
Testing Model Utility for Single Index
Models Under High Dimension

Qian Lin, Zhigen Zhao, and Jun S. Liu

1 Introduction

Testing whether a quantitative response is dependent/independent of a subset of
covariates is one of the central problems in statistical analyses. Most existing
literature focuses on linear relationships. For instance, Arias-Castro et al. (2011b)
considered the linear model

y = Xβ + ε, (1)
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where ε ∼ N(0, σ 2I), to test whether all the βi’s are zero. This can be formulated
as the following null and alternative hypotheses:{

H0 : β1 = . . . = βp = 0

Hs,r : β ∈ �s(r) � {β ∈ R
p
s | ‖β‖2

2 ≥ r2} (2)

where R
p
s denotes the set of s-sparse vector in R

p with the number of nonzero
entries being no greater than s. Arias-Castro et al. (2011b) and Ingster et al. (2010)

showed that one can detect the signal if and only if r2 � s log(p)
n

∧ p1/2

n
∧ 1√

n
. The

upper bound is guaranteed by an asymptotically most powerful test based on higher
criticism (Donoho and Jin, 2004).

The linearity or other functional form assumption is often too restrictive in prac-
tice. Theoretical and methodological developments beyond parametric models are
important, urgent, and extremely challenging. As a first step toward nonparametric
testing of the independence, we here study the single index model y = f (βτx, ε),
where f (·) is an unknown function. Our goal is to test the global null hypothesis
that all the βi’s are zero. The first challenge is to find an appropriate formulation
of alternative hypotheses because ‖β‖2

2 used in (2) is not even identifiable in single
index models.

When rank(var(E[x | y])) is nonzero in a single index model, the unique
nonzero eigenvalue λ of var(E[x | y]) can be viewed as the generalized signal-
to-noise ratio (gSNR) (Lin et al., 2019). In Sect. 2, we show that for the linear
regression model, this λ is almost proportional to ‖β‖2 when it is small. The
alternative hypotheses in (2) can be rewritten as gSNR > r2. Because of this
connection, we can treat λ as the separation quantity for the single index model
and consider the following contrasting hypotheses:{

H0 : gSNR = 0,

Ha : gSNR ≥ λ0.

We show that, under certain regularity conditions, one can detect a nonzero gSNR if

and only if λ0 � s log(p)
n

∧ p1/2

n
∧ 1√

n
for the single index model with additive noise.

This is a strong and surprising result because this detection boundary is the
same as that for the linear model. Using the idea from the sliced inverse regression
(SIR) (Li, 1991), we show that this boundary can be achieved by the proposed
spectral test statistics using SIR (SSS) and SSS with ANOVA test assisted (SSSa).
Although SIR has been advocated as an effective alternative to linear multivariate
analysis (Chen and Li, 1998), the existing literature has not provided satisfactory
theoretical foundations for high dimensions until recently (Lin et al., 2018a,b, 2019).
We believe that the results in this paper provide further supporting evidence to the
speculation that “SIR can be used to take the same role as linear regression in model
building, residual analysis, regression diagnoses, etc” (Chen and Li, 1998).

In Sect. 2, after briefly reviewing the SIR and related results in linear regression,
we state the optimal detection problem and a lower bound for single index models.
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In Sect. 3, we first show that the correlation-based higher criticism (Cor-HC)
developed for linear models fails for single index models and then propose a test
to achieve the lower bound stated in Sect. 2. Some numerical studies are included
in Sect. 4. We list several interesting implications and future directions in Sect. 5.
Additional proofs and lemmas are included in appendices.

2 Generalized SNR for Single Index Models

2.1 Notation

The following notations are adopted throughout the paper. For a matrix V , we
call the space generated by its column vectors the column space and denote it by
col(V ). The i-th row and j -th column of the matrix are denoted by V i,∗ and V ∗,j ,
respectively. For vectors x and β ∈ R

p, we denote their inner product 〈x,β〉 by
x(β), and the k-th entry of x by x(k). For two positive numbers a, b, we use
a ∨ b and a ∧ b to denote max{a, b} and min{a, b}, respectively. Throughout the
paper, we use C, C′, C1, and C2 to denote generic absolute constants, though the
actual value may vary from case to case. For two sequences {an} and {bn}, we
denote an � bn (resp. an � bn) if there exists positive constant C (resp. C′)
such that an ≥ Cbn (resp. an ≤ C′bn). We denote an � bn if both an � bn

and an � bn hold. We denote an ≺ bn (resp. an � bn) if an = o(bn) (resp.
bn = o(an)). The (1,∞) norm and (∞,∞) norm of matrix A are defined as
‖A‖1,∞ = max1≤j≤p

∑p

i=1 |Ai,j | and max1≤i,j≤n ‖Ai,j‖, respectively. For a finite
subset S, we denote by |S| its cardinality. We also write AS,T for the |S| × |T |
submatrix with elements (Ai,j )i∈S,j∈T and AS for AS,S . For any squared matrix
A, we define λmin(A) and λmax(A) as the smallest and largest eigenvalues of A,
respectively. When y and x are independent, it is denoted as y ⊥⊥ x.

