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ABSTRACT 11 

Although the intensity of extreme precipitation is predicted to increase with climate 12 

warming, at the weather scale precipitation extremes over most of the globe decrease when 13 

temperature exceeds a certain threshold, and the spatial extent of this negative scaling is 14 

projected to increase as the climate warms. The nature and cause of the negative scaling at high 15 

temperature and its implications remain poorly understood. Based on sub-daily data from 16 

observations, reanalysis data, and output from a coarse-resolution (~200 km) global model and 17 

a fine-resolution (4 km) convection-permitting regional model, we show that the negative 18 

scaling is primarily a reflection of high temperature suppressing precipitation over land and 19 

storm-induced temperature variation over the ocean. We further identify the high temperature-20 

induced increase of saturation deficit as a critical condition for the negative scaling of extreme 21 

precipitation over land. Large saturation deficit reduces precipitation intensity by slowing 22 

down the convective updraft condensation rate and accelerating condensate evaporation. The 23 

heat-induced suppression of precipitation, both for its mean and extremes, provides one 24 

mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land 25 

is expected to increase in a warmer climate, our results imply a growing prevalence of negative 26 

scaling, potentially increasing the frequency of compound drought and heat events. 27 

Understanding the physical mechanisms underlying the negative scaling of precipitation at high 28 

temperature is, therefore, essential for assessing future risks of extreme events, including not 29 

only flood due to extreme precipitation but also drought and heatwaves.   30 
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SIGNIFICANCE STATEMENT 31 

Negative scaling, a decrease of extreme precipitation at high local temperature, is a poorly 32 

understood phenomenon. It was suggested that the negative scaling may be a reflection of 33 

precipitation’s influence on temperature. Here we show based on observational data, reanalysis 34 

data and climate models that the negative scaling results primarily from the impact of high 35 

temperature-induced saturation deficit on precipitation over land and from storm-induced 36 

temperature variations over the ocean. In hot weather when moisture is limited (as is over land), 37 

large saturation deficit reduces precipitation intensity by slowing down the convective updraft 38 

condensation rate and accelerating condensate evaporation, leading to a negative scaling. The 39 

same mechanism can also contribute to increased compound drought and heat events.  40 
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1. Introduction 41 

As the global climate warms, observational data have shown an increase in the intensity 42 

and frequency of extreme precipitation (Fischer and Kutti 2016; Easterling et al. 2017), and 43 

this trend is expected to continue (Meehl et al. 2007; Allan and Soden 2008; Kharin et al. 2017; 44 

Prein et al. 2017). Because extreme precipitation is intrinsically related to low-level moisture 45 

convergence and tends to occur when the atmosphere is close to saturation, its intensity is often 46 

proportional to the moisture-holding capacity of the air near the surface of the Earth. Therefore, 47 

the Clausius-Clapeyron (C-C) relationship, which dictates the increase with temperature in the 48 

capacity of the atmosphere to hold moisture, can be used as a first-order approximation for the 49 

scaling of precipitation extremes with warming (Trenberth 1999). 50 

The relationship between extreme precipitation intensity and concurrent local temperature 51 

(EPI-T), however, is confounded by several other factors and processes, including atmospheric 52 

stability, precipitation efficiency, orographic effect, convective organization, moisture 53 

limitation, and latent heat release feedback on storm intensity (e.g., O'Gorman and Schneider 54 

2009; Loriaux et al. 2013; Muller 2013; Singh and O'Gorman 2014; O'Gorman 2015; Dai and 55 

Soden 2020). Therefore, it does not, and is not expected to, conform to the C-C scaling 56 

(Lenderink and van Meijgaard 2008; Sugiyama et al. 2009; Hardwick Jones et al. 2010; Chen 57 

et al. 2011; Utsumi et al. 2011; Mishra et al. 2012; Berg et al. 2013; Prein et al. 2017; Bao et 58 

al. 2017; Wang et al. 2017; Da Silva et al. 2020). Specifically, in the context of climate 59 

variability and at daily and sub-daily timescales over most of the globe, extreme precipitation 60 

increases with local temperature up to a certain threshold, beyond which a lower magnitude of 61 

extreme precipitation is associated with higher temperatures. This leads to a peak-shaped 62 

relationship curve, with negative scaling at higher temperatures. As the climate warms, both 63 

the magnitude of the extreme precipitation peak and the threshold temperature at which 64 

extreme precipitation reaches its peak are projected to increase, leading to an upper-rightward 65 

shift of the curve relating the two, especially for the increasing branch of the scaling curves 66 

(Prein et al. 2017; Wang et al. 2017; Drobinski et al. 2018) (Figure 1). For the descending 67 

branch, however, its variation with warming can be more elusive (Drobinski et al. 2018), and 68 

the negative scaling is projected to become spatially more widespread in a warmer climate 69 

(Wang et al. 2017). Wang et al. (2017) suggested that the C-C scaling is more likely to hold at 70 

the peak precipitation intensity (indicated by dots in Figure 1b), since the most intense 71 
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precipitation event tends to occur when the atmosphere is close to saturation, a condition 72 

conducive to C-C scaling (Wang & Sun, 2022). 73 

 74 

Figure 1. Relationship between extreme precipitation intensity and local temperature (EPI-75 
T). The left panel is based on historical (color solid lines) and projected (color lines with 76 
crosses) daily all-season output from six global climate models, using the Indian Monsoon 77 
region as an example (from Wang et al. 2017). The right panel is a conceptual diagram 78 
illustrating the EPI-T scaling in historical (blue solid line) and future (orange solid line) 79 
climates. The black dash lines indicate the Clausius-Clapeyron scaling relationship. 80 

The negative scaling of extreme precipitation at high temperature, although well 81 

documented in numerous studies, is poorly understood. Many factors may contribute to it, 82 

ranging from artificial effects of the data resolution and the methodology used to analyze the 83 

data to true physical mechanisms linking precipitation processes with temperature (e.g., 84 

Barbero et al. 2018; Bao et al. 2018; Visser et al., 2021). If higher temperature led to 85 

precipitation events that were more intense but spatially or temporally more concentrated 86 

(Long et a., 2021), data at coarse resolution would not capture the true response of precipitation 87 

intensity to temperature (Utsumi et al. 2011; Wasko et al. 2015; Visser et al., 2021). Mixing 88 

data from different seasons might lead to the clustering of large-scale precipitation at low or 89 

medium temperature on one end and convective precipitation at high temperature on the other 90 

end, which complicates the results (Drobinski et al. 2016; Ali et al. 2018). For physical 91 

processes underlying the negative scaling, some have hinted at the possible role of moisture 92 

limitation in precipitation at high temperature (Hardwick Jones et al. 2010; Prein et al. 2017; 93 

Wang et al. 2017; Wang & Sun, 2022), but this mechanism may not work over oceans, where 94 

moisture supply is usually not a limiting factor. Some have pointed to the response of near-95 

surface air temperature to synoptic conditions and precipitation processes, including warming 96 

associated with anticyclonic weather systems (Trenberth and Shea 2005; Chan et al. 2016) and 97 

cooling during heavy precipitation events (Bao et al. 2017), but this notion is a subject of 98 

inconclusive debate (Barbero et al. 2018; Bao et al. 2018). The lack of a consistent relationship 99 
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between surface air temperature and atmospheric moisture content may also cause the negative 100 

scaling between precipitation extremes and temperature (e.g., Roderick et al. 2019). 101 

