
i
i

“output” — 2022/8/5 — 2:15 — page 1 — #1 i
i

i
i

i
i

Bioinformatics Advances
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Systems Biology and Networks

MUNDO: Protein Function Prediction Embedded in
a Multi-species World
Victor Arsenescu Kapil Devkota Mert Erden Polina Shpilker
Matthew Werenski Lenore J. Cowen∗

Department of Computer Science, Tufts University, Medford, MA, 02155, USA

∗To whom correspondence should be addressed: cowen@cs.tufts.edu

Associate Editor: XXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Leveraging cross-species information in protein function prediction can add significant
power to network-based protein function prediction methods, because so much functional information
is conserved across at least close scales of evolution. We introduce MUNDO, a new cross-species co-
embedding method that combines a single network embedding method with a co-embedding method to
predict functional annotations in a target species, leveraging also functional annotations in a model species
network.
Results: Across a wide range of parameter choices, MUNDO performs best at predicting annotations in
the mouse network, when trained on mouse and human PPI networks, in the human network, when trained
on human and mouse PPIs, and in Baker’s yeast, when trained on Fission and Baker’s yeast, as compared
to competitor methods. MUNDO also outperforms all the cross-species methods when predicting in Fission
yeast when trained on Fission and Baker’s yeast; however, in this single case, discarding the information
from the other species and using annotations from the Fission yeast network alone usually performs best.
Availability: All code is publicly available and can be accessed here: github.com/v0rtex20k/MUNDO
Contact: cowen@cs.tufts.edu
Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction
A great many sophisticated and effective algorithms have been developed,
based on techniques such as network propagation, to infer function from
protein-protein interaction networks (Can et al., 2005; Cao et al., 2014,
2013; Chua et al., 2006; Cowen et al., 2017; Deng et al., 2002; Letovsky
and Kasif, 2003; Nabieva et al., 2005; Voevodski et al., 2009). Many
of these function prediction methods focus solely on the network of
interactions within a single species, using the interconnectivity pattern of
Protein-Protein Interaction (PPI) data from that species alone to predict
functional labels of proteins of unknown function. One large class of
such methods that have recently gained a lot of attention are embedding
methods. Embedding methods transform the network topology from a
graph into a similarity measure between nodes in a vector space, such that
the space around a given node is likely to be enriched for nodes of the
same or related function (Choobdar et al., 2019; Grover and Leskovec,

2016; Nelson et al., 2019). For example, Cao et al. (2013) use a network-
propagation measure, Diffusion State Distance (DSD) to embed the
network, and then perform a simple k-nearest neighbor algorithm to arrive
at its functional predictions. Alternative embeddings, and alternative, more
sophisticated classifiers to assign protein function based on the embedded
space (see for example, (Grover and Leskovec, 2016)) have also been used.

Until recently, these so-called embedding methods were only designed
to leverage known functional label information from a single species.
However, by recognizing the course of evolution, one can use homology
between orthologous proteins in related species to provide additional
information when inferring function (Altschul et al., 1990; Fan et al.,
2019; Hamp et al., 2013; Loewenstein et al., 2009; Radivojac et al., 2013a;
Singh et al., 2008). Indeed, the most popular and common way to predict
the function of an unknown protein is to BLAST (Altschul et al., 1990;
Madden, 2013) its sequence against the database of all sequenced proteins
in multiple species and transfer functional annotation from its closest
annotated match to predict its function. This method leverages the vast
power of evolution, but ignores network information entirely. Recently,
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2 Arsenescu et al.

Fig. 1. Overview of each step of the MUNDO algorithm, when leveraging the human PPI network to better predict functional annotations in mouse. The human (blue) and mouse (red) PPI
network are given. The red square represents the DSD single-network embedding of the mouse network, and the purple rectangle represents the MUNK co-embedding of the mouse and
human networks. MUNDO assigns the functional label of a protein of unknown function based on a weighted vote of its c closest MUNK neighbors and its d closest DSD neighbors. The
landmarks are represented by the corresponding yellow stars in each network. The method of using thresholded reciprocal best BLASTP hits to determine the landmarks for the MUNK
embedding is described in detail below in Section 3.2. Note that only a relatively small subset of the nodes in each network are paired with nodes in the other, since many nodes’ best hits
do not meet our stringent thresholds.

Fan et al. (2019) introduced MUNK, a novel co-embedding method to
transfer functional annotations between multiple species. By treating some
of the easiest to recognize orthologous proteins as landmarks, identifying
them and mapping them together in the embedded space, MUNK is able
to co-embed multiple PPI networks into the same vector space, combining
the power of single-network embedding methods with the possibility of
transferring annotation across species.

In this paper, we study how best to utilize the power of co-embeddings
to predict GO (Botstein et al., 2000) functional label annotations in one
(possibly more sparsely annotated) species by also using the annotations
and interactions in a related, (possibly better annotated) species. To test
our methods, we mimic the MUNK paper and consider the same pairs
of species: Mus musculus (mouse) and H. Sapiens (human), and the
two yeast species S. cerevisiae and S. pombe. We introduce MUNDO, a
method that simultaneously combines functional predictions derived from
the single PPI network in the target species with functional predictions
derived from the a hybrid embedding; currently we use the MUNK
embedding directly as our co-embedding for MUNDO (Figure 1). We
tune parameters that determine the relative weight that is given to the
function information in the single and hybrid networks, and demonstrate
a large range of settings for which MUNDO improves on MUNK alone.
We also compare MUNK and MUNDO to a range of simpler baseline
approaches that transfer information between the two protein networks on
a protein-by-protein basis (see Figure 2). In all four co-species experiments
(mouse/human, human/mouse, bakers/fission, fission/bakers) we find that
MUNDO performs better than MUNK and the other baseline multi-species
approaches. In three of the four experiments MUNDO has the best mean
predictive accuracy; in the fourth (bakers/fission) the single network DSD
method of Cao et al. (2013) which discards all cross-species information
outperforms all the tested methods that try to leverage it except MUNDO
itself when the training data is the sparsest (only 1/10 of the labels used
for training). Finally, we discuss the settings in which MUNDO can be
advantageously deployed.

