using a set of regularization parameters. The final
selection set contains only “stable” features, of which the selec-
tion frequencies are above some user-specified threshold.While
the stability selection method aims at bypassing the difficulty of
finding a proper regularization parameter in high-dimensional
regressions, MDS is designed to stabilize DS and compensate
for the power loss due to sample splitting. Theoretically, the
stability selection method guarantees a finite-sample bound on
the number of false positives under certain conditions, whereas
MDS asymptotically controls the perhaps more delicate FDR.
Indeed, MDS requires a careful selection of the inclusion-rate
cutoff in order to achieve FDR control. In comparison, the
selection-probability cutoff of the stability selectionmethod can
be much less stringent. Furthermore, the two methods perturb
the data in different ways. For each regularization parameter, the
stability selection method obtains a collection of selection sets
using different subsamples of the data, whereasMDS always uses
the full data, but replicates DS with independent sample splits.

There is also some relevant literature on p-value aggregation
in high-dimensional settings. For example,Meinshausen,Meier,
and Bühlmann (2009) proposed to obtain a collection of p-
values via repeated sample splitting. The multiple p-values of
each feature are then aggregated by choosing a proper quantile
among them. Based upon that, BHq can be applied to control the
FDR. Empirically, we found that the resulting procedure is often
too conservative, with a near-zero FDR but also a suboptimal
power (see Section 4.1). For other related works, we refer the
readers to van de Wiel et al. (2009) and Romano and DiCiccio
(2019).

The choice of m. Since our empirical studies suggest that the
power of MDS monotonically increases with respect to m, it
is always harmless to try a larger m when the computational
budget permits. However, we never found it necessary to have
a very largem, and a relatively small number of DS replications
(say,m = 50) is typically good enough, after which the power of
MDS no longer improves much. See Figure 1 in supplementary
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materials and Figure 4 in Section 4.1 for empirical evidences
on the Normal means model and linear models, respectively.
For the Normal means model, Figure 2 shows that increasing
m from 400 to 10,000 leads to only slightly less noisy feature
rankings.

2.3. A Theoretical Study ofMDS for the NormalMeans

Model

We consider the Normal means model to gain some insights on
how MDS compensates for the power loss of DS due to sample
splitting. For i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, we assume that
Xij follows N(μj, 1) independently. To test whether μj is 0, the
p-value is given by pj = 2�(−|√nX̄j|), where X̄j = ∑n

i=1 Xij/n,
and � is the CDF of the standard Normal distribution.

For DS, we construct the mirror statistic Mj using X̄(1)
j and

X̄(2)
j , and select Ŝ, that is, reject the null hypotheses that μj’s are

0, following Algorithm 1. The proposition below holds for any
designated FDR control level q ∈ (0, 1) and for all three choices
of mirror statistics detailed in (2). For simplicity, we only prove
the case

Mj = |X̄(1)
j + X̄(2)

j | − |X̄(1)
j − X̄(2)

j |. (6)

Proposition 2.4. For any pair (i, j) and two arbitrary constants
0 < c < c′, as n → ∞, we have

P
(
Mi < Mj|c ≤ √

n(|X̄i| − |X̄j|
) ≤ c′) ≥ γ and

P(Ii < Ij|c ≤ √
n(|X̄i| − |X̄j|) ≤ c′) = op(1),

in which Ij is defined in (5) and γ > 0 is a constant depending
on c and c′.

Remark 2.2. The p-value pj is a monotonically decreasing func-
tion of the sufficient statistic |X̄j|. Proposition 2.4 shows that for
any pair μi and μj that have a fairly close separation between
their p-values pi and pj, that is, |X̄i| − |X̄j| = Op(1/

√
n), DS

ranks μi and μj differently from their p-values with a nonvan-
ishing probability, whereas MDS ranks them consistently with
their p-values with probability approaching one. Although Ij is
not analytically available, MDS approximates it by Îj as in (5).
Imagine a perfect knockoff procedure for this Normal means
problem, which ranksμj’s using the knockoff statistic |X̄j|−|X̄′

j |
with X̄′

j being the mean of n independent samples fromN(0, 1).
Based on the same argument, we can show that the knockoff
statistics also rankμi andμj differently from their p-values with
a nonvanishing probability if |X̄i| − |X̄j| = Op(1/

√
n).

To illustrate Proposition 2.4, we fix p = 800 and design
a small separation between p1 and p2 by setting p1 = 0.020,
p2 = 0.021. That is, we sample Xi1’s conditioning on X̄1 =
|�−1(0.01)/

√
n| and sample Xi2’s conditioning on X̄2 = X̄1 −

0.02/
√
n. For j ≥ 3, we set 20% ofμj’s to be nonzero, and sample

them independently from N(0, 0.52). We vary the sample size
n ∈ {50, 200, 500, 1000, 5000}, and estimate the swap probabil-
ity P(M1 ≤ M2) for DS and P(I1 ≤ I2) for MDS over 500
independent runs. For DS, we construct the mirror statistics
following (6). For MDS, we set the number of DS replications
to be m = 10n. The results in Figure 2 empirically validate

Proposition 2.4. The left panel shows that for MDS, the swap
probability P(I1 ≤ I2) gets very close to 0 when the sample
size is large enough (say, n ≥ 5000). However, for DS, the swap
probability P(M1 ≤ M2) remains approximately as a constant
(slightly below 0.5) as the sample size increases.

