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ABSTRACT
A method to improve protein function prediction for sparsely an-
notated PPI networks is introduced. The method extends the DSD
majority vote algorithm introduced by Cao et al. to give confidence
scores on predicted labels and to use predictions of high confidence
to predict the labels of other nodes in subsequent rounds. We call
this a majority vote cascade. Several cascade variants are tested in
a stringent cross-validation experiment on PPI networks from S.
cerevisiae and D. melanogaster, and we show that for many different
settings with several alternative confidence functions, cascading im-
proves the accuracy of the predictions. A list of the most confident
new label predictions in the two networks is also reported.

Code, networks for the cross-validation experiments, and supple-
mentary figures and tables appear at http://bcb.cs.tufts.edu/cascade.
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1 INTRODUCTION
Functional label prediction is one of the best-known and most well-
studied problems on protein-protein interaction networks [6, 10, 11,
13, 16, 18, 19, 22]. Many prediction methods take advantage of what
social scientists call "homophily," [15] which means that nodes tend
to be located in proximity to other, similar nodes. In the context of
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functional label prediction, knowing the set of functions in a node’s
local neighborhood can be used to help correctly predict its own
label.

Consider the simplest method for exploiting homophily to pre-
dict function, the majority vote algorithm, which was introduced
by [18] in 2000. In the original version of this algorithm, all direct
neighbors with known annotations vote for its labels, and the la-
bel receiving the most votes is assigned to the node of unknown
function. Our starting point for this paper is to observe that most
implementations of this algorithm discard information when they
output their predictions. In particular, a scenario where all neigh-
bors of a node vote for the same label is very different from one in
which there are many different labels among a node’s neighbors,
and each label gets nearly an equal number of votes (See Figure 1).
In the first scenario (see Figure 1a), we should be more confident
that our prediction is correct than in the second scenario (Figure
1b), and yet this extra confidence information is typically discarded,
rather than preserved where it could inform downstream analysis.

We are interested, therefore, in generalizing voting-based func-
tion prediction schemes to explicitly output node confidences in
their predictions. The set of majority vote algorithms we consider
here do not use the simple direct-neighbor voting described above,
but rather use variants of asking the k-closest nodes in cDSD dis-
tance [2] to vote on their functional labels. It was shown in [2]

Figure 1: Both center nodes in Figures 1a and 1b will be la-
beled cell cycle (green) by a simple majority vote algorithm
that has all direct neighbors vote for their label. However, in
Figure 1a, the winning label wins by a much higher margin
than in Figure 1b, so we should have higher confidence in
the winning label.
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that this variant of majority voting produced much superior perfor-
mance on functional labeling tasks in the S. cerevisiae PPI network
as compared to many other classical function prediction algorithms.

In this paper, we propose three different ways of assigning con-
fidences in functional labeling voting schemes, and we apply our
methods to a new function prediction scheme that assigns tentative
function predictions in rounds, where high confidence function
predictions are assumed to be correct and thus contribute to votes
in subsequent rounds. We call this majority vote cascading. We
investigate setting the parameters for the number of rounds and
thresholds for prediction confidence in order to improve function
prediction, showing that our majority vote cascades improve the
performance of multiple variants of cDSD-based majority vote
methods on the functional labeling tasks based on the S. cerevisiae
(yeast) PPI network.

We are particularly interested in using a method such as majority
vote cascading on networks that are less well annotated than the
yeast network. We therefore also investigate how these methods
perform on the PPI network of D. melanogaster (fly). We note that
only 43% of nodes in the fly network have at least one functional
label at depth four or below from the hierarchy roots of the Biologi-
cal Process or Molecular Function categories of the Gene Ontology
compared to 83% of nodes in the yeast network. We find similar
trends for cascading in the fly network as in yeast and report for
both a list of our most confident new predictions.

The structure of the remainder of this paper is as follows: we
first review the definitions of DSD and cDSD from [2, 3] and discuss
the variants of cDSD majority vote that we investigate. Section 2
describes our data and cascading framework in more detail as well
as introduces our new confidence scoring functions. Section 2.3
describes our cross validation evaluation framework. In Section 3,
we present our results on the yeast and fly networks and discuss
issues and open problems in Section 4.

