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ABSTRACT

Although the intensity of extreme precipitation is predicted to increase with climate
warming, at the weather scale precipitation extremes over most of the globe decrease when
temperature exceeds a certain threshold, and the spatial extent of this negative scaling is
projected to increase as the climate warms. The nature and cause of the negative scaling at high
temperature and its implications remain poorly understood. Based on sub-daily data from
observations, reanalysis data, and output from a coarse-resolution (~200 km) global model and
a fine-resolution (4 km) convection-permitting regional model, we show that the negative
scaling is primarily a reflection of high temperature suppressing precipitation over land and
storm-induced temperature variation over the ocean. We further identify the high temperature-
induced increase of saturation deficit as a critical condition for the negative scaling of extreme
precipitation over land. Large saturation deficit reduces precipitation intensity by slowing
down the convective updraft condensation rate and accelerating condensate evaporation. The
heat-induced suppression of precipitation, both for its mean and extremes, provides one
mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land
is expected to increase in a warmer climate, our results imply a growing prevalence of negative
scaling, potentially increasing the frequency of compound drought and heat events.
Understanding the physical mechanisms underlying the negative scaling of precipitation at high
temperature is, therefore, essential for assessing future risks of extreme events, including not

only flood due to extreme precipitation but also drought and heatwaves.
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SIGNIFICANCE STATEMENT

Negative scaling, a decrease of extreme precipitation at high local temperature, is a poorly
understood phenomenon. It was suggested that the negative scaling may be a reflection of
precipitation’s influence on temperature. Here we show based on observational data, reanalysis
data and climate models that the negative scaling results primarily from the impact of high
temperature-induced saturation deficit on precipitation over land and from storm-induced
temperature variations over the ocean. In hot weather when moisture is limited (as is over land),
large saturation deficit reduces precipitation intensity by slowing down the convective updraft
condensation rate and accelerating condensate evaporation, leading to a negative scaling. The

same mechanism can also contribute to increased compound drought and heat events.
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1. Introduction

As the global climate warms, observational data have shown an increase in the intensity
and frequency of extreme precipitation (Fischer and Kutti 2016; Easterling et al. 2017), and
this trend is expected to continue (Meehl et al. 2007; Allan and Soden 2008; Kharin et al. 2017;
Prein et al. 2017). Because extreme precipitation is intrinsically related to low-level moisture
convergence and tends to occur when the atmosphere is close to saturation, its intensity is often
proportional to the moisture-holding capacity of the air near the surface of the Earth. Therefore,
the Clausius-Clapeyron (C-C) relationship, which dictates the increase with temperature in the
capacity of the atmosphere to hold moisture, can be used as a first-order approximation for the

scaling of precipitation extremes with warming (Trenberth 1999).

The relationship between extreme precipitation intensity and concurrent local temperature
(EPI-T), however, is confounded by several other factors and processes, including atmospheric
stability, precipitation efficiency, orographic effect, convective organization, moisture
limitation, and latent heat release feedback on storm intensity (e.g., O'Gorman and Schneider
2009; Loriaux et al. 2013; Muller 2013; Singh and O'Gorman 2014; O'Gorman 2015; Dai and
Soden 2020). Therefore, it does not, and is not expected to, conform to the C-C scaling
(Lenderink and van Meijgaard 2008; Sugiyama et al. 2009; Hardwick Jones et al. 2010; Chen
et al. 2011; Utsumi et al. 2011; Mishra et al. 2012; Berg et al. 2013; Prein et al. 2017; Bao et
al. 2017; Wang et al. 2017; Da Silva et al. 2020). Specifically, in the context of climate
variability and at daily and sub-daily timescales over most of the globe, extreme precipitation
increases with local temperature up to a certain threshold, beyond which a lower magnitude of
extreme precipitation is associated with higher temperatures. This leads to a peak-shaped
relationship curve, with negative scaling at higher temperatures. As the climate warms, both
the magnitude of the extreme precipitation peak and the threshold temperature at which
extreme precipitation reaches its peak are projected to increase, leading to an upper-rightward
shift of the curve relating the two, especially for the increasing branch of the scaling curves
(Prein et al. 2017; Wang et al. 2017; Drobinski et al. 2018) (Figure 1). For the descending
branch, however, its variation with warming can be more elusive (Drobinski et al. 2018), and
the negative scaling is projected to become spatially more widespread in a warmer climate
(Wang et al. 2017). Wang et al. (2017) suggested that the C-C scaling is more likely to hold at

the peak precipitation intensity (indicated by dots in Figure 1b), since the most intense
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precipitation event tends to occur when the atmosphere is close to saturation, a condition

conducive to C-C scaling (Wang & Sun, 2022).

A
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Local Temperature (°C) Local Temperature (°C)

EPI (mm d7")
EPI (mm d7")

Figure 1. Relationship between extreme precipitation intensity and local temperature (EPI-
T). The left panel is based on historical (color solid lines) and projected (color lines with
crosses) daily all-season output from six global climate models, using the Indian Monsoon
region as an example (from Wang et al. 2017). The right panel is a conceptual diagram
illustrating the EPI-T scaling in historical (blue solid line) and future (orange solid line)
climates. The black dash lines indicate the Clausius-Clapeyron scaling relationship.

The negative scaling of extreme precipitation at high temperature, although well
documented in numerous studies, is poorly understood. Many factors may contribute to it,
ranging from artificial effects of the data resolution and the methodology used to analyze the
data to true physical mechanisms linking precipitation processes with temperature (e.g.,
Barbero et al. 2018; Bao et al. 2018; Visser et al., 2021). If higher temperature led to
precipitation events that were more intense but spatially or temporally more concentrated
(Long et a., 2021), data at coarse resolution would not capture the true response of precipitation
intensity to temperature (Utsumi et al. 2011; Wasko et al. 2015; Visser et al., 2021). Mixing
data from different seasons might lead to the clustering of large-scale precipitation at low or
medium temperature on one end and convective precipitation at high temperature on the other
end, which complicates the results (Drobinski et al. 2016; Ali et al. 2018). For physical
processes underlying the negative scaling, some have hinted at the possible role of moisture
limitation in precipitation at high temperature (Hardwick Jones et al. 2010; Prein et al. 2017,
Wang et al. 2017; Wang & Sun, 2022), but this mechanism may not work over oceans, where
moisture supply is usually not a limiting factor. Some have pointed to the response of near-
surface air temperature to synoptic conditions and precipitation processes, including warming
associated with anticyclonic weather systems (Trenberth and Shea 2005; Chan et al. 2016) and
cooling during heavy precipitation events (Bao et al. 2017), but this notion is a subject of

inconclusive debate (Barbero et al. 2018; Bao et al. 2018). The lack of a consistent relationship
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between surface air temperature and atmospheric moisture content may also cause the negative

scaling between precipitation extremes and temperature (e.g., Roderick et al. 2019).