Proposition 2.4 implies that for the Normal means model,
when the sample size is reasonably large, the estimated inclusion
rates Îj and the p-values yield nearly the same rankings of μj’s
with high probability. To illustrate this, we consider a similar
simulation setting as above with the sample size n = 1000,
but without fixing X̄1 or X̄2. In the right panel of Figure 2,
we plot both the inclusion rates (blue “∗” and orange “+”) of
MDS and the mirror statistics of DS (gray “·”) against the p-
values. For MDS, the blue “∗” and the orange “+” refer to the
estimated inclusion rates based uponm = 10,000 andm = 400
DS replications, respectively. We see that the feature rankings
given by the inclusion rates are significantly less noisy compared
to that given by the mirror statistics, and the inclusion rate is
approximately a monotonically decreasing function of the p-
value. Thus, for this simple model, MDS almost recovers the
power loss of DS due to sample splitting since the p-values,
which are calculated using the full data, summarize all the
information relevant to the testing task. Figures 1 and 2 in
supplementary materials provide more empirical comparisons
between DS, MDS, and BHq across various signal strengths.

3. Specializations for Different Statistical Models

In this section, we discuss how to conduct DS and MDS for
linear and Gaussian graphical models, and identify verifiable
conditions for each class of models under which both the sym-
metry assumption and the weak dependence assumption (i.e.,
Assumptions 2.1 and 2.2) are satisfied. Throughout this section,
we split the data into two parts of equal size.

3.1. LinearModels

Suppose the data is generated from the model y = Xβ
 + ε,
where ε ∼ N(0, σ 2In). For simplicity, we focus on the random-
design scenario, in which each row of the design matrix X
follows a p-dimensional distributionwith a covariancematrix�

independently. Remark 3.1 comments on the fixed-design case.
In the context of feature selection, the goal is to identify the set
of the relevant features S1, that is, S1 = {j : β


j �= 0} (see
Proposition 2.2 in Candès et al. 2018).

We consider the following Lasso+OLS procedure: (a) apply
Lasso to the first half of the data (y(1),X(1)) to get the coefficient
estimate β̂

(1) and Ŝ(1) = {j : β̂
(1)
j �= 0}; (b) restricted to the set

of features in Ŝ(1), apply OLS to get the estimate β̂
(2) using the

second half of the data (y(2),X(2)).We then construct themirror
statistics by (1) using ̂β

(1)
and ̂β

(2)
.

If the sure screening property holds for Lasso, that is, all the
relevant features are selected in step (ai), then for any selected
null feature j ∈ S0 ∩ Ŝ(1), its OLS estimate β̂

(2)
j follows a Normal

distribution with mean zero conditioning on X(2). Thus, the
symmetry assumption is satisfied. Sufficient conditions for the
sure screening property of Lasso have been well established in
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Figure 2. Comparison of DS andMDS on the Normalmeansmodel. Given the two p-values p1, p2 with p1 < p2, the left panel plots the estimated swap probability, that is,
P(M1 < M2) for DS andP(I1 < I2) for MDS, against the sample size n. The right panel plots the inclusion rates of MDS and themirror statistics of DS against the p-values.
The detailed simulation settings can be found in Section 2.3.

the literature (see Remark 3.1). More generally, we may replace
Lasso by any other dimension reduction method as long as the
sure screening property holds with high probability. Further,
usingMehler’s identity (Kotz, Balakrishnan, and Johnson 2000),
we show that the weak dependence assumption holds with high
probability under the regularity condition and the tail condition
in Assumption 3.1.

Assumption 3.1.

1. (Signal strength condition) minj∈S1 |β

j | 
 √

p1 log p/n.
2. (Regularity condition) 1/c < λmin(�) ≤ λmax(�) < c for

some c > 0.
3. (Tail condition) X�−1/2 has independent sub-Gaussian

rows.
4. (Sparsity condition) p1 = o(n/ log p) and p1 → ∞.

Proposition 3.1. Consider both DS and MDS, of which the two
coefficient estimates β̂

(1) and β̂
(2) are constructed using the

Lasso+OLS procedure. For any nominal FDR level q ∈ (0, 1),
under Assumption 3.1, we have

lim sup
n,p→∞

FDR ≤ q and lim inf
n,p→∞ Power = 1

in the asymptotic regime where log p = o(nξ ) for some ξ ∈
(0, 1).

This result can be viewed as a consequence of Proposition 2.2
by conditioning on (y(1),X(1)) and restricting ourselves to Ŝ(1)

as the set of candidate features for consideration in DS. Under
Assumption 3.1, we can show that the number of the null
features in Ŝ(1) is of the same order as p1 and var(Mj) is doubly
bounded for j ∈ Ŝ(1). Furthermore, the selection cutoff τq may
diverge and we no longer assume the existence of tq > 0 as in
Proposition 2.2.

Remark 3.1. The sure screening property is implied by the signal
strength condition and the compatibility condition (VandeGeer
and Bühlmann 2009). It is also a crucial condition for high-
dimensional knockoff filters (Barber and Candès 2019; Fan et al.
2020) to achieve FDR control and have similar power guarantee.
The compatibility condition means that the sample covariance

matrix �̂ of features satisfies φ(�̂, p1) ≥ φ0 for some φ0 > 0,
in which φ(�̂, s0) is defined for any integer s0 ≥ 1 as

φ2(�̂, s0) = min|S|≤s0
min
θ∈Rp

{
θᵀ�̂θ

||θS||22
: θ ∈ Rp, ||θSc ||1 ≤ 3||θS||1

}
.

Unlike the model-X knockoff filter, the randomness of the
designmatrix is nonessential for DS andMDS, and FDR control
of DS in the fixed-design setting can be established similarly as
in Xing, Zhao, and Liu (2021). For the random-design case,
by Theorem 2.4 in Javanmard and Montanari (2014), if the
regularity condition and the tail condition in Assumption 3.1
hold, the compatibility condition holds with high probability
for n ≥ cp1 log(p/p1). With a properly chosen regularization
parameter, the Lasso coefficient estimate β̂ satisfies

||̂β − β
||2 = Op(
√
p1 log p/n).

Combined with the signal strength condition, we see that the
sure screening property holds with probability approaching one.

