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1 Introduction

Testing whether a quantitative response is dependent/independent of a subset of
covariates is one of the central problems in statistical analyses. Most existing
literature focuses on linear relationships. For instance, Arias-Castro et al. (2011b)
considered the linear model

y=XB+e, ey
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where € ~ N (O, 0’21), to test whether all the S;’s are zero. This can be formulated

as the following null and alternative hypotheses:
Hy : Bi=...=Bp,=0 @)
H, : BeOsr)E(BeR]||BI5>r"

where RY denotes the set of s-sparse vector in R? with the number of nonzero
entries being no greater than s. Arias-Castro et al. (2011b) and Ingster et al. (2010)

. . . 12
showed that one can detect the signal if and only if r2 > Slonﬂ ALZ— A . The
7

upper bound is guaranteed by an asymptotically most powerful test based on higher
criticism (Donoho and Jin, 2004).

The linearity or other functional form assumption is often too restrictive in prac-
tice. Theoretical and methodological developments beyond parametric models are
important, urgent, and extremely challenging. As a first step toward nonparametric
testing of the independence, we here study the single index model y = f(B%x, €),
where f(-) is an unknown function. Our goal is to test the global null hypothesis
that all the B;’s are zero. The first challenge is to find an appropriate formulation
of alternative hypotheses because || ||% used in (2) is not even identifiable in single
index models.

When rank(var(E[x | y])) is nonzero in a single index model, the unique
nonzero eigenvalue A of var(E[x | y]) can be viewed as the generalized signal-
to-noise ratio (gSNR) (Lin et al., 2019). In Sect. 2, we show that for the linear
regression model, this A is almost proportional to ||B]|> when it is small. The
alternative hypotheses in (2) can be rewritten as gSNR > r2. Because of this
connection, we can treat A as the separation quantity for the single index model
and consider the following contrasting hypotheses:

Hp: gSNR =0,
H,: gSNR > ).

We show that, under certain regularity conditions, one can detect a nonzero gSNR if

. slog(p) , p'/?
and only if Ag > —= A 5—

A \/LZ for the single index model with additive noise.

This is a strong and surprising result because this detection boundary is the
same as that for the linear model. Using the idea from the sliced inverse regression
(SIR) (Li, 1991), we show that this boundary can be achieved by the proposed
spectral test statistics using SIR (SSS) and SSS with ANOVA test assisted (SSSa).
Although SIR has been advocated as an effective alternative to linear multivariate
analysis (Chen and Li, 1998), the existing literature has not provided satisfactory
theoretical foundations for high dimensions until recently (Lin et al., 2018a,b, 2019).
We believe that the results in this paper provide further supporting evidence to the
speculation that “SIR can be used to take the same role as linear regression in model
building, residual analysis, regression diagnoses, etc”’ (Chen and Li, 1998).

In Sect. 2, after briefly reviewing the SIR and related results in linear regression,
we state the optimal detection problem and a lower bound for single index models.
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In Sect. 3, we first show that the correlation-based higher criticism (Cor-HC)
developed for linear models fails for single index models and then propose a test
to achieve the lower bound stated in Sect. 2. Some numerical studies are included
in Sect. 4. We list several interesting implications and future directions in Sect. 5.
Additional proofs and lemmas are included in appendices.

2 Generalized SNR for Single Index Models

2.1 Notation

The following notations are adopted throughout the paper. For a matrix V, we
call the space generated by its column vectors the column space and denote it by
col(V). The i-th row and j-th column of the matrix are denoted by V; 4 and V, ;,
respectively. For vectors x and 8 € R”, we denote their inner product (x, 8) by
x(B), and the k-th entry of x by x(k). For two positive numbers a, b, we use
a Vv b and a A b to denote max{a, b} and min{a, b}, respectively. Throughout the
paper, we use C, C’, C1, and C to denote generic absolute constants, though the
actual value may vary from case to case. For two sequences {a,} and {b,}, we
denote a, > b, (resp. a, =< by) if there exists positive constant C (resp. C’)
such that a, > Cb, (resp. a, < C’b,). We denote a, =< b, if both a, > b,
and a, =< b, hold. We denote a, < b, (resp. a, > by) if a, = o(b,) (resp.
b, = o(ay)). The (1, 00) norm and (00, o0) norm of matrix A are defined as
lAll1,00 = maxi<j<p Zle |A; j| and maxi<; j<u l|A; |, respectively. For a finite
subset S, we denote by |S| its cardinality. We also write Ag 7 for the |S| x |T|
submatrix with elements (A; j)ies, jer and Ag for Ag g. For any squared matrix
A, we define X,,i,(A) and Amax(A) as the smallest and largest eigenvalues of A,
respectively. When y and x are independent, it is denoted as y L x.