Despite the many studies on the relationship between extreme precipitation and 102 

temperature, the very nature of the negative scaling is not clearly understood; while not without 103 

exception (Visser et al., 2021), comments on the possible causes for negative scaling are often 104 

given without direct substantiating evidence. The projected increase in the spatial extent of 105 

negative scaling is subject to a similar lack of understanding (Wang et al. 2017). In the current 106 

study we aim to establish clear evidence for the negative scaling of extreme precipitation at 107 

high temperature, understand the nature of this negative scaling, assess its sensitivity (or the 108 

lack of such) to non-physical factors such as spatiotemporal resolution and seasonality, and 109 

tackle the physical mechanisms that underlie the negative scaling and its potential implications 110 

for future changes. We demonstrate that, for most regions over land at the weather timescale, 111 

the intensity of warm-season precipitation extremes decreases at high temperature, and this 112 

negative scaling is primarily a reflection of precipitation intensity being suppressed by 113 

temperature-induced large saturation deficit. Over oceans except for the subtropical dry zones, 114 

negative scaling is also found and results primarily from storm-induced temperature variations 115 

stemming from the combined impact of evaporative cooling and cloud radiative effect. As 116 

illustrated in Figure 1, the negative scaling at the weather timescale does not contradict the 117 

observed and predicted warming-induced increase of extreme precipitation at the climate 118 

timescale. The remainder of this article is organized as follows. Section 2 provides a description 119 

of the datasets and models used, while Section 3 details the methodologies applied, including 120 

the binned scaling analysis and diagnostics related to atmospheric convection. Section 4 121 

presents a thorough examination of the robustness of negative scaling at high temperature,  and 122 

illustrates the underlying physical mechanisms by exploring the interactions between 123 

temperature and precipitation processes, as well as the role of large-scale systems. Conclusions 124 

and discussion are given in Section 5. 125 

2. Data and Models 126 

Data from four sources are used in this study. These include the observational Integrated 127 

Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG, Final Run version 128 

6, Huffman et al. 2019), the European Centre for Medium-Range Weather Forecasts (ECMWF) 129 

fifth generation reanalysis data (ERA5, Hersbach et al. 2020), output from global simulations 130 

carried out for this study using the Community Earth System Model (CESM) version 1.2.2.1, 131 
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and output from the National Center for Atmospheric Research (NCAR) continental-scale 132 

convection-permitting modeling of North America (Liu et al. 2017) using the Weather 133 

Research and Forecasting (WRF) model version 3.4.1 (Skamarock et al. 2008). 134 

The half-hourly, 0.1º resolution IMERG is the successor of the Tropical Rainfall Measuring 135 

Mission (TRMM) 3B42 precipitation data (Huffman et al. 2007) from the National Aeronautics 136 

and Space Administration (NASA). It is an adjusted precipitation product based on estimates 137 

from various precipitation-relevant satellite passive microwave sensors comprising the Global 138 

Precipitation Measurement (GPM) constellation; it is available for the period June 2000 to near 139 

the present and nominally covers the entire globe (primarily for unfrozen surfaces between 60º 140 

S and 60º N). The global ERA5 is the successor of ECMWF interim reanalysis (ERA-Interim, 141 

Dee et al. 2011) and uses a more advanced assimilation scheme. The ERA5 precipitation at 142 

approximately 30 km grid spacing is model simulated and available at every hour from 1950 143 

to near real time; the 2-m air temperature in ERA5 is a reanalysis product that assimilates 144 

observed surface air temperature. Also available from ERA5 are dewpoint temperature and 145 

surface pressure, which are used to derive the 2-m saturation deficit following the approach of 146 

Byrne and O'Gorman (2018). As in Wang et al. (2017), the IMERG precipitation is paired with 147 

ERA5 2-m air temperature or 2-m saturation deficit to support the analysis on observed scaling, 148 

which we refer to here as “IMERG”; we refer to scaling analysis as “ERA5” if both 149 

precipitation and 2-m air temperature or saturation deficit are from ERA5. For comparison 150 

purposes, all IMERG and ERA5 analyses are also repeated based on TRMM and ERA-Interim. 151 

The CESM global simulation is performed at f19 spatial resolution (approximately 1.9º × 152 

2.5º) and over the period 1986-2013 (with the first five years deemed model spin-up), using 153 

prescribed sea surface temperature and sea ice fraction according to observations from the 154 

Hadley Centre and the National Oceanic and Atmospheric Administration (NOAA) (Hurrell et 155 

al. 2008). The atmospheric component is the Community Atmosphere Model, version 5.3 156 

(Neale et al. 2012), with 30 vertical levels; the land component is the Community Land Model 157 

4.5 with satellite phenology (Oleson et al. 2013). To represent present-day climate, the land 158 

surface is initialized according to year 2000 conditions (Oleson et al. 2013), and aerosol 159 

concentration, CO2, and other trace gases are all fixed at their year 2000 levels. In addition to 160 

daily and 3-hourly model output for the entire simulation period, model output is also saved 161 

for every time step (30 minutes) during the five-year period from 1991 to 1995 to examine the 162 

sensitivity of extreme precipitation scaling analysis to temporal resolution. 163 
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The WRF convection-permitting simulation is conducted at 4-km grid spacing for the 164 

contiguous United States (and is referred to as “WRF4km” hereafter), driven with initial and 165 

boundary conditions from ERA-Interim for the period October 2000 to September 2013 166 

(Rasmussen and Liu 2017; Liu et al. 2017). In this study, both the hourly and the aggregated 167 

3-hourly and daily WRF4km data are used to examine the sensitivity of the scaling relationship 168 

to temporal resolution. 169 

Figure S1 compares the precipitation climatology for the June-July-August (JJA) and 170 

December-January-February (DJF) seasons from all four data sources at their native resolution. 171 

Both CESM and WRF reproduce the large-scale precipitation climatology reasonably well. 172 

Discrepancies in certain regions can be large, especially for CESM. Precipitation during DJF, 173 

for example, is strongly underestimated by CESM over the Amazon basin, a common global 174 

model deficiency also found in other studies (e.g., Zhang et al. 2017). Moreover, CESM also 175 

captures the global pattern of extreme precipitation in comparison with IMERG and ERA5, 176 

although the magnitude is much lower as expected from coarse-resolution (~200 km) 177 

simulations (not shown). 178 

3. Methods 179 

Using data from each of the four sources respectively, we identify and track the extreme 180 

precipitation events under different temperatures, and analyze how extreme precipitation scales 181 

with temperature and other variables (e.g., saturation deficit) at different lead/lag times. For 182 

CESM, additional diagnostics related to precipitation and convection are examined to further 183 

understand the physical processes underlying the negative scaling of precipitation extremes at 184 

high temperature. In addition to global analysis, 16 sample regions (Figure S2) over land and 185 

ocean spanning the tropics and extratropics are chosen for more detailed analysis. Due to 186 

computational constraint, especially for event tracking, we aggregate the half-hourly IMERG, 187 

hourly ERA5 and hourly NCAR WRF model output as 3-hourly data for most of the analysis. 188 