Besides Proposition 3.1, more detailed power analyses of
DS and MDS are still unknown. In contrast, some theoretical
studies on the power of the knockoff filter have appeared. For
example, Fan et al. (2020) showed that, under a similar signal
strength condition, that is, minj∈S1 |β


j | 
 √
log p/n, and when

features follow a multivariate Normal distribution with known
covariance matrix, the model-X knockoff filter has asymptotic
power one. When the feature covariance matrix is unknown,
they proposed a modified knockoff procedure based on data
splitting and show that the procedure also has asymptotic power
one if the sure screening property holds. In a different asymptotic
regime where both n/p and p1/p converge to some fixed con-
stants, the power analysis has been carried out in the settingwith
iid Gaussian features (e.g., see Weinstein, Barber, and Candès
2017 for the “counting”-knockoffs, and see Weinstein et al.
(2020) and Wang and Janson (2020) for the model-X knockoff
filter and the conditional randomization test). For correlated
designs, Liu and Rigollet (2019) provided some explicit condi-
tions underwhich the knockofffilter enjoys FDRzero andpower
one asymptotically. Under the weak-and-rare signal setting, Ke,
Liu, and Ma (2020) analyzed both the knockoff filter and the
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Gaussianmirrormethod for some special covariance structures,
identifying key components that influence the power of these
methods.

Compared to BHq, a main advantage of DS and MDS is
that they do not require p-values, which are difficult to obtain
for high-dimensional problems. Notablemethods for construct-
ing valid p-values include the post-selection inference and the
debiased Lasso procedure. Conditioning on the selected model,
the post-selection inference derives the exact sampling distri-
bution of the coefficient estimates. Details have been worked
out for several popular selection methods such as Lasso (Lee
et al. 2016), the forward stepwise regression, and the least angle
regression (Tibshirani et al. 2016). However, this type of theory
is mostly developed case by case, and cannot be easily general-
ized to other selection methods. The debiased Lasso procedure
removes the biases in the Lasso coefficient estimates so that
they enjoy asymptotic Normality under certain conditions (Van
de Geer et al. 2014; Zhang and Zhang 2014; Javanmard and
Montanari 2014). In particular, Javanmard and Javadi (2019)
applies BHq to the p-values obtained via the debiased Lasso
procedure for controlling the FDR. However, BHq may still
perform poorly using the p-values obtained via these meth-
ods. For the post-selection inference, the transformation that
converts the coefficient estimates to the p-values may seriously
weaken the signal strength. For the debiased-Lasso procedure,
the asymptotic null p-values may still be highly nonuniform in
finite-sample cases (Dezeure et al. 2015; Candès et al. 2018). To
avoid using p-values directly, several authors suggested selecting
a proper penalty in penalized regressions based upon the p-value
cutoff in order to achieve FDR control. We refer the readers
to Benjamini and Gavrilov (2009) and Bogdan et al. (2015) for
more details.

We conclude this section by briefly commenting on how to
use DS and MDS in the low-dimensional setting with n/p →
∞. For (y(1),X(1)), on a case-by-case basis, we can choose any
sensible method (e.g., OLS, Lasso, ridge, or other regularization
methods) to obtain the coefficients ̂β

(1)
. For (y(2),X(2)), we run

OLS using all features to obtain the coefficients ̂β
(2)
. The sym-

metry assumption is automatically satisfied since the model in
theOLS step is well specified. Theweak dependence assumption
still holds under the regularity condition and the tail condition
in Assumption 3.1. Therefore, similar to Proposition 3.1, we can
show thatDS asymptotically controls the FDRwithout requiring
the signal strength and the sparsity conditions. Note that in
the low-dimensional setting, the Lasso+OLS procedure is also
applicable as long as Assumption 3.1 is satisfied, and may still
be a favorable option if both n, p are large and the relevant
features are sparse. In particular, in the asymptotic regimewhere
p/n → c ∈ (0, 1/2), it can be problematic to directly runOLSon
(y(2),X(2))with all features since the resulting estimate ̂β

(2)
may

be unstable and/or its covariancematrixmay be ill-conditioned.

3.2. Gaussian Graphical Models

SupposeX = (X1, . . . ,Xp) follows a p-dimensional multivariate
Normal distribution N(μ,�). Denote � = �−1 = (λij) as the
precision matrix. Without loss of generality, we assume μ =
0. One can define a corresponding Gaussian graphical model

(V ,E), in which the set of vertices is V = (X1, . . . ,Xp), and
there is an edge between two different verticesXi andXj ifXi and
Xj are conditionally dependent given {Xk, k �= i, j}. The graph
estimation can be recast as a nodewise regression problem. To
see this, for each vertex Xj, we can write

Xj = Xᵀ
−jβ

j + εj with β j = −λ−1
jj �−j,j,

where εj, independent of X−j, follows a Normal distribution
with mean zero. Thus, λij = 0 implies that Xi and Xj are
conditionally independent. Denote the neighborhood of vertex
Xj as nej = {k : k �= j, β

j
k �= 0}. Given iid samples X1, . . . ,Xn

from N(μ,�), it is natural to consider first recovering the
support of each β j using a feature selection method such as
Lasso (Meinshausen and Bühlmann 2006), and then combining
all the nodewise selection results properly to estimate the graph.
In view of this, for a nominal FDR level q ∈ (0, 1), we propose
an FDR control procedure as summarized in Algorithm 3.

Algorithm 3 False discovery rate control for Gaussian graphical
models via a single data split.
1. Targeting at the level q/2, apply the Lasso+OLS procedure

(see Section 3.1) to each nodewise regression. Let the node-
wise selection results be n̂ej = {k : k �= j, β̂

j
k �= 0} for

j ∈ {1, . . . , p}.
2. Combine the nodewise selection results using the OR rule to

estimate the graph:

ÊOR = {(i, j) : i ∈ n̂ej or j ∈ n̂ei}.