2.2 A Brief Review of the Sliced Inverse Regression (SIR)

SIR was first proposed by Li (1991) to estimate the central space spanned by
β1, . . . ,βd based on n i.i.d. observations (yi, xi ), i = 1, · · · , n, from the multiple
index model y = f (βτ

1x, . . . ,βτ
dx, ε), under the assumption that x follows an

elliptical distribution and ε is Gaussian. SIR starts by dividing the data into H equal-
sized slices according to the order statistics y(i). To ease notations and arguments,
we assume that n = cH and E[x] = 0 and re-express the data as yh,j and xh,j ,
where h refers to the slice number and j refers to the order number within the slice,
i.e., yh,j ← y(c(h−1)+j), xh,j ← x(c(h−1)+j). Here x(k) is the concomitant of y(k).
Let the sample mean in the h-th slice be denoted by xh,·; then � � var(E[x|y])
can be estimated by
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�̂H = 1

H

H∑
h=1

x̄h,·x̄τ
h,· = 1

H
Xτ

H XH (3)

where XH denotes the p × H matrix formed by the H sample means, i.e., XH =
(x1,·, . . . , xH,·).

Thus, col(�) is estimated by col(V̂ H ), where V̂ H is the matrix formed by the
d eigenvectors associated with the largest d eigenvalues of �̂H . The col(V̂ H ) is
a consistent estimator of col(�) under certain technical conditions (Duan and Li,
1991; Hsing and Carroll, 1992; Li, 1991; Lin et al., 2018b; Zhu et al., 2006). It is
shown in Lin et al. (2018a,b) that, for single index models (d = 1), H can be chosen
as a fixed number not depending on λ(�), n, and p for the asymptotic results to hold.
Throughout this paper, we assume the following mild conditions:

(A1) x ∼ N(0,�), and there exist two positive constants Cmin < Cmax, such that
Cmin < λmin(�) ≤ λmax(�) < Cmax.

(A2) Sliced stable condition. For 0 < a1 < 1 < a2, let AH (a1, a2) denote all
partitions {−∞ = a0 ≤ a2 ≤ . . . ≤ aH = +∞} of R satisfying that

a1

H
≤ P(ah ≤ Y ≤ ah+1) ≤ a2

H
.

A curve m(y) is ϑ-sliced stable with respect to y, if there exist positive
constants a1, a2, a3 and large enough H0 such that for any H > H0, for any
partition in AH (a1, a2) and any γ ∈ R

p , one has

1

H

H∑
h=1

var
(
γ τm(y)

∣∣ah−1 ≤ y < ah

) ≤ a3

Hϑ
var

(
γ τm(y)

)
. (4)

A curve is sliced stable if it is ϑ-sliced stable for some positive constant ϑ .

The sliced stable condition is introduced in Lin et al. (2018b) to study the phase
transition of SIR. The sliced stable condition is a mild condition. Neykov et al.
(2016) derived the sliced stable condition from a modification of the regularity
condition proposed in Hsing and Carroll (1992). For this paper, we modified it for
single index models.

2.3 Generalized Signal-to-Noise Ratio of Single Index Models

We consider the following single index model:

y = f (βτx, ε), x ∼ N(0,�), ε ∼ N(0, σ 2), (5)
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where f (·) is an unknown function. What we want to know is whether the coefficient
vector β, when viewed as a whole, is zero. This can be formulated as a global testing
problem as

H0 : β = 0 versus Ha : β �= 0.

When assuming the linear model y = βτx+ε, whether we can separate the null and
alternative depends on the interplay between σ 2 and the norm of β. More precisely,
it depends on the signal-to-noise ratio (SNR) defined as

SNR = E[(βτx)2]
E[y2] = ‖β‖2

2β
τ
0�β0

σ 2 + ‖β‖2
2β

τ
0�β0

when β �= 0 and β0 = β/‖β‖2 (Janson et al., 2017). Here ||β||2 is useful for
benchmarking prediction accuracy for various model selection techniques such as
AIC, BIC, or the Lasso. However, since there is an unknown link function f (·) in
the single index model, the norm ||β||2 becomes non-identifiable. Without loss of
generality, we restrict ||β||2 = 1 and have to find another quantity to describe the
separability.

For the single index model (5), to simplify the notation, use λ to denote
λmax(var(E[x|y])). For linear models, we can easily show that

var(E[x|y]) = �ββτ�

βτ
0�β0‖β‖2

2 + σ 2
and λ = βτ

0��β0‖β‖2
2

βτ
0�β0‖β‖2

2 + σ 2
.

Consequently, λ/SNR = βτ
0��β0
βτ

0�β0
. When assuming condition (A2), such a ratio is

bounded by two finite limits. Thus, λ can be treated as an equivalent quantity to
the SNR for linear models and is therefore named as the generalized signal-to-noise
ratio (gSNR) for single index models.

Remark 1 To the best of our knowledge, although SIR uses the estimation of λ to
determine the structural dimension (Li, 1991), few investigations have been made
toward theoretical properties of this procedure in high dimensions. The only work
that uses λ as a parameter to quantify the estimation error when estimating the
direction of β is Lin et al. (2018a), which, however, does not indicate explicitly
what role λ plays. The aforementioned observation about λ for single index models
provides a useful intuition: λ is a generalized notion of the SNR, and condition (A2)
merely requires that gSNR is nonzero.
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2.4 Global Testing for Single Index Models

As we have discussed, Arias-Castro et al. (2011b) and Ingster et al. (2010)
considered the testing problem (2), which can be viewed as the determination of the
detection boundary of gSNR. Through the whole paper, we consider the following
testing problem:

{
H0 : gSNR = 0,

Ha : λ(= gSNR) is nonzero,
(6)

based on i.i.d. samples {(yi, xi ), i = 1, . . . , n}. Two models are considered: (i) the
general single index model (SIM) defined in (5) and (ii) the single index model with
additive noise (SIMa) defined as

y = f (βτx) + ε, x ∼ N(0,�), ε ∼ N(0, σ 2). (7)

We assume that conditions (A1) and (A2) hold for both models.