In section 4a, we demonstrate that this treatment does not impact the results because the 189 

sensitivity to temporal resolution is minimal as also found in previous studies (e.g., Drobinski 190 

et al. 2018). It should be noted that the focus of this study is on extreme precipitation scaling 191 

with temperature and therefore the surface air temperature is used as the covariate of 192 

precipitation intensity. Some past studies used dewpoint temperature as the precipitation 193 

covariate (see Fowler et al. 2021 for a comprehensive review). However, since dewpoint is a 194 

measure of specific humidity, it is not suitable for this study. 195 
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a. Binned scaling analysis 196 

Our primary EPI-T scaling analysis is based on sub-daily data and conditional on near-197 

surface air temperature (taken as local 2-m air temperature), following the approach of Wang 198 

et al. (2017). Rather than using daily averaged temperature and sub-daily precipitation to 199 

reduce the imminent impact of precipitation on temperature as in Drobinski et al. (2018) and 200 

Da Silva et al. (2020), we analyze both temperature and precipitation at the sub-daily timescale 201 

to explore their interactions. This choice is also necessitated by our event tracking and lead-lag 202 

analysis that require sub-daily data. Specifically, all sub-daily precipitation data in each 203 

specific area within the analysis period are first binned according to the corresponding near-204 

surface air temperature, and a bin size of 0.5º C is used. For each temperature bin, the 99th 205 

percentile of precipitation is identified, and the extreme intensity is then defined as the average 206 

of precipitation rates that exceed the 99th percentile within the bin, and the corresponding near-207 

surface air temperatures are averaged to represent the bin temperature. Temperature bins with 208 

fewer than 1,000 data points, typically found at the lowest and highest ends of local temperature 209 

variations, are discarded. The resulting precipitation extremes are smoothed (using a three-bin 210 

moving average) to characterize the scaling relationship between precipitation extremes and 211 

near-surface air temperature, and to identify the temperature at which extreme precipitation 212 

peaks, denoted as Tpeak. A similar binned analysis is also conducted to derive the relationship 213 

between sub-daily precipitation and near-surface saturation deficit (EPI-SD), using a bin size 214 

of 0.5 g kg-1. 215 

For all precipitation events underlying each “extreme” data point within each temperature 216 

bin, we then track the temporal variation of precipitation, temperature, and some convection-217 

related variables to assess the timing and magnitude of changes of temperature (and other 218 

variables) during storm development. This analysis enables us to evaluate whether the 219 

temperature differences between storm events in different bins are already present before storm 220 

development or caused by the storm, and to quantify how much of the difference can be 221 

attributed to the storm. 222 

The aforementioned analyses are conducted globally and for each of the 16 representative 223 

regions as well. The global analysis is not based on each individual grid cell; instead, data from 224 

25 grid cells centering around each grid cell is pooled together to increase the sample size in 225 

the extreme analysis. To compare data from the four different sources, the scaling analyses are 226 

conducted over their common period, December 2000 to August 2013, focusing on the warm 227 
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season (JJA for the Northern Hemisphere and DJF for the Southern Hemisphere) when 228 

convective precipitation is dominant. Because of differences in spatial resolution, the number 229 

of grid cells needed to cover a specific representative region can differ dramatically across 230 

different datasets. To ensure similar spatial coverage for each region across all datasets, some 231 

resampling is necessary. For study regions within the contiguous United States, we resample 232 

IMERG, ERA5, and WRF4km to a 64-km resolution on the WRF grid (WRF64km-G or simply 233 

WRF). For regions outside the contiguous United States, we resample the IMERG precipitation 234 

to the ERA5 grid. To preserve the characteristics of precipitation extremes, no spatial 235 

interpolation is conducted; instead, resampling simply takes the raw data from the closest grid 236 

point. Overall, 169 (13 × 13) grid cells from WRF64km-G and 1089 (33 × 33) grid cells from 237 

ERA5 occupy an area similar to that of 25 (5 × 5) grid cells from CESM (Figure S2). Subject 238 

to computer memory constraint, the ERA5 grid has to be resampled at every other grid point 239 

before conducting scaling analysis. This leads to a total of 289 (17 × 17) grid cells that are 240 

eventually used for the scaling analysis based on the ERA5 grid. As is evident from Figures S3 241 

and S4, the details of the resampling process do not influence the qualitative scaling behavior 242 

of precipitation extremes. This result is consistent with Drobinski et al. (2018), showing 243 

minimal sensitivity of EPI-T scaling to spatial resolution. 244 

b. Atmospheric convection diagnostics 245 

To explore the physical processes underlying the negative scaling of precipitation extremes 246 

at high temperature, we analyze diagnostics directly related to atmospheric convection, 247 

including the cumulus updraft condensation rate, cumulus downdraft evaporation rate, and 248 

downdraft convective available potential energy. Limited by the availability of data for the 249 

needed variables, the diagnostics described here are based on CESM output only. 250 

Following Houze et al. (1980), we estimate cumulus updraft condensation rate uC  and 251 

cumulus downdraft evaporation rate dE  as 252 

( )T

B

z u
u u u e uz

drC M r r dz
dz

λ = − −  ∫                                               (1) 253 

( )T

B

z d
d d d e dz

drE M r r dz
dz

λ = − +  ∫ ,                                             (2) 254 
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where z  is height, Bz  ( Tz ) is cloud base (top) height, uM  ( dM ) is updraft (downdraft) mass 255 

flux, uλ  ( dλ ) stands for updraft (downdraft) entrainment rate, and er , ur , and dr  are 256 

environment, updraft, and downdraft water vapor mixing ratio, respectively. Among the 257 

variables needed for the calculation of uC  and dE , four – uM , dM , uλ , and dλ  – are directly 258 

obtained from the cumulus parameterization (Zhang and McFarlane 1995) of CESM, while Bz  259 

and Tz  can be determined from the vertical profiles of uM  and dM . We take the grid value of 260 

water vapor mixing ratio as er  and estimate ur  and dr  as the saturation mixing ratio at the 261 

environmental temperature and pressure. 262 

The downdraft convective available potential energy (DCAPE) for an air parcel can be 263 

estimated as 264 

( ) lnn

i

p

d e pp
DCAPE R T T d pρ ρ= −∫ ,                                              (3) 265 

where p  is atmospheric pressure, ip  is the pressure from which the parcel starts to descend, 266 

np  is surface pressure or the pressure where a descending parcel achieves neutral buoyancy 267 

(whichever is smaller), dR  is the gas constant for dry air, and eTρ  and pTρ  are the density 268 

temperature of the environment and air parcel, respectively (Emanuel 1994). Because the 269 

maximum kinetic energy that a descending parcel can achieve is proportional to DCAPE, 270 

DCAPE can be used as an indicator of maximum downdraft strength within storms: the higher 271 

the value of DCAPE, the stronger the downdraft could potentially be. DCAPE for each 272 

temperature bin is estimated using the average air temperature and water vapor mixing ratio 273 

corresponding to the extreme precipitation rates in that temperature bin. We adapt the DCAPE 274 

calculation from Emanuel (1994), which eliminates the need for total water mixing ratio 275 

information by assuming that the parcel is cooled isobarically through a wet-bulb process 276 

before descending pseudo-adiabatically with just enough evaporation to keep it saturated. 277 

DCAPE, as an indicator of maximum downdraft when precipitation supply is sufficient and 278 

background wind shear is absent, is not a direct measure of the actual downdraft strength. 279 