A heuristic justification of the proposed method is given
below:

FDP = #{(i,j)∈ÊOR,(i,j)/∈E}
|̂EOR|∨1 ≤

∑p
j=1 #{i/∈nej,i∈n̂ej}

1
2

∑p
j=1 #{i∈n̂ej}∨1

=
∑p

j=1 #{i/∈nej,Mji>τ
j
q/2}

1
2

∑p
j=1 #{Mji>τ

j
q/2}∨1

≈
∑p

j=1 #{i/∈nej,Mji<−τ
j
q/2}

1
2

∑p
j=1 #{Mji>τ

j
q/2}∨1

≤ 2max1≤j≤p
#{i/∈nej,Mji<−τ

j
q/2}

#{Mji>τ
j
q/2}∨1

≤ q.

(7)

For the jth nodewise regression,Mji is the mirror statistic of Xi,
i �= j, and τ

j
q/2 is the selection cutoff of the mirror statistics.

The first inequality in (7) is based on the fact that each edge
can be selected at most twice. The approximation in the middle
uses the symmetry property of the mirror statistics. The second
to last inequality follows from the elementary inequality that(∑

n an
)
/
(∑

n bn
) ≤ maxn an/bn for an ≥ 0, bn > 0.

There are two possible strategies to implement MDS for
Gaussian graphical models: (a) apply MDS in each nodewise
regression (Step 1 in Algorithm 3) and then aggregate the selec-
tion results using the OR rule; (b) replicate the whole procedure
in Algorithm 3 (both Steps 1 and 2) multiple times and then
aggregate the selection results usingMDS. Empirically we found
that both strategies achieve FDR control, and the first one tends
to have a higher power. Throughout, we focus on the first
strategy for MDS.
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Let s = maxj∈{1,...,p} |nej|. To theoretically justify our meth-
ods, we first show that with probability approaching one, the
symmetry assumption is simultaneously satisfied in all node-
wise regressions under the following assumptions.

Assumption 3.2.

1. (Regularity condition) c ≤ λmin(�) ≤ λmax(�) ≤ 1/c for
some c > 0.

2. (Sparsity condition) s = o(n/ log p).
3. (Signal strength condition) min{|λij| : λij �= 0} 
√

s log p/n.

Assumption 3.2 serves the same purpose as Assumption 3.1
for linear models (e.g., ensure that the sure screening prop-
erty holds simultaneously in all nodewise regressions; see
Remark 3.1). Similar assumptions also appear in Liu (2013) and
Meinshausen and Bühlmann (2006). Under Assumption 3.2, we
have the following proposition.

Proposition 3.2. Under Assumption 3.2, as n, p → ∞ satisfying
log p = o(n), the symmetry assumption (Assumption 2.1) is
simultaneously satisfied in all nodewise regressions with proba-
bility approaching one.

Similar to linear models, the weak dependence assumption
is implied by the regularity condition in Assumption 3.2. The
following proposition shows the asymptotic FDR control of DS
and MDS.

Proposition 3.3. Assume that Assumption 3.2 holds and that
minj∈{1,...,p} |nej|/ log p → ∞. For any nominal FDR level q ∈
(0, 1), both DS (see Algorithm 3) and MDS achieve

lim sup
n,p→∞

FDR ≤ q and lim inf
n,p→∞ Power = 1

in the asymptotic regime where log p = o(nξ ) for some ξ ∈
(0, 1).

Assumption minj∈{1,...,p} |nej|/ log p → ∞ is a technical one
to ensure that a union bound can be applied for all nodewise
regressions. Empirically, we find that the data-splitting methods
and the GFC method proposed in Liu (2013) are effective in
quite different scenarios. GFC tends to work well if the underly-
ing true graph is ultra-sparse, that is, the nodewise sparsity is in
the order of o(

√
n/(log p)3/2). In contrast, DS andMDSperform

superbly when the graph is not too sparse. A similar issue also
exists in the knockoff-based methods, and we refer the readers
to Li and Maathuis (2019) for relevant discussions.

4. Numerical Illustrations

4.1. LinearModel

We simulate the response vector y from the linear model y =
Xβ
 + ε with ε ∼ N(0, In), and randomly locate the signal
index set S1. For j ∈ S1, we sample β


j from N(0, δ
√
log p/n),

and refer to δ as the signal strength. Throughout, the designated
FDR control level is set to be q = 0.1 and each dot in the
figure represents the average from 200 independent runs. The

penalization parameter of Lasso is selected based on 10-fold
cross-validation.

We first investigate the performance of DS and MDS using
different mirror statistics constructed with f1, f2, f3 specified in
(2). Each row of the design matrix is independently drawn from
N(0,�). We consider a similar setup as in Ma, Cai, and Li
(2020), where � is a blockwise diagonal matrix of 10 Toeplitz
submatrices whose off-diagonal entries linearly descend from ρ

to 0. The detailed formula of� is given in (18) in supplementary
materials, and we refer to it as the Toeplitz covariance matrix
throughout.We vary the correlation ρ and the signal strength δ,
and the results are summarized in Figure 3. All three choices of
mirror statistics achieve FDR control, and f3 yields the highest
power. Proposition 2.1 shows that f3 is optimal for orthogonal
designs, and the empirical results suggest that f3 might also be an
optimal choice inmore realistic settings. For comparisons under
other design matrices, please see Figure 6 in supplementary
materials. Among all the simulation studies described below, we
construct the mirror statistic with f3. Note that the performance
of MDS appears to be more robust to the choice of mirror
statistic than that of DS (see Figures 5 and 7 in supplementary
materials).

We then examine the impact of the number ofDS replications
m on the power of MDS. With n = 500, p = 500, and
p1 = 50, we generate features as in the previous simulation.
We set the signal strength δ = 3 and test out two scenarios
with the correlation ρ = 0.0 and ρ = 0.8. Figure 4 shows that
the power of MDS monotonically increases with the number of
DS replications m, and becomes relatively stable after m ≥ 50
(also see Figure 8 in supplementary materials for results under
other design matrices). This suggests that only a small number
of DS replications are required to realize the full potential of
MDS. Thus, MDS is computationally more feasible for large
datasets compared to other methods such as the knockoff filter
and the Gaussian mirror method. In the following examples, we
setm = 50 for MDS.