3 The Optimal Test for Single Index Models

3.1 The Detection Boundary of Linear Regression

To set the goal and scope, we briefly review some related results on the detection
boundary for linear models (Arias-Castro et al., 2011b; Ingster et al., 2010).

Proposition 1 Assume that xi ∼ N(0, Ip), i = 1, · · · , n, and that β has at most s
nonzero entries. There is a test with both type I and II errors converging to zero for
the testing problem in (2) if and only if

r2 � s log(p)

n
∧ p1/2

n
∧ 1√

n
. (8)

Assuming x ∼ N(0, Ip) and the variance of the noise is known, Ingster et al.
(2010) obtained the sharp detection boundary (i.e., with exact asymptotic constant)
for the above problem. Since linear models are special cases of SIMa, which
is a special subset of SIM, the following statement about the lower bound of
detectability is a direct corollary of Proposition 1.

Corollary 1

i) If s2 log2(p)∧p ≺ n, then any test fails to separate the null and the alternative
hypothesis asymptotically for SIM when
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λ ≺ s log(p)

n
∧ p1/2

n
. (9)

ii) Any test fails to separate the null and the alternative hypothesis asymptotically
for SIMa when

λ ≺ s log(p)

n
∧ p1/2

n
∧ 1√

n
. (10)

3.2 Single Index Models

Moving from linear models to single index models is a big step. A natural and
reasonable start is to consider tests based on the marginal correlation used for linear
models (Arias-Castro et al., 2011b; Ingster et al., 2010). However, the following
example shows that the marginal correlation fails for the single index models,
indicating that we need to look for some other statistics to approximate the gSNR.

Example 1 Suppose that x ∼ N(0, Ip), ε ∼ N(0, 1), and we have n samples from
the following model:

y = (x1 + . . . + xl) − (x1 + . . . + xl)
3/3l + ε. (11)

Simple calculation shows that E[xy] = 0. Thus, correlation-based methods do not
work for this simple model. On the other hand, since the link function f (t) =
t − t3/3l is monotone when |t | is sufficiently large, we know that E[x | y] is not a
constant and var(E[x | y]) �= 0.

Let λ0 and λa
0 be two sequences such that

λ0 � s log(p)

n
∧ p1/2

n
, λa

0 � s log(p)

n
∧ p1/2

n
∧ 1√

n
.

For a p × p symmetric matrix A and a positive constant k such that ks < p, we
define

λ(ks)
max(A) = max|S|=ks

λmax(AS). (12)

For model y = f (βτx, ε), in addition to the condition that λ0 ≺ λ, we further
assume that s2 log2(p) ∧ p ≺ n.

Let �̂H be the estimate of var(E[x|y]) based on SIR. Let τn, τ
′
n, and τ ′′

n be three
quantities satisfying
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√
p

n
≺ τn ≺ λ0,

s log(p)

n
≺ τ ′

n ≺ λ0,
1√
n

≺ τ ′′
n ≺ λa

0 . (13)

We introduce the following two assistance tests:

1. Define

ψ1(τn) = 1(λmax(�̂H ) >
tr(�)

n
+ τn).

2. Define

ψ2(τ
′
n) = 1(λ(ks)

max(�̂H ) > τ ′
n).

Finally, the spectral test statistic based on SIR, abbreviated as SSS, is defined as

�SSS = max{ψ1(τn), ψ2(τ
′
n)}. (14)

To show the theoretical properties of SSS, we impose the following condition on
the covariance matrix �:

(A3) There are at most k nonzero entries in each row of �.

This assumption is first explicitly proposed in Lin et al. (2018b), which is
partially motivated by the separable after screening (SAS) properties in Ji and
Jin (2012). In this paper, we assume such a relative strong condition and focus
on establishing the detection boundary. This condition can be possibly relaxed by
considering a larger class of covariance matrices

S(γ,�) =
{
|�j l | ≤ 1 − (log(p))−1, |{l | �j l > γ }| ≤ �

}
,

which is used in Arias-Castro et al. (2011a) for analyzing linear models. Our
condition contains S(0,�) for some positive constant �, and we could relax our
constraint to some S(γ,�). However, the technical details will be much more
involved, which masks the importance of the main results. We thus leave it for a
future investigation.

Theorem 1 Assume that s2 log2(p) ∧ p ≺ n, λ � λ0, and conditions (A1)−(A3)
hold. Two sequences τn and τ ′

n satisfy the conditions in (13). Then, type I and type II
errors of the test �SSS(τn, τ

′
n) converge to zero for the testing problem under SIM.