1.1 Algorithm Overview

As shown above, in Figure 1, MUNDO is concerned with two separate
embeddings: a single network embedding and a combined embedding. The
single network embedding (red box in Figure 1) encodes the relationships
between nodes in the target network alone. MUNDO uses the DSD metric
introduced by Cao et al. (2013) for its single network embedding function

prediction method (see Section 2.1) The co-network embedding (purple
box in Figure 1), is the MUNK embedding from Fan et al. (2019). The
input to MUNK is a set of corresponding landmarks that are identified to
create the co-embedding (yellow starred nodes in Figure 1). We describe
the method we use to choose landmarks in Section 3.2 and then describe the
resulting MUNK co-embedding component of MUNDO in Section 2.5.1.

1.1.1 Single Network Embedding
The target species PPI network is embedded using the Diffusion State
Distance (DSD) metric introduced by Cao et al. (2013). DSD captures a
fine-grained representation of the local topology of a network through a
series of random walks and tends to reduce the influence of hub nodes. A
detailed review of DSD is presented in Section 2.1 below.

1.1.2 Multi-Network Embedding
The MUNK algorithm by Fan et al. (2019) produces a combined
embedding of the model and target species when given a subset of protein
pairs to be identified across the networks to act as landmarks to join
the two networks. We identify landmarks by searching for the reciprocal
best BLAST hits, the recommended method from Fan et al’s paper. The
combined embedding captures the relative similarities between nodes
across the two networks, and is based on Fan et al.’s MUNK algorithm
which hinged on the use of homologs as landmarks to transfer functional
information between two PPI networks. The method we use to select
MUNK landmarks is described in Section 3.2 and a detailed review of
the MUNK co-embedding follows in Section 2.2.

1.1.3 MUNDO Label Assignment
Once the DSD and MUNK embeddings are constructed, MUNDO employs
a variation of the simple Majority Vote algorithm (Schwikowski et al.,
2000). MUNDO then predicts a GO functional label for each node based
on a weighted majority vote among the c closest combined network and d
closest DSD single network neighbors in the embedded spaces.

1.2 Paper Outline

The remainder of this paper is structured as follows: Section 2.1 gives
a detailed review of DSD, and Section 2.2 gives a detailed review of
MUNK. Section 2.3 presents six different alternative methods (in a
direct, more simplistic way than MUNK or MUNDO) to predict function
taking homology relationships between proteins in the two species into
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account. Section 2.4 explores different parameter settings for how many
neighbors in each of the networks should be voting, as well as how heavily
weighted the votes from one network should be compared to the other.
In MUNDO and the other methods, we find a large range of parameters
where the good performance of MUNDO is quite robust (see Section 4 and
supplementary tables). Section 4 compares the performance of MUNDO
against standalone DSD (a single network method that does not use cross-
species information), MUNK, and the simple cross-species methods. We
show that in every case, MUNDO outperforms MUNK and the other cross
species methods in a stringent cross-validation experiment. Furthermore,
the margin of superiority of MUNDO’s performance increases as the size
of the available training set decreases (see Section 4). In all but one case
MUNDO is the best performer overall; in one case (Baker’s yeast as
the model species and Fission yeast as the target species), we find the
DSD single network method outperforms all the cross-species methods,
including MUNDO. Finally we discuss the evolutionary distance between
species where a MUNDO approach is currently feasible, and possible
extensions to more distant species in Section 5.

2 Methods
2.1 Diffusion State Distance Overview (Cao et al 2013):

Consider the undirected graph G(V,E) on the vertex set V =

{v1, v2, v3, . . . , vn} and |V | = n. We define He{t}(A,B) to be the
expected number of times that a random walk starting at node A and
proceeding for t steps, will visit node B. In what follows, assume t is
fixed, and when there is no ambiguity in the value of t, we will denote
He{t}(A,B) by He(A,B).
We define the n-dimensional Diffusion State (DS) vector He(vi),∀vi ∈
V , where

He(vi) = (He(vi, v1), He(vi, v2), . . . , He(vi, vn)) (1)

Then the Diffusion State Distance (DSD) between two vertices u and v,

∀u, v ∈ V is defined as:

DSD(u, v) = ||He(u)−He(v)||1 (2)

where ||He(u) −He(v)||1 denotes the l1 norm of the He vectors of u

and v.
In Cao et al. (2013) it is proved that DSD is a metric (including satisfying
triangle inequality), and furthermore, that DSD converges as the t in
He{t}(A,B) goes to infinity, allowing us to define DSD independent
from the value t.

2.2 MUNK Overview (Fan et al 2019):

Consider a model network G1 = (V1, E1) and a target network G2 =

(V2, E2) with |V1| = m and |V2| = n. MUNK requires in addition
landmark sets L1 and L2 to be specified, with L1 ⊂ V1 and L2 ⊂ V2,
with |L1| = |L2|, and a bijection between them. We discuss how L1, L2

are chosen and how the associated bijection is constructed below.
MUNK constructs kernel (similarity) matrices D1 ∈ Rm×m and D2 ∈
Rn×n corresponding toG1 andG2 . Next, it constructs the Reproducing
Kernel Hilbert Space (RKHS) vector representations C1 for nodes in the
model network G1 from the factorization D1 = C1CT1 . Let C1L be the
subset of the rows of C1 corresponding to landmarks, and let D2L be the
subset of the rows of D2 corresponding to landmarks (in corresponding
order). The key step then is to construct the vector representations of the
nodes in the target network G2. To do this, we treat the similarity scores
D2L in the target network as if they applied to the corresponding landmarks

in the model networkG1. For a given node in the target network, we want
to find a vector for the node such that its inner product with each model
landmark vector is equal to its diffusion score to the corresponding target
landmark. This implies that the RKHS vectors, Ĉ2 , for nodes in the target
networkG2 should satisfyD2L = C1LĈ

T
2 . This under-determined linear

system has solution set

ĈT2 = Ĉ†1LD2L + (I − Ĉ†1LC1L)W (3)

where Ĉ†1L is the Moore–Penrose pseudo-inverse of C1L, and W is an

arbitrary matrix. We choose the solution corresponding to W = 0, meaning
that the vectors ĈT2 are the solutions having minimum norm.
The resulting solution, Ĉ2 , represents the embedding of the nodes of G2

(the target) into the same space as the nodes ofG1 (the model). We can then
compute similarity scores for all pairs of nodes across the two networks
asD12 = C1ĈT2 . This yieldsD12, anm×nmatrix of similarity scores
between nodes in the model and target networks. D12 is shown in Figure
1 as the "Combined Embedding" (purple).