2.2 A Brief Review of the Sliced Inverse Regression (SIR)

SIR was first proposed by Li (1991) to estimate the central space spanned by
Bi. ..., B, based on n ii.d. observations (y;, x;),i = 1, --- , n, from the multiple
index model y = f (ﬂfx, R ﬁf,x, €), under the assumption that x follows an
elliptical distribution and € is Gaussian. SIR starts by dividing the data into H equal-
sized slices according to the order statistics y(;). To ease notations and arguments,
we assume that n = ¢H and E[x] = 0 and re-express the data as y; ; and x_;,
where & refers to the slice number and j refers to the order number within the slice,
i€, Yn,j < Yeth=D+j)» Xh,j < X(c(h—1)+j)- Here x () is the concomitant of y).
Let the sample mean in the h-th slice be denoted by X, .; then A £ yar(E[x] y])
can be estimated by
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H
-~ 1
Ay==) %% =—XyXy 3)

where X i denotes the p x H matrix formed by the H sample means, i.e., Xy =
X1, ..., XH,.). R R

Thus, col(A) is estimated by col(V ), where V g is the rllatrix formed/py the
d eigenvectors associated with the largest d eigenvalues of Ay. The col(V ) is
a consistent estimator of col(A) under certain technical conditions (Duan and Li,
1991; Hsing and Carroll, 1992; Li, 1991; Lin et al., 2018b; Zhu et al., 2006). It is
shown in Lin et al. (2018a,b) that, for single index models (d = 1), H can be chosen
as a fixed number not depending on A(A), n, and p for the asymptotic results to hold.
Throughout this paper, we assume the following mild conditions:

(A1) x ~ N(0, X), and there exist two positive constants Cpin < Cpmax, such that
Chin < Amin(X) < Amax(X) < Crax-
(A2) Sliced stable condition. For 0 < a; < 1 < ap, let Agy(ay, az) denote all
partitions {—o0 = ag < ay < ... < apy = +oo} of R satisfying that
ap az
— <P <Y< < =,
7 = (an =Y <apy1) < H
A curve m(y) is ¥-sliced stable with respect to y, if there exist positive
constants ay, ap, a3z and large enough Hy such that for any H > Hy, for any
partition in Ay (a;, ap) and any y € R” , one has

H

! T a3 -
E}EWV (yim|an—1 <y < ap) < o var (¥ m(y)). 4)

A curve is sliced stable if it is ¥ -sliced stable for some positive constant ¢

The sliced stable condition is introduced in Lin et al. (2018b) to study the phase
transition of SIR. The sliced stable condition is a mild condition. Neykov et al.
(2016) derived the sliced stable condition from a modification of the regularity
condition proposed in Hsing and Carroll (1992). For this paper, we modified it for
single index models.

2.3 Generalized Signal-to-Noise Ratio of Single Index Models

We consider the following single index model:

y= f(B7x,€), x ~N(@©, %), e ~N(@©,0?), (5)
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where f(-) is an unknown function. What we want to know is whether the coefficient
vector 8, when viewed as a whole, is zero. This can be formulated as a global testing
problem as

Hy:p =0 versus H,:p #0.

When assuming the linear model y = B%x + ¢, whether we can separate the null and
alternative depends on the interplay between o> and the norm of 8. More precisely,
it depends on the signal-to-noise ratio (SNR) defined as

T2 2pT
snr= ELETD) __ IBI3B5ZHy
E[y*] o2+ 1B13B5Z B0

when B # 0 and By = B/(|Bll2 (Janson et al., 2017). Here [|B]|2 is useful for
benchmarking prediction accuracy for various model selection techniques such as
AIC, BIC, or the Lasso. However, since there is an unknown link function f(-) in
the single index model, the norm ||B||2 becomes non-identifiable. Without loss of
generality, we restrict |[8||> = 1 and have to find another quantity to describe the
separability.

For the single index model (5), to simplify the notation, use A to denote
Amax (var (E[x|y])). For linear models, we can easily show that

TABTE . BEZZAIBIS
BiZBolIBI; + o2 BoZBolBI; + o2
Consequently, A/SNR = ﬂg,z E)igi !

0
bounded by two finite limits. Thus, A can be treated as an equivalent quantity to
the SNR for linear models and is therefore named as the generalized signal-to-noise
ratio (gSNR) for single index models.

var (E[x|y]) =

. When assuming condition (A2), such a ratio is

Remark 1 To the best of our knowledge, although SIR uses the estimation of A to
determine the structural dimension (Li, 1991), few investigations have been made
toward theoretical properties of this procedure in high dimensions. The only work
that uses A as a parameter to quantify the estimation error when estimating the
direction of B is Lin et al. (2018a), which, however, does not indicate explicitly
what role A plays. The aforementioned observation about A for single index models
provides a useful intuition: A is a generalized notion of the SNR, and condition (A2)
merely requires that gSNR is nonzero.
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2.4 Global Testing for Single Index Models