However, its response to temperature variation is consistent with that of the estimated cumulus 280 

downdraft evaporation rate dE  (as shown later in the Results section), lending confidence to 281 

the accuracy of both diagnostics and their relevance as a metric for downdraft strength.  282 
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4. Results 283 

a. The robustness of the negative EPI-T scaling 284 

For the EPI-T relationship based on data from all seasons, the negative scaling at high 285 

temperature is dominated by precipitation events from the warm season (which coincides with 286 

the wet season in many regions) (Wang et al. 2017). Lumping data from warm and cold seasons 287 

together mixes convective and large-scale precipitation regimes, which may lead to an artificial 288 

negative scaling that does not reflect a true physical process relating extreme precipitation to 289 

temperature. We therefore focus on the warm season only, when convective precipitation is 290 

abundant and dominant. The 16 regions in Figure S2 are used to sample different climate 291 

regimes in the tropics and extratropics. 292 

Figure 2 compares the EPI-T relationship for the 16 sample areas using sub-daily data from 293 

all four sources during their overlapping period (2001-2013). The magnitude of precipitation 294 

extremes differs remarkably among the four sources and generally increases as the native 295 

resolution of the data becomes finer from CESM to ERA5 to IMERG and WRF. Relative to 296 

the observational reference IMERG, CESM substantially underestimates the intensity of 297 

extreme precipitation at sub-daily timescales, while WRF overestimates the extreme 298 

precipitation intensity compared with ERA5, which shows an overall agreement with IMERG 299 

(solid lines in Figure 2). Despite these rather substantial differences among the four data 300 

sources in the magnitude of precipitation extremes, and despite the vastly varying climate 301 

regimes of the 16 sample regions, the EPI-T relationships derived from all data sources for all 302 

sample regions are qualitatively similar and feature a negative scaling at high temperature 303 

(solid lines in Figure 2). The increasing branch of the scaling curves at lower temperatures can 304 

be minimal or even absent because the near-surface air temperature during the warm season is 305 

mostly above the threshold temperature at which the extreme precipitation peaks (Tpeak). The 306 

increasing branch would be more prominent and dominated by winter precipitation if the 307 

scaling curves were derived using data from all seasons (e.g., Wang et al. 2017). 308 
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 309 

Figure 2. The EPI-T scaling relationship that links extreme precipitation intensity to 310 
concurrent near-surface air temperature (solid lines) and antecedent near-surface air 311 
temperature (dashed lines) for 16 sample areas. The analyses are based on 3-hourly data from 312 
IMERG, ERA5, CESM, and WRF during the 2001-2013 warm seasons, with temperature in K 313 
and EPI in mm day-1. The dashed lines are based on the same extreme precipitation data as the 314 
solid lines but with temperature shifted to the values 24 hours ahead of precipitation. The 315 
vertical gray lines indicate the temperature bins used for more detailed analysis, including a 316 
cold bin (C, only for areas where the EPI-T curve in CESM includes an increasing branch), a 317 
threshold bin (T, which corresponds to the largest magnitude of extreme precipitation in 318 
CESM), a warm bin (W), and a hot bin (H). 319 

Since extreme precipitation decreases when the surface air temperature exceeds Tpeak, we 320 

use the percentile of Tpeak as an indicator for how common or how rare the conditions are 321 

inducive to negative scaling. Figure 3 shows the global pattern of Tpeak percentile based on 322 

warm season local temperature statistics, where a lower percentile for Tpeak means more 323 

common or more frequent occurrence of negative scaling. It is clear from Figure 3 that negative 324 

scaling is detected over most land areas; relative to IMERG, ERA5 and WRF, the coarse-325 

resolution global model CESM generally overestimates the frequency of conditions under 326 

which negative scaling occurs. For example, over most of the U.S., Tpeak is at or lower than the 327 

5th percentile of warm-season temperature in CESM, but ranges from less than 5th percentile to 328 

over 60th percentile in IMERG, ERA5 and WRF. However, the overall spatial patterns of Tpeak 329 
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percentile from different data sources show a remarkable agreement, all indicating that negative 330 

scaling is a common warm-season phenomenon over most land areas and in much of the 331 

tropical oceans. Over the unshaded areas in Figure 3, negative scaling is either extremely rare 332 

or not detected. Data from different sources are consistent in identifying such areas, including 333 

the subtropical dry zones over the oceans and high-latitude oceans with no real warm season. 334 

 335 

Figure 3. Percentile of Tpeak at which extreme precipitation reaches its maximum value in 336 
the EPI-T scaling curve. These percentiles are based on 3-hourly data from (a) IMERG, (b) 337 
ERA5, (c) CESM, and (d) WRF during the 2001-2013 warm seasons. At each grid point, data 338 
from its surrounding 25 grid cells are used. Lower percentiles of Tpeak indicate more common 339 
occurrence of negative scaling. 340 
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The negative EPI-T scaling relationship is robust against the data temporal and spatial 341 

resolutions. As the temporal resolution changes from sub-hourly to hourly, three-hourly, and 342 

daily, the intensity of the precipitation extremes from all four data sources decreases, but 343 

qualitatively, the overall EPI-T relationship does not change (Figure 4 using the U.S. Southern 344 

Great Plain as an example; see Supplementary Figure S5 for all 16 sample areas). Negative 345 

scaling at high temperature is clearly present in all sample areas at all temporal resolutions 346 

examined, consistent with Drobinski et al. (2018, their Fig. 2). Quantitatively, the magnitude 347 

of the negative scaling rate generally decreases as the temporal resolution becomes finer. This 348 

is especially obvious in CESM for the tropical wet climates (e.g., in the Amazon and Congo), 349 

where the EPI-T curve for daily data shows a clear negative scaling while the curve based on 350 

30-minute resolution is almost flat. Similar to the effect of temporal accumulation, spatial 351 

aggregation from fine to coarser grids (through averaging) reduces the magnitude of the 352 

extreme precipitation, but does not qualitatively change the EPI-T relationship (results not 353 

shown), in agreement with Drobinski et al. (2018). Moreover, the EPI-T relationship also 354 

shows minimal sensitivity to spatial resampling to various resolutions that takes the nearest 355 

neighbor value in the scaling analysis. Resampling the IMERG data from 0.1º to 0.3º, for 356 

example, or resampling the WRF output from 4km to 64km grid spacing causes negligible 357 

change in the derived EPI-T relationship corresponding to each data source (Figures S3-S4). 358 

 359 

Figure 4. Sensitivity of the EPI-T scaling to temporal resolution, using the Southern Great 360 
Plain sample area as an example. The scaling curves are derived from daily (dashed lines), 3-361 
hourly (solid lines), and hourly or 30-minute (dotted lines) data from IMERG (purple), ERA5 362 
(orange), CESM (blue) and WRF (black), with temperature in K and EPI in mm day-1. The 363 
results are for the warm seasons of 2001-2013, except for the CESM-based 30-minute scaling 364 
analysis that is based on the warm seasons of 1991-1995 (limited by the availability of the 30-365 
minute time-step output). 366 

b. Impact of precipitation process on temperature 367 
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To assess the impact of precipitation and its associated weather systems on near-surface air 368 

temperature, we track all individual storm events underlying the identified “extremes” within 369 

each temperature bin to examine how temperature and other variables evolve during a storm’s 370 

lifetime. In this “storm tracking” analysis, we apply a 24-hour moving average to all time series 371 

to remove the diurnal cycle and focus on storm-induced variations. For most regions, near-372 

surface air in the warm and hot bins generally experiences slight cooling (or even warming) 373 

before the time of the storm peak, while near-surface air in the cold and threshold bins 374 

experiences stronger cooling. Most of the temperature changes occur within the 24 hours before 375 

the storm peak, as shown in Figure 5 using the U.S. Southern Great Plain as an example. Results 376 

for all sample regions are presented in supplementary Figures S6-S9 for IMERG, ERA5, 377 