2.2.1 Landmark Set Construction
In order to finish specifying the MUNK co-embedding, it is necessary to
describe how the landmark sets and landmark bijection is constructed. The
set of landmarks is based on reciprocal best BLAST hits: for each node u
in the target network, we BLAST u (using BLASTP with a BLOSUM62
matrix and word size 3) against all nodesw in the model network, and for
each node v in the model network, we BLAST v against all nodes z in the
target network. A pair of nodes (u, v) with u in the target network and
v in the model network for which u’s best BLASTP hit is v and v’s best
BLASTP hit is u is called a reciprocal best BLAST hit. We set thresholds
of percent query coverage and percent sequence identity and keep all the
reciprocal best BLAST hits that meet these thresholds as landmarks for
MUNK (or the MUNK portion of MUNDO) (see Section 2.4.1 for how
we set these parameters in our experiments).

2.3 Simple Homology Transfer Methods

In addition to the MUNK co-embedding method, and the DSD single
network method, we also compare MUNDO to six different simple
homology transfer methods that use top BLAST hits to transfer functional
information between networks in a direct point-to-point fashion. For all
six methods: for each node u in the target network, we BLAST u (using
BLASTP with a BLOSUM62 matrix and word size 3) against all nodes
in the model network. A DS embedding is computed for each network
individually, just as in the single network approach discussed above.
Finally, pairwise distance matrices for the target and model networks are
generated from each embedding matrix. These are depicted above in Figure
2 as the final blue and red matrices, respectively.

Let u refer to the node in the target network whose function we are
trying to predict:

1. Parallel Network Top Blast Hit: The predicted function for nodeu is
determined by a majority vote amongst its d nearest neighbors in the
target network along with u’s top BLAST hit v in the model network.
Each vote from u’s d nearest neighbors is weighted by a factor of α,
to v’s single vote.

2. Parallel Network Top Blast Hit + Neighborhood: The predicted
function for node u is determined by a majority vote amongst its d
nearest neighbors in the target network, u’s top BLAST hit v in the
model network, and the c nearest neighbors of the top BLAST hit
v in the model network. Each vote from u’s d nearest neighbors is
weighted by a factor of α, compared to v’s single vote along with the
votes of its c nearest neighbors.
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Fig. 2. Simple Homology Transfer Methods. For the alternative simple methods that incorporate homology that we also compare to, the two network embeddings are single network
embeddings. In the model (blue) species, the neighborhood of the top BLAST hit in the model (blue) network to the target protein in the target network is combined (in six different proposed
methods) with its neighborhood in the target network (red). A DS embedding for each network is then used to generate a pairwise DSD distance matrix for each network. BLAST hits are
represented by the connections between red and blue nodes in the leftmost diagram.

3. Parallel Network All Blast Hits: The predicted function for node u
is determined by a majority vote amongst its d nearest neighbors in
the target network and u’s first 100 BLAST hits (the default number
of hits returned by BLAST). Each vote from u’s d nearest neighbors
is weighted by α, compared to each of the 100 BLAST hit votes.

4. Parallel Network All Blast Hits + Neighborhoods: The predicted
function for node u is determined by a majority vote amongst its d
nearest neighbors in the target network and u’s first 100 BLAST hits
(the default number of hits returned by BLAST). Each of the unfiltered
one hundred BLAST hits’ c nearest neighbors in the model network
are also included in the vote. Each vote from u’s d nearest neighbors
is weighted by α, compared to each of the 100 BLAST hit votes and
the votes of each hit’s c nearest neighbors.

5. Parallel Network Thresholded Blast Hits: The predicted function
for node u is determined by a majority vote amongst its d nearest
neighbors in the target network and all of u’s BLAST hits that meet
a minimum threshold for query coverage and percent identity are
included in the vote. In this case, p = 85% percent id and q = 90%

query coverage thresholds were used. Each vote from u’s d nearest
neighbors is weighted by α, compared to each of the thresholded
BLAST hits’ votes.

6. Parallel Network Thresholded Blast Hits + Neighborhoods: The
predicted function for nodeu is determined by a majority vote amongst
its d nearest neighbors in the target network and all of u’s BLAST hits
that meet a minimum threshold for query coverage and percent identity
are included in the vote. Furthermore, each of the one thresholded
BLAST hits’ d nearest neighbors in the model network are included.
Once again, p = 85% percent id and q = 90% query coverage
thresholds were used. Each vote from u’s d nearest neighbors is
weighted by α, compared to each of the thresholded BLAST hits’
votes and the votes of each hit’s c nearest neighbors.

2.4 MUNDO and Competing Methods Parameters

MUNDO needs to set five parameters: p, q, c, d, and α where p and q
concern the quality of the RBH landmarks (for MUNDO and also MUNK;
for the simple homology methods they are a threshold on the quality of
the ordinary BLAST hits as described in Section 2.3), and thus effect the
embeddings, but c, d,α only effect which neighbors vote with what weight.

MUNDO, and all the methods we compare MUNDO to, except MUNK,
set a parameter d, that represents the size of the DSD neighborhood in the
target species network that is considered. MUNDO and MUNK also set
a parameter c, which controls the size of the DSD neighborhood in the
combined embedding – some of the other competitor methods consider
network neighborhood in the source network, and for these we also term
the parameter that controls the size of this network neighborhood c.