We proceed to compare DS and MDS with two popular
methods in high-dimensional regressions under various design
matrices: MBHq (Meinshausen, Meier, and Bühlmann 2009)
and the model-X knockoff filter (Candès et al. 2018). For their
comparisons in low-dimensional settings, we refer the readers
to Figures 9 and 10 in supplementary materials. For MBHq, we
obtain 50 p-values for each feature via repeated sample splitting.
More precisely, we run Lasso for feature screening on one half of
the data, and calculate the p-values for the selected features by
running OLS on the other half of the data. We then combine the
p-values across different sample splits using the R package hdi.1
For the knockoff filter, we use the equi-correlated knockoffs, in
which the covariance matrix of features is estimated using the R
package knockoff.2 For all the simulation settings in Section 4.1,
we empirically found that the equi-correlated knockoffs yields a
higher power compared to the default asdp construction.

1. Normal design matrices.With n = 800, p ∈ {1000, 2000} and
p1 = 50, we generate features independently from N(0,�)

with � being a Toeplitz covariance matrix. We compare

1https://cran.r-project.org/web/packages/hdi/hdi.pdf
2https://cran.r-project.org/web/packages/knockoff/index.html
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Figure 3. Empirical FDRs and powers of DS under three constructions of the mirror statistics as specified by f1, f2, and f3 in (2). The number of the relevant features is
p1 = 50. Left panel: Signal strength δ = 5. Right panel: Correlation ρ = 0.4.

Figure 4. Empirical powers ofMDSwith different number of DS replications. The sample size is n = 500, the number of features is p = 500, and the number of the relevant
features is p1 = 50. The blue dots and the red lines represent the average powers of MDS and DS over 200 independent runs, respectively.

the performances of the competing methods under differ-
ent correlations ρ and signal strengths δ. The results for
p = 2000 are summarized in Figure 5, and the results for
p = 1000 are summarized in Figure 3 in supplementary
materials. The FDRs of all the fourmethods are under control
across different settings. In terms of power, the knockoff
filter and MDS are the two leading methods. MDS appears
more powerful when features are more correlated, or when
the signal strength is relatively weak, whereas the knock-
off filter enjoys a higher power in the opposite regimes.
We observed that MDS is more robust to highly correlated
design matrices compared to the knockoff filter. Figure 4 in
Supplementary Materials report the performances of these
methods in cases where� has a constant pairwise correlation
ρ, and the knockoff filter is significantly less powerful than
MDS when ρ ≥ 0.4. The simulation results also suggest
that MDS yields better rankings of features compared to
DS, thus, enjoys simultaneously a lower FDR and a higher
power.

2. Nonnormal design matrices. When the joint distribution of
the features is unknown and nonnormal, the performance
of the knockoff filter is not guaranteed if the knockoffs are
generated based on a naive fit of the multivariate Normal
distribution to the features. We here illustrate the robustness
of DS and MDS with respect to nonnormality by consider-
ing the following two design matrices: (a) a mixture of two
Gaussians centered at 0.5 × 1p and −0.5 × 1p, respectively;
(b) a centered multivariate t-distribution with 3 degrees of
freedom. Throughout, the covariance matrix � is set to be
a Toeplitz matrix. Note that in both scenarios, the marginal
distribution of each feature is still unimodal, and does not
differ much from the Normal distribution in appearance.
We fix n = 800, p = 2000, p1 = 70, and test out
different correlations ρ and signal strengths δ. The results are
summarized in Figure 6. Because of the model misspecifica-
tion in the knockoff construction, the knockoff filter appears
over conservative when features follow a Gaussian mixture
distribution, and loses FDR control when features follow a t-
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Figure 5. Empirical FDRs and powers for linear models with Normal design matrices. The number of relevant features is p1 = 50. Left panel: Signal strength δ = 5. Right
panel: Correlation ρ = 0.5.

Figure6. Empirical FDRs andpowers for linearmodelswith nonnormal designmatrices. Thenumber of relevant features isp1 = 70. Left panel: A two-componentGaussian
mixture design with signal strength δ = 8. Right panel: A multivariate t-distribution design with correlation ρ = 0.5.

distribution. The latter is perhaps a more concerning issue in
the context of controlled feature selection, although the per-
formance of the knockoff filter can be potentially improved
by carefully modeling the joint distribution of features based
on some structural assumptions (e.g., see Sesia, Sabatti, and
Candès 2018). In comparison, MDS maintains FDR control
and enjoys a reasonably high power in both scenarios. We
also note that, except being overly conservative, MBHq per-
forms quite competitively in all settings.

3. Real-data design matrices. We consider using the scRNAseq
data in Hoffman et al. (2020) as the design matrix. A total of
400 T47D A1–2 human breast cancer cells were treated with
100 nM synthetic glucocorticoid dexamethasone (Dex). A
scRNASeq experiment was performed after 18 hr of the Dex
treatment, leading to a total of 400 samples of gene expres-

sions for the treatment group. For the control group, there
are 400 vehicle-treated control cells. A scRNAseq experiment
was performed at the 18 hr timepoint to obtain the corre-
sponding profile of gene expressions. After proper normal-
ization, the final scRNAseq dataset3 contains 800 samples,
each with 32,049 gene expressions. To further reduce the
dimensionality, we first screen out the genes detected in fewer
than 10% of cells, and then pick up the top p most variable
genes following Hoffman et al. (2020). We fix p1 = 70,
and simulate the response vector y with various p and signal
strengths. The results are summarized in Figure 7. We see
that all themethods achieve FDR control, amongwhichMDS

3The data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE141834.
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Figure 7. Empirical FDRs and powers for linear models with a design matrix generated based on a scRNAseq dataset. The sample size is n = 800, and the number of the
relevant features is p1 = 70. The signal strength is scaled by 1/

√
n. Left panel: signal strength δ = 9. Right panel: dimension p = 1200.

enjoys the highest power. The knockoff filter appears to be
conservative (with its FDR significantly below the nominal
level 0.1), likely due to the fact that the joint distribution of
gene expressions is nonnormal, resulting in a misspecified
construction of the knockoffs.

