1	Causes for the Negative Scaling of Extreme Precipitation at High
2	Temperatures
3	
4	Xiaoming Sun ^a and Guiling Wang ^a
5	^a Department of Civil and Environmental Engineering & Center for Environmental Sciences and Engineering,
6	University of Connecticut, Storrs, CT 06269
7	Corresponding author: Dr. Guiling Wang, guiling.wang@uconn.edu
8	
9	Submitted to Journal of Climate
10	Submitted: January, 2021; Revised: March, 2022, May 2022

11 ABSTRACT

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Although the intensity of extreme precipitation is predicted to increase with climate warming, at the weather scale precipitation extremes over most of the globe decrease when temperature exceeds a certain threshold, and the spatial extent of this negative scaling is projected to increase as the climate warms. The nature and cause of the negative scaling at high temperature and its implications remain poorly understood. Based on sub-daily data from observations, reanalysis data, and output from a coarse-resolution (~200 km) global model and a fine-resolution (4 km) convection-permitting regional model, we show that the negative scaling is primarily a reflection of high temperature suppressing precipitation over land and storm-induced temperature variation over the ocean. We further identify the high temperatureinduced increase of saturation deficit as a critical condition for the negative scaling of extreme precipitation over land. Large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation. The heat-induced suppression of precipitation, both for its mean and extremes, provides one mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land is expected to increase in a warmer climate, our results imply a growing prevalence of negative scaling, potentially increasing the frequency of compound drought and heat events. Understanding the physical mechanisms underlying the negative scaling of precipitation at high temperature is, therefore, essential for assessing future risks of extreme events, including not only flood due to extreme precipitation but also drought and heatwaves.

SIGNIFICANCE STATEMENT

Negative scaling, a decrease of extreme precipitation at high local temperature, is a poorly
understood phenomenon. It was suggested that the negative scaling may be a reflection of
precipitation's influence on temperature. Here we show based on observational data, reanalysis
data and climate models that the negative scaling results primarily from the impact of high
temperature-induced saturation deficit on precipitation over land and from storm-induced
temperature variations over the ocean. In hot weather when moisture is limited (as is over land),
large saturation deficit reduces precipitation intensity by slowing down the convective updraft
condensation rate and accelerating condensate evaporation, leading to a negative scaling. The
same mechanism can also contribute to increased compound drought and heat events.

1. Introduction

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

As the global climate warms, observational data have shown an increase in the intensity and frequency of extreme precipitation (Fischer and Kutti 2016; Easterling et al. 2017), and this trend is expected to continue (Meehl et al. 2007; Allan and Soden 2008; Kharin et al. 2017; Prein et al. 2017). Because extreme precipitation is intrinsically related to low-level moisture convergence and tends to occur when the atmosphere is close to saturation, its intensity is often proportional to the moisture-holding capacity of the air near the surface of the Earth. Therefore, the Clausius-Clapeyron (C-C) relationship, which dictates the increase with temperature in the capacity of the atmosphere to hold moisture, can be used as a first-order approximation for the scaling of precipitation extremes with warming (Trenberth 1999).

The relationship between extreme precipitation intensity and concurrent local temperature (EPI-T), however, is confounded by several other factors and processes, including atmospheric stability, precipitation efficiency, orographic effect, convective organization, moisture limitation, and latent heat release feedback on storm intensity (e.g., O'Gorman and Schneider 2009; Loriaux et al. 2013; Muller 2013; Singh and O'Gorman 2014; O'Gorman 2015; Dai and Soden 2020). Therefore, it does not, and is not expected to, conform to the C-C scaling (Lenderink and van Meijgaard 2008; Sugiyama et al. 2009; Hardwick Jones et al. 2010; Chen et al. 2011; Utsumi et al. 2011; Mishra et al. 2012; Berg et al. 2013; Prein et al. 2017; Bao et al. 2017; Wang et al. 2017; Da Silva et al. 2020). Specifically, in the context of climate variability and at daily and sub-daily timescales over most of the globe, extreme precipitation increases with local temperature up to a certain threshold, beyond which a lower magnitude of extreme precipitation is associated with higher temperatures. This leads to a peak-shaped relationship curve, with negative scaling at higher temperatures. As the climate warms, both the magnitude of the extreme precipitation peak and the threshold temperature at which extreme precipitation reaches its peak are projected to increase, leading to an upper-rightward shift of the curve relating the two, especially for the increasing branch of the scaling curves (Prein et al. 2017; Wang et al. 2017; Drobinski et al. 2018) (Figure 1). For the descending branch, however, its variation with warming can be more elusive (Drobinski et al. 2018), and the negative scaling is projected to become spatially more widespread in a warmer climate (Wang et al. 2017). Wang et al. (2017) suggested that the C-C scaling is more likely to hold at the peak precipitation intensity (indicated by dots in Figure 1b), since the most intense

precipitation event tends to occur when the atmosphere is close to saturation, a condition conducive to C-C scaling (Wang & Sun, 2022).

72

73

74

75

76 77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

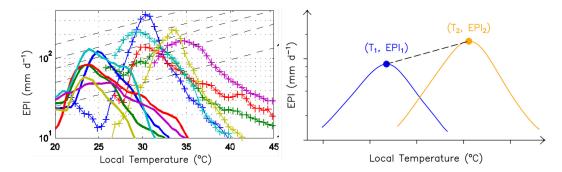


Figure 1. Relationship between extreme precipitation intensity and local temperature (EPIT). The left panel is based on historical (color solid lines) and projected (color lines with crosses) daily all-season output from six global climate models, using the Indian Monsoon region as an example (from Wang et al. 2017). The right panel is a conceptual diagram illustrating the EPI-T scaling in historical (blue solid line) and future (orange solid line) climates. The black dash lines indicate the Clausius-Clapeyron scaling relationship.

The negative scaling of extreme precipitation at high temperature, although well documented in numerous studies, is poorly understood. Many factors may contribute to it, ranging from artificial effects of the data resolution and the methodology used to analyze the data to true physical mechanisms linking precipitation processes with temperature (e.g., Barbero et al. 2018; Bao et al. 2018; Visser et al., 2021). If higher temperature led to precipitation events that were more intense but spatially or temporally more concentrated (Long et a., 2021), data at coarse resolution would not capture the true response of precipitation intensity to temperature (Utsumi et al. 2011; Wasko et al. 2015; Visser et al., 2021). Mixing data from different seasons might lead to the clustering of large-scale precipitation at low or medium temperature on one end and convective precipitation at high temperature on the other end, which complicates the results (Drobinski et al. 2016; Ali et al. 2018). For physical processes underlying the negative scaling, some have hinted at the possible role of moisture limitation in precipitation at high temperature (Hardwick Jones et al. 2010; Prein et al. 2017; Wang et al. 2017; Wang & Sun, 2022), but this mechanism may not work over oceans, where moisture supply is usually not a limiting factor. Some have pointed to the response of nearsurface air temperature to synoptic conditions and precipitation processes, including warming associated with anticyclonic weather systems (Trenberth and Shea 2005; Chan et al. 2016) and cooling during heavy precipitation events (Bao et al. 2017), but this notion is a subject of inconclusive debate (Barbero et al. 2018; Bao et al. 2018). The lack of a consistent relationship

between surface air temperature and atmospheric moisture content may also cause the negative scaling between precipitation extremes and temperature (e.g., Roderick et al. 2019).

Despite the many studies on the relationship between extreme precipitation and temperature, the very nature of the negative scaling is not clearly understood; while not without exception (Visser et al., 2021), comments on the possible causes for negative scaling are often given without direct substantiating evidence. The projected increase in the spatial extent of negative scaling is subject to a similar lack of understanding (Wang et al. 2017). In the current study we aim to establish clear evidence for the negative scaling of extreme precipitation at high temperature, understand the nature of this negative scaling, assess its sensitivity (or the lack of such) to non-physical factors such as spatiotemporal resolution and seasonality, and tackle the physical mechanisms that underlie the negative scaling and its potential implications for future changes. We demonstrate that, for most regions over land at the weather timescale, the intensity of warm-season precipitation extremes decreases at high temperature, and this negative scaling is primarily a reflection of precipitation intensity being suppressed by temperature-induced large saturation deficit. Over oceans except for the subtropical dry zones, negative scaling is also found and results primarily from storm-induced temperature variations stemming from the combined impact of evaporative cooling and cloud radiative effect. As illustrated in Figure 1, the negative scaling at the weather timescale does not contradict the observed and predicted warming-induced increase of extreme precipitation at the climate timescale. The remainder of this article is organized as follows. Section 2 provides a description of the datasets and models used, while Section 3 details the methodologies applied, including the binned scaling analysis and diagnostics related to atmospheric convection. Section 4 presents a thorough examination of the robustness of negative scaling at high temperature, and illustrates the underlying physical mechanisms by exploring the interactions between temperature and precipitation processes, as well as the role of large-scale systems. Conclusions and discussion are given in Section 5.

2. Data and Models

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

Data from four sources are used in this study. These include the observational Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG, Final Run version 6, Huffman et al. 2019), the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation reanalysis data (ERA5, Hersbach et al. 2020), output from global simulations carried out for this study using the Community Earth System Model (CESM) version 1.2.2.1,

and output from the National Center for Atmospheric Research (NCAR) continental-scale convection-permitting modeling of North America (Liu et al. 2017) using the Weather Research and Forecasting (WRF) model version 3.4.1 (Skamarock et al. 2008).