Comparing with the test proposed in Ingster et al. (2010), our test statistics is a
spectral statistics and depends on the first eigenvalue of �̂H . It is adaptive in the
moderate-sparsity scenario. In the high-sparsity scenario when s2 log2(p) ≺ p, the
SSS relies on ψ2(τ

′
n), which depends on the sparsity s of the vector β. Therefore,

SSS is not adaptive to the sparsity level. Both Arias-Castro et al. (2011a) and
Ingster et al. (2010) introduced an (adaptive) asymptotically powerful test based
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on the higher criticism (HC) for the testing problem under linear models. It is an
interesting research problem to develop an adaptive test using the idea of higher
criticism for (6).

3.3 Optimal Test for SIMa

When the noise is assumed additive as in SIMa (7), the detection boundary can
be further improved. In addition to conditions (A1)–(A3), f is further assumed to
satisfy the following condition:

(B) f (z) is sub-Gaussian, E[f (z)] = 0, and var(f (z)) > Cvar(E[z | f (z) + ε])
for some constant C, where z, ε

iid∼ N(0, 1).

Note that for any fixed function f such that var(E[z | f (z) + ε]) �= 0, there exists
a positive constant C such that

var(f (z))

var(E[z | f (z) + ε]) > C. (15)

By continuity, we know that (15) holds in a small neighborhood of f , i.e., if C is
sufficiently small, condition (B) holds for a large class of functions.

First, we adopt the test �SSS(τn, τ
′
n) described in the previous subsection. Since

the noise is additive, we include the ANOVA test:

ψ3(τ
′′
n ) = 1(t > τ ′′

n )

where t = 1
n

∑n
j=1(y

2
j − 1) and τ ′′

n is a sequence satisfying the condition (13).
Combing this test with the test �SSS(τn, τ

′
n), we can introduce SSS assisted by

ANOVA test (SSSa) as

�SSSa(τn, τ
′
n, τ

′′
n ) = max{�SSS(τn, τ

′
n), ψ3(τ

′′
n )}. (16)

We then have the following result.

Theorem 2 Assume that λ � λa
0 and the conditions (A1)−(A3) and (B) hold.

Assume that the sequences τn, τ ′
n, and τ ′′

n satisfy condition (13); then type I and type
II errors of the test �SSSa(τn, τ

′
n, τ

′′
n ) converge to zero for the testing problem under

SIMa.

Example Continued. For the example in (11), we calculated the test statistic ψSSS

defined by (14) under both the null and alternative hypotheses. Figure 1 shows
the histograms of such a statistic under both hypotheses, demonstrating a perfect
separation between the null and alternative. For this example, λks

max(�̂H ) has more
discrimination power than λmax(�̂H ).
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Fig. 1 The histograms of
λks

max(�̂H ) for the model (11).
The top panel corresponds to
the scores under the null, and
the bottom one corresponds
to the scores under the
alternative. The “black”
vertical line is the 95%
quantile under the null

SSS, p=2000,n=1000,rho=0

Null
0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

40
60

Alternative
0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
5

10
15

3.4 Computationally Efficient Test

Although the test �SSS (and �SSSa) is rate optimal, it is computationally inefficient.
Here we propose an efficient algorithm to approximate λ

(ks)
max(�̂H ) via a convex

relaxation, which is similar to the convex relaxation method for estimating the top
eigenvector of a semi-definite matrix (Adamczak et al., 2008; Berthet and Rigollet,
2013b; d’Aspremont et al., 2005, 2014). To be precise, given the SIR estimate �̂H of
var(E[x | y]), consider the following semi-definite programming (SDP) problem:

λ̃(ks)
max(�̂H ) � max tr(�̂H M),

subject to tr(M) = 1, |M|1 ≤ ks,

M is semi-definite positive.

(17)

With λ̃
(ks)
max(�̂H ), for a sequence τ ′

n satisfying the condition in (13), i.e., s log(p)
n

≺
τ ′
n ≺ λ0, a computationally feasible test is

ψ̃2(τ
′
n) = 1(̃λ(ks)

max(�̂H ) > τ ′
n).

Then, for any sequence τn satisfying the inequality in (13), we define the
following computationally feasible alternative of �SSS :
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�̃SSS = max{ψ1(τn), ψ̃2(τ
′
n)}. (18)

Theorem 3 Assume that s2 log2(p) ∧ p ≺ n, λ � λ0, and conditions (A1)−(A3)
hold. Then, type I and type II errors of the test �̃SSS(τn, τ

′
n) converge to zero for the

testing problem under SIMa.

Similarly, if we introduce the test

�̃SSSa(τn, τ
′
n, τ

′′
n ) = max{�̃SSS, ψ3(τ

′′
n )}, (19)

for three sequences τn, τ ′
n, and τ ′′

n , then we have:

Theorem 4 Assume that λ � λa
0 and conditions (A1)−(A3) and (B) hold. The test

�̃SSSa(τn, τ
′
n, τ

′′
n ) is asymptotically powerful for the testing problem under SIMa.