2.4.1 Reciprocal Blast Hit Landmark Quality
Our setting of p and q ensures that the landmarks are strong reciprocal
BLAST hits (RBH) for the human/mouse network co-embedding in both
MUNK and MUNDO. We requires that the coverage (defined as the
proportion of the sequence BLAST aligns) is at least 90% and the percent
sequence identity is at least 85% . This gives us 309 landmarks between
human and mouse. This matches the recommended size and quality of the
landmark set in Fan et al. (2019). For the two yeast networks, because
of the large evolutionary distance between S. cerevisiae and S. pombe,
keeping the same p and q thresholds would only result in 8 landmarks. To
increase the number of landmarks it is necessary to relax the thresholds
on reciprocal BLAST hits. However, as the thresholds are lowered, the
amount of noise in the co-embedding increases, and predictive accuracy is
negatively impacted. Therefore, we searched for settings that would keep
the percent coverage and sequence identity reasonably high, while giving
us at least 60 landmarks (where 60 was chosen to match the mouse/human
mapping since the number of proteins in the yeast network is roughly a fifth
the size of the number of proteins in our human PPI network - network
statistics appear in Section 3.1). We ended up choosing (q, p) = (75%,
50%), resulting in 61 landmarks (We also tried an embedding based on
the 79 landmarks obtained with (q, p) set to (50%, 50%), and found that
performance was very similar - see Supplement).

2.4.2 Majority Vote Parameters
In order to explore the remaining method parameters d, c and α in a
principled way, we randomly split the labeled nodes 50/50 for the first
species co-embeddings experiment (human as model species; mouse as
target) into separate training and validation sets. Parameters were then
explored only on the training set, which was further split into 80% training
and 20% testing folds for standard 5-fold cross validation experiments (see
Figure 4) We first look at the effect of varying the c and d parameters in
all methods (noting DSD rewrites c = 0, and MUNK rewrites d = 0),
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Fig. 3. The schematic above details the landmark selection process, beginning with the identification of reciprocal Best BLAST Hits and ending with their thresholding. Each protein in
the target network (shown in red) is BLASTed against all nodes in the model network (shown in blue), and vice versa. A protein from the model species, and its top-ranked BLASTP hit
in the target species form a Reciprocal Best BLASTP Hit (RBH) if when the top-ranked BLASTP hit from the target species is BLASTed back against all nodes in the model species, the
top-ranked BLASTP hit is the original protein from the target species. RBHs are added to the set of landmarks only if the query coverage and percent identity between the two proteins meet
certain thresholds, TQ and TP , which are tunable hyperparameters for both MUNK and MUNDO methods (hereafter referred to as q and p, respectively).

by first setting α to be 1.0 in MUNDO, so that votes from the d closest
proteins in the individual and c closest neighbors in the combined network
had equal weight votes. Table S1 gives the results of a grid search over the
parameters {5, 10, 20} for both c and d on the training set in 5-fold cross
validation. As can be seen in Table S1, over MUNDO and all competitor
methods, we find that setting d = 20 for the number of neighbors in the
target species outperforms all other d settings (note that MUNK does not
set the d parameter, only c).

Training Validation

Te
s
ti
n
g

Fig. 4. Illustration of the Train-Test-Validation Split described in Section 2.4. As shown,
the dataset was initially split in half, with 50% being reserved for validation. 5-fold cross
validation was then performed on the remaining50% of the data, with80% of the remaining
half being used for training and 20% of the remaining half being used for testing.

We also explored whether weighting votes differently according to
whether they came from the d target species neighbors or the c combined
species network neighbors would matter. Table S2 in the supplement
explores different settings for α, the relative weight that is given to votes
from functional labels in the target versus combined networks. Based on
this performance, we recommend default MUNDO parameters of d = 20,
and α = 1.5 for human-mouse. We report the performance of MUNDO
and all competitor methods over all three c choices in our independent
validation set in Table 1 of our main results. As can be seen in Tables
1 and S1-4, MUNDO results were relatively robust to different c values,
but c = 10 performs slightly better than other settings. We then keep
these same parameter values (i.e. d = 20, c = 10, α = 1.5) for our
mouse/human and both yeast/yeast experiments.

2.5 Full Details of MUNDO

2.5.1 Co-embedding
We give more technical details for how the MUNK co-embedding is
computed. Let M be the n × n matrix consisting of the diffusion state
vectors for the model species network and T be the m × m matrix
consisting of the diffusion state vectors for the target species network.
These matrices are depicted in Figure 1 as the blue and red square matrices,
respectively.

Define Λ = {λ1, λ2, . . . λn} and Υ = {v1, v2, . . . , vn} to be the set of
eigenvalues and eigenvectors of the model network M , respectively. We
use these to compute the model network embedding N relative to which
T will be co-embedded as follows:

N = Υ · Λ1/2 In =

 | |
v1 . . . vn
| |

 ·

λ
1/2
1 0 . . . 0

0 λ
1/2
2 . . . 0

...
...

. . .
...

0 0 . . . λ
1/2
n


(4)

Define ri to be the ith reciprocal best hit for a given network, and let there
be p reciprocal best hit pairs in total Let A[i...j] be a matrix comprised
of rows i, i + 1, . . . , j of a given matrix A. Finally, let A† denote the
pseudo-inverse (Moore-Penrose inverse (Barata and Hussein, 2012)) of a
given matrix A. The target network embedding C relative to the model
network embedding N can therefore be computed as:

CT =
(
NT

[ri...rp]

)† · T[ri...rp] (5)

In addition to the m × n Combined Embedding matrix, C, we also
compute P , an m × m pairwise distance matrix derived from T , the
matrix of diffusion state vectors. For each pair of m-dimensional vectors
ti, tj ∈ T , the l1-norm is computed and stored in P as a scalar value
Pi,j . By definition, P is necessarily square. Matrices C and P are shown
in Figure 1 as the rightmost purple and red matrices, respectively.