The half-hourly, 0.1° resolution IMERG is the successor of the Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data (Huffman et al. 2007) from the National Aeronautics and Space Administration (NASA). It is an adjusted precipitation product based on estimates from various precipitation-relevant satellite passive microwave sensors comprising the Global Precipitation Measurement (GPM) constellation; it is available for the period June 2000 to near the present and nominally covers the entire globe (primarily for unfrozen surfaces between 60° S and 60° N). The global ERA5 is the successor of ECMWF interim reanalysis (ERA-Interim, Dee et al. 2011) and uses a more advanced assimilation scheme. The ERA5 precipitation at approximately 30 km grid spacing is model simulated and available at every hour from 1950 to near real time; the 2-m air temperature in ERA5 is a reanalysis product that assimilates observed surface air temperature. Also available from ERA5 are dewpoint temperature and surface pressure, which are used to derive the 2-m saturation deficit following the approach of Byrne and O'Gorman (2018). As in Wang et al. (2017), the IMERG precipitation is paired with ERA5 2-m air temperature or 2-m saturation deficit to support the analysis on observed scaling, which we refer to here as "IMERG"; we refer to scaling analysis as "ERA5" if both precipitation and 2-m air temperature or saturation deficit are from ERA5. For comparison purposes, all IMERG and ERA5 analyses are also repeated based on TRMM and ERA-Interim.

The CESM global simulation is performed at f19 spatial resolution (approximately $1.9^{\circ} \times 2.5^{\circ}$) and over the period 1986-2013 (with the first five years deemed model spin-up), using prescribed sea surface temperature and sea ice fraction according to observations from the Hadley Centre and the National Oceanic and Atmospheric Administration (NOAA) (Hurrell et al. 2008). The atmospheric component is the Community Atmosphere Model, version 5.3 (Neale et al. 2012), with 30 vertical levels; the land component is the Community Land Model 4.5 with satellite phenology (Oleson et al. 2013). To represent present-day climate, the land surface is initialized according to year 2000 conditions (Oleson et al. 2013), and aerosol concentration, CO_2 , and other trace gases are all fixed at their year 2000 levels. In addition to daily and 3-hourly model output for the entire simulation period, model output is also saved for every time step (30 minutes) during the five-year period from 1991 to 1995 to examine the sensitivity of extreme precipitation scaling analysis to temporal resolution.

The WRF convection-permitting simulation is conducted at 4-km grid spacing for the contiguous United States (and is referred to as "WRF4km" hereafter), driven with initial and boundary conditions from ERA-Interim for the period October 2000 to September 2013 (Rasmussen and Liu 2017; Liu et al. 2017). In this study, both the hourly and the aggregated 3-hourly and daily WRF4km data are used to examine the sensitivity of the scaling relationship to temporal resolution.

Figure S1 compares the precipitation climatology for the June-July-August (JJA) and December-January-February (DJF) seasons from all four data sources at their native resolution. Both CESM and WRF reproduce the large-scale precipitation climatology reasonably well. Discrepancies in certain regions can be large, especially for CESM. Precipitation during DJF, for example, is strongly underestimated by CESM over the Amazon basin, a common global model deficiency also found in other studies (e.g., Zhang et al. 2017). Moreover, CESM also captures the global pattern of extreme precipitation in comparison with IMERG and ERA5, although the magnitude is much lower as expected from coarse-resolution (~200 km) simulations (not shown).

3. Methods

Using data from each of the four sources respectively, we identify and track the extreme precipitation events under different temperatures, and analyze how extreme precipitation scales with temperature and other variables (e.g., saturation deficit) at different lead/lag times. For CESM, additional diagnostics related to precipitation and convection are examined to further understand the physical processes underlying the negative scaling of precipitation extremes at high temperature. In addition to global analysis, 16 sample regions (Figure S2) over land and ocean spanning the tropics and extratropics are chosen for more detailed analysis. Due to computational constraint, especially for event tracking, we aggregate the half-hourly IMERG, hourly ERA5 and hourly NCAR WRF model output as 3-hourly data for most of the analysis. In section 4a, we demonstrate that this treatment does not impact the results because the sensitivity to temporal resolution is minimal as also found in previous studies (e.g., Drobinski et al. 2018). It should be noted that the focus of this study is on extreme precipitation scaling with temperature and therefore the surface air temperature is used as the covariate of precipitation intensity. Some past studies used dewpoint temperature as the precipitation covariate (see Fowler et al. 2021 for a comprehensive review). However, since dewpoint is a measure of specific humidity, it is not suitable for this study.

a. Binned scaling analysis

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

Our primary EPI-T scaling analysis is based on sub-daily data and conditional on nearsurface air temperature (taken as local 2-m air temperature), following the approach of Wang et al. (2017). Rather than using daily averaged temperature and sub-daily precipitation to reduce the imminent impact of precipitation on temperature as in Drobinski et al. (2018) and Da Silva et al. (2020), we analyze both temperature and precipitation at the sub-daily timescale to explore their interactions. This choice is also necessitated by our event tracking and lead-lag analysis that require sub-daily data. Specifically, all sub-daily precipitation data in each specific area within the analysis period are first binned according to the corresponding nearsurface air temperature, and a bin size of 0.5° C is used. For each temperature bin, the 99th percentile of precipitation is identified, and the extreme intensity is then defined as the average of precipitation rates that exceed the 99th percentile within the bin, and the corresponding nearsurface air temperatures are averaged to represent the bin temperature. Temperature bins with fewer than 1,000 data points, typically found at the lowest and highest ends of local temperature variations, are discarded. The resulting precipitation extremes are smoothed (using a three-bin moving average) to characterize the scaling relationship between precipitation extremes and near-surface air temperature, and to identify the temperature at which extreme precipitation peaks, denoted as T_{peak}. A similar binned analysis is also conducted to derive the relationship between sub-daily precipitation and near-surface saturation deficit (EPI-SD), using a bin size of 0.5 g kg^{-1} .

For all precipitation events underlying each "extreme" data point within each temperature bin, we then track the temporal variation of precipitation, temperature, and some convection-related variables to assess the timing and magnitude of changes of temperature (and other variables) during storm development. This analysis enables us to evaluate whether the temperature differences between storm events in different bins are already present before storm development or caused by the storm, and to quantify how much of the difference can be attributed to the storm.

The aforementioned analyses are conducted globally and for each of the 16 representative regions as well. The global analysis is not based on each individual grid cell; instead, data from 25 grid cells centering around each grid cell is pooled together to increase the sample size in the extreme analysis. To compare data from the four different sources, the scaling analyses are conducted over their common period, December 2000 to August 2013, focusing on the warm

season (JJA for the Northern Hemisphere and DJF for the Southern Hemisphere) when convective precipitation is dominant. Because of differences in spatial resolution, the number of grid cells needed to cover a specific representative region can differ dramatically across different datasets. To ensure similar spatial coverage for each region across all datasets, some resampling is necessary. For study regions within the contiguous United States, we resample IMERG, ERA5, and WRF4km to a 64-km resolution on the WRF grid (WRF64km-G or simply WRF). For regions outside the contiguous United States, we resample the IMERG precipitation to the ERA5 grid. To preserve the characteristics of precipitation extremes, no spatial interpolation is conducted; instead, resampling simply takes the raw data from the closest grid point. Overall, 169 (13 × 13) grid cells from WRF64km-G and 1089 (33 × 33) grid cells from ERA5 occupy an area similar to that of 25 (5 \times 5) grid cells from CESM (Figure S2). Subject to computer memory constraint, the ERA5 grid has to be resampled at every other grid point before conducting scaling analysis. This leads to a total of 289 (17 × 17) grid cells that are eventually used for the scaling analysis based on the ERA5 grid. As is evident from Figures S3 and S4, the details of the resampling process do not influence the qualitative scaling behavior of precipitation extremes. This result is consistent with Drobinski et al. (2018), showing minimal sensitivity of EPI-T scaling to spatial resolution.

245 b. Atmospheric convection diagnostics

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

246

247

248

249

250

251

252

To explore the physical processes underlying the negative scaling of precipitation extremes at high temperature, we analyze diagnostics directly related to atmospheric convection, including the cumulus updraft condensation rate, cumulus downdraft evaporation rate, and downdraft convective available potential energy. Limited by the availability of data for the needed variables, the diagnostics described here are based on CESM output only.

Following Houze et al. (1980), we estimate cumulus updraft condensation rate C_u and cumulus downdraft evaporation rate E_d as

$$C_{u} = \int_{z_{B}}^{z_{T}} M_{u} \left[\lambda_{u} \left(r_{e} - r_{u} \right) - \frac{dr_{u}}{dz} \right] dz \tag{1}$$

$$E_d = \int_{z_B}^{z_T} M_d \left[\lambda_d \left(r_e - r_d \right) + \frac{dr_d}{dz} \right] dz , \qquad (2)$$

where z is height, z_B (z_T) is cloud base (top) height, M_u (M_d) is updraft (downdraft) mass flux, λ_u (λ_d) stands for updraft (downdraft) entrainment rate, and r_e , r_u , and r_d are environment, updraft, and downdraft water vapor mixing ratio, respectively. Among the variables needed for the calculation of C_u and E_d , four $-M_u$, M_d , λ_u , and λ_d – are directly obtained from the cumulus parameterization (Zhang and McFarlane 1995) of CESM, while z_B and z_T can be determined from the vertical profiles of M_u and M_d . We take the grid value of water vapor mixing ratio as r_e and estimate r_u and r_d as the saturation mixing ratio at the environmental temperature and pressure.