Theorems 2 and 4 not only establish the detection boundary of gSNR for single
index models but also open a door of thorough understanding of semi-parametric
regression with a Gaussian design. It is shown in Lin et al. (2018a) that if we denoted
the single index models satisfying conditions (A1), (A3), and rank(var(x|y)) > 0,
one has

sup
β̂

inf
m∈MEm‖Pβ̂ − Pβ‖2

F � 1 ∧ s log(ep/s)

nλ
, (20)

where P
β̂

= β̂(β̂T β̂)−1β̂T and Pβ = β(βT β)−1βT are the projection operators

with respect to β̂ and β, respectively, and the space M is defined in Equation (14)
of Lin et al. (2018a). This implies that the necessary and sufficient condition for
obtaining a consistent estimate of the projection operator Pβ is s log(ep/s)

n
≺ λ. On

the other hand, Theorems 2 and 4 state that, for single index models with additive

noise, if s log(p)
n

∧ p1/2

n
∧ 1√

n
≺ λ, then one can detect the existence of gSNR (aka

nontrivial direction β). Our results thus imply for SIMa that, if p1/2

n
∧ 1√

n
≺ λ ≺

s log(p)
n

, one can detect the existence of nonzero β, but cannot provide a consistent
estimation of its direction. To estimate the location of nonzero coefficient especially
when focusing on the almost recovery region (Ji and Jin, 2012), we must tolerate a
certain error rate such as the false discovery rate (Benjamini and Hochberg, 1995).
For example, the knockoff procedure (Barber and Candès, 2015), SLOPE (Su and
Candes, 2016), and UPT (Ji and Zhao, 2014) might be extended to single index
models.
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3.5 Practical Issues

In practice, we do not know whether the noise is additive or not. Therefore, we
only consider the test statistic �̃SSS . Condition (13) provides us a theoretical basis
for choosing the sequences τn and τ ′

n. In practice, however, we determine these

thresholds by simulating the null distribution of λmax(�̂H ) and λ̃
(ks)
max(�̂H ). Our final

algorithm is as follows.

Algorithm 1 Spectral test statistic based on SIR (SSS) algorithm

1. Calculate λmax(�̂H ) and λ̃
(ks)
max(�̂H ) for the given input (x, y)

2. Generate z = (z1, · · · , zn), where zi
iid∼ N(0, 1)

3. Calculate λmax(�̂H ) and λ̃
(ks)
max(�̂H ) based on (x, z)

4. Repeat Steps 2 and 3 N(= 100) times to get two sequences of λmax and λ̃
(ks)
max. Let τn and τ ′

n

be the 95% quantile of these two simulated sequences

5. Reject the null if λmax(�̂H ) > τn and/or λ̃
(ks)
max(�̂H ) > τ ′

n

4 Numerical Studies

Let β be the vector of coefficients, and let S be the active set, S = {i : βi �= 0},
for which we simulated βi

iid∼ N(0, 1). Let x be the random design matrix with
each row following N(0,�). We consider two types of covariance matrices: (i)
� = (σij ) with σii = 1 and σij = ρ|i−j | and (ii) σii = 1, σij = ρ when i, j ∈ S
or i, j ∈ Sc and σij = σji = 0.1 when i ∈ S, j ∈ Sc. The first one represents a
covariance matrix which is essentially sparse, and we choose ρ among 0, 0.3, 0.5,
and 0.8. The second one represents a dense covariance matrix with ρ chosen as 0.2.
In all the simulations, n = 1000, p varies among 100, 500, 1000, and 2000 and the
number of replication is 100. The random error ε follows N(0, In). We consider the
following models:

I. y = 0.02 ∗ (16xβ − exp(xβ)) + ε, where |S| = 7;
II. y = 0.2 ∗ sin(xβ/2) ∗ exp(xβ/2) + ε, where |S| = 10;

III. y = 0.8 ∗ (
xβ − (xβ)3/15

) + ε, where |S| = 5;
IV. y = sin(xβ) ∗ exp(xβ/10) ∗ ε, where |S| = 10.

We choose H = 20 in the Algorithm 1 and assume the oracle information of
the sparsity in the numerical studies because the goal of the numerical investigation
is to demonstrate the theoretical detection boundary. A data-driven choice of such
a tuning parameter is challenging to get and unnecessarily obscures the theoretical
pattern. If we calculate N(= 100) test statistics for each replication, it will take an
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extremely long time. Therefore, in the simulation, we calculate τn and τ ′
n slightly

different from Algorithm 1. For each generated data set, we simulated only one
vector z where z ∼ N(0, In) and calculate the statistic λmax(�̂H ) and λ̃

(ks)
max(�̂H ).

The τn and τ ′
n are chosen as 95% quantile from the corresponding sequence for all

the replications.
For each generated data, we also calculated Cor-HC scores according to Arias-

Castro et al. (2012). The threshold chc is chosen according to the same scheme
as choosing the thresholds τn and τ ′

n. Namely, we calculated the Cor-HC scores
based on z where z ∼ N(0, In). The threshold chc is the 95% quantile of these
simulated scores. The hypothesis is rejected if the Cor-HC score is greater than chc.
The power for both methods is calculated as the average number of rejections out of
100 replications. These numbers are reported in Table 1.

It is clearly seen that the power of SSS decreases when the dimension p increases.
Nevertheless, the power of SSS is better than the one based on Cor-HC except for
one case. In Fig. 2, we plot the histogram of the statistic λ̃

(ks)
max(�̂H ) under the null

in the top-left panel and the histogram of this statistic under the alternative in the
bottom-left panel for Model III when p = 500 and ρ = 0.3 for type (i) covariance
matrix. It is clearly seen that the test statistic �SSS is well separated under the
null and alternative. However, Cor-HC fails to distinguish between the null and
alternative as shown in the two panels on the right side.