As we have discussed, Arias-Castro et al. (2011b) and Ingster et al. (2010)
considered the testing problem (2), which can be viewed as the determination of the
detection boundary of gSNR. Through the whole paper, we consider the following
testing problem:

Hy: gSNR =0,
H,: A(=gSNR) isnonzero,

(6)

based on i.i.d. samples {(y;, x;),i = 1, ..., n}. Two models are considered: (i) the
general single index model (SIM) defined in (5) and (ii) the single index model with
additive noise (SIMa) defined as

y=f(Bx)+¢€, x~N(©,X), e ~N(O,a2). (7

We assume that conditions (A1) and (A2) hold for both models.

3 The Optimal Test for Single Index Models

3.1 The Detection Boundary of Linear Regression

To set the goal and scope, we briefly review some related results on the detection
boundary for linear models (Arias-Castro et al., 2011b; Ingster et al., 2010).

Proposition 1 Assume that x; ~ N(0,1,),1 =1, --- ,n, and that B has at most s
nonzero entries. There is a test with both type I and Il errors converging to zero for
the testing problem in (2) if and only if

1 12 1
sloglp) p= 1 ®)

n n Jn

Assuming x ~ N(0,1I,) and the variance of the noise is known, Ingster et al.
(2010) obtained the sharp detection boundary (i.e., with exact asymptotic constant)
for the above problem. Since linear models are special cases of SIMa, which
is a special subset of SIM, the following statement about the lower bound of
detectability is a direct corollary of Proposition 1.

7‘2>

Corollary 1

i) If s? log2 (p) A p < n, then any test fails to separate the null and the alternative
hypothesis asymptotically for SIM when
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1 1/2
WPRL. -y ©)
n n
ii) Any test fails to separate the null and the alternative hypothesis asymptotically
for SIMa when
1 1/2
L Sloglp) p

1
- by (10)

3.2 Single Index Models

Moving from linear models to single index models is a big step. A natural and
reasonable start is to consider tests based on the marginal correlation used for linear
models (Arias-Castro et al., 2011b; Ingster et al., 2010). However, the following
example shows that the marginal correlation fails for the single index models,
indicating that we need to look for some other statistics to approximate the gSNR.

Example 1 Suppose that x ~ N(0,1,), e ~ N(0, 1), and we have n samples from
the following model:

y=G14...4x)— &1 +...4+x)°/3 +e (11)

Simple calculation shows that E[xy] = 0. Thus, correlation-based methods do not
work for this simple model. On the other hand, since the link function f(¢) =
t — 13/31 is monotone when [z| is sufficiently large, we know that E[x | y] is not a
constant and var (E[x | y]) # 0.

Let Ao and A{j be two sequences such that

1 1/2 1 1/2 1
, Sloep) P 7 Ag>s0g(p)Ap

For a p x p symmetric matrix A and a positive constant k such that ks < p, we
define

A &) (A) = max Anax(As). (12)

max S|=ks

For model y = f(B%x, ¢), in addition to the condition that .y < A, we further
assume that s2log?(p) A p < n.

Let A be the estimate of var (E[x|y]) based on SIR. Let 7, 7, and 7, be three
quantities satisfying
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VP

— < 1; < Ao,

s log(p) ’
—_— <
n n

T, < AQ, <1 <AQ. (13)

1
Jn
We introduce the following two assistance tests:

1. Define

Y1 () = 10umax(A ) >

tr(X) t1).
n

2. Define
Va(zy) = 1052 A > 7).
Finally, the spectral test statistic based on SIR, abbreviated as SSS, is defined as

Wsss = max{y(ta), ¥2(1,)}. (14)

To show the theoretical properties of SSS, we impose the following condition on
the covariance matrix X:

(A3) There are at most k nonzero entries in each row of X.

This assumption is first explicitly proposed in Lin et al. (2018b), which is
partially motivated by the separable after screening (SAS) properties in Ji and
Jin (2012). In this paper, we assume such a relative strong condition and focus
on establishing the detection boundary. This condition can be possibly relaxed by
considering a larger class of covariance matrices

S, &) ={IZl = 1= Qogp) ™", W IZa >y}l <Al

which is used in Arias-Castro et al. (2011a) for analyzing linear models. Our
condition contains S(0, A) for some positive constant A, and we could relax our
constraint to some S(y, A). However, the technical details will be much more
involved, which masks the importance of the main results. We thus leave it for a
future investigation.

Theorem 1 Assume that s> logz(p) A p < n, A > Ao, and conditions (A1)—(A3)
hold. Two sequences t, and t, satisfy the conditions in (13). Then, type I and type 11
errors of the test Wsss(ty, T,) converge to zero for the testing problem under SIM.