CESM, and WRF, respectively. This cooling is closely related to cloud radiative effects that 378 

are the strongest within 24 hours before and after the storm peak (as evident from the surface 379 

insolation plot in Figure S10 using CESM as an example). In CESM for most sample areas, 380 

cloud content is much higher during storm events in the cold and threshold bins than those in 381 

the warmer bins, and the transition from predominantly low-level clouds to medium- and high-382 

level clouds (reflecting the transition from shallow to medium and deep convection) occurs 383 

within one day before the storm peak (Figures S11-S12). The other cooling process, through 384 

evaporation of rain droplets in the lower troposphere and water at the surface, occurs more 385 

imminently to the precipitating process. Therefore, one day before the storm peak is sufficient 386 

to capture most of the storm’s impact on temperature; earlier temperature differences between 387 

bins reflect variations not directly related to the imminent storm events. 388 

 389 

Figure 5. Evolution of near-surface air temperature, using the Southern Great Plain sample 390 
area as an example. These are time series of near-surface air temperature (K) before and after 391 
the peak of storm derived among the extreme events within each temperature bin, based on 3-392 
hourly data from (a) IMERG, (b) ERA5, (c) CESM, and (d) WRF during the 2001-2013 warm 393 
seasons. Time zero is when precipitation peaks during each storm event, with a negative value 394 
on the x-axis denoting the time before the storm peak and positive after. The threshold, warm 395 
and hot bins are as marked in Figure 2.  396 

In most land areas, the range of temperature variation in the absence of storm events is 397 

large (as reflected by the distance between lines at -1 day in Figure 5 and Figures S6-S9), and 398 
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the bin-to-bin temperature difference at the storm peak results from the combination of storm-399 

free temperature variations and storm-induced temperature changes. Based on data from all 400 

four sources, over most of the land regions examined, less than 25% of the temperature 401 

differences at the storm peak between the cold (or threshold) and hot bins are attributable to 402 

the storm-induced temperature changes (Figure 6). Over most oceanic areas sampled, 403 

temperature variation in the absence of storm events is small or negligible as indicated by the 404 

small temperature difference across different temperature bins one day ahead of the storm 405 

events (e.g., in the subtropical Pacific (East), Figures S6-S9); and storm-induced temperature 406 

change generally accounts for over 60% of the differences between temperature bins (Figure 407 

6). So the impact of precipitation process (or the lack of it) on temperature plays an essential 408 

role in shaping the EPI-T relationship over oceans. While results from the four data sources 409 

show some quantitative differences, they are remarkably similar in terms of the clear contrast 410 

between land and ocean, with a substantially higher fraction of temperature differences 411 

attributable to storm-induced variations over oceans than over land. 412 

 413 

Figure 6. The fraction of temperature difference between the cold (or threshold) and hot 414 
bins attributable to storm-induced temperature change, for 16 sample areas based on four data 415 
sources during the 2001-2013 warm seasons. The fraction was calculated as 416 

0 1 0( ) /f T T T−= ∆ −∆ ∆ , where 0T∆  represents the temperature difference between the cold (or 417 
threshold) and hot bins at time zero (i.e., at the peak of the storm events), and 1T−∆  at one day 418 
(24 hours) ahead.  419 

The storm’s impact on near-surface air temperature has been emphasized in previous 420 

studies focusing on the negative scaling of extreme precipitation. In general, heavier 421 

precipitation tends to produce stronger evaporative cooling, and this cooling unavoidably 422 

would shift the events toward lower temperature bins (Bao et al. 2017). To eliminate the impact 423 

of storm-induced temperature change, we adjust the EPI-T curve in Figure 2 by shifting 424 

extreme precipitation data to a bin pertaining to the temperature 24 hours before the storms’ 425 

peak; this results in the dashed lines in Figure 2. For most areas over land, even though using 426 
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the antecedent temperature does shift extreme events among temperature bins, the adjusted 427 

EPI-T curve (with storm-induced cooling or warming removed; dashed lines in Figure 2) 428 

retains the general shape of the original, with a negative scaling at high temperature. 429 

Differences between the original and adjusted curves are more substantial over oceanic areas. 430 

This further confirms that storm-induced temperature change is not the primary cause of the 431 

negative scaling over land, although it plays an important role over oceans. This strong contrast 432 

between land and  ocean might be due to the abundance of low-level clouds over oceans during 433 

the development of heavy storms (Figures S11-S12), which tends to produce an overall cooling 434 

effect. In combination with evaporative cooling, the impact of precipitation process on near-435 

surface air temperature is thus amplified over the ocean. 436 

c. Impact of temperature on precipitation and possible mechanisms 437 

To assess the impact of temperature on precipitation, we analyze the lagged EPI-T 438 

relationship on various sub-daily timescales, with near-surface air temperature leading 439 

precipitation by up to 18 hours to reduce or eliminate the impact of precipitation process on 440 

temperature. As the lead time increases from zero to 18 hours, the presence of negative scaling 441 

at high temperature and the general shape of the scaling curve are qualitatively preserved for 442 

all regions. This holds regardless of whether data from IMERG, ERA5, CESM, or WRF are 443 

used (Figure 7 using the U.S. Southern Great Plain as an example; results for all 16 sample 444 

areas in Supplementary Figures S13-S16). These results, together with the high degree of 445 

similarity between the solid and dashed curves in Figure 2, suggest that temperature’s impact 446 

on precipitation plays an important role in the negative scaling of precipitation extremes at high 447 

temperature. 448 

In Figure 7 and Supplementary Figures S13-S16, as the lead time increases, the curves shift 449 

and the corresponding Tpeak values change accordingly. Over most land areas and relative to 450 

the scaling curve with lead time zero, the deviation generally increases with lead time in CESM, 451 

but increases and then decreases with lead time in IMERG, ERA5 and WRF. Based on data at 452 

the sub-daily resolution, the scaling curve (especially Tpeak) is influenced by the diurnal cycle 453 

of temperature. If heavy precipitation tends to occur at a certain time of the day (e.g., in 454 

IMERG, ERA5 and WRF), the scaling curve will shift away from the concurrent curve as the 455 

lead time increases from zero and shift back towards the concurrent curve when the lead time 456 

approaches 24 hours. This does not occur in CESM, indicating that heavy precipitation might 457 

not have a clear “preferred time” in the coarse-resolution CESM simulation. 458 
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 459 

Figure 7. The EPI-T scaling relationship, with temperature (K) leading precipitation (mm 460 
day-1) by up to 18 hours, for the Southern Great Plain sample area. These relationships are 461 
based on 3-hourly data from (a) IMERG, (b) ERA5, (c) CESM, and (d) WRF during the 2001-462 
2013 warm seasons. 463 