Despite the many studies on the relationship between extreme precipitation and
temperature, the very nature of the negative scaling is not clearly understood; while not without
exception (Visser et al., 2021), comments on the possible causes for negative scaling are often
given without direct substantiating evidence. The projected increase in the spatial extent of
negative scaling is subject to a similar lack of understanding (Wang et al. 2017). In the current
study we aim to establish clear evidence for the negative scaling of extreme precipitation at
high temperature, understand the nature of this negative scaling, assess its sensitivity (or the
lack of such) to non-physical factors such as spatiotemporal resolution and seasonality, and
tackle the physical mechanisms that underlie the negative scaling and its potential implications
for future changes. We demonstrate that, for most regions over land at the weather timescale,
the intensity of warm-season precipitation extremes decreases at high temperature, and this
negative scaling is primarily a reflection of precipitation intensity being suppressed by
temperature-induced large saturation deficit. Over oceans except for the subtropical dry zones,
negative scaling is also found and results primarily from storm-induced temperature variations
stemming from the combined impact of evaporative cooling and cloud radiative effect. As
illustrated in Figure 1, the negative scaling at the weather timescale does not contradict the
observed and predicted warming-induced increase of extreme precipitation at the climate
timescale. The remainder of this article is organized as follows. Section 2 provides a description
of the datasets and models used, while Section 3 details the methodologies applied, including
the binned scaling analysis and diagnostics related to atmospheric convection. Section 4
presents a thorough examination of the robustness of negative scaling at high temperature, and
illustrates the underlying physical mechanisms by exploring the interactions between
temperature and precipitation processes, as well as the role of large-scale systems. Conclusions

and discussion are given in Section 5.

2. Data and Models

Data from four sources are used in this study. These include the observational Integrated
Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG, Final Run version
6, Huffman et al. 2019), the European Centre for Medium-Range Weather Forecasts (ECMWF)
fifth generation reanalysis data (ERAS5, Hersbach et al. 2020), output from global simulations

carried out for this study using the Community Earth System Model (CESM) version 1.2.2.1,
6
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and output from the National Center for Atmospheric Research (NCAR) continental-scale
convection-permitting modeling of North America (Liu et al. 2017) using the Weather

Research and Forecasting (WRF) model version 3.4.1 (Skamarock et al. 2008).

The half-hourly, 0.1° resolution IMERG is the successor of the Tropical Rainfall Measuring
Mission (TRMM) 3B42 precipitation data (Huffman et al. 2007) from the National Aeronautics
and Space Administration (NASA). It is an adjusted precipitation product based on estimates
from various precipitation-relevant satellite passive microwave sensors comprising the Global
Precipitation Measurement (GPM) constellation; it is available for the period June 2000 to near
the present and nominally covers the entire globe (primarily for unfrozen surfaces between 60°
S and 60° N). The global ERAS is the successor of ECMWF interim reanalysis (ERA-Interim,
Dee et al. 2011) and uses a more advanced assimilation scheme. The ERAS5 precipitation at
approximately 30 km grid spacing is model simulated and available at every hour from 1950
to near real time; the 2-m air temperature in ERAS is a reanalysis product that assimilates
observed surface air temperature. Also available from ERAS are dewpoint temperature and
surface pressure, which are used to derive the 2-m saturation deficit following the approach of
Byrne and O'Gorman (2018). As in Wang et al. (2017), the IMERG precipitation is paired with
ERAS 2-m air temperature or 2-m saturation deficit to support the analysis on observed scaling,
which we refer to here as “IMERG”; we refer to scaling analysis as “ERAS5” if both
precipitation and 2-m air temperature or saturation deficit are from ERAS. For comparison

purposes, all IMERG and ERAS analyses are also repeated based on TRMM and ER A-Interim.

The CESM global simulation is performed at /79 spatial resolution (approximately 1.9° x
2.5°) and over the period 1986-2013 (with the first five years deemed model spin-up), using
prescribed sea surface temperature and sea ice fraction according to observations from the
Hadley Centre and the National Oceanic and Atmospheric Administration (NOAA) (Hurrell et
al. 2008). The atmospheric component is the Community Atmosphere Model, version 5.3
(Neale et al. 2012), with 30 vertical levels; the land component is the Community Land Model
4.5 with satellite phenology (Oleson et al. 2013). To represent present-day climate, the land
surface is initialized according to year 2000 conditions (Oleson et al. 2013), and aerosol
concentration, CO., and other trace gases are all fixed at their year 2000 levels. In addition to
daily and 3-hourly model output for the entire simulation period, model output is also saved
for every time step (30 minutes) during the five-year period from 1991 to 1995 to examine the

sensitivity of extreme precipitation scaling analysis to temporal resolution.
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The WRF convection-permitting simulation is conducted at 4-km grid spacing for the
contiguous United States (and is referred to as “WRF4km” hereafter), driven with initial and
boundary conditions from ERA-Interim for the period October 2000 to September 2013
(Rasmussen and Liu 2017; Liu et al. 2017). In this study, both the hourly and the aggregated
3-hourly and daily WRF4km data are used to examine the sensitivity of the scaling relationship

to temporal resolution.

Figure S1 compares the precipitation climatology for the June-July-August (JJA) and
December-January-February (DJF) seasons from all four data sources at their native resolution.
Both CESM and WREF reproduce the large-scale precipitation climatology reasonably well.
Discrepancies in certain regions can be large, especially for CESM. Precipitation during DJF,
for example, is strongly underestimated by CESM over the Amazon basin, a common global
model deficiency also found in other studies (e.g., Zhang et al. 2017). Moreover, CESM also
captures the global pattern of extreme precipitation in comparison with IMERG and ERAS,
although the magnitude is much lower as expected from coarse-resolution (~200 km)

simulations (not shown).