Comparing with the test proposed in Ingster et al. (2010), our test statistics is a
spectral statistics and depends on the first eigenvalue of Ay. It is adaptive in the
moderate-sparsity scenario. In the high-sparsity scenario when s2 log?(p) < p, the
SSS relies on (7, ), which depends on the sparsity s of the vector 8. Therefore,
SSS is not adaptive to the sparsity level. Both Arias-Castro et al. (2011a) and
Ingster et al. (2010) introduced an (adaptive) asymptotically powerful test based
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on the higher criticism (HC) for the testing problem under linear models. It is an
interesting research problem to develop an adaptive test using the idea of higher
criticism for (6).

3.3 Optimal Test for SIMa

When the noise is assumed additive as in SIMa (7), the detection boundary can
be further improved. In addition to conditions (A1)-(A3), f is further assumed to
satisfy the following condition:

(B) f(z) is sub-Gaussian, E[ f(z)] = 0, and var(f(z)) > Cvar(E[z | f(z) + €])
for some constant C, where z, € id N, 1).
Note that for any fixed function f such that var(E[z | f(z) + €]) # 0, there exists

a positive constant C such that

var(f(2)) -
var(E[z | f(2) +€])

15)

By continuity, we know that (15) holds in a small neighborhood of f, i.e., if C is
sufficiently small, condition (B) holds for a large class of functions.

First, we adopt the test Wsss(t,, 7,) described in the previous subsection. Since
the noise is additive, we include the ANOVA test:

¥3(z,) =1t > 7))

where t = %Z;'.:l(y]z — 1) and 7, is a sequence satisfying the condition (13).
Combing this test with the test Wgss(t,, 7,,), we can introduce SSS assisted by
ANOVA test (SSSa) as

Usssa(Tn, T, T,)) = max{Wsss (s, 7,), ¥3(1,))}. (16)

We then have the following result.

Theorem 2 Assume that A > Ag and the conditions (A1)—(A3) and (B) hold.
Assume that the sequences t,, T,, and T,/ satisfy condition (13); then type I and type

II errors of the test Wsssq(Tn, T)), T, ) converge to zero for the testing problem under
SIMa.

Example Continued. For the example in (11), we calculated the test statistic ¥sss
defined by (14) under both the null and alternative hypotheses. Figure 1 shows
the histograms of such a statistic under both hypotheses, demonstrating a perfect
separation between the null and alternative. For this example, Aks (A p) has more
discrimination power than Amax (A g).



74 Q. Lin et al.

Fig. 1A The histograms of SSS, p=2000,n=1000,rho=0
Aks (Agr) for the model (11). o

The top panel corresponds to ©

the scores under the null, and ]

the bottom one corresponds -

to the scores under the

alternative. The “black”
vertical line is the 95% 8 b
quantile under the null

< 02 03 04 05 06 07 08
Null

‘L(_),

9,

© |

o

02 03 04 05 06 07 08
Alternative

3.4 Computationally Efficient Test

Although the test Wggs (and Wggs,) is rate optimal, it is computationally inefficient.
Here we propose an efficient algorithm to approximate Aﬁ{fﬁ(x H) via a convex
relaxation, which is similar to the convex relaxation method for estimating the top
eigenvector of a semi-definite matrix (Adamczak et al., 2008; Berthet and Ri&ollet,
2013b; d’ Aspremont et al., 2005, 2014). To be precise, given the SIR estimate A 7 of

var(E[x | ¥]), consider the following semi-definite programming (SDP) problem:

ng;,)((xy) £ max tr(XHM),
subjectto tr(M) =1, |M|; <ks, 17)

M is semi-definite positive.

slog(p)
n

With Xﬁ,’f;,l(K 1), for a sequence T, satisfying the condition in (13), i.e., <

T, < Ag, a computationally feasible test is

U (t)) =105 (Ay) > 1)).

max

Then, for any sequence 7, satisfying the inequality in (13), we define the
following computationally feasible alternative of Wggs:
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Wsss = max{y1(t,), Ya(z))). (18)

Theorem 3 Assume that s> logz(p) A p < n, A > Ao, and conditions (A1)—(A3)
hold. Then, type I and type II errors of the test Wsss(ty,, T,) converge to zero for the
testing problem under SIMa.

Similarly, if we introduce the test

Usssa(Ta, T 7. 7)) = max{Wggs, V3T, (19)

for three sequences 1, 7,,, and 7,/, then we have:

Theorem 4 Assume that A >~ Aj and conditions (A1)—(A3) and (B) hold. The test
Usssa (T, T,,, 7)) is asymptotlcally powerful for the testing problem under SIMa.