We conclude this section with some remarks on the variance
of the FDP. Note that DS and the knockoff filter rank features
using themirror statisticsMj’s and the statisticsWj’s (see Section
3.2 in Candès et al. 2018), respectively. The statistic Wj enjoys
a flip-sign property, that is, the signs of Wj’s for j ∈ S0 are
independent, thus, the FDP of the knockoff filter fluctuates and
concentrates around the FDR. For DS, the signs of the mirror
statistics Mj’s for j ∈ S0 are correlated so the variance of the
FDP can be a more concerning issue. FDR control becomes less
meaningful if the variance is unacceptably large. We empirically
check the variances of the FDP for the four competing methods
across the aforementioned simulation settings. The results are
summarized in Figures 11, 12, 13, and 14 in supplementary
materials.Weobserve that, except for the caseswhere the knock-
off filter appears overly conservative (e.g., Figure 12), the vari-
ances of the FDP are comparable for DS and the knockoff filter.
More interestingly, perhaps due to its derandomized nature,
MDS achieves a lower variance of the FDP than the knockoff
filter in a majority of simulation settings.

4.2. Gaussian Graphical Model

We set the designated FDR control level at q = 0.2 throughout
and each dot in the figure represents the average from 200
independent runs. We consider two types of graphs:

1. Banded graph. Precision matrix � satisfies λjj = 1, λij =
sign(a) · |a||i−j|/c if 0 < |i − j| ≤ s, and λij = 0 if
|i − j| > s. Throughout, we set c = 1.5 following Li and
Maathuis (2019). Other parameters including the sample size
n, the dimension p, the partial correlation (signal strength) a,
and the nodewise sparsity s will be specified case by case.

2. Blockwise diagonal graph. The precision matrix � is block-
wise diagonal with equally sized squared blocks generated in
the same fashion. Throughout, we fix the block size to be 25
× 25. In each block, all the diagonal elements are set to be 1,
and the off-diagonal elements are independently drawn from
the uniform distribution Unif((−0.8,−0.4) ∪ (0.4, 0.8)).

The precision matrix � generated from the aforementioned
procedures may not be positive definite. If λmin(�) < 0, we
reset� ← �+(λmin(�)+0.005)Ip following Liu (2013). Three
classes of competing methods are tested out, including (a) DS
and MDS; (b) BHq; (c) GFC (Liu 2013). For MDS, nodewisely,
we replicate DS 50 times and aggregate the selection results
using Algorithm 2. For BHq, the p-values are calculated based
on the pairwise partial correlation test using the R package ppcor
(Kim 2015). For GFC, we use the R package SILGGM (Zhang,
Ren, and Chen 2018) to implement it.

For the banded graph, we test out the following four scenar-
ios:

(a) fix p = 100, s = 8, a = −0.6, and vary the sample size
n ∈ {500, 1000, 1500, 2000, 2500};

(b) fix n = 1000, s = 8, a = −0.6, and vary the dimension
p ∈ {50, 100, 150, 200, 250};

(c) fix n = 1000, p = 100, a = −0.6, and vary the nodewise
sparsity s ∈ {4, 6, 8, 10, 12};

(d) fix n = 1000, p = 100, s = 8, and vary the signal strength
a ∈ {−0.5,−0.6,−0.7,−0.8,−0.9}.

For the blockwise diagonal graph, we test out the following two
scenarios:

(a) fix p = 100, and vary the sample size n ∈ {200, 300, 400,
500, 600};

(b) fix n = 500, and vary the dimension p ∈ {50, 100, 150,
200, 250}.
Results for the banded graphs and the blockwise diagonal

graphs are summarized in Figures 8 and 9, respectively. We see
that all the methods achieve FDR control at the designated level
across different scenarios. For the banded graphs, DS and MDS
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Figure 8. Empirical FDRs and powers for the banded graphs. (a) dimension p = 100, sparsity s = 8, signal strength a = −0.6, and varying sample size n; (b) n = 1000, s =
8, a = −0.6, and varying dimension p; (c) n = 1000, p = 100, a = −0.6, and varying sparsity s; (d) n = 1000, p = 100, s = 8, and varying signal strength a.

are the two leading methods with significantly higher powers
and also lower FDRs compared to the other two competing
methods. GFC and BHq perform similarly, and GFC has a
slightly higher power when p is large or the signal strength is
strong. In panel (d) of Figure 8, the power of BHq exhibits
an opposite trend compared to the other methods. One possi-
ble reason is that the pairwise correlation decreases when we
increase a from−0.9 to−0.5. Thus, the power of BHq increases
as the p-values become less correlated. For the blockwise diago-
nal graphs,MDS performs the best across all scenarios, enjoying
a higher power and also a lower FDR compared to DS. GFC
performs similarly as DS in most scenarios.

4.3. Real Data Application: HIV Drug Resistance

We apply DS and MDS to detect mutations in the Human
Immunodeficiency Virus Type 1 (HIV-1) that are associated
with drug resistance. The dataset, which has also been ana-
lyzed in Rhee et al. (2006), Barber and Candès (2015), and Lu

et al. (2018), contains resistance measurements of seven drugs
for protease inhibitors (PIs), six drugs for nucleoside reverse-
transcriptase inhibitors (NRTIs), and three drugs for nonnucle-
oside reverse transcriptase inhibitors (NNRTIs). We focus on
the first two classes of inhibitors, PI and NRTI.