3. Methods

Using data from each of the four sources respectively, we identify and track the extreme
precipitation events under different temperatures, and analyze how extreme precipitation scales
with temperature and other variables (e.g., saturation deficit) at different lead/lag times. For
CESM, additional diagnostics related to precipitation and convection are examined to further
understand the physical processes underlying the negative scaling of precipitation extremes at
high temperature. In addition to global analysis, 16 sample regions (Figure S2) over land and
ocean spanning the tropics and extratropics are chosen for more detailed analysis. Due to
computational constraint, especially for event tracking, we aggregate the half-hourly IMERG,
hourly ERAS and hourly NCAR WRF model output as 3-hourly data for most of the analysis.
In section 4a, we demonstrate that this treatment does not impact the results because the
sensitivity to temporal resolution is minimal as also found in previous studies (e.g., Drobinski
et al. 2018). It should be noted that the focus of this study is on extreme precipitation scaling
with temperature and therefore the surface air temperature is used as the covariate of
precipitation intensity. Some past studies used dewpoint temperature as the precipitation
covariate (see Fowler et al. 2021 for a comprehensive review). However, since dewpoint is a

measure of specific humidity, it is not suitable for this study.
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a. Binned scaling analysis

Our primary EPI-T scaling analysis is based on sub-daily data and conditional on near-
surface air temperature (taken as local 2-m air temperature), following the approach of Wang
et al. (2017). Rather than using daily averaged temperature and sub-daily precipitation to
reduce the imminent impact of precipitation on temperature as in Drobinski et al. (2018) and
Da Silva et al. (2020), we analyze both temperature and precipitation at the sub-daily timescale
to explore their interactions. This choice is also necessitated by our event tracking and lead-lag
analysis that require sub-daily data. Specifically, all sub-daily precipitation data in each
specific area within the analysis period are first binned according to the corresponding near-
surface air temperature, and a bin size of 0.5° C is used. For each temperature bin, the 99"
percentile of precipitation is identified, and the extreme intensity is then defined as the average
of precipitation rates that exceed the 99" percentile within the bin, and the corresponding near-
surface air temperatures are averaged to represent the bin temperature. Temperature bins with
fewer than 1,000 data points, typically found at the lowest and highest ends of local temperature
variations, are discarded. The resulting precipitation extremes are smoothed (using a three-bin
moving average) to characterize the scaling relationship between precipitation extremes and
near-surface air temperature, and to identify the temperature at which extreme precipitation
peaks, denoted as Tpeak. A similar binned analysis is also conducted to derive the relationship
between sub-daily precipitation and near-surface saturation deficit (EPI-SD), using a bin size

of 0.5 gkg™!.

For all precipitation events underlying each “extreme” data point within each temperature
bin, we then track the temporal variation of precipitation, temperature, and some convection-
related variables to assess the timing and magnitude of changes of temperature (and other
variables) during storm development. This analysis enables us to evaluate whether the
temperature differences between storm events in different bins are already present before storm
development or caused by the storm, and to quantify how much of the difference can be

attributed to the storm.

The aforementioned analyses are conducted globally and for each of the 16 representative
regions as well. The global analysis is not based on each individual grid cell; instead, data from
25 grid cells centering around each grid cell is pooled together to increase the sample size in
the extreme analysis. To compare data from the four different sources, the scaling analyses are

conducted over their common period, December 2000 to August 2013, focusing on the warm

9
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season (JJA for the Northern Hemisphere and DJF for the Southern Hemisphere) when
convective precipitation is dominant. Because of differences in spatial resolution, the number
of grid cells needed to cover a specific representative region can differ dramatically across
different datasets. To ensure similar spatial coverage for each region across all datasets, some
resampling is necessary. For study regions within the contiguous United States, we resample
IMERG, ERAS, and WRF4km to a 64-km resolution on the WRF grid (WRF64km-G or simply
WREF). For regions outside the contiguous United States, we resample the IMERG precipitation
to the ERAS grid. To preserve the characteristics of precipitation extremes, no spatial
interpolation is conducted; instead, resampling simply takes the raw data from the closest grid
point. Overall, 169 (13 x 13) grid cells from WRF64km-G and 1089 (33 x 33) grid cells from
ERAS occupy an area similar to that of 25 (5 x 5) grid cells from CESM (Figure S2). Subject
to computer memory constraint, the ERAS grid has to be resampled at every other grid point
before conducting scaling analysis. This leads to a total of 289 (17 x 17) grid cells that are
eventually used for the scaling analysis based on the ERAS grid. As is evident from Figures S3
and S4, the details of the resampling process do not influence the qualitative scaling behavior
of precipitation extremes. This result is consistent with Drobinski et al. (2018), showing

minimal sensitivity of EPI-T scaling to spatial resolution.

b. Atmospheric convection diagnostics

To explore the physical processes underlying the negative scaling of precipitation extremes
at high temperature, we analyze diagnostics directly related to atmospheric convection,
including the cumulus updraft condensation rate, cumulus downdraft evaporation rate, and
downdraft convective available potential energy. Limited by the availability of data for the

needed variables, the diagnostics described here are based on CESM output only.

Following Houze et al. (1980), we estimate cumulus updraft condensation rate C, and

cumulus downdraft evaporation rate £, as

Zr dr_
C,=["M,| 2 (r-r)-2xd 1
=l [ (r=n) = | M
E,=["M p (r.—r )+di_dz @)
d — 28 d d \'e d dZ >
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where z is height, z, (z;) is cloud base (top) height, M, (M ) is updraft (downdraft) mass

flux, 4, (A4,) stands for updraft (downdraft) entrainment rate, and 7,, 7

u>d

and r, are

environment, updraft, and downdraft water vapor mixing ratio, respectively. Among the

variables needed for the calculation of C, and E,, four— M, , M,, A, , and 4, — are directly

u

obtained from the cumulus parameterization (Zhang and McFarlane 1995) of CESM, while z,
and z, can be determined from the vertical profiles of M, and M ,. We take the grid value of

water vapor mixing ratio as 7, and estimate 7, and r, as the saturation mixing ratio at the

environmental temperature and pressure.

The downdraft convective available potential energy (DCAPE) for an air parcel can be

estimated as
Py
DCAPE=["R,(T,.~T,,)dInp, (3)

where p is atmospheric pressure, p, is the pressure from which the parcel starts to descend,
p, 1s surface pressure or the pressure where a descending parcel achieves neutral buoyancy

(whichever is smaller), R, is the gas constant for dry air, and 7, and 7, are the density

temperature of the environment and air parcel, respectively (Emanuel 1994). Because the
maximum kinetic energy that a descending parcel can achieve is proportional to DCAPE,
DCAPE can be used as an indicator of maximum downdraft strength within storms: the higher
the value of DCAPE, the stronger the downdraft could potentially be. DCAPE for each
temperature bin is estimated using the average air temperature and water vapor mixing ratio
corresponding to the extreme precipitation rates in that temperature bin. We adapt the DCAPE
calculation from Emanuel (1994), which eliminates the need for total water mixing ratio
information by assuming that the parcel is cooled isobarically through a wet-bulb process
before descending pseudo-adiabatically with just enough evaporation to keep it saturated.
DCAPE, as an indicator of maximum downdraft when precipitation supply is sufficient and
background wind shear is absent, is not a direct measure of the actual downdraft strength.