255

256

257

258

259

260

261

262

263

264

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

The downdraft convective available potential energy (DCAPE) for an air parcel can be estimated as

$$DCAPE = \int_{p_i}^{p_n} R_d \left(T_{\rho e} - T_{\rho p} \right) d \ln p , \qquad (3)$$

where p is atmospheric pressure, p_i is the pressure from which the parcel starts to descend, p_n is surface pressure or the pressure where a descending parcel achieves neutral buoyancy (whichever is smaller), R_d is the gas constant for dry air, and $T_{\rho e}$ and $T_{\rho p}$ are the density temperature of the environment and air parcel, respectively (Emanuel 1994). Because the maximum kinetic energy that a descending parcel can achieve is proportional to DCAPE, DCAPE can be used as an indicator of maximum downdraft strength within storms: the higher the value of DCAPE, the stronger the downdraft could potentially be. DCAPE for each temperature bin is estimated using the average air temperature and water vapor mixing ratio corresponding to the extreme precipitation rates in that temperature bin. We adapt the DCAPE calculation from Emanuel (1994), which eliminates the need for total water mixing ratio information by assuming that the parcel is cooled isobarically through a wet-bulb process before descending pseudo-adiabatically with just enough evaporation to keep it saturated. DCAPE, as an indicator of maximum downdraft when precipitation supply is sufficient and background wind shear is absent, is not a direct measure of the actual downdraft strength. However, its response to temperature variation is consistent with that of the estimated cumulus downdraft evaporation rate E_d (as shown later in the Results section), lending confidence to the accuracy of both diagnostics and their relevance as a metric for downdraft strength.

4. Results

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

a. The robustness of the negative EPI-T scaling

For the EPI-T relationship based on data from all seasons, the negative scaling at high temperature is dominated by precipitation events from the warm season (which coincides with the wet season in many regions) (Wang et al. 2017). Lumping data from warm and cold seasons together mixes convective and large-scale precipitation regimes, which may lead to an artificial negative scaling that does not reflect a true physical process relating extreme precipitation to temperature. We therefore focus on the warm season only, when convective precipitation is abundant and dominant. The 16 regions in Figure S2 are used to sample different climate regimes in the tropics and extratropics.

Figure 2 compares the EPI-T relationship for the 16 sample areas using sub-daily data from all four sources during their overlapping period (2001-2013). The magnitude of precipitation extremes differs remarkably among the four sources and generally increases as the native resolution of the data becomes finer from CESM to ERA5 to IMERG and WRF. Relative to the observational reference IMERG, CESM substantially underestimates the intensity of extreme precipitation at sub-daily timescales, while WRF overestimates the extreme precipitation intensity compared with ERA5, which shows an overall agreement with IMERG (solid lines in Figure 2). Despite these rather substantial differences among the four data sources in the magnitude of precipitation extremes, and despite the vastly varying climate regimes of the 16 sample regions, the EPI-T relationships derived from all data sources for all sample regions are qualitatively similar and feature a negative scaling at high temperature (solid lines in Figure 2). The increasing branch of the scaling curves at lower temperatures can be minimal or even absent because the near-surface air temperature during the warm season is mostly above the threshold temperature at which the extreme precipitation peaks (T_{peak}). The increasing branch would be more prominent and dominated by winter precipitation if the scaling curves were derived using data from all seasons (e.g., Wang et al. 2017).

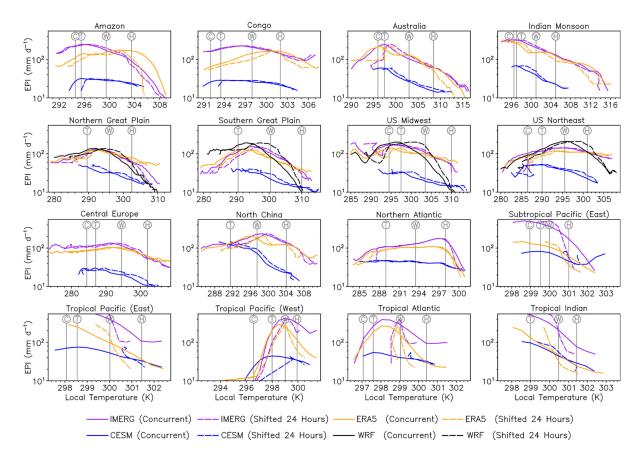


Figure 2. The EPI-T scaling relationship that links extreme precipitation intensity to concurrent near-surface air temperature (solid lines) and antecedent near-surface air temperature (dashed lines) for 16 sample areas. The analyses are based on 3-hourly data from IMERG, ERA5, CESM, and WRF during the 2001-2013 warm seasons, with temperature in K and EPI in mm day⁻¹. The dashed lines are based on the same extreme precipitation data as the solid lines but with temperature shifted to the values 24 hours ahead of precipitation. The vertical gray lines indicate the temperature bins used for more detailed analysis, including a cold bin (C, only for areas where the EPI-T curve in CESM includes an increasing branch), a threshold bin (T, which corresponds to the largest magnitude of extreme precipitation in CESM), a warm bin (W), and a hot bin (H).

Since extreme precipitation decreases when the surface air temperature exceeds T_{peak} , we use the percentile of T_{peak} as an indicator for how common or how rare the conditions are inducive to negative scaling. Figure 3 shows the global pattern of T_{peak} percentile based on warm season local temperature statistics, where a lower percentile for T_{peak} means more common or more frequent occurrence of negative scaling. It is clear from Figure 3 that negative scaling is detected over most land areas; relative to IMERG, ERA5 and WRF, the coarse-resolution global model CESM generally overestimates the frequency of conditions under which negative scaling occurs. For example, over most of the U.S., T_{peak} is at or lower than the 5th percentile of warm-season temperature in CESM, but ranges from less than 5th percentile to over 60th percentile in IMERG, ERA5 and WRF. However, the overall spatial patterns of T_{peak}

percentile from different data sources show a remarkable agreement, all indicating that negative scaling is a common warm-season phenomenon over most land areas and in much of the tropical oceans. Over the unshaded areas in Figure 3, negative scaling is either extremely rare or not detected. Data from different sources are consistent in identifying such areas, including the subtropical dry zones over the oceans and high-latitude oceans with no real warm season.

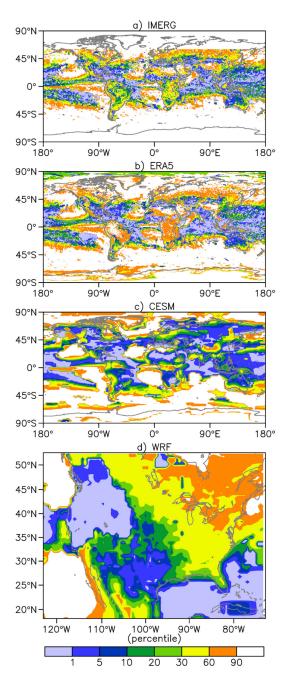


Figure 3. Percentile of T_{peak} at which extreme precipitation reaches its maximum value in the EPI-T scaling curve. These percentiles are based on 3-hourly data from (a) IMERG, (b) ERA5, (c) CESM, and (d) WRF during the 2001-2013 warm seasons. At each grid point, data from its surrounding 25 grid cells are used. Lower percentiles of T_{peak} indicate more common occurrence of negative scaling.

The negative EPI-T scaling relationship is robust against the data temporal and spatial resolutions. As the temporal resolution changes from sub-hourly to hourly, three-hourly, and daily, the intensity of the precipitation extremes from all four data sources decreases, but qualitatively, the overall EPI-T relationship does not change (Figure 4 using the U.S. Southern Great Plain as an example; see Supplementary Figure S5 for all 16 sample areas). Negative scaling at high temperature is clearly present in all sample areas at all temporal resolutions examined, consistent with Drobinski et al. (2018, their Fig. 2). Quantitatively, the magnitude of the negative scaling rate generally decreases as the temporal resolution becomes finer. This is especially obvious in CESM for the tropical wet climates (e.g., in the Amazon and Congo), where the EPI-T curve for daily data shows a clear negative scaling while the curve based on 30-minute resolution is almost flat. Similar to the effect of temporal accumulation, spatial aggregation from fine to coarser grids (through averaging) reduces the magnitude of the extreme precipitation, but does not qualitatively change the EPI-T relationship (results not shown), in agreement with Drobinski et al. (2018). Moreover, the EPI-T relationship also shows minimal sensitivity to spatial resampling to various resolutions that takes the nearest neighbor value in the scaling analysis. Resampling the IMERG data from 0.1° to 0.3°, for example, or resampling the WRF output from 4km to 64km grid spacing causes negligible change in the derived EPI-T relationship corresponding to each data source (Figures S3-S4).