The response vector y records the log-fold-increase of the
lab-tested drug resistance. The design matrix X is binary, in
which the jth column indicates the presence or absence of the
jth mutation. The task is to select relevant mutations for each
inhibitor against different drugs. The data is preprocessed as fol-
lows. First, we remove the patients with missing drug resistance
information. Second, we exclude those mutations that appear
fewer than three times across all patients. The sample size n and
the number of mutations p vary from drug to drug, but are all in
hundreds with n/p ranging from1.5 to 4 (see Figures 10 and 11).
We assume a linear model between the response and features
with no interactions.

Five methods are compared, including DeepPINK with the
model-X knockoff (Lu et al. 2018), the fixed-design knockoff
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Figure 9. Empirical FDRs and powers for the blockwise diagonal graphs with the block size fixed at 25 × 25. In each block, the diagonal elements are equal to 1, and the
off-diagonal elements are independently drawn from Unif((−0.8,−0.4) ∪ (0.4, 0.8)). (a) dimension p = 100 and varying sample size n; (b) n = 500 and varying p.

Figure 10. Numbers of the discovered mutations for the seven PI drugs. The gray and orange bars represent the numbers of true and false positives, respectively. The
designated FDR control level is q = 0.2.

filter (Barber and Candès 2015), BHq, DS, andMDS. For Deep-
PINK, the knockoff filter, and BHq, we report the selection
results obtained in Lu et al. (2018). The designated FDR control
level is q = 0.2 throughout. As in Barber and Candès (2015),
we treat the existing treatment-selected mutation (TSM) panels
(Rhee et al. 2005) as the ground truth.

For PI, the number of discovered mutations for each
drug, including the number of true and false positives, are
summarized in Figure 10. We see that MDS performs the
best for three out of seven PI drugs, including ATV, LPV and
SQV. For drugs APV, IDV, and RTV, MDS is comparable to

DeepPINK, and both perform better than the knockoff filter
and BHq. For drug NFV, the knockoff filter and MDS are
the two leading methods. Figure 11 shows the corresponding
results for the NRTI drugs. Among the six NRTI drugs, MDS
performs the best in four, including ABC, D4T, DDI, and X3TC.
For drug AZT, the knockoff filter and MDS both perform
the best. For drug TDF, MDS is comparable to DeepPINK,
and both are much better than BHq and the knockoff filter.
In particular, we see that the knockoff filter has no power
and does not select any mutation for drugs DDI, TDF, and
X3TC.
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Figure 11. Numbers of the discovered mutations for the six NRTI drugs. The gray and orange bars represent the numbers of true and false positives, respectively. The
designated FDR control level is q = 0.2.

5. Concluding Remarks

We have described a data-splitting framework for FDR control
in high-dimensional regression problems.We demonstrate both
theoretically and empirically that the proposed approaches (DS
and MDS) allow us to asymptotically control the FDR in linear
and Gaussian graphical models under mild conditions. MDS
is shown to be particularly attractive as it helps stabilize the
selection result and improves the power. Both DS and MDS
require no prior knowledge on the joint distribution of features,
and are conceptually simple and easy to implement.

Several directions for further developments are worthwhile
to consider. For linear models, it is useful to extend the
Lasso+OLS procedure for features with certain group structure.
A natural strategy is to replace Lasso by the group Lasso (Yuan
and Lin 2006). However, the group Lasso can potentially select
more than n features (n is the sample size). Thus, the companion
OLS step, which guarantees the symmetry assumption, may
not be directly applied. It is also of interest to investigate the
applicability and theoretical properties of DS and MDS for
dealing with neural networks and other nonlinear models
in view of more complex data such as images and natural
languages. Last but not the least, extensions of the FDR control
framework to handle data containing dependent observations
(such as time series) or having hierarchical structures are of
immediate interest.
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Q3

Acknowledgments

We thank Lucas Janson, Wenshuo Wang, Dongming Huang, and two
referees for many helpful comments and constructive suggestions.

Funding

This research is supported in part by the National Science Foundation
grants DMS-1903139, DMS-2015411 and DMS-2124535.

References

Barber, R. F., andCandès, E. J. (2015), “Controlling the FalseDiscovery Rate
via Knockoffs,” The Annals of Statistics, 43, 2055–2085. [2,4,14,15]

(2019), “A Knockoff Filter for High-Dimensional Selective Infer-
ence,” The Annals of Statistics, 47, 2504–2537. [2,8]

Barber, R. F., Candès, E. J., and Samworth, R. J. (2020), “Robust Inference
with Knockoffs,” The Annals of Statistics, 48, 1409–1431. [2]

Bates, S., Candés, E. J., Janson, L., and Wang, W. (2020), “Metropolized
Knockoff Sampling,” Journal of the American Statistical Association, 116,
1413–1427. [2]

Benjamini, Y., and Gavrilov, Y. (2009), “A Simple Forward Selection Pro-
cedure Based on False Discovery Rate Control,” The Annals of Applied
Statistics, 3, 179–198. [9]

Benjamini, Y., and Hochberg, Y. (1995), “Controlling the False Discovery
Rate: A Practical and Powerful Approach toMultiple Testing,” Journal of
the Royal Statistical Society, Series B, 57, 289–300. [1,2]

Benjamini, Y., and Yekutieli, D. (2001), “The Control of the False Discovery
Rate inMultiple TestingUnderDependency,”TheAnnals of Statistics, 29,
1165–1188. [1]

Berk, R., Brown, L., Buja, A., Zhang, K., and Zhao, L. (2013), “Valid ‘Post-
selection Inference,” The Annals of Statistics, 41, 802–837. [2]

Bogdan, M., Berg, E., Sabatti, C., Su, W., and Candès, E. J. (2015), “Slope—
Adaptive Variable Selection via Convex Optimization,” The Annals of
Applied Statistics, 9, 1103–1150. [9]



1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941

1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 17

Candès, E. J., Fan, Y., Janson, L., and Lv, J. (2018), “Panning for Gold:
‘model-X’ Knockoffs for High Dimensional Controlled Variable Selec-
tion,” Journal of the Royal Statistical Society, Series B, 80, 551–577.
[2,3,4,7,9,10,13]