Based on the comparison of the CESM results with those from IMERG and ERA5 (Figures 464 

2-7), it is evident that, although CESM does underestimate the Tpeak percentile, it is capable of 465 

capturing the negative scaling of extreme precipitation at high temperature. We therefore make 466 

use of CESM to study atmospheric convection under high temperature. At the process level, 467 

the decrease in extreme precipitation at high temperature in CESM is dominated by a decrease 468 

in the cumulus updraft condensation rate, with a minor contribution from enhanced evaporation 469 

in the atmosphere (Figure 8). Consistent with observational studies (Berg et al. 2013), in the 470 

high temperature range, the CESM-simulated extreme precipitation (gray lines in Figure 8) is 471 

primarily from cumulus convection (black lines), and the decrease in extreme precipitation at 472 

high temperature is dominantly a decrease in extreme convective precipitation with 473 

temperature. The convective precipitation relationship with temperature closely tracks the 474 

cumulus updraft condensation rate (blue lines), which increases with temperature and then 475 

decreases or levels off as temperature exceeds a certain threshold. Meanwhile, the cumulus 476 

downdraft evaporation rate (magenta lines), albeit small in magnitude, either increases with 477 

temperature or decreases more slowly than precipitation in most selected areas. This is 478 

consistent with the column maximum downdraft convective available potential energy 479 

(DCAPE) that peaks at high temperature (Figure S17). As large DCAPE tends to produce 480 

strong downdrafts that bring drier air from upper levels, evaporation tends to be stronger when 481 

temperature is high. Adding the downdraft evaporation back to extreme precipitation leads to 482 

a scaling curve (black dashed lines) with a flattened descending branch (relative to the EPI-T 483 

scaling curve) but is insufficient to qualitatively change the nature of the scaling. These results 484 

indicate that the slowing down of cumulus updraft condensation rate at high temperature is the 485 

dominant process underlying the negative scaling of extreme precipitation in CESM. 486 
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 487 

Figure 8. Moisture flux (mm day-1) variation with temperature (K) during extreme 488 
precipitation events, based on 3-hourly CESM output during the 2001-2013 warm seasons for 489 
16 sample areas. The moisture fluxes plotted include extreme precipitation intensity EPI  (gray 490 
lines) and the corresponding convective precipitation ZMP  (black solid lines), updraft 491 
condensation rate uC  (light blue lines), downdraft evaporation rate dE  (magenta lines) and 492 
EPI dE+  (black dashed lines). 493 

Further inspection of the cumulus updraft condensation rate reveals that its variation is 494 

primarily associated with variations in convective motion: the contribution of saturated ascent 495 

to condensation rate (2nd term of Eq. 1 in section 3b) is one order of magnitude greater than 496 

the direct impact of mixing dry air from the environment (1st term of Eq. 1 in section 3b) 497 

(results not shown). This suggests that the negative scaling is due to suppression of convection 498 

at high temperature. Compared with the cold and threshold bins, where the entire air column is 499 

close to saturation in all 16 sample regions, the atmosphere in the warm and hot bins features 500 

greater saturation deficit (Figure S18). As convective updraft is typically saturated, the 501 

entrained air with greater saturation deficit at high temperature tends to deplete cloud buoyancy 502 

more efficiently (Brown and Zhang 1997; Redelsperger et al. 2002; Derbyshire et al. 2004; 503 

Takayabu et al. 2010). Moreover, as in high-resolution simulations (Romps 2010), in our study 504 

the updraft entrainment rate in CESM is also strong for weak convective activities at high 505 
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temperature (Figures S19-S20). Therefore, the enhanced saturation deficit is an important cause 506 

for the suppressed convection (consequently, negative scaling) at high temperature in CESM. 507 

Atmospheric saturation deficit (SD) can be quantified using the difference between the 508 

saturation water vapor mixing ratio ( *r ) and the actual water vapor mixing ratio ( r ): 509 
*SD r r= − , where *r  depends solely on temperature at a given pressure following the C-C 510 

equation, while r  is influenced by surface evaporation, large-scale advection, convection, and 511 

microphysical processes. The SD difference between the threshold temperature bin (“a”) and a 512 

warmer bin (“b”) can be written as the sum of two terms, one ( * *
1ΔSD b ar r= − ) determined by 513 

temperature differences and the other ( 2ΔSD a br r= − ) reflecting differences in water vapor 514 

mixing ratio. Figure 9 shows the vertical profile of ΔSD  in CESM and the contribution of its 515 

two components using four sample regions as examples; results for other regions are similar 516 

(Figure S21). Across the whole vertical profile of the atmosphere, SD increases from the 517 

threshold bin to warm (blue lines in Figures 9 and S21) and hot bins (pink lines in Figures 9 518 

and S21), and this increase is dominated by the temperature-controlled term (dotted lines) 519 

below ~600 hPa. Compared with the threshold bin, storm events in the warm and hot bins 520 

generally feature more water vapor in the lower troposphere, which tends to reduce the 521 

saturation deficit (i.e., 2ΔSD  is negative, dashed lines); the magnitude of this decrease, 522 

however, cannot offset the large increase induced by higher temperature (i.e., 1ΔSD , dotted 523 

lines). At upper levels, the comparison is more complex, as temperature differences between 524 

different bins might not be consistent with the near-surface air temperature differences. The 525 

results in Figures 9 and S21 are consistent with the notion that r  generally increases with 526 

temperature more slowly than *r  does due to moisture limitation (Sherwood and Fu 2014).  527 
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 528 

Figure 9. Updraft saturation deficit (g kg-1) comparison across selected temperature bins 529 
in four sample areas: (a) Southern Great Plain, (b) Central Europe, (c) Tropical Pacific (East), 530 
and (d) Tropical Atlantic. Vertical profiles of updraft saturation deficit difference ΔSD  531 
between the threshold bin and the warm (cyan solid lines) or hot (pink solid lines) bin are based 532 
on warm-season 3-hourly CESM output during the 2001-2013 warm seasons. Also shown are 533 
the contributions from temperature difference 1ΔSD  (dotted lines) and from water vapor 534 
mixing ratio difference 2ΔSD  (dashed lines). 535 

Based on results from our analysis of extreme precipitation binned according to near-536 

surface saturation deficit, extreme precipitation decreases monotonically as the saturation 537 

deficit increases over land (Figure 10). Over the ocean, a similar trend is found at relatively 538 

large saturation deficit, with some exceptions in the northern Atlantic and tropical Pacific 539 

(West) in IMERG and ERA5 when the atmosphere is close to saturation. Relative to the land 540 

areas, saturation deficit is much smaller over oceans due to the abundant moisture supply from 541 

the surface, with a sharp contrast of extreme precipitation over a small range of saturation 542 

deficit. Similar to temperature variation over oceans being dominated by storm-induced 543 

temperature change, the relationships in Figure 10 over the ocean are possibly a result of 544 

descending motion that brings dry air from aloft, which is to be further examined in Section 545 