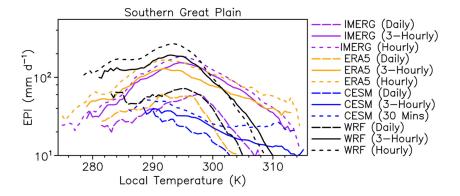


Figure 4. Sensitivity of the EPI-T scaling to temporal resolution, using the Southern Great Plain sample area as an example. The scaling curves are derived from daily (dashed lines), 3-hourly (solid lines), and hourly or 30-minute (dotted lines) data from IMERG (purple), ERA5 (orange), CESM (blue) and WRF (black), with temperature in K and EPI in mm day⁻¹. The results are for the warm seasons of 2001-2013, except for the CESM-based 30-minute scaling analysis that is based on the warm seasons of 1991-1995 (limited by the availability of the 30-minute time-step output).

b. Impact of precipitation process on temperature

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362363

364

365366

To assess the impact of precipitation and its associated weather systems on near-surface air temperature, we track all individual storm events underlying the identified "extremes" within each temperature bin to examine how temperature and other variables evolve during a storm's lifetime. In this "storm tracking" analysis, we apply a 24-hour moving average to all time series to remove the diurnal cycle and focus on storm-induced variations. For most regions, nearsurface air in the warm and hot bins generally experiences slight cooling (or even warming) before the time of the storm peak, while near-surface air in the cold and threshold bins experiences stronger cooling. Most of the temperature changes occur within the 24 hours before the storm peak, as shown in Figure 5 using the U.S. Southern Great Plain as an example. Results for all sample regions are presented in supplementary Figures S6-S9 for IMERG, ERA5, CESM, and WRF, respectively. This cooling is closely related to cloud radiative effects that are the strongest within 24 hours before and after the storm peak (as evident from the surface insolation plot in Figure S10 using CESM as an example). In CESM for most sample areas, cloud content is much higher during storm events in the cold and threshold bins than those in the warmer bins, and the transition from predominantly low-level clouds to medium- and highlevel clouds (reflecting the transition from shallow to medium and deep convection) occurs within one day before the storm peak (Figures S11-S12). The other cooling process, through evaporation of rain droplets in the lower troposphere and water at the surface, occurs more imminently to the precipitating process. Therefore, one day before the storm peak is sufficient to capture most of the storm's impact on temperature; earlier temperature differences between bins reflect variations not directly related to the imminent storm events.

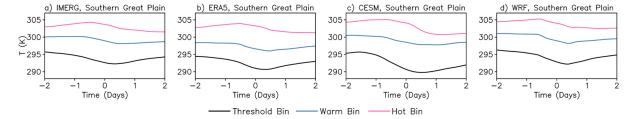


Figure 5. Evolution of near-surface air temperature, using the Southern Great Plain sample area as an example. These are time series of near-surface air temperature (K) before and after the peak of storm derived among the extreme events within each temperature bin, based on 3-hourly data from (a) IMERG, (b) ERA5, (c) CESM, and (d) WRF during the 2001-2013 warm seasons. Time zero is when precipitation peaks during each storm event, with a negative value on the x-axis denoting the time before the storm peak and positive after. The threshold, warm and hot bins are as marked in Figure 2.

In most land areas, the range of temperature variation in the absence of storm events is large (as reflected by the distance between lines at -1 day in Figure 5 and Figures S6-S9), and

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391392

393

394395

396

397

the bin-to-bin temperature difference at the storm peak results from the combination of storm-free temperature variations and storm-induced temperature changes. Based on data from all four sources, over most of the land regions examined, less than 25% of the temperature differences at the storm peak between the cold (or threshold) and hot bins are attributable to the storm-induced temperature changes (Figure 6). Over most oceanic areas sampled, temperature variation in the absence of storm events is small or negligible as indicated by the small temperature difference across different temperature bins one day ahead of the storm events (e.g., in the subtropical Pacific (East), Figures S6-S9); and storm-induced temperature change generally accounts for over 60% of the differences between temperature bins (Figure 6). So the impact of precipitation process (or the lack of it) on temperature plays an essential role in shaping the EPI-T relationship over oceans. While results from the four data sources show some quantitative differences, they are remarkably similar in terms of the clear contrast between land and ocean, with a substantially higher fraction of temperature differences attributable to storm-induced variations over oceans than over land.

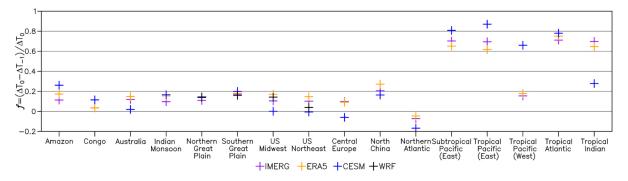


Figure 6. The fraction of temperature difference between the cold (or threshold) and hot bins attributable to storm-induced temperature change, for 16 sample areas based on four data sources during the 2001-2013 warm seasons. The fraction was calculated as $f = (\Delta T_0 - \Delta T_{-1})/\Delta T_0$, where ΔT_0 represents the temperature difference between the cold (or threshold) and hot bins at time zero (i.e., at the peak of the storm events), and ΔT_{-1} at one day (24 hours) ahead.

The storm's impact on near-surface air temperature has been emphasized in previous studies focusing on the negative scaling of extreme precipitation. In general, heavier precipitation tends to produce stronger evaporative cooling, and this cooling unavoidably would shift the events toward lower temperature bins (Bao et al. 2017). To eliminate the impact of storm-induced temperature change, we adjust the EPI-T curve in Figure 2 by shifting extreme precipitation data to a bin pertaining to the temperature 24 hours before the storms' peak; this results in the dashed lines in Figure 2. For most areas over land, even though using

the antecedent temperature does shift extreme events among temperature bins, the adjusted EPI-T curve (with storm-induced cooling or warming removed; dashed lines in Figure 2) retains the general shape of the original, with a negative scaling at high temperature. Differences between the original and adjusted curves are more substantial over oceanic areas. This further confirms that storm-induced temperature change is not the primary cause of the negative scaling over land, although it plays an important role over oceans. This strong contrast between land and ocean might be due to the abundance of low-level clouds over oceans during the development of heavy storms (Figures S11-S12), which tends to produce an overall cooling effect. In combination with evaporative cooling, the impact of precipitation process on near-surface air temperature is thus amplified over the ocean.

c. Impact of temperature on precipitation and possible mechanisms

To assess the impact of temperature on precipitation, we analyze the lagged EPI-T relationship on various sub-daily timescales, with near-surface air temperature leading precipitation by up to 18 hours to reduce or eliminate the impact of precipitation process on temperature. As the lead time increases from zero to 18 hours, the presence of negative scaling at high temperature and the general shape of the scaling curve are qualitatively preserved for all regions. This holds regardless of whether data from IMERG, ERA5, CESM, or WRF are used (Figure 7 using the U.S. Southern Great Plain as an example; results for all 16 sample areas in Supplementary Figures S13-S16). These results, together with the high degree of similarity between the solid and dashed curves in Figure 2, suggest that temperature's impact on precipitation plays an important role in the negative scaling of precipitation extremes at high temperature.

In Figure 7 and Supplementary Figures S13-S16, as the lead time increases, the curves shift and the corresponding T_{peak} values change accordingly. Over most land areas and relative to the scaling curve with lead time zero, the deviation generally increases with lead time in CESM, but increases and then decreases with lead time in IMERG, ERA5 and WRF. Based on data at the sub-daily resolution, the scaling curve (especially T_{peak}) is influenced by the diurnal cycle of temperature. If heavy precipitation tends to occur at a certain time of the day (e.g., in IMERG, ERA5 and WRF), the scaling curve will shift away from the concurrent curve as the lead time increases from zero and shift back towards the concurrent curve when the lead time approaches 24 hours. This does not occur in CESM, indicating that heavy precipitation might not have a clear "preferred time" in the coarse-resolution CESM simulation.

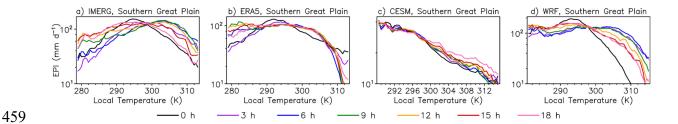


Figure 7. The EPI-T scaling relationship, with temperature (K) leading precipitation (mm day⁻¹) by up to 18 hours, for the Southern Great Plain sample area. These relationships are based on 3-hourly data from (a) IMERG, (b) ERA5, (c) CESM, and (d) WRF during the 2001-2013 warm seasons.

460

461

462 463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

Based on the comparison of the CESM results with those from IMERG and ERA5 (Figures 2-7), it is evident that, although CESM does underestimate the T_{peak} percentile, it is capable of capturing the negative scaling of extreme precipitation at high temperature. We therefore make use of CESM to study atmospheric convection under high temperature. At the process level, the decrease in extreme precipitation at high temperature in CESM is dominated by a decrease in the cumulus updraft condensation rate, with a minor contribution from enhanced evaporation in the atmosphere (Figure 8). Consistent with observational studies (Berg et al. 2013), in the high temperature range, the CESM-simulated extreme precipitation (gray lines in Figure 8) is primarily from cumulus convection (black lines), and the decrease in extreme precipitation at high temperature is dominantly a decrease in extreme convective precipitation with temperature. The convective precipitation relationship with temperature closely tracks the cumulus updraft condensation rate (blue lines), which increases with temperature and then decreases or levels off as temperature exceeds a certain threshold. Meanwhile, the cumulus downdraft evaporation rate (magenta lines), albeit small in magnitude, either increases with temperature or decreases more slowly than precipitation in most selected areas. This is consistent with the column maximum downdraft convective available potential energy (DCAPE) that peaks at high temperature (Figure S17). As large DCAPE tends to produce strong downdrafts that bring drier air from upper levels, evaporation tends to be stronger when temperature is high. Adding the downdraft evaporation back to extreme precipitation leads to a scaling curve (black dashed lines) with a flattened descending branch (relative to the EPI-T scaling curve) but is insufficient to qualitatively change the nature of the scaling. These results indicate that the slowing down of cumulus updraft condensation rate at high temperature is the dominant process underlying the negative scaling of extreme precipitation in CESM.