After sorting both output matrices P and M by distance, we are able
to quickly identify the d nearest DSD neighbors and c nearest Combined



i
i

“output” — 2022/8/5 — 2:15 — page 6 — #6 i
i

i
i

i
i

6 Arsenescu et al.

Embedding neighbors of each node i in the target network whose function
we would like to predict. Respectively, these neighbors can be found at
Pi,[0...d−1] and Mi,[0...c−1].

3 Experimental Setup

3.1 Networks

The Human PPI Network consists of the 25,672 unique nodes and
487,840 unique interaction edges downloaded from BioGRID version
3.5.188, excluding self loops. Of the included edges, 479,400 encoded
physical interactions and 8,440 encoded genetic interactions. Taking the
largest connected component yields 17,017 nodes and 407,653 edges.

The Mouse PPI Network consists of the 15,979 unique nodes and 74,966
unique interaction edges downloaded from BioGRID version 3.5.188,
excluding self loops. Of the included edges, 74,646 encoded physical
interactions and 320 encoded genetic interactions. Taking the largest
connected component yields 8,543 nodes and 45,605 edges.

The S. cerevisiae PPI Network consists of the 4,701 unique nodes
and 71,688 unique interaction edges downloaded from BioGRID version
4.2.192, excluding self loops. Of the included edges, 14,008 encoded
physical interactions and 57,680 encoded genetic interactions. Taking the
largest connected component yields 4,335 nodes and 61,856 edges.

The S. pombe PPI Network consists of the 7,335 unique nodes and
607,030 unique interaction edges downloaded from BioGRID version
4.2.192, excluding self loops. Of the included edges, 123,802 encoded
physical interactions and 483,228 encoded genetic interactions. Taking
the largest connected component yields 5,817 nodes and 538,250 edges.

3.2 Landmark Selection

The quality of the co-embedding performed later in the process depends
heavily on the “overlap" between the model and target networks.
Traditionally, overlap refers to the set of nodes that exist in both networks.
In this case, each network belongs to a distinct species, so no protein can
exist in both networks simultaneously. We therefore redefine overlap in
this context to refer to the set of reciprocal best BLAST hits between two
networks. Any hit which does not meet a minimum similarity threshold
set by the user is filtered out. The number of hits can vary greatly between
organisms, but experimental results have shown that roughly 300 RBHs are
sufficient for a high-quality embedding. This is in line with the minimum
number of landmarks recommended in the MUNK (Fan et al., 2019)
algorithm. A schematic of the selection process is provided above in
Figure 3.

This voting algorithm allows nodes from a different species’ network
to vote alongside the closest neighbors of a given node, each with their
own tunable weight hyperparameters. Once the final list of votesF(v) has
been compiled, the most frequently appearing vote in the list is used as
the ultimate prediction for the function of v. Note that this is quite similar
to the traditional weighted majority vote algorithm, except each species
has its own weight parameter. The optimal values of α, setting the weight
of the model species votes as compared to the target species votes, are
explored in the supplement.

3.3 Functional Labels

Functional labels for all species were downloaded from EMBL-EBI’s
Uniprot GOA database, version 201. We considered GO Labels from the
Biological Process (BP) and Molecular Function (MF) hierarchies. The set
of GO terms was filtered to those in an intermediate range of specificity,
retaining GO terms that annotate between between 50 and 500 nodes in

the target network for Human←→Mouse and between 50 and 300 nodes
in the target network for S. pombe←→ S. cerevisiae.

3.4 Performance Measures

We measure the performance of the different methods in three ways. The
simplest way, percent accuracy only considers the top prediction for each
node. The others consider a ranked list of the top three predictions, which
in GO are often more or less specific and related terms: the F1 score,
however, does not explicitly take into account the hierarchical structure
of GO, whereas the Resnik score measures the information content in
reference to the GO hierarchy.

Evaluation Method 1: Percent Accuracy This metric simply measures
the percent of nodes whose top predicted functional label is correct,
meaning it is among the set of true functional labels assigned to that node.

Evaluation Method 2: Hierarchy AgnosticF1∗Method This evaluation
metric, which corresponds to the protein-centric evaluation method in the
CAFA challenge (Radivojac et al., 2013b; Zhou et al., 2019), scores a
multi-label function prediction set, but still ignores the hierarchical nature
of the GO annotations while scoring predictions. For a particular protein
i, let Ti be the set representing its true GO annotation and Pi(τ) represent
the set of GO annotations predicted by the Function Prediction method
with likelihood greater than the confidence threshold τ . Then, we can
compute the precision and recall for the protein i at the threshold τ as

preci(τ) =
|Pi(τ) ∩ Ti|
|Pi(τ)|

(6)

recalli(τ) =
|Pi(τ) ∩ Ti|
|Ti|

(7)

The average precision and recall for a particular confidence threshold τ is:

prec(τ) =
1

M

M∑
i=1

precατ (i)(τ) (8)

recall(τ) =
1

N

N∑
i=1

recalli(τ) (9)

where ατ represents the set of all proteins which have at least one GO
annotation predicted at the confidence interval τ (ατ (i) represents its ith

member), M is the size of the set ατ (i) and N is the total number of
proteins in the test set.

We can then compute the F1 score at confidence τ , and F1∗ as

F1(τ) = 2
prec(τ) · recall(τ)

prec(τ) + recall(τ)
(10)

F1∗ = max
τ

F1(τ) (11)

3.4.1 Evaluation Method 3: Resnik Similarity Metric
This metric models the hierarchical nature of GO by introducing the
information content of a GO-term (Jiang et al., 2016) in the context of
its ancestors. Let ` be a GO-term and L be the subgraph generated by all
its ancestor labels, including `. The information content of `, is defined
formally as

i(`) = − log(Pr(L)) (12)

where the joint probability Pr(L) is computed as

Pr(L) =
∏
v∈L

Pr(v|P(v)) (13)

The term Pr(v|P(v)), v being a GO-term and P(v) representing the
parents of v, denotes the probability that we get v from P(v) after further
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DSD Top Blast Hit Top Blast Hit + Neighbors All Blast Hits All Blast Hits + Neighbors Thresholded Blast Hits Thresholded Blast Hits + Neighbors MUNK MUNDO
(d, c) = (20,5) Accuracy 13.23 14.12 14.07 13.46 13.16 13.67 13.69 10.87 15.05