To see how the performance of Cor-HC varies, we consider the following
model:

V. y = κxβ − exp(xβ) + ε, where |S| = 7, κ = 1, 3, 5, · · · , 19.

Set n = 1000, p = 1000, and ρ = 0.3 for type (i) covariance matrix, and
the power of both methods are displayed in Fig. 3. The coefficient κ determines
the magnitude of the marginal correlation between the active predictors and the
response. It is seen that when κ is close to 16, representing the case of diminishing
marginal correlation, the power of Cor-HC dropped to the lowest. Under all the
models, SSS is more powerful in detecting the existence of the signal.

To observe the influence of the signal-to-noise ratio on the power of the tests, we
consider the following two models:

VI. y = (15xβ − exp(xβ)) ∗ κ + 4ε, where |S| = 7;
VII. y = sin(xβ) ∗ exp(10xβκ) ∗ ε, where |S| = 10.

Here κ = 0.01, 0.02, . . . , 0.10.
Set n = 1000, p = 1000, and ρ = 0.3; we plot the power of both methods

against the coefficient κ in Fig. 4. It is clearly seen that for both examples there
is a sharp “phase transition” for the power of SSS as the signal strength increases,
validating our theory about the detection boundary. In both examples SSS is much
more powerful than Cor-HC.
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Table 1 Power comparison of SSS and HC for four models I–IV for different parameter settings.
Symbol “∗” indicates the type (ii) covariance matrix

Model Dim ρ SSS HC Model Dim ρ SSS HC

I

100 0 1.00 0.16

II

100 0 0.98 0.12

0.3 1.00 0.29 0.3 0.97 0.16

0.5 0.99 0.54 0.5 0.96 0.24

0.8 1.00 0.93 0.8 1.00 0.37

0.2∗ 0.90 0.35 0.2∗ 0.96 0.56
500 0 0.98 0.16 500 0 0.87 0.06

0.3 0.99 0.18 0.3 0.80 0.09

0.5 0.97 0.34 0.5 0.82 0.13

0.8 0.98 0.71 0.8 0.83 0.14

0.2∗ 0.52 0.25 0.2∗ 0.77 0.32
1000 0 0.89 0.19 1000 0 0.81 0.09

0.3 0.88 0.16 0.3 0.74 0.06

0.5 0.91 0.33 0.5 0.77 0.08

0.8 0.96 0.53 0.8 0.84 0.11

0.2∗ 0.37 0.30 0.2∗ 0.69 0.25
2000 0 0.92 0.18 2000 0 0.75 0.11

0.3 0.86 0.25 0.3 0.68 0.12

0.5 0.83 0.43 0.5 0.68 0.13

0.8 0.90 0.60 0.8 0.81 0.10

0.2∗ 0.43 0.17 0.2∗ 0.63 0.41

III

100 0 1.00 0.21

IV

100 0 0.89 0.01

0.3 1.00 0.25 0.3 0.91 0.03

0.5 1.00 0.63 0.5 0.89 0.04

0.8 1.00 1.00 0.8 1.00 0.10

0.2∗ 0.98 0.78 0.2∗ 0.94 0.07
500 0 0.99 0.11 500 0 0.70 0.03

0.3 1.00 0.12 0.3 0.57 0.04

0.5 0.98 0.11 0.5 0.57 0.07

0.8 0.99 0.22 0.8 0.69 0.09

0.2∗ 0.62 0.72 0.2∗ 0.45 0.08
1000 0 0.99 0.11 1000 0 0.55 0.07

0.3 0.97 0.06 0.3 0.56 0.04

0.5 0.97 0.18 0.5 0.51 0.09

0.8 0.92 0.10 0.8 0.73 0.06

0.2∗ 0.60 0.59 0.2∗ 0.44 0.08
2000 0 0.96 0.16 2000 0 0.58 0.07

0.3 0.97 0.19 0.3 0.47 0.07

0.5 0.93 0.15 0.5 0.45 0.09

0.8 0.88 0.10 0.8 0.61 0.02

0.2∗ 0.59 0.58 0.2∗ 0.40 0.08
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Fig. 2 Model III, n = 1000, p = 500, type (i) covariance matrix, ρ = 0.3

Fig. 3 Power: Model V, n =
1000, p = 1000, ρ = 0.3 for
type (i) covariance matrix
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Fig. 4 Power: Models VI and VII, n = 1000, p = 1000, ρ = 0.3 for the type (i) covariance
matrix

5 Discussion

Assuming that var(E[x | y]) is nonvanishing, we show in this paper that λ, the
unique nonzero eigenvalue of var(E[x | y]) associated with the single index model,
is a generalization of the SNR. We demonstrate a surprising similarity between
linear regression and single index models with Gaussian design: the detection
boundary of gSNR for the testing problem (6) under SIMa matches that of SNR for
linear models (2). This similarity provides an additional support to the speculation
that “the rich theories developed for linear regression can be extended to the
single/multiple index models” (Chen and Li, 1998; Lin et al., 2019).