However, its response to temperature variation is consistent with that of the estimated cumulus
downdraft evaporation rate £, (as shown later in the Results section), lending confidence to

the accuracy of both diagnostics and their relevance as a metric for downdraft strength.
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4. Results

a. The robustness of the negative EPI-T scaling

For the EPI-T relationship based on data from all seasons, the negative scaling at high
temperature is dominated by precipitation events from the warm season (which coincides with
the wet season in many regions) (Wang et al. 2017). Lumping data from warm and cold seasons
together mixes convective and large-scale precipitation regimes, which may lead to an artificial
negative scaling that does not reflect a true physical process relating extreme precipitation to
temperature. We therefore focus on the warm season only, when convective precipitation is
abundant and dominant. The 16 regions in Figure S2 are used to sample different climate

regimes in the tropics and extratropics.

Figure 2 compares the EPI-T relationship for the 16 sample areas using sub-daily data from
all four sources during their overlapping period (2001-2013). The magnitude of precipitation
extremes differs remarkably among the four sources and generally increases as the native
resolution of the data becomes finer from CESM to ERAS to IMERG and WREF. Relative to
the observational reference IMERG, CESM substantially underestimates the intensity of
extreme precipitation at sub-daily timescales, while WRF overestimates the extreme
precipitation intensity compared with ERAS, which shows an overall agreement with IMERG
(solid lines in Figure 2). Despite these rather substantial differences among the four data
sources in the magnitude of precipitation extremes, and despite the vastly varying climate
regimes of the 16 sample regions, the EPI-T relationships derived from all data sources for all
sample regions are qualitatively similar and feature a negative scaling at high temperature
(solid lines in Figure 2). The increasing branch of the scaling curves at lower temperatures can
be minimal or even absent because the near-surface air temperature during the warm season is
mostly above the threshold temperature at which the extreme precipitation peaks (Tpeax). The
increasing branch would be more prominent and dominated by winter precipitation if the

scaling curves were derived using data from all seasons (e.g., Wang et al. 2017).
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Figure 2. The EPI-T scaling relationship that links extreme precipitation intensity to
concurrent near-surface air temperature (solid lines) and antecedent near-surface air
temperature (dashed lines) for 16 sample areas. The analyses are based on 3-hourly data from
IMERG, ERAS, CESM, and WRF during the 2001-2013 warm seasons, with temperature in K
and EPI in mm day!. The dashed lines are based on the same extreme precipitation data as the
solid lines but with temperature shifted to the values 24 hours ahead of precipitation. The
vertical gray lines indicate the temperature bins used for more detailed analysis, including a
cold bin (C, only for areas where the EPI-T curve in CESM includes an increasing branch), a
threshold bin (T, which corresponds to the largest magnitude of extreme precipitation in
CESM), a warm bin (W), and a hot bin (H).

Since extreme precipitation decreases when the surface air temperature exceeds Tpeak, We
use the percentile of Tpeak as an indicator for how common or how rare the conditions are
inducive to negative scaling. Figure 3 shows the global pattern of Tpeak percentile based on
warm season local temperature statistics, where a lower percentile for Tpeax means more
common or more frequent occurrence of negative scaling. It is clear from Figure 3 that negative
scaling is detected over most land areas; relative to IMERG, ERAS and WREF, the coarse-
resolution global model CESM generally overestimates the frequency of conditions under
which negative scaling occurs. For example, over most of the U.S., Tpeak is at or lower than the
5 percentile of warm-season temperature in CESM, but ranges from less than 5™ percentile to

over 60™ percentile in IMERG, ERAS5 and WRF. However, the overall spatial patterns of Tpeak
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percentile from different data sources show a remarkable agreement, all indicating that negative
scaling is a common warm-season phenomenon over most land areas and in much of the
tropical oceans. Over the unshaded areas in Figure 3, negative scaling is either extremely rare
or not detected. Data from different sources are consistent in identifying such areas, including

the subtropical dry zones over the oceans and high-latitude oceans with no real warm season.

— a) IMERG

120°W 110°W  100°W 90°W 80°W
(percentile)

1 5 10 20 30 60 90

Figure 3. Percentile of Tpeak at which extreme precipitation reaches its maximum value in
the EPI-T scaling curve. These percentiles are based on 3-hourly data from (a) IMERG, (b)
ERAS, (¢) CESM, and (d) WRF during the 2001-2013 warm seasons. At each grid point, data
from its surrounding 25 grid cells are used. Lower percentiles of Tpeak indicate more common
occurrence of negative scaling.
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The negative EPI-T scaling relationship is robust against the data temporal and spatial
resolutions. As the temporal resolution changes from sub-hourly to hourly, three-hourly, and
daily, the intensity of the precipitation extremes from all four data sources decreases, but
qualitatively, the overall EPI-T relationship does not change (Figure 4 using the U.S. Southern
Great Plain as an example; see Supplementary Figure S5 for all 16 sample areas). Negative
scaling at high temperature is clearly present in all sample areas at all temporal resolutions
examined, consistent with Drobinski et al. (2018, their Fig. 2). Quantitatively, the magnitude
of the negative scaling rate generally decreases as the temporal resolution becomes finer. This
is especially obvious in CESM for the tropical wet climates (e.g., in the Amazon and Congo),
where the EPI-T curve for daily data shows a clear negative scaling while the curve based on
30-minute resolution is almost flat. Similar to the effect of temporal accumulation, spatial
aggregation from fine to coarser grids (through averaging) reduces the magnitude of the
extreme precipitation, but does not qualitatively change the EPI-T relationship (results not
shown), in agreement with Drobinski et al. (2018). Moreover, the EPI-T relationship also
shows minimal sensitivity to spatial resampling to various resolutions that takes the nearest
neighbor value in the scaling analysis. Resampling the IMERG data from 0.1° to 0.3°, for
example, or resampling the WRF output from 4km to 64km grid spacing causes negligible

change in the derived EPI-T relationship corresponding to each data source (Figures S3-S4).

Southern Great Plain

———IMERG gDoin)
—— IMERG (3—Hourly)
- - - -IMERG (Hourly)
ERA5 (Daily)
ERA5 (3—Hourly)
ERA5 (Hourly)
——— CESM Doilygl
—— CESM (3—Hourly)
---- CESM 3/
———WRF
— WRF
----WRF

30 Mins
Daily)
3—Hourly)
Hourly)

280 290 300 310
Local Temperature (K)

Figure 4. Sensitivity of the EPI-T scaling to temporal resolution, using the Southern Great
Plain sample area as an example. The scaling curves are derived from daily (dashed lines), 3-
hourly (solid lines), and hourly or 30-minute (dotted lines) data from IMERG (purple), ERAS
(orange), CESM (blue) and WRF (black), with temperature in K and EPI in mm day™. The
results are for the warm seasons of 2001-2013, except for the CESM-based 30-minute scaling
analysis that is based on the warm seasons of 1991-1995 (limited by the availability of the 30-
minute time-step output).