Theorems 2 and 4 not only establish the detection boundary of gSNR for single
index models but also open a door of thorough understanding of semi-parametric
regression with a Gaussian design. It is shown in Lin et al. (2018a) that if we denoted
the single index models satisfying conditions (A1), (A3), and rank(var(x|y)) > O,
one has

s log(ep/s)

S%pnggfﬁEmllPﬂ—PﬁllpAlAT, (20)

where Pﬁ = ,3(3T;§)_1;§T and Pg = B(BTB)~ BT are the projection operators
with respect to B and B, respectively, and the space 901 is defined in Equation (14)
of Lin et al. (2018a). This implies that the necessary and sufficient condition for
obtaining a consistent estimate of the projection operator Pg is w < X.On
the other hand, Theorems 2 and 4 state that, for single index models with additive

. e S 1/2 .
noise, if ”"nﬂ A pT A JLZ < A, then one can detect the existence of gSNR (aka

nontrivial direction B). Our results thus imply for SIMa that, if # A \/Lz <A<
Sk’nﬂ, one can detect the existence of nonzero f, but cannot provide a consistent
estimation of its direction. To estimate the location of nonzero coefficient especially
when focusing on the almost recovery region (Ji and Jin, 2012), we must tolerate a
certain error rate such as the false discovery rate (Benjamini and Hochberg, 1995).
For example, the knockoff procedure (Barber and Candes, 2015), SLOPE (Su and
Candes, 2016), and UPT (Ji and Zhao, 2014) might be extended to single index
models.
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3.5 Practical Issues

In practice, we do not know whether the noise is additive or not. Therefore, we
only consider the test statistic \3555. Condition (13) provides us a theoretical basis
for choosing the sequences t, and t,’L. In practice, however, we determine these
thresholds by simulating the null distribution of AmaX(X ) and ngg))( (X g). Our final
algorithm is as follows.

Algorithm 1 Spectral test statistic based on SIR (SSS) algorithm

1. Calculate Apax (X ) and Xfﬁ;))( (X u ) for the given input (x, y)
2. Generate z = (z1, - , Zn), Where z; i N@,1)
3. Calculate Amgx (A gr) and 2 %8) (A 1) based on (x, z)

4. Repeat Steps 2 and 3 N (= 100) times to get two sequences of Apax and Ifﬁ;; Let 7, and 7,
be the 95% quantile of these two simulated sequences

5. Reject the null if Amax(XH) > T, and/or ig’;;i(x”) > 1,

4 Numerical Studies

Let B be the vector of coefficients, and let S be the active set, S = {i : 8; # 0},

for which we simulated B; id N(0,1). Let x be the random design matrix with
each row following N (0, X). We consider two types of covariance matrices: (i)
Y = (O','j) with 0;; = 1 and oij = p‘i7j| and (i) 0;; = 1, gij = p when i, j € S
ori,j e Sando;; =0;; = 0.1 wheni € S, j € S5 The first one represents a
covariance matrix which is essentially sparse, and we choose p among 0, 0.3, 0.5,
and 0.8. The second one represents a dense covariance matrix with p chosen as 0.2.
In all the simulations, n = 1000, p varies among 100, 500, 1000, and 2000 and the
number of replication is 100. The random error € follows N (0, I,,). We consider the
following models:

I. y=0.02x (16xp — exp(xB)) + €, where |S| = 7;

II. y =0.2*sin(xB/2) *exp(xf/2) + €, where |S| = 10;
I y=0.8x(xB — (xB)*/15) + €, where |S| = 5;
IV. y =sin(xB) * exp(xB/10) * €, where |S| = 10.

We choose H = 20 in the Algorithm 1 and assume the oracle information of
the sparsity in the numerical studies because the goal of the numerical investigation
is to demonstrate the theoretical detection boundary. A data-driven choice of such
a tuning parameter is challenging to get and unnecessarily obscures the theoretical
pattern. If we calculate N (= 100) test statistics for each replication, it will take an
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extremely long time. Therefore, in the simulation, we calculate 7, and 7, slightly
different from Algorithm 1. For each generated data set, we simulated only one
vector z where z ~ N (0, I,,) and calculate the statistic ,\max(K g) and ng;i(;\\ H)-
The 1, and 7, are chosen as 95% quantile from the corresponding sequence for all
the replications.

For each generated data, we also calculated Cor-HC scores according to Arias-
Castro et al. (2012). The threshold cp. is chosen according to the same scheme
as choosing the thresholds 7, and t,. Namely, we calculated the Cor-HC scores
based on z where z ~ N (0, I,). The threshold cp. is the 95% quantile of these
simulated scores. The hypothesis is rejected if the Cor-HC score is greater than cj..
The power for both methods is calculated as the average number of rejections out of
100 replications. These numbers are reported in Table 1.