Besides the gap we explicitly depicted between detection and estimation bound-
aries, we provide here several other directions which might be of interests to
researchers. First, although this paper only deals with single index models, the
results obtained here are very likely extendable to multiple index models. Assume
that the noise is additive, and let 0 < λd ≤ . . . ≤ λ1 be the nonzero eigenvalues
associated with the matrix var(E[x|y]) of a multiple index model. Similar argu-

ments can show that the i-th direction is detectable if λi �
√

p

n
∧ s log(p)

n
∧ 1√

n
. New

thoughts and technical preparations might be needed for a rigorous argument for
determining the lower bound of the detection boundary. Second, the framework can
be extended to study theoretical properties of other sufficient dimension reduction
algorithms such as SAVE and directional regression (Lin et al., 2018a,b, 2019).
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Appendix: Proofs

Assisting Lemmas

Since our approaches are based on the technical tools developed in Lin et al.
(2018a,b, 2019), we briefly recollect the necessary (modified) statements without
proofs below.

Lemma 1 Let zj
iid∼ N(0, 1), j = 1, . . . , p. Let σ1, . . . , σp be p positive constants

satisfying σ1 ≤ . . . ≤ σp. Then for any 0 < α ≤ 1
σ 2

p

∑
j σ 4

j , we have

P

⎛
⎝∑

j

σ 2
j

(
z2
j − 1

)
> α

⎞
⎠ ≤ exp

(
− α2

4
∑

σ 4
j

)
. (21)

Lemma 2 Suppose that a p×H matrix X formed by H i.i.d. p dimensional vector
xj ∼ N(0,�), j = 1, . . . , H where 0 < C1 ≤ λmin(�) ≤ λmax(�) ≤ C2 for some
constants C1 and C2. We have∥∥∥∥ 1

p
XτX − tr(�)

p
IH

∥∥∥∥
F

> α (22)

with probability at most 4H 2 exp
(
−Cpα2

H 2

)
for some positive constant C. In

particular, we know that

λmax
(
XXτ /p

) = λmax
(
XτX/p

) ≤ tr(�)/p + α (23)

happens with probability at least 1 − 4H 2 exp
(
−Cpα2

H 2

)
.

Lemma 3 Assume that p1/2 ≺ nλ. Let M =
⎛
⎝B1 0

B2 B3

0 B4

⎞
⎠ be a p × H matrix, where

B1 and B2 are scalar, B3 is a 1 × (H − 1) vector, and B4 is a (p − 2) × (H − 1)

matrix satisfying
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(
1 − 1

2ν

)
λ ≤ B2

1 ≤
(

1 + 1

2ν

)
λ

∥∥∥∥
(

B2
2 B2B3

Bτ
3 B2 Bτ

3 B3 + Bτ
4 B4

)
− A

n
IH

∥∥∥∥
F

≤
√

pα

n

. (24)

for a constant ν > 1 where α ≺ nλ
p1/2 . Then we have

λmax
(
MMτ

)
>

A

n
−

√
pα

n
+

(
1 − 1

2ν

)
λ. (25)

Sliced Approximation Inequality The next result is referred to as “key lemma” in
Lin et al. (2018a,b, 2019), which depends on the following sliced stable condition
stated as Assumption A2.

Lemma 4 Assume that Condition (A1) and the sliced stable condition A2 (for
some ϑ > 0) hold in the single index model y = f (βτx, ε). Further assume that
rank(var(x|y)) > 0. Let �̂H be the SIR estimate of � = var(E[x | y]), and let
P� be the projection matrix associated with the column space of �. For any vector

β ∈ R
p and any ν > 1, let Eβ(ν) =

{ ∣∣∣βτ
(
P��̂H P� − �

)
β

∣∣∣ ≤ 1
2ν

βτ�β
}
. There

exist positive constants C1, C2, C3, and C4 such that for any ν > 1 and H satisfying
that Hϑ > C4ν, one has

P

⎛
⎝⋂

β

Eβ

⎞
⎠ ≥ 1 − C1 exp

(
−C2

nλmax(�)

Hν2 + C3 log(H)

)
. (26)

Proof of Theorems

Proof of Theorem 1 Theorem 1 follows from Lemmas 5 and 6. ��
Lemma 5 Assume that p1/2 ≺ nλ0, and let τn be a sequence such that

√
p

n
≺ τn ≺

λ0. Then, as n → ∞, we have:

i) Under H0, i.e., if y ⊥⊥ x, then λmax(�̂H ) <
tr(�)

n
+ τn with probability

converging to 1;
ii) Under H1, if λ � λ0, then λmax(�̂H ) >

tr(�)
n

+ τn with probability converging
to 1.
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Proof

i) If y ⊥⊥ x, we know that 1√
H

�−1/2XH is a p × H matrix with entries i.i.d. to

N(0, 1
n
). From Lemma 2, we know that

λmax

(
1

H
Xτ

H XH

)
≤ tr(�)

n
+ τn (27)

with probability at least 1 − 4H 2 exp
(
−Cn2τ 2

n

H 2p

)
which → 1 as n → ∞.

ii) For any event ω, there exist p × p orthogonal matrix S and H × H orthogonal
matrix T such that

SXH (ω)T =
⎛
⎝Z1 0

Z2 Z3

0 Z4

⎞
⎠ (28)

where Z1, Z2 are two scalars, Z3 is a 1 × (H − 1) vector, and Z4 is a (p −
2) × (H − 1) matrix. Lemmas 4 and 2 imply that there exist a constant A and
an events set �, such that P (�c) → 0 as n → ∞. For any ω ∈ �, one has

(
1 − 1

2ν

)
λ ≤ Z2

1 ≤
(

1 + 1

2ν

)
λ,

∥∥∥∥
(

Zτ
2Z2 Zτ

2Z3

Zτ
3Z2 Zτ

3Z3 + Zτ
4Z4

)
− tr(�)

n
IH

∥∥∥∥
F

≤
√

pα

n
.