b. Impact of precipitation process on temperature
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To assess the impact of precipitation and its associated weather systems on near-surface air
temperature, we track all individual storm events underlying the identified “extremes” within
each temperature bin to examine how temperature and other variables evolve during a storm’s
lifetime. In this “storm tracking” analysis, we apply a 24-hour moving average to all time series
to remove the diurnal cycle and focus on storm-induced variations. For most regions, near-
surface air in the warm and hot bins generally experiences slight cooling (or even warming)
before the time of the storm peak, while near-surface air in the cold and threshold bins
experiences stronger cooling. Most of the temperature changes occur within the 24 hours before
the storm peak, as shown in Figure 5 using the U.S. Southern Great Plain as an example. Results
for all sample regions are presented in supplementary Figures S6-S9 for IMERG, ERAS,
CESM, and WREF, respectively. This cooling is closely related to cloud radiative effects that
are the strongest within 24 hours before and after the storm peak (as evident from the surface
insolation plot in Figure S10 using CESM as an example). In CESM for most sample areas,
cloud content is much higher during storm events in the cold and threshold bins than those in
the warmer bins, and the transition from predominantly low-level clouds to medium- and high-
level clouds (reflecting the transition from shallow to medium and deep convection) occurs
within one day before the storm peak (Figures S11-S12). The other cooling process, through
evaporation of rain droplets in the lower troposphere and water at the surface, occurs more
imminently to the precipitating process. Therefore, one day before the storm peak is sufficient
to capture most of the storm’s impact on temperature; earlier temperature differences between

bins reflect variations not directly related to the imminent storm events.

a) IMERG, Southern Great Plain b) ERA5, Southern Great Plain c) CESM, Southern Great Plain d) WRF, Southern Great Plain
305 305 305 305

o300+——— | 300 07— | soo{ o~
= \’_/,——

T 1 ¥ _\_/"‘ 29 —’\/ 29 \/’

290 290 290 290
-2 g 1 2 -2 0 1 2 -2 1 2 -2 O

0 0 1 2
Time (Days) Time (Days)

0 0
Time (Days) Time (Days)

—— Threshold Bin Warm Bin Hot Bin

Figure 5. Evolution of near-surface air temperature, using the Southern Great Plain sample
area as an example. These are time series of near-surface air temperature (K) before and after
the peak of storm derived among the extreme events within each temperature bin, based on 3-
hourly data from (a) IMERG, (b) ERAS, (c¢) CESM, and (d) WRF during the 2001-2013 warm
seasons. Time zero is when precipitation peaks during each storm event, with a negative value
on the x-axis denoting the time before the storm peak and positive after. The threshold, warm
and hot bins are as marked in Figure 2.

In most land areas, the range of temperature variation in the absence of storm events is

large (as reflected by the distance between lines at -1 day in Figure 5 and Figures S6-S9), and
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the bin-to-bin temperature difference at the storm peak results from the combination of storm-
free temperature variations and storm-induced temperature changes. Based on data from all
four sources, over most of the land regions examined, less than 25% of the temperature
differences at the storm peak between the cold (or threshold) and hot bins are attributable to
the storm-induced temperature changes (Figure 6). Over most oceanic areas sampled,
temperature variation in the absence of storm events is small or negligible as indicated by the
small temperature difference across different temperature bins one day ahead of the storm
events (e.g., in the subtropical Pacific (East), Figures S6-S9); and storm-induced temperature
change generally accounts for over 60% of the differences between temperature bins (Figure
6). So the impact of precipitation process (or the lack of it) on temperature plays an essential
role in shaping the EPI-T relationship over oceans. While results from the four data sources
show some quantitative differences, they are remarkably similar in terms of the clear contrast
between land and ocean, with a substantially higher fraction of temperature differences
attributable to storm-induced variations over oceans than over land.

1

+
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Ty .
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Figure 6. The fraction of temperature difference between the cold (or threshold) and hot
bins attributable to storm-induced temperature change, for 16 sample areas based on four data
sources during the 2001-2013 warm seasons. The fraction was calculated as

f =(AT, —AT )/ AT, where AT| represents the temperature difference between the cold (or

threshold) and hot bins at time zero (i.e., at the peak of the storm events), and AT ;| at one day
(24 hours) ahead.

The storm’s impact on near-surface air temperature has been emphasized in previous
studies focusing on the negative scaling of extreme precipitation. In general, heavier
precipitation tends to produce stronger evaporative cooling, and this cooling unavoidably
would shift the events toward lower temperature bins (Bao et al. 2017). To eliminate the impact
of storm-induced temperature change, we adjust the EPI-T curve in Figure 2 by shifting
extreme precipitation data to a bin pertaining to the temperature 24 hours before the storms’

peak; this results in the dashed lines in Figure 2. For most areas over land, even though using
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the antecedent temperature does shift extreme events among temperature bins, the adjusted
EPI-T curve (with storm-induced cooling or warming removed; dashed lines in Figure 2)
retains the general shape of the original, with a negative scaling at high temperature.
Differences between the original and adjusted curves are more substantial over oceanic areas.
This further confirms that storm-induced temperature change is not the primary cause of the
negative scaling over land, although it plays an important role over oceans. This strong contrast
between land and ocean might be due to the abundance of low-level clouds over oceans during
the development of heavy storms (Figures S11-S12), which tends to produce an overall cooling
effect. In combination with evaporative cooling, the impact of precipitation process on near-

surface air temperature is thus amplified over the ocean.

c. Impact of temperature on precipitation and possible mechanisms

To assess the impact of temperature on precipitation, we analyze the lagged EPI-T
relationship on various sub-daily timescales, with near-surface air temperature leading
precipitation by up to 18 hours to reduce or eliminate the impact of precipitation process on
temperature. As the lead time increases from zero to 18 hours, the presence of negative scaling
at high temperature and the general shape of the scaling curve are qualitatively preserved for
all regions. This holds regardless of whether data from IMERG, ERAS5, CESM, or WREF are
used (Figure 7 using the U.S. Southern Great Plain as an example; results for all 16 sample
areas in Supplementary Figures S13-S16). These results, together with the high degree of
similarity between the solid and dashed curves in Figure 2, suggest that temperature’s impact
on precipitation plays an important role in the negative scaling of precipitation extremes at high

temperature.

In Figure 7 and Supplementary Figures S13-S16, as the lead time increases, the curves shift
and the corresponding Tpeak values change accordingly. Over most land areas and relative to
the scaling curve with lead time zero, the deviation generally increases with lead time in CESM,
but increases and then decreases with lead time in IMERG, ERAS and WRF. Based on data at
the sub-daily resolution, the scaling curve (especially Tpeak) is influenced by the diurnal cycle
of temperature. If heavy precipitation tends to occur at a certain time of the day (e.g., in
IMERG, ERAS and WRF), the scaling curve will shift away from the concurrent curve as the
lead time increases from zero and shift back towards the concurrent curve when the lead time
approaches 24 hours. This does not occur in CESM, indicating that heavy precipitation might
not have a clear “preferred time” in the coarse-resolution CESM simulation.
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a) IMERG, Southern Great Plain b) ERA5, Southern Great Plain c) CESM, Southern Great Plain d) WRF, Southern Great Plain
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Figure 7. The EPI-T scaling relationship, with temperature (K) leading precipitation (mm
day!) by up to 18 hours, for the Southern Great Plain sample area. These relationships are
based on 3-hourly data from (a) IMERG, (b) ERAS, (¢) CESM, and (d) WRF during the 2001-
2013 warm seasons.