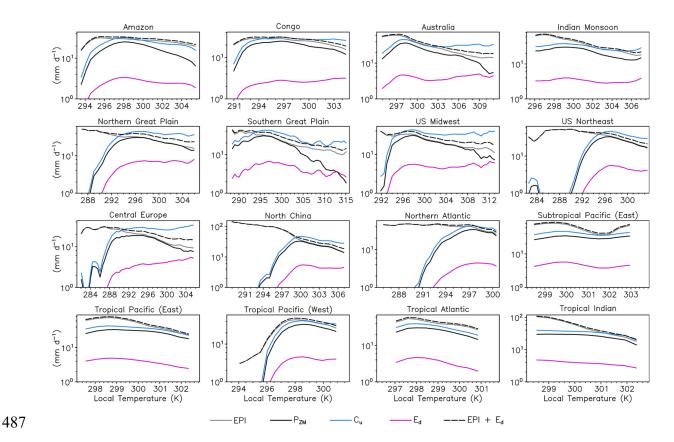


Figure 8. Moisture flux (mm day⁻¹) variation with temperature (K) during extreme precipitation events, based on 3-hourly CESM output during the 2001-2013 warm seasons for 16 sample areas. The moisture fluxes plotted include extreme precipitation intensity EPI (gray lines) and the corresponding convective precipitation P_{ZM} (black solid lines), updraft condensation rate C_u (light blue lines), downdraft evaporation rate E_d (magenta lines) and EPI+ E_d (black dashed lines).

Further inspection of the cumulus updraft condensation rate reveals that its variation is primarily associated with variations in convective motion: the contribution of saturated ascent to condensation rate (2nd term of Eq. 1 in section 3b) is one order of magnitude greater than the direct impact of mixing dry air from the environment (1st term of Eq. 1 in section 3b) (results not shown). This suggests that the negative scaling is due to suppression of convection at high temperature. Compared with the cold and threshold bins, where the entire air column is close to saturation in all 16 sample regions, the atmosphere in the warm and hot bins features greater saturation deficit (Figure S18). As convective updraft is typically saturated, the entrained air with greater saturation deficit at high temperature tends to deplete cloud buoyancy more efficiently (Brown and Zhang 1997; Redelsperger et al. 2002; Derbyshire et al. 2004; Takayabu et al. 2010). Moreover, as in high-resolution simulations (Romps 2010), in our study the updraft entrainment rate in CESM is also strong for weak convective activities at high

temperature (Figures S19-S20). Therefore, the enhanced saturation deficit is an important cause for the suppressed convection (consequently, negative scaling) at high temperature in CESM.

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

Atmospheric saturation deficit (SD) can be quantified using the difference between the saturation water vapor mixing ratio (r^*) and the actual water vapor mixing ratio (r): $SD = r^* - r$, where r^* depends solely on temperature at a given pressure following the C-C equation, while r is influenced by surface evaporation, large-scale advection, convection, and microphysical processes. The SD difference between the threshold temperature bin ("a") and a warmer bin ("b") can be written as the sum of two terms, one $(\Delta SD_1 = r_b^* - r_a^*)$ determined by temperature differences and the other $(\Delta SD_2 = r_a - r_b)$ reflecting differences in water vapor mixing ratio. Figure 9 shows the vertical profile of Δ SD in CESM and the contribution of its two components using four sample regions as examples; results for other regions are similar (Figure S21). Across the whole vertical profile of the atmosphere, SD increases from the threshold bin to warm (blue lines in Figures 9 and S21) and hot bins (pink lines in Figures 9 and S21), and this increase is dominated by the temperature-controlled term (dotted lines) below ~600 hPa. Compared with the threshold bin, storm events in the warm and hot bins generally feature more water vapor in the lower troposphere, which tends to reduce the saturation deficit (i.e., ΔSD_2 is negative, dashed lines); the magnitude of this decrease, however, cannot offset the large increase induced by higher temperature (i.e., ΔSD_1 , dotted lines). At upper levels, the comparison is more complex, as temperature differences between different bins might not be consistent with the near-surface air temperature differences. The results in Figures 9 and S21 are consistent with the notion that r generally increases with temperature more slowly than r^* does due to moisture limitation (Sherwood and Fu 2014).

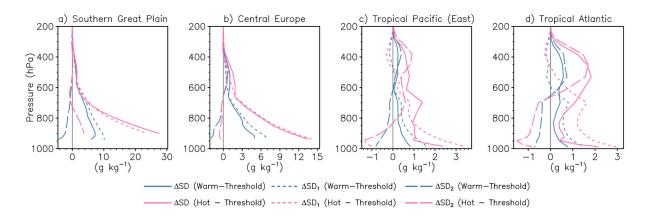


Figure 9. Updraft saturation deficit (g kg⁻¹) comparison across selected temperature bins in four sample areas: (a) Southern Great Plain, (b) Central Europe, (c) Tropical Pacific (East), and (d) Tropical Atlantic. Vertical profiles of updraft saturation deficit difference ΔSD between the threshold bin and the warm (cyan solid lines) or hot (pink solid lines) bin are based on warm-season 3-hourly CESM output during the 2001-2013 warm seasons. Also shown are the contributions from temperature difference ΔSD_1 (dotted lines) and from water vapor mixing ratio difference ΔSD_2 (dashed lines).

Based on results from our analysis of extreme precipitation binned according to near-surface saturation deficit, extreme precipitation decreases monotonically as the saturation deficit increases over land (Figure 10). Over the ocean, a similar trend is found at relatively large saturation deficit, with some exceptions in the northern Atlantic and tropical Pacific (West) in IMERG and ERA5 when the atmosphere is close to saturation. Relative to the land areas, saturation deficit is much smaller over oceans due to the abundant moisture supply from the surface, with a sharp contrast of extreme precipitation over a small range of saturation deficit. Similar to temperature variation over oceans being dominated by storm-induced temperature change, the relationships in Figure 10 over the ocean are possibly a result of descending motion that brings dry air from aloft, which is to be further examined in Section 4d. This is consistent with the fact that the saturation deficit profiles over oceans are rather homogeneous across the low- and mid-troposphere (Figure S18). Over land, due to limited moisture supply and higher temperature, saturation deficit is large in the lower troposphere below ~600 hPa and rapidly diminishes with altitude.

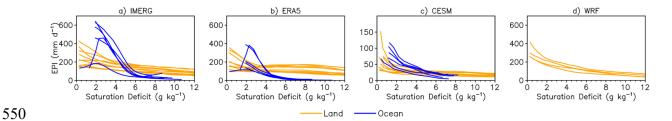


Figure 10. Scaling of extreme precipitation (mm day⁻¹) with near-surface saturation deficit (g kg⁻¹) (EPI-SD). The relationships are based on 3-hourly data from (a) IMERG, (b) ERA5, (c) CESM, and (d) WRF during the warm seasons of 2001-2013. The blue lines are for six oceanic sample areas and the orange lines are for the ten land sample areas shown in Figure S2.

551

552

553554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

On the other hand, the impact of precipitation process (or the lack of it) on saturation deficit might also contribute to the relationship curves in Figure 10, including for example moistening by evaporation of rain and drying due to subsidence. These effects, however, are important over oceans only and are not the dominant process underlying the relationship shown in Figure 10 over land. This is confirmed through tracking the near-surface saturation deficit prior to and during extreme precipitation events (Figures 11 and S22-S25). Over most land areas, the nearsurface saturation deficit contrasts among different temperature bins already exist prior to the development of storm events, and precipitation processes modify the saturation deficit differences only slightly (Figures 11 and S22-S25). This is a strong indication that the relationship shown in Figure 10 for the land areas is a result of saturation deficit influencing extreme precipitation, not the other way around. Over the ocean, however, the near-surface saturation deficit is similar among the various temperature bins prior to the storm events, and differences among the bins develop during and after the storm events. The relationship shown in Figures 10 and 11 for oceanic areas is therefore a reflection of temperature (and saturation deficit) responding to precipitation process over the ocean. This notion is further corroborated by the breakdown of a monotonic relationship between saturation deficit and extreme precipitation in the northern Atlantic and tropical Pacific (West) in IMERG and ERA5 (Figure 10).

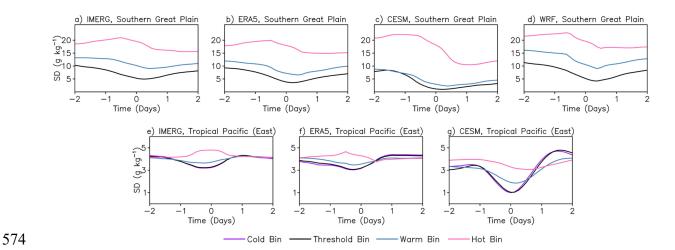


Figure 11. Evolution of near-surface saturation deficit, using two sample areas in the U.S. Southern Great Plain (top) and Tropical Pacific (East) (bottom) as land and ocean examples. Time series of near-surface saturation deficit (g kg⁻¹) before and after the storm peak are averaged among extreme events within each temperature bin, based on 3-hourly warm-season data during 2001-2013 from a) and e) IMERG, b) and f) ERA5, c) and g) CESM, and (d) WRF. The cold, threshold, warm and hot bins are as marked in Figure 2.