Clarke, S., and Hall, P. (2009), “Robustness of Multiple Testing Procedures
Against Dependence,” The Annals of Statistics, 37, 332–358. [1]

Cox, D. R. (1975), “A Note on Data-Splitting for the Evaluation of Signifi-
cance Levels,” Biometrika, 62, 441–444. [2]

Dai, C., Lin, B., Xing, X., and Liu, J. S. (2020), “A Scale-Free Approach
for False Discovery Rate Control in Generalized Linear Models,” arXiv
preprint: 2007.01237. [5]

Dezeure, R., Bühlmann, P., Meier, L., and Meinshausen, N. (2015), “High-
Dimensional Inference: Confidence Intervals, p-values and R-software
hdi,” Statistical Science, 30, 533–558. [9]

Donoho, D., and Jin, J. (2004), “Higher Criticism for Detecting Sparse
Heterogeneous Mixtures,” The Annals of Statistics, 32, 962–994. [4]

Efron, B. (2005), “Local False Discovery Rates,” Technical report. [2]
Efron, B., Tibshirani, R., Storey, J. D., and Tusher, V. (2001), “Empirical

Bayes Analysis of a Microarray Experiment,” Journal of the American
Statistical Association, 96, 1151–1160. [2]

Efroymson, M. (1960), “Multiple Regression Analysis,” in Mathematical
Methods for Digital Computers, eds. A. Ralston and H. S. Wilf, pp. 191–
203, New York: Wiley. [1]

Fan, Y., Demirkaya, E., Li, G., and Lv, J. (2020), “Rank: Large-Scale Inference
with Graphical Nonlinear Knockoffs,” Journal of the American Statistical
Association, 115, 362–379. [8]

Hoffman, J. A., Papas, B. N., Trotter, K. W., and Archer, T. K. (2020),
“Single-Cell RNA Sequencing Reveals a Heterogeneous Response to
Glucocorticoids in Breast Cancer Cells,” Communications Biology, 3, 1–
11. [12]

Huang, D., and Janson, L. (2020), “Relaxing the Assumptions of Knockoffs
by Conditioning,” The Annals of Statistics, 48, 3021–3042. [2]

Ignatiadis, N., Klaus, B., Zaugg, J. B., and Huber, W. (2016), “Data-Driven
Hypothesis Weighting Increases Detection Power in Genome-Scale
Multiple Testing,” Nature Methods, 13, 577–580. [2]

Javanmard, A., and Javadi, H. (2019), “False Discovery Rate Control via
Debiased Lasso,” Electronic Journal of Statistics, 13, 1212–1253. [9]

Javanmard, A., and Montanari, A. (2014), “Confidence Intervals and
Hypothesis Testing for High-Dimensional Regression,” The Journal of
Machine Learning Research, 15, 2869–2909. [5,8,9]

Jordon, J., Yoon, J., and Schaar, M. V. D. (2019), “KnockoffGAN: Gen-
erating Knockoffs for Feature Selection Using Generative Adversarial
Networks,” in The International Conference on Learning Representations.
[2]

Katsevich, E., and Sabatti, C. (2019), “Multilayer Knockoff Filter: Con-
trolled Variable Selection atMultiple Resolutions,”The Annals of Applied
Statistics, 13, 1–33. [2]

Ke, Z. T., Liu, J. S., and Ma, Y. (2020), “Power of FDR Control Methods:
The Impact of Ranking Algorithm, Tampered Design, and Symmetric
Statistic,” arXiv preprint: 2010.08132. [4,8]

Kim, S. (2015), “ppcor: an R Package for a Fast Calculation to Semi-partial
Correlation Coefficients,” Communications for Statistical Applications
and Methods, 22, 665–674. [13]

Kotz, S., Balakrishnan, N., and Johnson, N. L. (2000), “Bivariate and
TrivariateNormalDistributions,”ContinuousMultivariate Distributions,
1, 251–348. [8]

Lauritzen, S. L. (1996), “Graphical Models.” [3]Q4
Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. (2016), “Exact Post-selection

Inference, with Application to the Lasso,” The Annals of Statistics, 44,
907–927. [2,9]

Li, J., and Maathuis, M. H. (2019), “Nodewise Knockoffs: False Dis-
covery Rate Control for Gaussian Graphical Models,” arXiv preprint:
1908.11611. [10,13]

Liu, J., and Rigollet, P. (2019), “Power Analysis of Knockoff Filters for Cor-
related Designs,” in Advances in Neural Information Processing Systems
32, 15446–15455. [8]

Liu,W. (2013), “GaussianGraphicalModel Estimationwith FalseDiscovery
Rate Control,” The Annals of Statistics, 41, 2948–2978. [10,13]

Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2014), “A
Significance Test for the Lasso,” The Annals of Statistics, 42, 413–468. [2]

Lu, Y., Fan, Y., Lv, J., and Noble, W. S. (2018), “DeepPINK: Reproducible
Feature Selection in Deep Neural Networks,” in Advances in Neural
Information Processing Systems, 8676–8686. [2,14,15]

Ma, R., Cai, T. T., and Li, H. (2020), “Global and Simultaneous Hypothesis
Testing for High-Dimensional Logistic Regression Models,” Journal of
the American Statistical Association, 116, 984–998. [10]

Meinshausen, N., and Bühlmann, P. (2006), “High-Dimensional Graphs
andVariable Selection with the Lasso,” The Annals of Statistics, 34, 1436–
1462. [3,9,10]

(2010), “Stability Selection,” Journal of the Royal Statistical Society,
Series B, 72, 417–473. [3,6]

Meinshausen, N., Meier, L., and Bühlmann, P. (2009), “p-values for High-
Dimensional Regression,” Journal of the American Statistical Association,
104, 1671–1681. [2,6,10]

Moran, P. A. P. (1973), “Dividing a Sample Into Two Parts a Statistical
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