Based on the comparison of the CESM results with those from IMERG and ERAS (Figures
2-7), it is evident that, although CESM does underestimate the Tpeak percentile, it is capable of
capturing the negative scaling of extreme precipitation at high temperature. We therefore make
use of CESM to study atmospheric convection under high temperature. At the process level,
the decrease in extreme precipitation at high temperature in CESM is dominated by a decrease
in the cumulus updraft condensation rate, with a minor contribution from enhanced evaporation
in the atmosphere (Figure 8). Consistent with observational studies (Berg et al. 2013), in the
high temperature range, the CESM-simulated extreme precipitation (gray lines in Figure 8) is
primarily from cumulus convection (black lines), and the decrease in extreme precipitation at
high temperature is dominantly a decrease in extreme convective precipitation with
temperature. The convective precipitation relationship with temperature closely tracks the
cumulus updraft condensation rate (blue lines), which increases with temperature and then
decreases or levels off as temperature exceeds a certain threshold. Meanwhile, the cumulus
downdraft evaporation rate (magenta lines), albeit small in magnitude, either increases with
temperature or decreases more slowly than precipitation in most selected areas. This is
consistent with the column maximum downdraft convective available potential energy
(DCAPE) that peaks at high temperature (Figure S17). As large DCAPE tends to produce
strong downdrafts that bring drier air from upper levels, evaporation tends to be stronger when
temperature is high. Adding the downdraft evaporation back to extreme precipitation leads to
a scaling curve (black dashed lines) with a flattened descending branch (relative to the EPI-T
scaling curve) but is insufficient to qualitatively change the nature of the scaling. These results
indicate that the slowing down of cumulus updraft condensation rate at high temperature is the

dominant process underlying the negative scaling of extreme precipitation in CESM.
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Figure 8. Moisture flux (mm day"!) variation with temperature (K) during extreme
precipitation events, based on 3-hourly CESM output during the 2001-2013 warm seasons for
16 sample areas. The moisture fluxes plotted include extreme precipitation intensity EPI (gray

lines) and the corresponding convective precipitation FP,, (black solid lines), updraft
condensation rate C, (light blue lines), downdraft evaporation rate E, (magenta lines) and
EPI+E, (black dashed lines).

Further inspection of the cumulus updraft condensation rate reveals that its variation is
primarily associated with variations in convective motion: the contribution of saturated ascent
to condensation rate (2nd term of Eq. 1 in section 3b) is one order of magnitude greater than
the direct impact of mixing dry air from the environment (1st term of Eq. 1 in section 3b)
(results not shown). This suggests that the negative scaling is due to suppression of convection
at high temperature. Compared with the cold and threshold bins, where the entire air column is
close to saturation in all 16 sample regions, the atmosphere in the warm and hot bins features
greater saturation deficit (Figure S18). As convective updraft is typically saturated, the
entrained air with greater saturation deficit at high temperature tends to deplete cloud buoyancy
more efficiently (Brown and Zhang 1997; Redelsperger et al. 2002; Derbyshire et al. 2004;
Takayabu et al. 2010). Moreover, as in high-resolution simulations (Romps 2010), in our study

the updraft entrainment rate in CESM is also strong for weak convective activities at high
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temperature (Figures S19-S20). Therefore, the enhanced saturation deficit is an important cause

for the suppressed convection (consequently, negative scaling) at high temperature in CESM.

Atmospheric saturation deficit (SD) can be quantified using the difference between the
saturation water vapor mixing ratio (7 ) and the actual water vapor mixing ratio (r):
SD=r"—r, where  depends solely on temperature at a given pressure following the C-C
equation, while 7 is influenced by surface evaporation, large-scale advection, convection, and

microphysical processes. The SD difference between the threshold temperature bin (“a”) and a

warmer bin (“b”) can be written as the sum of two terms, one (ASD, = rb* - r: ) determined by
temperature differences and the other (ASD, =7, —r,) reflecting differences in water vapor

mixing ratio. Figure 9 shows the vertical profile of ASD in CESM and the contribution of its
two components using four sample regions as examples; results for other regions are similar
(Figure S21). Across the whole vertical profile of the atmosphere, SD increases from the
threshold bin to warm (blue lines in Figures 9 and S21) and hot bins (pink lines in Figures 9
and S21), and this increase is dominated by the temperature-controlled term (dotted lines)
below ~600 hPa. Compared with the threshold bin, storm events in the warm and hot bins

generally feature more water vapor in the lower troposphere, which tends to reduce the

saturation deficit (i.e., ASD, is negative, dashed lines); the magnitude of this decrease,

however, cannot offset the large increase induced by higher temperature (i.e., ASD,, dotted

lines). At upper levels, the comparison is more complex, as temperature differences between
different bins might not be consistent with the near-surface air temperature differences. The

results in Figures 9 and S21 are consistent with the notion that » generally increases with

temperature more slowly than 7~ does due to moisture limitation (Sherwood and Fu 2014).
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Figure 9. Updraft saturation deficit (g kg'') comparison across selected temperature bins
in four sample areas: (a) Southern Great Plain, (b) Central Europe, (¢) Tropical Pacific (East),
and (d) Tropical Atlantic. Vertical profiles of updraft saturation deficit difference ASD
between the threshold bin and the warm (cyan solid lines) or hot (pink solid lines) bin are based
on warm-season 3-hourly CESM output during the 2001-2013 warm seasons. Also shown are

the contributions from temperature difference ASD, (dotted lines) and from water vapor
mixing ratio difference ASD, (dashed lines).

Based on results from our analysis of extreme precipitation binned according to near-
surface saturation deficit, extreme precipitation decreases monotonically as the saturation
deficit increases over land (Figure 10). Over the ocean, a similar trend is found at relatively
large saturation deficit, with some exceptions in the northern Atlantic and tropical Pacific
(West) in IMERG and ERAS when the atmosphere is close to saturation. Relative to the land
areas, saturation deficit is much smaller over oceans due to the abundant moisture supply from
the surface, with a sharp contrast of extreme precipitation over a small range of saturation
deficit. Similar to temperature variation over oceans being dominated by storm-induced
temperature change, the relationships in Figure 10 over the ocean are possibly a result of
descending motion that brings dry air from aloft, which is to be further examined in Section
4d. This is consistent with the fact that the saturation deficit profiles over oceans are rather
homogeneous across the low- and mid-troposphere (Figure S18). Over land, due to limited
moisture supply and higher temperature, saturation deficit is large in the lower troposphere

below ~600 hPa and rapidly diminishes with altitude.