(29)

Lemma 3 implies that

λmax

(
1

H
XH XH

)τ

≥ tr(�)

n
−

√
p

n
α +

(
1 − 1

2ν

)
λ � tr(�)

n
+ τn.

(30)
��

Lemma 6 Assume that s log(p)
n

≺ λ0. Let τn be a sequence such that
s log(p)

n
≺ τn ≺

λ0. Then, as n → ∞, we have:

i) If y ⊥⊥ x, then λ
(ks)
max

(
�̂H

)
< τn with probability converging to 1;

ii) If λ � λ0, then λ
(ks)
max

(
�̂H

)
> τn with probability converging to 1.

Proof

i) If y ⊥⊥ x, we know that 1√
H

EH = 1√
H

�−1/2XH is a p×H matrix with entries

i.i.d. to N(0, 1
n
). Thus

λ(ks)
max

(
�̂H

) = λ(ks)
max

(
1

H
�1/2EH Eτ

H �1/2
)

and λ(ks)
max

(
D1/2EH Eτ

H D1/2
)
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are identically distributed where D is diagonal matrix consisting of the eigen-
values of �. For any subset S ⊂ [p], let XH,S = D

1/2
S ES,H where ES,H is a

submatrix of EH consisting of the rows in S. Note that

λmax

((
D1/2EH Eτ

H D1/2
)

S

)
= λmax

(
1

H
XH,SXτ

H,S

)
. (31)

Thus, by Lemma 3, we have

λmax

(
1

H
XH,SXτ

H,S

)
< tr(DS)/n + α ≤ ksλmax(�)

n
+ α (32)

with probability at least 1 − 4H 2 exp
(
−Cn2α2

H 2s

)
. Let α = C

s log(p)
n

for some

sufficiently large constant C. Since
(

p
ks

) ≤ ( ep
ks

)ks , we know that λ
(ks)
max(�̂H ) ≤

C
s log(p)

n
≺ τn with probability converging to 1.

ii) Let η be the eigenvector associated with the largest eigenvalue of �. Thus
|supp(η)| = ks. From Lemma 4, we know that

λ̂(ks)
max(�̂H ) ≥ ητ �̂H η ≥

(
1 − 1

2ν

)
λ (33)

with probability converging to 1. Thus, λ
(ks)
max

(
�̂H

)
> τn with probability

converging to 1.
��

Proof of Theorem 2 Theorem 2 follows from the Theorem 1 and the following
Lemma 7. ��
Lemma 7 Assume that 1√

n
≺ λa

0 . Let τn be a sequence such that 1√
n

≺ τn ≺ λa
0 ,

τn → 0. Then we have:

i) If y ⊥⊥ x, then t < τn with probability converging to 1.
ii) If λ � λa

0 , then t > τn with probability converging to 1.

Proof

(i) Since y ⊥⊥ x ,we know that E[t] = 0. Let zj = y2
j − 1; then we have

P

⎛
⎝1

n

∑
j

zj > τn

⎞
⎠ ≤ exp

(
−Cnτ 2

n

)
(34)

for some constant C. In other words, the probability of t > τn converges to 0
as n → ∞.
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(ii) If λ � λa
0, we have var(f (z)) ≥ Cλ and E[y2 − 1] ≥ Cλ for some constant C.

Let zj = y2
j − 1, j = 1, . . . , n. Since f (xj ), j = 1, . . . , n are sub-Gaussian,

we know that

P

⎛
⎝1

n

∑
j

zj > E[y2 − 1] + δ

⎞
⎠ ≤ exp

(
−Cnδ2

)
. (35)

By choosing δ = CE[y2 −1] for some constant C, we know that the probability
of t ≥ (C + 1)λ � τn converges to 1.

��
Proof of Theorem 3 Theorems 3 and 4 follow from the following lemma, the
Theorems 1 and 2. ��
Lemma 8 Assume that s log(p)

n
≺ λ0. Let τn be a sequence such that

s log(p)
n

≺ τn ≺
λ0. Then we have:

i) If y ⊥⊥ x, then λ̃
(ks)
max

(
�̂H

)
< τn with probability converging to 1;

ii) If λ � λ0, then λ̃
(ks)
max

(
�̂H

)
> τn with probability converging to 1.

Proof

i) Under H0, i.e., y ⊥⊥ x, the entries of 1√
H

�−1/2XH are identically distributed

as N(0, 1
n
). Thus, if 1 ≺ α ≺ nτn

s log(p)
, we have

max
(i,j)

∣∣�̂H (i, j)
∣∣ ≤ α log(p)

n
(36)

with probability at least 1−p2 exp
(−Cα2 log(p)2

)
for some constant C which

converges to 1 as n → ∞. Since (see, e.g., Lemma 6.1 in Berthet and Rigollet
(2013a))

λ̃(ks)
max

(
�̂H

) ≤ λmax

(
st α log(p)

n

(
�̂H

)) + ks
α log(p)

n
≺ τn (37)

where stz(A)i,j = sign(Ai,j )(Ai,j − z)+, we know that (i) holds.

ii) Follows from that λ̃
(ks)
max(�̂H ) ≥ λ

(ks)
max(�̂H ). ��
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