Itis clearly seen that the power of SSS decreases when the dimension p increases.
Nevertheless, the power of SSS is better than the one based on Cor-HC except for
one case. In Fig. 2, we plot the histogram of the statistic Xﬁ,lf;,)( (X g) under the null
in the top-left panel and the histogram of this statistic under the alternative in the
bottom-left panel for Model III when p = 500 and p = 0.3 for type (i) covariance
matrix. It is clearly seen that the test statistic Wggsgs is well separated under the
null and alternative. However, Cor-HC fails to distinguish between the null and
alternative as shown in the two panels on the right side.

To see how the performance of Cor-HC varies, we consider the following
model:

V. y=«xf —exp(xp) + €, where |S| =7,k =1,3,5,---,19.

Set n = 1000, p = 1000, and p = 0.3 for type (i) covariance matrix, and
the power of both methods are displayed in Fig. 3. The coefficient x determines
the magnitude of the marginal correlation between the active predictors and the
response. It is seen that when « is close to 16, representing the case of diminishing
marginal correlation, the power of Cor-HC dropped to the lowest. Under all the
models, SSS is more powerful in detecting the existence of the signal.

To observe the influence of the signal-to-noise ratio on the power of the tests, we
consider the following two models:

VL. y = (15xB — exp(xB)) * k + 4€, where |S| =7,
VIL. y = sin(xB) x exp(10xf«) * €, where |S| = 10.

Here « = 0.01,0.02, ..., 0.10.

Set n = 1000, p = 1000, and p = 0.3; we plot the power of both methods
against the coefficient « in Fig. 4. It is clearly seen that for both examples there
is a sharp “phase transition” for the power of SSS as the signal strength increases,
validating our theory about the detection boundary. In both examples SSS is much
more powerful than Cor-HC.
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Table 1 Power comparison of SSS and HC for four models I-IV for different parameter settings.
Symbol “x” indicates the type (ii) covariance matrix

Model Dim P SSS HC Model Dim P SSS HC
100 0 1.00 0.16 100 0 0.98 0.12
0.3 1.00 0.29 0.3 0.97 0.16
0.5 0.99 0.54 0.5 0.96 0.24
0.8 1.00 0.93 0.8 1.00 0.37
0.2* 0.90 0.35 0.2* 0.96 0.56
500 0 0.98 0.16 500 0 0.87 0.06
0.3 0.99 0.18 0.3 0.80 0.09
0.5 0.97 0.34 0.5 0.82 0.13
0.8 0.98 0.71 0.8 0.83 0.14
I 0.2* 0.52 0.25 I 0.2* 0.77 0.32
1000 0 0.89 0.19 1000 0 0.81 0.09
0.3 0.88 0.16 0.3 0.74 0.06
0.5 0.91 0.33 0.5 0.77 0.08
0.8 0.96 0.53 0.8 0.84 0.11
0.2* 0.37 0.30 0.2* 0.69 0.25
2000 0 0.92 0.18 2000 0 0.75 0.11
0.3 0.86 0.25 0.3 0.68 0.12
0.5 0.83 0.43 0.5 0.68 0.13
0.8 0.90 0.60 0.8 0.81 0.10
0.2* 0.43 0.17 0.2* 0.63 0.41
100 0 1.00 0.21 100 0 0.89 0.01
0.3 1.00 0.25 0.3 091 0.03
0.5 1.00 0.63 0.5 0.89 0.04
0.8 1.00 1.00 0.8 1.00 0.10
0.2* 0.98 0.78 0.2* 0.94 0.07
500 0 0.99 0.11 500 0 0.70 0.03
0.3 1.00 0.12 0.3 0.57 0.04
0.5 0.98 0.11 0.5 0.57 0.07
0.8 0.99 0.22 0.8 0.69 0.09
I 0.2* 0.62 0.72 v 0.2* 0.45 0.08
1000 0 0.99 0.11 1000 0 0.55 0.07
0.3 0.97 0.06 0.3 0.56 0.04
0.5 0.97 0.18 0.5 0.51 0.09
0.8 0.92 0.10 0.8 0.73 0.06
0.2* 0.60 0.59 0.2* 0.44 0.08
2000 0 0.96 0.16 2000 0 0.58 0.07
0.3 0.97 0.19 0.3 0.47 0.07
0.5 0.93 0.15 0.5 0.45 0.09
0.8 0.88 0.10 0.8 0.61 0.02
0.2* 0.59 0.58 0.2* 0.40 0.08
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° SSS, p=500,n=1000,rh0=0.3 Cor-HC: p=500,n=1000,rho=0.3
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Fig. 2 Model III, n = 1000, p = 500, type (i) covariance matrix, p = 0.3

Fig. 3 Power: Model V, n = Model V, p=1000,n=1000,rh0=0.3
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Model VI, p=1000,n=1000,rho=0.3 Model VIl, p=1000,n=1000,rho=0.3
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Fig. 4 Power: Models VI and VII, n = 1000, p = 1000, p = 0.3 for the type (i) covariance
matrix

5 Discussion

Assuming that var(E[x | y]) is nonvanishing, we show in this paper that A, the
unique nonzero eigenvalue of var (E[x | y]) associated with the single index model,
is a generalization of the SNR. We demonstrate a surprising similarity between
linear regression and single index models with Gaussian design: the detection
boundary of gSNR for the testing problem (6) under SIMa matches that of SNR for
linear models (2). This similarity provides an additional support to the speculation
that “the rich theories developed for linear regression can be extended to the
single/multiple index models” (Chen and Li, 1998; Lin et al., 2019).