22
File generated with AMS Word template 2.0




550

551
552
553
554
555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

a) IMERG b) ERAS c) CESM d) WRF
600 600 600
'

150

£400 400 400
£ 100

2200 200 50 200
w

0 T T T T T 0 T T T T ™ 0 T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Saturation Deficit (g kg™") Saturation Deficit (g kg™") Saturation Deficit (g kg™") Saturation Deficit (g kg™")

Land

Ocean

Figure 10. Scaling of extreme precipitation (mm day ') with near-surface saturation deficit
(g kg'!) (EPI-SD). The relationships are based on 3-hourly data from (a) IMERG, (b) ERAS,
(c) CESM, and (d) WRF during the warm seasons of 2001-2013. The blue lines are for six
oceanic sample areas and the orange lines are for the ten land sample areas shown in Figure
S2.

On the other hand, the impact of precipitation process (or the lack of'it) on saturation deficit
might also contribute to the relationship curves in Figure 10, including for example moistening
by evaporation of rain and drying due to subsidence. These effects, however, are important
over oceans only and are not the dominant process underlying the relationship shown in Figure
10 over land. This is confirmed through tracking the near-surface saturation deficit prior to and
during extreme precipitation events (Figures 11 and S22-S25). Over most land areas, the near-
surface saturation deficit contrasts among different temperature bins already exist prior to the
development of storm events, and precipitation processes modify the saturation deficit
differences only slightly (Figures 11 and S22-S25). This is a strong indication that the
relationship shown in Figure 10 for the land areas is a result of saturation deficit influencing
extreme precipitation, not the other way around. Over the ocean, however, the near-surface
saturation deficit is similar among the various temperature bins prior to the storm events, and
differences among the bins develop during and after the storm events. The relationship shown
in Figures 10 and 11 for oceanic areas is therefore a reflection of temperature (and saturation
deficit) responding to precipitation process over the ocean. This notion is further corroborated
by the breakdown of a monotonic relationship between saturation deficit and extreme
precipitation in the northern Atlantic and tropical Pacific (West) in IMERG and ERAS (Figure
10).
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Figure 11. Evolution of near-surface saturation deficit, using two sample areas in the U.S.
Southern Great Plain (top) and Tropical Pacific (East) (bottom) as land and ocean examples.
Time series of near-surface saturation deficit (g kg™!') before and after the storm peak are
averaged among extreme events within each temperature bin, based on 3-hourly warm-season
data during 2001-2013 from a) and e) IMERG, b) and f) ERAS, ¢) and g) CESM, and (d) WRF.
The cold, threshold, warm and hot bins are as marked in Figure 2.

Results in Figures 9-11 together demonstrate the important role that saturation deficit plays
in shaping the relationship between temperature and extreme precipitation over land. High
temperature, through its impact on saturation deficit and ultimately on atmospheric convection
and updraft condensation rate, plays an essential role in causing the negative scaling of extreme

precipitation over land.

d. Potential impact of large-scale systems on the negative EPI-T scaling

As both temperature and precipitation respond to large-scale systems, a negative EPI-T
scaling at high temperature may result from anomalous large-scale conditions. In any given
region, for instance, near-surface air temperatures are usually high during dry spells, when
heatwaves are prevalent and moist convection tends to be suppressed; similarly, large-scale
descending motion suppresses convection (precipitation) and meanwhile induces adiabatic
warming of the land surface. In some regions, climatological conditions have a specific sub-
seasonal pattern that may cause an apparent negative scaling. Taking the U.S. Midwest as an
example, July and August are generally warmer than June, while the large-scale setting in June
is more favorable for convection and precipitation. To examine the impact of a large-scale
system on the EPI-T relationship through its influence on both temperature and precipitation,
we experiment using two additional approaches to derive the binned EPI-T scaling curves. In
one, we randomly sample the temperature and precipitation data in time to break continuous
dry spells and use only one-third of the rainy season data from each source (Figure S26). In the
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other, we derive the scaling curves for each month separately to eliminate the effects of
climatological sub-seasonal variations (Figure S27). Regardless of which data source we use,
the results (Figures S26-S27) are all qualitatively similar to those based on all wet season data
in Figure 2 (solid lines), suggesting that anomalous large-scale conditions are not the dominant

cause for the overall shape (and the negative scaling) of the EPI-T relationship.

The CESM 850-hPa geopotential height ( Zg,, ) anomalies (Supplementary Figures S28-

S29) also show no clear cyclonic-anticyclonic contrast between the cold bin (or threshold bin)
and the hot bin (or warm bin). In the warm bins, cyclonic (as opposed to anticyclonic) large-

scale systems occur more frequently than the warm season mean condition over all regions, as

indicated by the negative Z,,, anomalies, except for the Amazon; in the hot bins, the negative

Z¢, anomalies persist in most regions, except for the Amazon, the U.S. Midwest, and Central
Europe. Over the tropical Pacific (East and West) and tropical Atlantic, the overall impact of
large-scale systems is minimal, as indicated by the correspondingly small magnitude of Z,

anomalies. These results, in combination with the lack of anticyclonic anomalies in the northern
Atlantic and tropical Indian (Figure S29), suggest that subsidence makes limited contributions
in shaping the rather homogeneous vertical profiles of saturation deficit over the ocean (Figure
S18). Instead, the rather uniform vertical profile of saturation deficit might be a result of other

processes, such as dry air intrusion in the middle troposphere.

These results, in combination with results from the randomized and month-specific scaling
analyses, suggest that, while variations of large-scale systems may contribute to the negative
EPI-T scaling at very high temperature (hot bins) in some regions, they are not the fundamental

cause for the negative scaling documented in this study.

5. Conclusions and discussion

Based on analysis of the observational IMERG data, the ERAS5 reanalysis product, and
output from the coarse-resolution CESM and convection-permitting NCAR WRF simulations,
we show that the negative scaling of extreme precipitation at high temperature is a robust
feature of the precipitation-temperature relationship at the weather timescale during the warm
season. Although the magnitude of extreme precipitation varies with data source and
spatiotemporal resolution, the negative scaling nature of the precipitation-temperature

relationship remains qualitatively the same. These statements hold over both land and ocean.
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The primary mechanisms underlying the negative scaling differ between land and ocean.
We conclude that the negative scaling of warm-season precipitation extremes at high
temperature over land results primarily from the heat-induced suppression of precipitation
intensity. We base this conclusion on the concurrent and lead-lag relationships between
temperature and extreme precipitation, and on the temporal evolution of temperature and
saturation deficit during heavy storm events. Precipitation cooling and cloud radiative effects
play a secondary role in the negative scaling over land, but are more fundamental over oceans.
Over land, temperature and saturation deficit differences between extreme precipitation events
are already in place prior to the development of the storms; over oceans, such differences
emerge during the development and occurrence of the storms. These conclusions, as well as
the robustness of negative scaling at high temperature, remain unchanged when the analysis is

based on alternative data versions, TRMM 3B42 and ERA-Interim (results not shown).