4d. This is consistent with the fact that the saturation deficit profiles over oceans are rather 546 

homogeneous across the low- and mid-troposphere (Figure S18). Over land, due to limited 547 

moisture supply and higher temperature, saturation deficit is large in the lower troposphere 548 

below ~600 hPa and rapidly diminishes with altitude.  549 



23 
File generated with AMS Word template 2.0 

 550 

Figure 10. Scaling of extreme precipitation (mm day-1) with near-surface saturation deficit 551 
(g kg-1) (EPI-SD). The relationships are based on 3-hourly data from (a) IMERG, (b) ERA5, 552 
(c) CESM, and (d) WRF during the warm seasons of 2001-2013. The blue lines are for six 553 
oceanic sample areas and the orange lines are for the ten land sample areas shown in Figure 554 
S2. 555 

On the other hand, the impact of precipitation process (or the lack of it) on saturation deficit 556 

might also contribute to the relationship curves in Figure 10, including for example moistening 557 

by evaporation of rain and drying due to subsidence. These effects, however, are important 558 

over oceans only and are not the dominant process underlying the relationship shown in Figure 559 

10 over land. This is confirmed through tracking the near-surface saturation deficit prior to and 560 

during extreme precipitation events (Figures 11 and S22-S25). Over most land areas, the near-561 

surface saturation deficit contrasts among different temperature bins already exist prior to the 562 

development of storm events, and precipitation processes modify the saturation deficit 563 

differences only slightly (Figures 11 and S22-S25). This is a strong indication that the 564 

relationship shown in Figure 10 for the land areas is a result of saturation deficit influencing 565 

extreme precipitation, not the other way around. Over the ocean, however, the near-surface 566 

saturation deficit is similar among the various temperature bins prior to the storm events, and 567 

differences among the bins develop during and after the storm events. The relationship shown 568 

in Figures 10 and 11 for oceanic areas is therefore a reflection of temperature (and saturation 569 

deficit) responding to precipitation process over the ocean. This notion is further corroborated 570 

by the breakdown of a monotonic relationship between saturation deficit and extreme 571 

precipitation in the northern Atlantic and tropical Pacific (West) in IMERG and ERA5 (Figure 572 

10).  573 
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 574 

Figure 11. Evolution of near-surface saturation deficit, using two sample areas in the U.S. 575 
Southern Great Plain (top) and Tropical Pacific (East) (bottom) as land and ocean examples. 576 
Time series of near-surface saturation deficit (g kg-1) before and after the storm peak are 577 
averaged among extreme events within each temperature bin, based on 3-hourly warm-season 578 
data during 2001-2013 from a) and e) IMERG, b) and f) ERA5, c) and g) CESM, and (d) WRF. 579 
The cold, threshold, warm and hot bins are as marked in Figure 2. 580 

Results in Figures 9-11 together demonstrate the important role that saturation deficit plays 581 

in shaping the relationship between temperature and extreme precipitation over land. High 582 

temperature, through its impact on saturation deficit and ultimately on atmospheric convection 583 

and updraft condensation rate, plays an essential role in causing the negative scaling of extreme 584 

precipitation over land. 585 

d. Potential impact of large-scale systems on the negative EPI-T scaling 586 

As both temperature and precipitation respond to large-scale systems, a negative EPI-T 587 

scaling at high temperature may result from anomalous large-scale conditions. In any given 588 

region, for instance, near-surface air temperatures are usually high during dry spells, when 589 

heatwaves are prevalent and moist convection tends to be suppressed; similarly, large-scale 590 

descending motion suppresses convection (precipitation) and meanwhile induces adiabatic 591 

warming of the land surface. In some regions, climatological conditions have a specific sub-592 

seasonal pattern that may cause an apparent negative scaling. Taking the U.S. Midwest as an 593 

example, July and August are generally warmer than June, while the large-scale setting in June 594 

is more favorable for convection and precipitation. To examine the impact of a large-scale 595 

system on the EPI-T relationship through its influence on both temperature and precipitation, 596 

we experiment using two additional approaches to derive the binned EPI-T scaling curves. In 597 

one, we randomly sample the temperature and precipitation data in time to break continuous 598 

dry spells and use only one-third of the rainy season data from each source (Figure S26). In the 599 
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other, we derive the scaling curves for each month separately to eliminate the effects of 600 

climatological sub-seasonal variations (Figure S27). Regardless of which data source we use, 601 

the results (Figures S26-S27) are all qualitatively similar to those based on all wet season data 602 

in Figure 2 (solid lines), suggesting that anomalous large-scale conditions are not the dominant 603 

cause for the overall shape (and the negative scaling) of the EPI-T relationship. 604 

The CESM 850-hPa geopotential height ( 850Z ) anomalies (Supplementary Figures S28-605 

S29) also show no clear cyclonic-anticyclonic contrast between the cold bin (or threshold bin) 606 

and the hot bin (or warm bin). In the warm bins, cyclonic (as opposed to anticyclonic) large-607 

scale systems occur more frequently than the warm season mean condition over all regions, as 608 

indicated by the negative 850Z  anomalies, except for the Amazon; in the hot bins, the negative 609 

850Z  anomalies persist in most regions, except for the Amazon, the U.S. Midwest, and Central 610 

Europe. Over the tropical Pacific (East and West) and tropical Atlantic, the overall impact of 611 

large-scale systems is minimal, as indicated by the correspondingly small magnitude of 850Z  612 

anomalies. These results, in combination with the lack of anticyclonic anomalies in the northern 613 

Atlantic and tropical Indian (Figure S29), suggest that subsidence makes limited contributions 614 

in shaping the rather homogeneous vertical profiles of saturation deficit over the ocean (Figure 615 

S18). Instead, the rather uniform vertical profile of saturation deficit might be a result of other 616 

processes, such as dry air intrusion in the middle troposphere. 617 

These results, in combination with results from the randomized and month-specific scaling 618 

analyses, suggest that, while variations of large-scale systems may contribute to the negative 619 

EPI-T scaling at very high temperature (hot bins) in some regions, they are not the fundamental 620 

cause for the negative scaling documented in this study. 621 

5. Conclusions and discussion 622 

Based on analysis of the observational IMERG data, the ERA5 reanalysis product, and 623 

output from the coarse-resolution CESM and convection-permitting NCAR WRF simulations, 624 

we show that the negative scaling of extreme precipitation at high temperature is a robust 625 

feature of the precipitation-temperature relationship at the weather timescale during the warm 626 

season. Although the magnitude of extreme precipitation varies with data source and 627 

spatiotemporal resolution, the negative scaling nature of the precipitation-temperature 628 

relationship remains qualitatively the same. These statements hold over both land and ocean. 629 
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The primary mechanisms underlying the negative scaling differ between land and ocean. 630 

We conclude that the negative scaling of warm-season precipitation extremes at high 631 

temperature over land results primarily from the heat-induced suppression of precipitation 632 

intensity. We base this conclusion on the concurrent and lead-lag relationships between 633 

temperature and extreme precipitation, and on the temporal evolution of temperature and 634 

saturation deficit during heavy storm events. Precipitation cooling and cloud radiative effects 635 

play a secondary role in the negative scaling over land, but are more fundamental over oceans. 636 

Over land, temperature and saturation deficit differences between extreme precipitation events 637 

are already in place prior to the development of the storms; over oceans, such differences 638 

emerge during the development and occurrence of the storms. These conclusions, as well as 639 

the robustness of negative scaling at high temperature, remain unchanged when the analysis is 640 

based on alternative data versions, TRMM 3B42 and ERA-Interim (results not shown). 641 