Besides the gap we explicitly depicted between detection and estimation bound-
aries, we provide here several other directions which might be of interests to
researchers. First, although this paper only deals with single index models, the
results obtained here are very likely extendable to multiple index models. Assume
that the noise is additive, and let 0 < A4y < ... < A be the nonzero eigenvalues
associated with the matrix var (E[x]y]) of a multiple index model. Similar argu-
ments can show that the i-th direction is detectable if A; > ‘/Tﬁ A % A ﬁ New
thoughts and technical preparations might be needed for a rigorous argument for
determining the lower bound of the detection boundary. Second, the framework can
be extended to study theoretical properties of other sufficient dimension reduction
algorithms such as SAVE and directional regression (Lin et al., 2018a,b, 2019).



SIM-Detection 81

Acknowledgments We thank Dr. Zhisu Zhu for his generous help with SDP.

Appendix: Proofs

Assisting Lemmas

Since our approaches are based on the technical tools developed in Lin et al.
(2018a,b, 2019), we briefly recollect the necessary (modified) statements without
proofs below.

iid . ..
Lemmal Letz; ~ N(0,1),j=1,...,p. Letoy,...,0p be p positive constants
satisfying o1 < ... < 0p. Then forany 0 < a < ULz Zj 0;-‘, we have
P

2(.2 o?
P ;oj (zj—1>>a gexp<——420?). Q1)

Lemma 2 Suppose that a p x H matrix X formed by H i.i.d. p dimensional vector
x;~N(@0,X),j=1,..., Hwhere 0 < C1 < Apin(X) < Amax(X) < C for some
constants C1 and Ca. We have

1 tr(X
H—X’X LAV (22)
p p F
with probability at most 4H? exp (— Cf;f) for some positive constant C. In

particular, we know that

hmax (XXT/p) = Amax (XTX/p) < 1r(2)/p +« (23)
happens with probability at least 1 — 4H? exp (— Cflgz )
B 0
Lemma 3 Assume that p'/> < nix. Let M = | B, B3 | be a p x H matrix, where
0 By

By and B are scalar, Bz isa 1 x (H — 1) vector, and Baisa (p —2) x (H — 1)
matrix satisfying
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1 ! »< B?< 1+1 A
2v =71 = 2v

5 . (24)
()] -
B;Bg B§B3+BZB4 n g N
for a constant v > 1 where a0 < p"l—’>2 Then we have
A o 1
hmax (MMT) > = — vre L (1 - —) A. (25)
n n 2v

Sliced Approximation Inequality The next result is referred to as “key lemma” in
Lin et al. (2018a,b, 2019), which depends on the following sliced stable condition
stated as Assumption A2.

Lemma 4 Assume that Condition (A1) and the sliced stable condition A2 (for
some ¥ > 0) hold in the single index model y = f(B*x, €). Further assume that
rank(var(x|y)) > 0. Let Ay be the SIR estimate of A = var(E[x | y]), and let
Py be the projection matrix associated with the column space of A. For any vector
B eRPandanyv > 1, let Eg(v) = { ‘,B’ (PAKHPA — A),B‘ < %,BTA/S}. There
exist positive constants C1, Ca, C3, and Cy4 such that for any v > 1 and H satisfying
that H? > Cyv, one has

NAmax (A)
P ﬂEﬁ >1—-Ciexp (—CzT—FC:;lOg(H)). (26)
B
Proof of Theorems
Proof of Theorem 1 Theorem 1 follows from Lemmas 5 and 6. O

N

Lemma 5 Assume that pl/ 2 < nig, and let T, be a sequence such that Tp < T <
ro. Then, as n — 0o, we have:

i) Under Hy, i.e., if y 1L x, then )\max(XH) < ";i + 1, with probability
converging to 1; R

ii) Under Hy, if & > Ao, then Amax(Apg) > "Eli + t, with probability converging
to 1.
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Proof
i) If y L x, we know that ﬁZ_l/2XH is a p x H matrix with entries i.i.d. to

N (0, %). From Lemma 2, we know that

tr(X)

1
Amax (EX;[XH) = + 1 (27)

. - 2 Cn?t? .
with probability at least 1 — 4H~ exp (— Hzp”) which — 1 asn — oo.