At the process level and at the weather scale, results from CESM diagnostics indicate that
high temperature reduces precipitation intensity through the suppression of convective updraft
condensation rate and the acceleration of condensate evaporation, both due to increased
saturation deficit over land at high temperature. Over oceans, both the saturation deficit and its
range of variation are small and have limited impact on convection and precipitation. Instead,
the large contrast in extreme precipitation over a small range of saturation deficit over the ocean
is a reflection of saturation deficit responding to evaporation of precipitation. To examine the
robustness of this conclusion and its potential model dependence, one could repeat the
convection-related diagnostics using output from the NCAR WRF convection-permitting
simulation, but some variables needed for such analysis are not available from the fine-
resolution NCAR WRF model output (or similarly from ERAS either). Nevertheless, the
consistency between the diagnosed cumulus downdraft evaporation rate (Figure 8) and the

DCAPE (Figure S17) lends certain confidence to our CESM-based process analysis.

The local processes shaping the relationship between extreme precipitation and temperature
are always under the influence of large-scale systems. Large-scale weather systems (that persist
for weeks or longer) may influence both precipitation and temperature, leading to an apparent
negative scaling of extreme precipitation with temperature even in the absence of a causal-
effect relationship between the two. Results from both the randomized analysis (that reduces
the large-scale effects) and the month-specific analysis (that limits data to those under the

climatologically same or similar synoptic settings) suggest that large-scale systems are likely
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not a fundamental cause for the negative scaling. The analysis of 850-hPa geopotential height
anomalies during heavy storms in different temperature bins supports a similar conclusion.
With the influence of large-scale systems, the precipitation-temperature relationship and its
characteristics (e.g., the threshold temperature) may change quantitatively, but would likely

remain qualitatively similar.

While this study focuses on the intensity of heavy precipitation, binned analysis on mean
precipitation intensity (MPI, Figure 12) and number of rainy days (not shown) indicates that
precipitation amount and frequency follow a similar scaling behavior with temperature,
although the corresponding threshold temperatures differ. At the event level, precipitation
duration, spatial coverage, and spatiotemporal distribution are important characteristics that
may confound the precipitation scaling relationship with temperature. Long et al. (2021) based
on station data found that rain events under high temperature tend to be more concentrated in
space and time, which would favor more intense precipitation over a short duration or over a
small area. Therefore, using data with a spatiotemporal resolution much finer than available to
the current study may alleviate the negative scaling. Visser et al. (2021) found that negative
scaling can be eliminated if the intensity scaling analysis is conditioned on short rain duration.
On the other hand, even at spatiotemporal resolutions as coarse as used in the current study,
Wang and Sun (2022) found a monotonic increase of extreme precipitation intensity with
temperature when the scaling analysis was conditioned on saturated atmosphere, consistent
with the important role of saturation deficit proposed in this study. However, as rain duration
cannot be reliably derived from coarse resolution gridded data, a comparison between the roles
of rain duration and saturation deficit is beyond the scope of this study and will be tackled in

follow-up research.

In the context of climate variability, temperature is not the only predictor for precipitation
characteristics. Many other factors are at play and confound the scaling of precipitation with
temperature, and soil moisture is one such factor. Closely coupled with local temperature, soil
moisture influences precipitation processes through positive or negative feedbacks, depending
on temporal and spatial scales (e.g., Barros and Hwu 2002; Findell and Eltahir 2003; Kim and
Wang 2007; Koster et al. 2011; Mei and Wang 2011; Taylor et al. 2012). Functioning as an
additional moisture source for the atmosphere, wetter soil enhances evapotranspiration and
increases atmospheric moisture content, thus reducing saturation deficit. This may alleviate the

negative scaling and shift the threshold temperature toward higher values. Another important
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confounding factor is aerosol, through its direct effect on surface radiative budget (therefore
temperature) and indirect effect on clouds (therefore precipitation) (e.g., Stevens and Feingold
2009; Tao et al. 2012; Rosenfeld et al. 2014; Khain et al. 2015; Da Silva et al. 2020).
Specifically, Da Silva et al. (2020) showed that, due to the indirect effect of aerosols, high
aerosol concentrations tend to suppress convective precipitation at low temperatures, leading
to a super-CC scaling rate on the increasing branch of the EPI-T scaling curves. This effect,
however, is likely not fundamental to the negative scaling at high temperature when clouds
tend to be less frequent (Figures S11-S12). In fact, negative scaling is captured in the CESM

simulation that prescribes aerosol concentrations (Section 2).
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Figure 12. The MPI-T scaling relationship that links mean precipitation intensity to
concurrent near-surface air temperature for 16 sample areas. The analyses are based on 3-
hourly data from IMERG, ERAS, CESM, and WRF during the 2001-2013 warm seasons, with
temperature in K and MPI in mm day™.

Findings from this study have significant implications concerning the understanding of
extreme events such as flood, drought, and heatwaves and for projecting their future changes.
In a warmer climate, Wang et al. (2017) and Drobinski et al. (2018) found that the peak-shaped
extreme precipitation-temperature scaling curve, especially for its increasing branch, would

shift upward and rightward (Figure 1), with increases predicted in both the peak of extreme
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precipitation and the threshold temperature at which the precipitation peaks. In fact, numerous
studies have shown evidence from both modeling and observational perspectives for an
increase in precipitation extremes with global warming, leading to increased flood risks (e.g.,
Allan and Soden 2008; Fischer and Kutti 2016; Prein et al. 2017; Wang et al. 2020; Wang & Sun,
2022). As warming continues, because the rate of warming is faster over land than over oceans
and much of the moisture over land originates from oceans, the atmospheric relative humidity
is expected to decrease and the saturation deficit to increase over land (Sherwood and Fu 2014).
Based on results from our study, this increased saturation deficit may lead to more widespread
negative scaling of precipitation intensity with temperature, which provides a theoretical basis
for the model-projected increase in the spatial extent of negative scaling (Wang et al.
2017).Because negative scaling occurs for both the extremes (Figure 2) and mean precipitation
(Figure 12), this also means the combination of high temperature with low or lack of
precipitation may become more prevalent, leading to increased co-occurrence of drought and
heatwaves (Mazdiyasni and AghaKouchak 2015; Zscheischler and Seneviratne 2017), another

important consequence of climate change for which this study offers a possible explanation.
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