Results in Figures 9-11 together demonstrate the important role that saturation deficit plays in shaping the relationship between temperature and extreme precipitation over land. High temperature, through its impact on saturation deficit and ultimately on atmospheric convection and updraft condensation rate, plays an essential role in causing the negative scaling of extreme precipitation over land.

d. Potential impact of large-scale systems on the negative EPI-T scaling

As both temperature and precipitation respond to large-scale systems, a negative EPI-T scaling at high temperature may result from anomalous large-scale conditions. In any given region, for instance, near-surface air temperatures are usually high during dry spells, when heatwaves are prevalent and moist convection tends to be suppressed; similarly, large-scale descending motion suppresses convection (precipitation) and meanwhile induces adiabatic warming of the land surface. In some regions, climatological conditions have a specific subseasonal pattern that may cause an apparent negative scaling. Taking the U.S. Midwest as an example, July and August are generally warmer than June, while the large-scale setting in June is more favorable for convection and precipitation. To examine the impact of a large-scale system on the EPI-T relationship through its influence on both temperature and precipitation, we experiment using two additional approaches to derive the binned EPI-T scaling curves. In one, we randomly sample the temperature and precipitation data in time to break continuous dry spells and use only one-third of the rainy season data from each source (Figure S26). In the

other, we derive the scaling curves for each month separately to eliminate the effects of climatological sub-seasonal variations (Figure S27). Regardless of which data source we use, the results (Figures S26-S27) are all qualitatively similar to those based on all wet season data in Figure 2 (solid lines), suggesting that anomalous large-scale conditions are not the dominant cause for the overall shape (and the negative scaling) of the EPI-T relationship.

The CESM 850-hPa geopotential height (Z_{850}) anomalies (Supplementary Figures S28-S29) also show no clear cyclonic-anticyclonic contrast between the cold bin (or threshold bin) and the hot bin (or warm bin). In the warm bins, cyclonic (as opposed to anticyclonic) large-scale systems occur more frequently than the warm season mean condition over all regions, as indicated by the negative Z_{850} anomalies, except for the Amazon; in the hot bins, the negative Z_{850} anomalies persist in most regions, except for the Amazon, the U.S. Midwest, and Central Europe. Over the tropical Pacific (East and West) and tropical Atlantic, the overall impact of large-scale systems is minimal, as indicated by the correspondingly small magnitude of Z_{850} anomalies. These results, in combination with the lack of anticyclonic anomalies in the northern Atlantic and tropical Indian (Figure S29), suggest that subsidence makes limited contributions in shaping the rather homogeneous vertical profiles of saturation deficit over the ocean (Figure S18). Instead, the rather uniform vertical profile of saturation deficit might be a result of other processes, such as dry air intrusion in the middle troposphere.

These results, in combination with results from the randomized and month-specific scaling analyses, suggest that, while variations of large-scale systems may contribute to the negative EPI-T scaling at very high temperature (hot bins) in some regions, they are not the fundamental cause for the negative scaling documented in this study.

5. Conclusions and discussion

Based on analysis of the observational IMERG data, the ERA5 reanalysis product, and output from the coarse-resolution CESM and convection-permitting NCAR WRF simulations, we show that the negative scaling of extreme precipitation at high temperature is a robust feature of the precipitation-temperature relationship at the weather timescale during the warm season. Although the magnitude of extreme precipitation varies with data source and spatiotemporal resolution, the negative scaling nature of the precipitation-temperature relationship remains qualitatively the same. These statements hold over both land and ocean.

The primary mechanisms underlying the negative scaling differ between land and ocean. We conclude that the negative scaling of warm-season precipitation extremes at high temperature *over land* results primarily from the heat-induced suppression of precipitation intensity. We base this conclusion on the concurrent and lead-lag relationships between temperature and extreme precipitation, and on the temporal evolution of temperature and saturation deficit during heavy storm events. Precipitation cooling and cloud radiative effects play a secondary role in the negative scaling over land, but are more fundamental over oceans. Over land, temperature and saturation deficit differences between extreme precipitation events are already in place prior to the development of the storms; over oceans, such differences emerge during the development and occurrence of the storms. These conclusions, as well as the robustness of negative scaling at high temperature, remain unchanged when the analysis is based on alternative data versions, TRMM 3B42 and ERA-Interim (results not shown).

At the process level and at the weather scale, results from CESM diagnostics indicate that high temperature reduces precipitation intensity through the suppression of convective updraft condensation rate and the acceleration of condensate evaporation, both due to increased saturation deficit over land at high temperature. Over oceans, both the saturation deficit and its range of variation are small and have limited impact on convection and precipitation. Instead, the large contrast in extreme precipitation over a small range of saturation deficit over the ocean is a reflection of saturation deficit responding to evaporation of precipitation. To examine the robustness of this conclusion and its potential model dependence, one could repeat the convection-related diagnostics using output from the NCAR WRF convection-permitting simulation, but some variables needed for such analysis are not available from the fine-resolution NCAR WRF model output (or similarly from ERA5 either). Nevertheless, the consistency between the diagnosed cumulus downdraft evaporation rate (Figure 8) and the DCAPE (Figure S17) lends certain confidence to our CESM-based process analysis.

The local processes shaping the relationship between extreme precipitation and temperature are always under the influence of large-scale systems. Large-scale weather systems (that persist for weeks or longer) may influence both precipitation and temperature, leading to an apparent negative scaling of extreme precipitation with temperature even in the absence of a causal-effect relationship between the two. Results from both the randomized analysis (that reduces the large-scale effects) and the month-specific analysis (that limits data to those under the climatologically same or similar synoptic settings) suggest that large-scale systems are likely

not a fundamental cause for the negative scaling. The analysis of 850-hPa geopotential height anomalies during heavy storms in different temperature bins supports a similar conclusion. With the influence of large-scale systems, the precipitation-temperature relationship and its characteristics (e.g., the threshold temperature) may change quantitatively, but would likely remain qualitatively similar.

While this study focuses on the intensity of heavy precipitation, binned analysis on mean precipitation intensity (MPI, Figure 12) and number of rainy days (not shown) indicates that precipitation amount and frequency follow a similar scaling behavior with temperature, although the corresponding threshold temperatures differ. At the event level, precipitation duration, spatial coverage, and spatiotemporal distribution are important characteristics that may confound the precipitation scaling relationship with temperature. Long et al. (2021) based on station data found that rain events under high temperature tend to be more concentrated in space and time, which would favor more intense precipitation over a short duration or over a small area. Therefore, using data with a spatiotemporal resolution much finer than available to the current study may alleviate the negative scaling. Visser et al. (2021) found that negative scaling can be eliminated if the intensity scaling analysis is conditioned on short rain duration. On the other hand, even at spatiotemporal resolutions as coarse as used in the current study, Wang and Sun (2022) found a monotonic increase of extreme precipitation intensity with temperature when the scaling analysis was conditioned on saturated atmosphere, consistent with the important role of saturation deficit proposed in this study. However, as rain duration cannot be reliably derived from coarse resolution gridded data, a comparison between the roles of rain duration and saturation deficit is beyond the scope of this study and will be tackled in follow-up research.

In the context of climate variability, temperature is not the only predictor for precipitation characteristics. Many other factors are at play and confound the scaling of precipitation with temperature, and soil moisture is one such factor. Closely coupled with local temperature, soil moisture influences precipitation processes through positive or negative feedbacks, depending on temporal and spatial scales (e.g., Barros and Hwu 2002; Findell and Eltahir 2003; Kim and Wang 2007; Koster et al. 2011; Mei and Wang 2011; Taylor et al. 2012). Functioning as an additional moisture source for the atmosphere, wetter soil enhances evapotranspiration and increases atmospheric moisture content, thus reducing saturation deficit. This may alleviate the negative scaling and shift the threshold temperature toward higher values. Another important

confounding factor is aerosol, through its direct effect on surface radiative budget (therefore temperature) and indirect effect on clouds (therefore precipitation) (e.g., Stevens and Feingold 2009; Tao et al. 2012; Rosenfeld et al. 2014; Khain et al. 2015; Da Silva et al. 2020). Specifically, Da Silva et al. (2020) showed that, due to the indirect effect of aerosols, high aerosol concentrations tend to suppress convective precipitation at low temperatures, leading to a super-CC scaling rate on the increasing branch of the EPI-T scaling curves. This effect, however, is likely not fundamental to the negative scaling at high temperature when clouds tend to be less frequent (Figures S11-S12). In fact, negative scaling is captured in the CESM simulation that prescribes aerosol concentrations (Section 2).