F1-max 10.03 10.67 10.69 10.20 10.01 10.34 10.42 7.55 11.25
MF Resnik 2.71 2.73 2.23 2.63 2.07 2.72 2.67 2.52 2.97
BP Resnik 2.11 2.25 2.24 2.25 1.83 2.11 2.45 3.57 2.45

(d, c) = (20,10) Accuracy 13.23 14.12 13.72 13.46 12.76 13.67 13.58 10.69 15.12
F1-max 10.03 10.67 10.42 10.20 9.81 10.34 10.40 8.36 11.41

MF Resnik 2.71 2.73 1.99 2.63 1.80 2.72 2.63 2.82 3.17
BP Resnik 2.11 2.25 2.49 2.25 2.26 2.11 2.71 3.79 2.82

(d, c) = (20,20) Accuracy 13.23 14.12 12.93 13.46 12.11 13.67 13.42 11.15 14.42
F1-max 10.03 10.67 9.93 10.20 9.28 10.34 10.27 8.24 10.87

MF Resnik 2.71 2.73 2.01 2.63 1.93 2.72 2.63 1.94 2.66
BP Resnik 2.11 2.25 2.49 2.25 2.07 2.11 2.59 2.27 2.76

Table 1. Mean percent accuracy, F1-max, and Resnik scores reported for H. sapiens −→ M. Musculus. The performance of each method is reported over the
independent validation set (half the size of the original data set), with the entirety of the training set used for labeled nodes. All competing methods shown with
α = 1, d = 20; and c = {5, 10, 20} where note that only the “+ Neighbors” columns, MUNK, and MUNDO have a source or combined network in which to set
a separate c parameter. MUNDO, based on supplementary table S2 sets α = 1.5. MUNDO performs best across the board, except for BP Resnik, where MUNK
is often better. For results over all tested parameter settings, see the Supplement.

ontological specialization. Expression (9) can be further simplified using
expression (10) to obtain

i(`) = −
∑
v∈L

log(Pr(v|P(v))) =
∑
v∈L

ia(v) (14)

The term ia(v), referred to as information accretion of the annotation
v, denotes the increase in the information obtained through the addition
of child GO-term (v) to the set of its parent terms (or P(v)).

Resnik similarity (restt) between two GO-terms, x and y, is

restt(x, y) = i(lca(x, y)) (15)

where lca(x, y) represents the least common ancestor between x and y.
We next extend this similarity measure between GO terms to a

similarity metric between two sets of GO-terms, using a similar method
to Zhao and Wang (2018). Define resst(X, y), which takes a GO-set X ,
and a GO-term y as

resst(X, y) = max
x∈X

restt(x, y) (16)

Then, the Resnik similarity resss for GO-sets X and Y can be defined as

resss(X,Y ) =

∑
x∈X resst(Y, x) +

∑
y∈Y resst(X, y)

|X|+ |Y |
(17)

Let Q be the set containing all the test proteins, Tq be the true GO-
terms and Pq(τ) be the predicted GO-terms at the confidence interval τ ,
for a protein q ∈ Q. We compute:

RES = max
τ

1

|Q|
∑
q∈Q

resss(Tq , Pq(τ)) (18)

We measure the Resnik similarity over both the Molecular Function (MF)
and Biological Process (BP) hierarchies of GO terms.

3.5 Inverted Cross Validation Experiment

In the most common form of k-fold cross validation, k−1 of the folds are
used for training and the remaining fold is used for testing. Because we
were especially interested in performance of function prediction methods
when the amount of training data is sparse, we copied the experimental
setup of Lazarsfeld et al. (2019), which "inverts" the relative sizes of the
training and test data, so that, only one of the folds is used for training, and
the other k − 1 have all their annotations removed and are placed in the
testing set. Thus, for our inverted cross-validation experiment, the larger k
is, the smaller the size of the training set. Mean and standard deviation of

percent accuracy, calculated as the percent of time a protein in the test set is
assigned a label which is correctly among its true annotations, is computed
over 5 different runs of k-fold cross validation, for k = 2, 4, 6, 10 in our
experiments. In addition, we compute precision and recall by looking at the
top r predicted labels (in our case, we present results for r = 3) using the
method of Deng et al. (2004), and report the maximum F1 score according
to their first recommended method, and also compute Resnik scores for
both the MF and BP hierarchies.

4 Results
Because in our first species experiment (human as the model species and
mouse as the target species) we needed to tune parameters, we did standard
5-fold cross validation to tune those parameters for MUNDO and all its
competitors, and then presented the results on the independent validation
set. As shown in Table 1, MUNDO with parameters set as described in
section 2.4 produces substantially better percent accuracy and F1 Max
scores than DSD, MUNK, and all six simple homology methods.

In the other species experiments, we decided to fix MUNDO’s
parameters to the recommended defaults based on the first species
experiment. This eliminates the need for an independent validation set
for these experiments. For these experiments, we therefore decided to run
inverted cross validation experiments (see Section 3.5 about our unusual
design of inverted cross-validation: the 10-fold experiment inverts the
usual role of training and test sets: with 1 fold used for training and 9
folds used for test). We compared MUNDO to DSD, MUNK, and the top
performing variant of the simple methods in the first experiment, namely
Top BLAST hit + Neighborhood, in 2-fold, 4-fold, 6-fold and 10-fold
inverted cross-validation experiments and results appear in Tables 2-4.
MUNDO performs best or second best in all three experiments; it is best
by most measures when mouse is the model species and human is the
target, and when pombe is the model species and cerevisiae is the target,
but is outperformed by single network DSD in the target species when
cerevisiae is the model species and pombe is the target, except when the
size of the training set is set to the smallest size we tested (the 10-fold
experiment). Interestingly, we note that the margin of improvement for
MUNDO increases as the number of proteins that contribute functional
labels in the training data decreases. Looking at the runner up methods
is also interesting: The single network method is slightly more accurate
than MUNK when we reserve half the nodes for the training set; MUNK
becomes comparable or very slightly more accurate compared to the
single network in the 10-fold experiment when the amount of training
data is much lower. Top Blast Hit + Neighborhood (Simple Method 2)
is found to be best performing of the simple homology transfer methods;
outperforming both single network and MUNK (but never MUNDO). All
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methods are shown with parameter settings of c, d and α, as noted; (full
parameter results appear in the supplement).