ii) For any event w, there exist p x p orthogonal matrix S and H x H orthogonal
matrix 7 such that

Z1 0
SXg()T =\ Zy Z3 (28)
0 Z4

where Z1, Z, are two scalars, Z3 isa 1 x (H — 1) vector, and Zs is a (p —
2) x (H — 1) matrix. Lemmas 4 and 2 imply that there exist a constant A and
an events set €2, such that P (22¢) — 0 as n — oo. For any w € €2, one has

1 : A< Z?< l—i-1 A
2v =71 = 2v/)77

2522 Z§Z3 _ tr(X)
Z§Z2 Z§Z3 + ZZZ4 n

(29)
Ve

n

=
F

Iy

Lemma 3 implies that

1 o 1 tr(X
o (Xuxy) = TE VP, (o L) B
H n n 2v n

(30)
O

Lemma 6 Assume that “Onﬂ < Ao. Let T, be a sequence such that LR AY2) ]Oﬁ(p )

ro. Then, as n — oo, we have:

< T <

i) If y L x, then )Lfrlfj,)( (KH) < 1Ty, with probability converging to I;
ii) If » > Ao, then )»gfg))( (XH) > 1, with probability converging to 1.
Proof

i) If y L x, we know that ﬁEH = LZ_I/ZXH is a p x H matrix with entries

I~
i.id.to N0, 1). Thus

max

- 1
W) (Rn) = 2% (Ezl/zEHELZI/Z) and A5 (D'2E4 B} D'2)
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are identically distributed where D is diagonal matrix consisting of the eigen-
values of X. For any subset S C [p], let Xy s = D;/zEs,H where Es g is a
submatrix of E g consisting of the rows in S. Note that

1
Amax ((D1/2EHE;,DI/2)S) = Amax (EXH,S)(;LQ . 31)
Thus, by Lemma 3, we have

ks max (X2
w.Hx (32)
n

1
Amax <EXH,SX§1,5) <tr(Ds)/n+a <

with probability at least 1 — 4H? exp (—C”—%‘z> Leta = C“(’nﬂ for some

HZ2s
sufficiently large constant C. Since (k’z ) < (%)ks, we know that )\gf;))((;\\ H) <

C Slonﬂ < 1, with probability converging to 1.
Let n be the eigenvector associated with the largest eigenvalue of A. Thus
|[supp(n)| = ks. From Lemma 4, we know that

_~ —_ - 1
A& (Ap) = n"Apn > (1 - 5) A (33)

with probability converging to 1. Thus, A%s) (KH) > 1, with probability

converging to 1.
O

Proof of Theorem 2 Theorem 2 follows from the Theorem 1 and the following
Lemma 7. o

Lemma 7 Assume that %ﬁ < A{. Let T, be a sequence such that %ﬁ < Ty <A,

T, — 0. Then we have:

i) Ify L x, thent < t, with probability converging to 1.
ii) If . = A3, thent > 1, with probability converging to 1.
Proof

(i) Since y I x ,we know that E[z] =0.Letz; = yjz — 1; then we have

P %sz > 1, | <exp (—Cnt,f) (34)
j

for some constant C. In other words, the probability of t > t,, converges to 0
asn — oo.
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(i) If A = A%, we have var(f(z)) > Cx and E[y% — 1] > CA for some constant C.
Letz; = yjz. —1,j=1,...,n Since f(x;), j =1, ..., n are sub-Gaussian,
we know that

1 2 2
P ;Zsz[y 1148 §exp<—Cn6>. (35)
J

By choosing § = CE[y*— 1] for some constant C, we know that the probability
of t > (C + 1)A > 1, converges to 1.

O
Proof of Theorem 3 Theorems 3 and 4 follow from the following lemma, the
Theorems 1 and 2. O
Lemma 8 Assume that “Onﬂ < Ao. Let T, be a sequence such that Slonﬂ < T, <

ro. Then we have:

i) Ify L x, then Xﬁ{,‘;,{ (XH) < 1, with probability converging to 1;
ii) If A > o, then Xfffg))( (XH) > T, with probability converging to 1.
Proof

i) Under Hy, i.e., y 1L x, the entries of Tlﬁz—l/ 2x p are identically distributed

as N (0, %). Thus, if 1 < o < %, we have

alog(p)
e (36)

max ’KH(i, j)‘ <
@)

with probability at least 1 — p? exp (—C o? log( p)z) for some constant C which
converges to 1 as n — oo. Since (see, e.g., Lemma 6.1 in Berthet and Rigollet
(2013a))

o log(p)
§———— <
n

Tn (37

’XEIIS))( (KH) < Amax (Stotlog(p) (KH)) +k

n

where st,(A); j = sign(A; j)(A; j — z)+, we know that () holds.

ii) Follows from that XI({,,(;))((XH) > ,\Eﬁ‘gi(KH). |
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