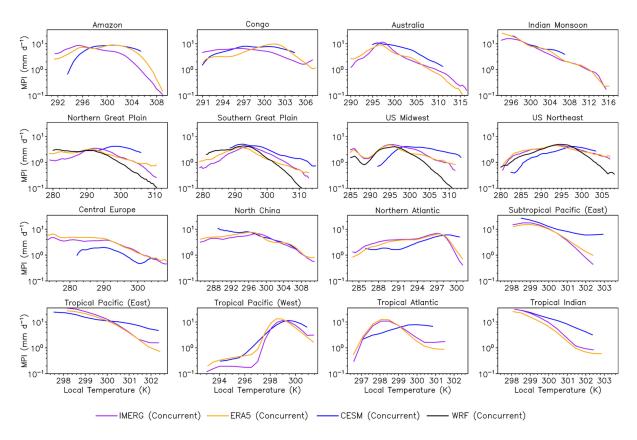


Figure 12. The MPI-T scaling relationship that links mean precipitation intensity to concurrent near-surface air temperature for 16 sample areas. The analyses are based on 3-hourly data from IMERG, ERA5, CESM, and WRF during the 2001-2013 warm seasons, with temperature in K and MPI in mm day⁻¹.

Findings from this study have significant implications concerning the understanding of extreme events such as flood, drought, and heatwaves and for projecting their future changes. In a warmer climate, Wang et al. (2017) and Drobinski et al. (2018) found that the peak-shaped extreme precipitation-temperature scaling curve, especially for its increasing branch, would shift upward and rightward (Figure 1), with increases predicted in both the peak of extreme

precipitation and the threshold temperature at which the precipitation peaks. In fact, numerous studies have shown evidence from both modeling and observational perspectives for an increase in precipitation extremes with global warming, leading to increased flood risks (e.g., Allan and Soden 2008; Fischer and Kutti 2016; Prein et al. 2017; Wang et al. 2020; Wang & Sun, 2022). As warming continues, because the rate of warming is faster over land than over oceans and much of the moisture over land originates from oceans, the atmospheric relative humidity is expected to decrease and the saturation deficit to increase over land (Sherwood and Fu 2014). Based on results from our study, this increased saturation deficit may lead to more widespread negative scaling of precipitation intensity with temperature, which provides a theoretical basis for the model-projected increase in the spatial extent of negative scaling (Wang et al. 2017). Because negative scaling occurs for both the extremes (Figure 2) and mean precipitation (Figure 12), this also means the combination of high temperature with low or lack of precipitation may become more prevalent, leading to increased co-occurrence of drought and heatwaves (Mazdiyasni and AghaKouchak 2015; Zscheischler and Seneviratne 2017), another important consequence of climate change for which this study offers a possible explanation.

729

730

731

732

733

734

735

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Acknowledgments

We thank NASA, NCAR and ECMWF for making their datasets available. Computing resources and data storages were provided by the NCAR Computational and Information Systems Laboratory (CISL). This research was funded by the National Science Foundation (NSF) under Grant AGS-1659953. We thank three anonymous reviewers for their comments and suggestions. The authors declare no competing financial interests.

736

737

Data Availability Statement

738 TRMM 3B42 and **IMERG** are available from the NASA website at 739 https://disc.gsfc.nasa.gov/datasets/TRMM 3B42 7/summary and 740 https://gpm.nasa.gov/data/imerg, respectively; ERA-Interim and ERA5 are available from the 741 ECMWF website at https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-742 datasets/era-interim and https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, 743 respectively; Output from the CESM simulation is available at 744 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BATG5H, and

- 745 the model codes are available at http://www.cesm.ucar.edu/models/cesm1.2/. Output from the
- 746 high-resolution WRF simulations of North America is available from NCAR at
- 747 https://rda.ucar.edu/datasets/ds612.0/.

748 REFERENCES

- Ali, H., H. J. Fowler, and V. Mishra, 2018: Global observational evidence of strong linkage
- between dew point temperature and precipitation extremes. *Geophys. Res. Lett.*, **45**, 12,320-
- 751 12,330.
- 752 Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of
- precipitation extremes. *Science*, **321**, 1481-1484.
- Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2017: Future increases in extreme
- precipitation exceed observed scaling rates. *Nat. Clim. Change*, 7, 128-132.
- Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2018: Comments on "temperature-
- extreme precipitation scaling: A two-way causality?". *Int. J. Climatol.*, **38**, 4661-4663.
- 758 Barbero, R., S. Westra, G. Lenderink, and H. J. Fowler, 2018: Temperature-extreme
- precipitation scaling: a two-way causality? *Int. J. Climatol.*, **38**, e1274-e1279.
- Barros, A. P., and W. Hwu, 2002: A study of land-atmosphere interactions during summertime
- rainfall using a mesoscale model. J. Geophys. Res. Atmos., 107, 4227,
- 762 doi:10.1029/2000JD000254.
- Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in
- response to higher temperatures. *Nat. Geosci.*, **6**, 181-185.
- Brown, R., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on
- cloud-top height distribution during TOGA COARE. J. Atmos. Sci., **54**, 2760-2774.
- Byrne, M. P., and P. A.O'Gorman, 2018: Trends in continental temperature and humidity
- 768 directly linked to ocean warming. *Proc. Natl. Acad. Sci. USA*, **115**, 4863-4868.
- 769 Chan, S. C., E. J. Kendon, N. M. Roberts, H. J. Fowler, and S. Blenkinsop, 2016: Downturn in
- scaling of UK extreme rainfall with temperature for future hottest days. *Nat. Geosci.*, **9**, 24-
- 771 28.
- 772 Chen, G., Y. Ming, N. D. Singer, and J. Lu, 2011: Testing the Clausius-Clapeyron constraint
- on the aerosol-induced changes in mean and extreme precipitation. *Geophys. Res. Lett.*, **38**,
- 774 L04807.
- Da Silva, N., S. Mailler, and P. Drobinski, 2020: Aerosol indirect effects on the temperature-
- precipitation scaling. Atmos. Chem. Phys., 20, 6207-6223.

- 777 Dai, N., and Soden, B. J., 2020, Convective aggregation and the amplification of tropical
- precipitation extremes. AGU Adv., 1, e2020AV000201.
- Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, et al., 2011: The ERA-Interim
- reanalysis: configuration and performance of the data assimilation system. Q. J. R.
- 781 *Meteorol. Soc.*, **137**, 553-597.
- Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and
- P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Q. J. R.
- 784 *Meteorol. Soc.*, **130**, 3055-3079.
- 785 Drobinski, P., B. Alonzo, S. Bastin, N. Da Silva, and C. J. Muller, 2016: Scaling of
- precipitation extremes with temperature in the French Mediterranean region: what explains
- 787 the hook shape? *J. Geophys. Res. Atmos.*, **121**, 3100-3119.
- 788 Drobinski, P., and Coauthors, 2018: Scaling precipitation extremes with temperature in the
- Mediterranean: Past climate assessment and projection in anthropogenic scenarios. *Climate*
- 790 *Dyn.*, **51**, 1237-1257.
- 791 Easterling, D.R., Kunkel, K.E., Arnold, J.R., et al., 2017: Precipitation change in the United
- 792 States. In: Climate Science Special Report: Fourth National Climate Assessment, Volume
- 793 I. Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. (eds.). U.S. Global
- 794 Change Research Program, Washington DC, pp. 207-230.
- 795 Emanuel, K. A., Atmospheric Convection (Oxford Univ. Press, New York, 1994).
- Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture-boundary
- layer interactions. Part II: Feedbacks within the continental United States. J.
- 798 *Hydrometeorol.*, **4**, 570-583.
- Fischer, E. M., and R. Kutti, 2016: Observed heavy precipitation increase confirms theory and
- 800 early models. *Nat. Clim. Change*, **6**, 986-991.
- Fowler, H. J., and Coauthors, 2021: Anthropogenic intensification of short-duration rainfall
- extremes. Nat. Rev. Earth Environ., 2, 107-122.
- Hardwick Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme
- sub-daily precipitation, surface temperature, and relative humidity. *Geophys. Res. Lett.*, **37**,
- 805 L22805.

- Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc.,
- **146,** 1999-2049.
- Houze, R. A. Jr., C. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass
- and heat fluxes from radar and synoptic data. *J. Atmos. Sci.*, **37**, 754-773.
- Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P.
- Bowman, and E. F. Stocker, 2007: The TRMM multisatellite precipitation analysis
- 812 (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales.
- 813 *J. Hydrometeorol.*, **8,** 38-55.
- Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG Final
- Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data
- 816 and Information Services Center, accessed 1 September 2021,
- 817 <u>https://doi.org/10.5067/GPM/IMERG/3B-HH/06.</u>
- Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature
- and sea ice boundary data set for the Community Atmosphere Model. J. Clim., 21, 5145-
- 820 5153.
- Khain, A. P., K. D. Beheng, A. Heymsfield, A. Korolev, S. O. Krichak, Z. Levin, M. Pinsky,
- V. Phillips, T. Prabhakaran, A. Teller, S. C. van den Heever, and J.-I. Yano, 2015:
- Representation of microphysical processes in cloud resolving models: Spectral (bin)
- microphysics versus bulk parameterization. Rev. Geophys., 53, 247-322.
- Kharin, V.V., G. M. Flato, X. Zhang, N. P. Gillett, F. Zwier, and K. J. Anderson, 2018: Risks
- from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth's
- 827 *Future,* **6,** 704-715.
- 828 Kim, Y. J., and G. Wang, 2007: Impact of initial soil moisture anomalies on subsequent
- precipitation over North America in the coupled land-atmosphere model CAM3-CLM3. J.
- 830 *Hydrometeorol.*, **8**, 534-550.
- Koster, R. D., S. P. P. Mahanama, T. J. Yamada, G. Balsamo, A. A. Berg, M. Boisserie, P. A.
- Dirmeyer, F. J. Doblas-Reyes, G. Drewitt, C. T. Gordon, Z. Guo, J.-H. Jeong, W.-S. Lee,
- Z. Li, L. Luo, S. Malyshev, W. J. Merryfield, S. I. Seneviratne, T. Stanelle, B. J. J. M. van
- den Hurk, F. Vitart, and E. F. Wood, 2011: The second phase of the global land atmosphere
- coupling experiment: Soil moisture contribution to subseasonal forecast skill. J.
- 836 *Hydrometeorol.*, **12**, 805-822.