DSD Top Blast Hit MUNK MUNDO
+ Neighborhood

2-fold Accuracy 10.98 ± 0.17 10.65 ± 0.35 8.35 ± 0.05 11.64 ± 0.20
F1-max 6.48 ± 0.01 6.48 ± 0.06 4.47 ± 0.05 7.22 ± 0.01

MF Resnik 4.22 ± 0.31 4.69 ± 0.01 3.76 ± 0.01 4.41 ± 0.28
BP Resnik 3.81 ± 0.08 3.97 ± 0.26 2.11 ± 0.57 4.07 ± 0.46

4-fold Accuracy 9.60 ± 0.17 9.24 ± 0.13 8.34 ± 0.08 10.94 ± 0.13
F1-max 5.83 ± 0.06 5.86 ± 0.21 4.46 ± 0.03 6.62 ± 0.02

MF Resnik 4.18 ± 0.31 4.12 ± 0.62 3.95 ± 0.13 4.19 ± 0.12
BP Resnik 4.48 ± 0.16 3.32 ± 0.75 2.72 ± 0.27 4.29 ± 0.82

6-fold Accuracy 8.82 ± 0.13 8.52 ± 0.10 8.28 ± 0.04 10.39 ± 0.10
F1-max 5.34 ± 0.12 5.29 ± 0.14 4.46 ± 0.03 6.39 ± 0.07

MF Resnik 4.15 ± 0.42 3.81 ± 0.53 4.00 ± 0.13 4.32 ± 0.53
BP Resnik 4.28 ± 0.84 3.67 ± 1.56 2.46 ± 0.34 3.89 ± 0.35

10-fold Accuracy 7.79 ± 0.09 7.47 ± 0.13 8.30 ± 0.02 9.86 ± 0.08
F1-max 4.82 ± 0.14 4.71 ± 0.20 4.45 ± 0.02 6.08 ± 0.12

MF Resnik 3.51 ± 1.07 3.31 ± 1.01 3.97 ± 0.07 3.78 ± 0.46
BP Resnik 3.59 ± 1.12 2.61 ± 1.53 2.51 ± 0.38 3.35 ± 0.54

Table 2. Mean percent accuracy, F1-max, and Resnik scores (standard dev.)
reported for M. Musculus−→H. sapiens over 10 runs of inverted (see Section 3.5)
k-fold cross validation. Method Settings For all methods: d = 20, c = 10,
α = 1.5. Additional parameter settings explored in the supplement.

DSD Top Blast Hit MUNK MUNDO
+ Neighborhood

2-fold Accuracy 25.90 ± 0.83 20.62 ± 0.52 11.10 ± 0.34 25.14 ± 0.60
F1-max 21.01 ± 0.22 15.91 ± 0.13 11.96 ± 0.17 21.02 ± 0.27

MF Resnik 1.34 ± 0.10 1.33 ± 0.03 1.29 ± 0.08 1.90 ± 0.15
BP Resnik 0.93 ± 0.01 0.94 ± 0.01 0.50 ± 0.06 0.93 ± 0.01

4-fold Accuracy 23.22 ± 0.29 17.95 ± 0.38 11.09 ± 0.17 22.77 ± 0.30
F1-max 19.15 ± 0.63 14.17 ± 0.51 11.73 ± 0.19 19.04 ± 0.78

MF Resnik 1.41 ± 0.14 1.41 ± 0.13 1.16 ± 0.02 1.78 ± 0.30
BP Resnik 0.87 ± 0.02 0.89 ± 0.02 0.56 ± 0.06 0.88 ± 0.01

6-fold Accuracy 21.94 ± 0.30 16.06 ± 0.27 11.11 ± 0.09 21.49 ± 0.31
F1-max 17.90 ± 0.57 12.77 ± 0.73 11.72 ± 0.15 18.02 ± 0.66

MF Resnik 1.25 ± 0.10 1.27 ± 0.09 1.15 ± 0.01 1.31 ± 0.15
BP Resnik 0.82 ± 0.04 0.84 ± 0.04 0.61 ± 0.06 0.82 ± 0.04

10-fold Accuracy 19.56 ± 0.29 13.64 ± 0.30 11.07 ± 0.07 19.74 ± 0.27
F1-max 15.93 ± 0.66 10.57 ± 0.47 11.70 ± 0.07 16.68 ± 0.51

MF Resnik 1.28 ± 0.11 1.27 ± 0.08 1.14 ± 0.01 1.50 ± 0.37
BP Resnik 0.73 ± 0.03 0.75 ± 0.03 0.61 ± 0.04 0.73 ± 0.03

Table 3. Mean percent accuracy, F1-max, and Resnik scores (standard dev.)
reported for S. cerevisiae−→ S. pombe over 10 runs of inverted (see Section 3.5)
k-fold cross validation. Method Settings For all methods: d = 20, c = 10,
α = 1.5 Additional parameter settings explored in the supplement.

4.1 Running time

The most computationally expensive step of MUNDO is to compute the
single DSD network embedding of the target species, and the combined
MUNK embedding of both species. We make the following remarks: 1)
the embedding step only has to be done once for a species pair, 2) we
were able to compute both the MUNK and DSD embedding steps for
our experiments even using exact, converged DSD, in approximately 8
hours for the human/mouse embedding, and only a couple of hours for
the much smaller yeast/yeast networks on a desktop computer: all others
steps take seconds to assign functional labels, and 3) if even the exact DSD
and combined embedding computations are considered too expensive, we
could instead compute an approximate DSD much faster using methods
described in Lin et al. (2018).