At the process level and at the weather scale, results from CESM diagnostics indicate that 642 

high temperature reduces precipitation intensity through the suppression of convective updraft 643 

condensation rate and the acceleration of condensate evaporation, both due to increased 644 

saturation deficit over land at high temperature. Over oceans, both the saturation deficit and its 645 

range of variation are small and have limited impact on convection and precipitation. Instead, 646 

the large contrast in extreme precipitation over a small range of saturation deficit over the ocean 647 

is a reflection of saturation deficit responding to evaporation of precipitation. To examine the 648 

robustness of this conclusion and its potential model dependence, one could repeat the 649 

convection-related diagnostics using output from the NCAR WRF convection-permitting 650 

simulation, but some variables needed for such analysis are not available from the fine-651 

resolution NCAR WRF model output (or similarly from ERA5 either). Nevertheless, the 652 

consistency between the diagnosed cumulus downdraft evaporation rate (Figure 8) and the 653 

DCAPE (Figure S17) lends certain confidence to our CESM-based process analysis. 654 

The local processes shaping the relationship between extreme precipitation and temperature 655 

are always under the influence of large-scale systems. Large-scale weather systems (that persist 656 

for weeks or longer) may influence both precipitation and temperature, leading to an apparent 657 

negative scaling of extreme precipitation with temperature even in the absence of a causal-658 

effect relationship between the two. Results from both the randomized analysis (that reduces 659 

the large-scale effects) and the month-specific analysis (that limits data to those under the 660 

climatologically same or similar synoptic settings) suggest that large-scale systems are likely 661 
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not a fundamental cause for the negative scaling. The analysis of 850-hPa geopotential height 662 

anomalies during heavy storms in different temperature bins supports a similar conclusion. 663 

With the influence of large-scale systems, the precipitation-temperature relationship and its 664 

characteristics (e.g., the threshold temperature) may change quantitatively, but would likely 665 

remain qualitatively similar. 666 

While this study focuses on the intensity of heavy precipitation, binned analysis on mean 667 

precipitation intensity (MPI, Figure 12) and number of rainy days (not shown) indicates that 668 

precipitation amount and frequency follow a similar scaling behavior with temperature, 669 

although the corresponding threshold temperatures differ. At the event level, precipitation 670 

duration, spatial coverage, and spatiotemporal distribution are important characteristics that 671 

may confound the precipitation scaling relationship with temperature. Long et al. (2021) based 672 

on station data found that rain events under high temperature tend to be more concentrated in 673 

space and time, which would favor more intense precipitation over a short duration or over a 674 

small area. Therefore, using data with a spatiotemporal resolution much finer than available to 675 

the current study may alleviate the negative scaling. Visser et al. (2021) found that negative 676 

scaling can be eliminated if the intensity scaling analysis is conditioned on short rain duration. 677 

On the other hand, even at spatiotemporal resolutions as coarse as used in the current study, 678 

Wang and Sun (2022) found a monotonic increase of extreme precipitation intensity with 679 

temperature when the scaling analysis was conditioned on saturated atmosphere, consistent 680 

with the important role of saturation deficit proposed in this study. However, as rain duration 681 

cannot be reliably derived from coarse resolution gridded data, a comparison between the roles 682 

of rain duration and saturation deficit is beyond the scope of this study and will be tackled in 683 

follow-up research. 684 

In the context of climate variability, temperature is not the only predictor for precipitation 685 

characteristics. Many other factors are at play and confound the scaling of precipitation with 686 

temperature, and soil moisture is one such factor. Closely coupled with local temperature, soil 687 

moisture influences precipitation processes through positive or negative feedbacks, depending 688 

on temporal and spatial scales (e.g., Barros and Hwu 2002; Findell and Eltahir 2003; Kim and 689 

Wang 2007; Koster et al. 2011; Mei and Wang 2011; Taylor et al. 2012). Functioning as an 690 

additional moisture source for the atmosphere, wetter soil enhances evapotranspiration and 691 

increases atmospheric moisture content, thus reducing saturation deficit. This may alleviate the 692 

negative scaling and shift the threshold temperature toward higher values. Another important 693 
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confounding factor is aerosol, through its direct effect on surface radiative budget (therefore 694 

temperature) and indirect effect on clouds (therefore precipitation) (e.g., Stevens and Feingold 695 

2009; Tao et al. 2012; Rosenfeld et al. 2014; Khain et al. 2015; Da Silva et al. 2020). 696 

Specifically, Da Silva et al. (2020) showed that, due to the indirect effect of aerosols, high 697 

aerosol concentrations tend to suppress convective precipitation at low temperatures, leading 698 

to a super-CC scaling rate on the increasing branch of the EPI-T scaling curves. This effect, 699 

however, is likely not fundamental to the negative scaling at high temperature when clouds 700 

tend to be less frequent (Figures S11-S12). In fact, negative scaling is captured in the CESM 701 

simulation that prescribes aerosol concentrations (Section 2). 702 

 703 

Figure 12. The MPI-T scaling relationship that links mean precipitation intensity to 704 
concurrent near-surface air temperature for 16 sample areas. The analyses are based on 3-705 
hourly data from IMERG, ERA5, CESM, and WRF during the 2001-2013 warm seasons, with 706 
temperature in K and MPI in mm day-1. 707 

 708 
Findings from this study have significant implications concerning the understanding of 709 

extreme events such as flood, drought, and heatwaves and for projecting their future changes. 710 

In a warmer climate, Wang et al. (2017) and Drobinski et al. (2018) found that the peak-shaped 711 

extreme precipitation-temperature scaling curve, especially for its increasing branch, would 712 

shift upward and rightward (Figure 1), with increases predicted in both the peak of extreme 713 
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precipitation and the threshold temperature at which the precipitation peaks. In fact, numerous 714 

studies have shown evidence from both modeling and observational perspectives for an 715 

increase in precipitation extremes with global warming, leading to increased flood risks (e.g., 716 

Allan and Soden 2008; Fischer and Kutti 2016; Prein et al. 2017; Wang et al. 2020; Wang & Sun, 717 

2022). As warming continues, because the rate of warming is faster over land than over oceans 718 

and much of the moisture over land originates from oceans, the atmospheric relative humidity 719 

is expected to decrease and the saturation deficit to increase over land (Sherwood and Fu 2014). 720 

Based on results from our study, this increased saturation deficit may lead to more widespread 721 

negative scaling of precipitation intensity with temperature, which provides a theoretical basis 722 

for the model-projected increase in the spatial extent of negative scaling (Wang et al. 723 

2017).Because negative scaling occurs for both the extremes (Figure 2) and mean precipitation 724 

(Figure 12), this also means the combination of high temperature with low or lack of 725 

precipitation may become more prevalent, leading to increased co-occurrence of drought and 726 

heatwaves (Mazdiyasni and AghaKouchak 2015; Zscheischler and Seneviratne 2017), another 727 

important consequence of climate change for which this study offers a possible explanation. 728 
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https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BATG5H


30 
File generated with AMS Word template 2.0 

the model codes are available at http://www.cesm.ucar.edu/models/cesm1.2/. Output from the 745 

high-resolution WRF simulations of North America is available from NCAR at 746 

https://rda.ucar.edu/datasets/ds612.0/.  747 

http://www.cesm.ucar.edu/models/cesm1.2/
https://rda.ucar.edu/datasets/ds612.0/
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