- 837 Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond
- expectations from temperature changes. *Nat. Geosci.*, **1**, 511-514.
- Liu, C., K. Ikeda, R. Rasmussen, M. Barlage, A. J. Newman, A. F. Prein, F. Chen, L. Chen, M.
- Clark, A. Dai, J. Dudhia, T. Eidhammer, D. Gochis, E. Gutmann, S. Kurkute, Y. Li, G.
- Thompson, and D. Yates, 2017: Continental-scale convection-permitting modeling of the
- current and future climate of North America. Clim. Dyn., 49, 71-95.
- 843 Long, K., D. Wang, G. Wang, J. Zhu, S. Wang, 2021: High temperature enhances spatio-
- 844 temporal rainfall concentration. Journal of Hydrometeorology,
- https://doi.org/10.1175/JHM-D-21-0034.1
- Loriaux, J. M., G. Lenderink, S. R. De Roode, and A. P. Siebesma, 2013: Understanding
- convective extreme precipitation scaling using observations and an entraining plume
- 848 model. J. Atmos. Sci., **70**, 3641-3655.
- Mazdiyasni, O., and A. AghaKouchak, 2015: Substantial increase in concurrent droughts and
- heatwaves in the United States. *Proc. Natl Acad. Sci. USA*, **112**, 11484-11489.
- Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A.
- Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. Weaver,
- and Z. C. Zhao, Global Climate Projections. In Climate Change (2007), The Physical
- Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the
- Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z.
- Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller) (Cambridge University Press,
- 857 Cambridge, UK, 2007).
- Mei, R., and G. Wang, 2011: Impact of sea surface temperature and soil moisture on summer
- precipitation in the United States based on observational data. J. Hydrometeorol., 12, 1086-
- 860 1099.
- Mishra, V., J. M. Wallace, and D. P. Lettenmaier, 2012: Relationship between hourly extreme
- precipitation and local air temperature in the United States. Geophys. Res. Lett., 39,
- 863 L16403.
- Muller, C., 2013: Impact of convective organization on the response of tropical precipitation
- extremes to warming. *J. Clim.*, **26**, 5028-5043.

- Neale, R. B., A. Gettelman, S. Park, C.-C. Chen, P. H. Lauritzen, D. L. Williamson, A. J.
- Conley, D. Kinnison, D. Marsh, A. K. Smith, F. Vitt, R. Garcia, J.-F. Lamarque, M. Mills,
- S. Tilmes, H. Morrison, P. Cameron-Smith, W. D. Collins, M. J. Iacono, R. C. Easter, X.
- Liu, S. J. Ghan, P. J. Rasch, and M. A. Taylor, Description of the NCAR Community
- Atmosphere Model (CAM 5.0). Tech. Report NCAR/TN-486+STR (National Center for
- Atmospheric Research, 2012).
- 872 O'Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation
- extremes in simulations of 21st-century climate change. *Proc. Natl Acad. Sci. USA*, **106**,
- 874 14773-14777.
- O'Gorman, P. A., 2015: Precipitation extremes under climate change. *Curr. Clim. Change Rep.*,
- **1,** 49-59.
- Oleson, K. W., D. M. Lawrence, G. B. Bonan, B. Drewniak, M. Huang, C. D. Koven, S. Levis,
- F. Li, W. J. Riley, Z. M. Subin, S. C. Swenson, P. E. Thornton, A. Bozbiyik, R. Fisher, C.
- L. Heald, E. Kluzek, J.-F. Lamarque, P. Lawrence, L. R. Leung, W. Lipscomb, S. Muszala,
- D. M. Ricciuto, W. Sacks, Y. Sun, J. Tang, and Z.-L. Yang, Technical description of
- version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-
- 503+STR (National Center for Atmospheric Research, 2013).
- Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The
- future intensification of hourly precipitation extremes. *Nat. Clim. Change*, 7, 48-52.
- Rasmussen, R., and C. Liu. 2017. High Resolution WRF Simulations of the Current and Future
- 886 Climate of North America. Research Data Archive at the National Center for Atmospheric
- Research, Computational and Information Systems Laboratory.
- 888 <u>https://doi.org/10.5065/D6V40SXP</u>. Accessed March 15, 2018.
- Redelsperger, J., D. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting
- cloud-top height following the arrival of a dry intrusion observed during TOGA COARE.
- 891 *J. Atmos. Sci.*, **59**, 2438-2457.
- Roderick, T. P., C. Wasko, and A. Sharma, 2019: Atmospheric moisture measurements explain
- increases in tropical rainfall extremes. *Geophys. Res. Lett.*, **46**, 1375-1382.
- Romps, D. M., 2010: A direct measurement of entrainment, J. Atmos. Sci., 67, 1908-1927.

- Rosenfeld, D., M. O. Andreae, A. Asmi, M. Chin, G. de Leeuw, D. P. Donovan, R. Kahn, S.
- Kinne, N. Kivekäs, M. Kulmala, W. Lau, K. S. Schmidt, T. Suni, T. Wagner, M. Wild, and
- J. Quaas, 2014: Global observations of aerosol-cloud-precipitation-climate interactions.
- 898 Rev. Geophys., **52**, 750-808.
- 899 Sherwood, S. C., and Q. Fu, 2014: A drier future? *Science*, **343**, 737-739.
- 900 Singh, M. S., and P. A. O'Gorman, 2014: Influence of microphysics on the scaling of
- precipitation extremes with temperature. *Geophys. Res. Lett.*, **41**, 6037-6044.
- 902 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Huang,
- W. Wang, and J. G. Powers, A Description of the Advanced Research WRF Version 3.
- NCAR Technical Note NCAR/TN-475+STR (National Center for Atmospheric Research,
- 905 2008).
- Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in
- 907 a buffered system. *Nature*, **461**, 607-613.
- 908 Sugiyama, M., H. Shiogama, and S. Emori, 2009: Precipitation extreme changes exceeding
- moisture content increases in miroc and ipcc climate models. *Proc. Natl Acad. Sci. USA*,
- 910 **107,** 571-575.
- Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating
- modes over tropical oceans observed with TRMM spectral latent heating data. J. Clim., 23,
- 913 2030-2046.
- Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective
- 915 clouds and precipitation. *Rev. Geophys.*, **50**, RG2001, doi:10.1029/2011RG000369.
- 916 Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon
- rain more likely over drier soils. *Nature*, **489**, 423-426.
- 918 Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrologic cycle
- with climate change. *Climatic Change*, **42**, 327-339.
- 920 Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface
- 921 temperature. *Geophys. Res. Lett.*, **32**, L14703, https://doi.org/10.1029/2005GL022760.
- 922 Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature
- intensify extreme precipitation? *Geophys. Res. Lett.*, **38**, L16708.

- 924 Visser, J. B., Wasko, C., Sharma, A., & Nathan, R., 2021: Eliminating the "Hook" in
- Precipitation-Temperature Scaling, Journal of Climate, **34**(23), 9535-9549.
- Wang, G., D. Wang, K. E. Trenberth, A. Erfanian, M. Yu, M. G. Bosilovich, and D. T. Parr,
- 927 2017: The peak structure and future changes of the relationships between extreme
- 928 precipitation and temperature. *Nat. Clim. Change*, **7**, 268-274.
- Wang, G., C. J. Kirchhoff, A. Seth, J. T. Abatzoglou, B. Livneh, D. W. Pierce, L. Fomenko,
- 930 and T. Ding, 2020: Projected changes of precipitation characteristics depend on
- downscaling method and the training data: LOCA vs. MACA using the U.S. Northeast as
- 932 an example. *J. Hydrometeorol.*, doi:10.1175/JHM-D-19-0275.1.
- Wang, G., and X. Sun, 2022: Monotonic increase of extreme precipitation intensity with
- temperature when controlled for saturation deficit. *Geophys. Res. Lett.*, 49, e2022GL097881
- Wasko, C., A. Sharma, and F. Johnson, 2015: Does storm duration modulate the extreme
- precipitation temperature scaling relationship? *Geophys. Res. Lett.*, **42**, 8783-8790.
- 27 Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the
- 938 parameterization of cumulus convection in the Canadian Climate Center general-
- 939 circulation model. *Atmos. Ocean*, **33**, 407-446.
- 240 Zhang, K., R. Fu, M. J. Shaikh, S. Ghan, M. Wang, L. R. Leung, R. E. Dickinson, and J.
- Marengo, 2017: Influence of super-parameterization and a higher-order turbulence closure
- on rainfall bias over Amazonia in community atmosphere model version 5 (CAM5). J.
- 943 *Geophys. Res.*, **122**, 9879-9902.
- 2017: Dependence of drivers affects risks associated
- with compound events. Sci. Adv., 3, e1700263.