5 Discussion
We have introduced MUNDO, a new co-embedding method that leverages
the power of multiple species to improve functional label prediction. We

DSD Top Blast Hit MUNK MUNDO
+ Neighborhood

2-fold Accuracy 8.64 ± 0.31 9.04 ± 0.54 9.39 ± 0.51 9.62 ± 0.57
F1-max 4.44 ± 0.18 4.46 ± 0.27 3.23 ± 0.05 4.59 ± 0.01

MF Resnik 1.06 ± 0.33 1.09 ± 0.29 0.55 ± 0.01 0.69 ± 0.01
BP Resnik 0.39 ± 0.02 0.45 ± 0.02 0.39 ± 0.02 0.40 ± 0.01

4-fold Accuracy 8.35 ± 0.32 8.43 ± 0.24 9.20 ± 0.15 9.80 ± 0.41
F1-max 4.54 ± 0.37 4.49 ± 0.08 3.26 ± 0.10 4.76 ± 0.16

MF Resnik 0.82 ± 0.25 0.93 ± 0.25 0.56 ± 0.01 0.69 ± 0.01
BP Resnik 0.67 ± 0.43 0.51 ± 0.15 0.40 ± 0.01 0.67 ± 0.43

6-fold Accuracy 8.50 ± 0.24 8.33 ± 0.17 9.30 ± 0.13 9.93 ± 0.27
F1-max 4.49 ± 0.34 4.44 ± 0.19 3.23 ± 0.09 4.73 ± 0.20

MF Resnik 0.72 ± 0.07 0.91 ± 0.27 0.56 ± 0.01 0.97 ± 0.39
BP Resnik 0.40 ± 0.08 0.62 ± 0.27 0.40 ± 0.01 0.41 ± 0.06

10-fold Accuracy 8.30 ± 0.15 8.25 ± 0.18 9.29 ± 0.05 9.94 ± 0.13
F1-max 4.46 ± 0.23 4.34 ± 0.24 3.26 ± 0.08 4.61 ± 0.22

MF Resnik 0.96 ± 0.46 0.97 ± 0.38 0.56 ± 0.01 0.98 ± 0.45
BP Resnik 0.39 ± 0.04 0.49 ± 0.19 0.40 ± 0.01 0.39 ± 0.04

Table 4. Mean percent accuracy, F1-max, and Resnik scores (standard dev.)
reported for S. pombe−→ S. cerevisiae over 10 runs of inverted (see Section 3.5)
k-fold cross validation. Method Settings For all methods: d = 20, c = 10,
α = 1.5. Additional parameter settings explored in the supplement.

optimized MUNDO for predicting mouse functional labels, when trained
on mouse and human PPI networks, but showed that the same parameter
settings give good performance when predicting human functional labels
(trained on mouse and human) and predicting S. cerevisiae labels when
trained on both S. cerevisiae and S. pombe. However, MUNDO did not
perform as well as the single network method in predicting S. pombe
annotations when also including the S. cerevisiae network in the co-
embedding, and in fact, performance degraded for all the methods
we compared against that tried to incorporate the second species for
this case (except for MUNDO when looking at the sparsest number of
training labels, where MUNDO actually slightly outperformed the single
network method). It is not clear why that might be, but the most likely
explanation is that the S. cerevisiae data is somehow noisier or differently
structured: we note (see Section 3.1) that we included genetic interactions
as well as physical interactions in our PPI networks, but S. cerevisiae
has the largest proportion of genetic interactions, so if they distort the
network co-embedding, this could be a possible explanation for the weaker
performance. We note that the performance under all three measures we
consider largely followed the same trends; in cases with more training
data, MUNDO’s Resnik score was sometimes only second-best (in these
cases the best performer was split among all the other methods).

We are also interested in applying MUNDO to other PPI networks
and other pairs of species, but we note that the limiting factor, for both
MUNDO and its predecessor MUNK, is finding pairs of species that are
sufficiently evolutionarily close that a robust set of landmarks can be found
to accomplish the mapping. Using the proposed RBH method, this is
not currently possible, for example to map between human and yeast;
the species distance is just too great. It is an interesting area of open
research to determine if other methods of landmark selection that relax
the RBH condition can be learned to map between more distant species
in order to pursue a MUNDO approach. One strategy would be to adapt
existing algorithms for the global network alignment problem (such as (El-
Kebir et al., 2015; Hashemifar and Xu, 2014; Kuchaiev and Pržulj, 2011;
Neyshabur et al., 2013; Patro and Kingsford, 2012; Sahraeian and Yoon,
2013; Singh et al., 2008; Vijayan et al., 2015), or see Guzzi and Milenković
(2018) for a recent survey), most of which construct their overall alignment
in two steps; first they compute a global similarity score, and then they
apply some sort of exact or heuristic weighted matching algorithm to
produce the correspondence. The most straightforward approach would be
to take matched node pairs whose similarity score is above some threshold
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as the landmark set. We will explore the performance of various global
network alignment methods and similarity measurement and matching
strategies to produce good landmarks for MUNDO embeddings of more
evolutionary distant species in future work.
MUNDO is freely available on the public facing GitHub repository,
together with the networks and embeddings discussed in this paper.
MUNDO is easy to run on all your favorite PPI networks, since the software
currently supports a wide range of popular PPI network formats, including
BioGRID, BioPlex, DIP, GeneMANIA, GIANT, HumanNET, Reactome,
and STRING. Each database has its own disjoint set of protein identifiers
called its namespace, making it difficult to directly compare one network
to another. To allow MUNDO to compare proteins in different namespaces,
all protein identifiers are mapped to the Refseq namespace (Pruitt et al.,
2002), which is the format used by NCBI’s BLAST suite. Depending on
the database of origin of each species, proteins are either directly mapped to
Refseq from their original format or indirectly mapped to the ubiquitous
Uniprot (Apweiler et al., 2004) namespace, and then from Uniprot to
Refseq. Once all the proteins in both networks have been BLASTed against
one another, their original Uniprot identifiers are reused to map each node
to its appropriate GO labels.
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