1.1 Review of DSD and cDSD metrics
In a series of two papers [2, 3], Cao et al. introduced a novel distance
metric called "Diffusion State Distance" (DSD) and "Confidence-
based Diffusion State Distance" (cDSD) that they argued could
better capture the dissimilarity between nodes in a PPI network.

DSD comes from a variant of Network Propagation [7] that finds
two nodes connected by multiple short paths in a network to be
more similar than nodes that are only connected by a single path.
Furthermore, DSD downweights paths that go through hub nodes,
which are less functionally informative. cDSD generalizes DSD to
take into account edge confidences in a network in the natural way.
The formal definition of cDSD appears in section 2.1.5.

Cao et al. [2, 3] looked at different classical methods for predict-
ing protein function, including ordinary majority vote, functional
flow, and multiway cut, and they showed that a simple method that
performed majority vote on the k-nearest neighbors in cDSD dis-
tance performed best. We look at several variants of cDSD majority
voting and add our new cascading framework to each.

Figure 2: To predict the function of the left-most node, we
consider its nearest cDSD neighbors in a majority vote. Be-
fore cascading (above), the unknown labels of the first and
third closest neighbors mean they cannot contribute any in-
formation in making a prediction. By cascading (below), we
hope that neighbors with unknown function might receive
pseudo-labels with high confidence, which allows them to
contribute to the predictions of other nodes.

1.2 Confidences and cascading
While predicting the functional label of a node given the labels of
its closest cDSD neighbors is effective, networks with sparse anno-
tations are disadvantaged by close cDSD neighbors with unknown
labels that cannot contribute to majority votes. Consider Figure 2,
where to predict the function of the left-most node we consider
the function of its closest cDSD neighbors in a majority vote. In
the top portion of the figure (before cascading), the outcome of a
majority vote and thus the resulting prediction is limited by the
unknown labels of the first and third closest cDSD neighbors. The
goal of cascading is to increase the likelihood of the bottom portion
of the figure (after cascading). There, we can imagine that those
initially-unlabeled neighbors, in their own majority votes, were
assigned predicted functional labels with high confidence. Now
in later rounds, these highly-confident predictions are treated as
pseudo-labels [23], which allow them to vote with weight propor-
tional to their confidences in the majority voting of other unknown
nodes. Augmenting training with high-confidence pseudo-labels
is a standard approach in semi-supervised learning frameworks
[4, 14, 23]. As the figure shows, the information that high confident
predictions propagate can update the predicted label of other nodes.

Given that cascading allows majority vote algorithms to treat
the pseudo-labels assigned to high confidence predictions as truth,
the effectiveness of cascading is dependent on the quality of the
confidence functions. The three confidence functions designed in
this paper (and introduced in detail later in Section 2.2.3) all consider
the label distribution from a majority vote in order to assign a
confidence score.

2 METHODS
2.1 Data
The best type of PPI or Protein-Protein association network to use
for functional label prediction is currently a source of vigorous
debate, where [12] did an extensive recent study on what might be
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the "best" source of interaction data for human networks to predict
genes associated with human disease. Based on the conclusion of
their article, it seems that when looking at the tradeoff between
the number of reported interactions and the quality and curation
standards for the reported interactions, the two extremes (small
number of high-quality edges or many edges, regardless of quality)
did better than intermediate networks. However, this study was
carried out on unweighted networks: presumably, with weighted
networks the edge confidence function could be tuned to adjust for
the quality of the predictions, andmore edges are better. We decided
to extract our PPI network from BioGRID to better mimic the exper-
iments in [3]. However, we would expect the trends in performance
that we see using the different methods would hold in the more
permissive and extensive protein-protein association networks as
well, such as those contained in the STRING database [21].

2.1.1 Yeast Physical Protein Interaction Network from BioGRID.
A Saccharomyces cerevisiae protein-protein physical interaction
network is constructed as follows: the list of 5,176 verified ORFs
downloaded from the Saccharomyces Genome Database (version
date April 2, 2019) defines the set of nodes, and the 167,800 protein-
protein physical interactions from BioGRID (version 3.5.170, down-
loaded March 20, 2019) [20] between nodes that are verified by at
least one wet-lab experiment define the set of edges. We remove
edge redundancy, self-loops, and edges incident to unverified ORF
nodes, and we extract the largest connected component to obtain an
undirected graphwithn = 5,143 nodes (denoted byV = {v1, ...,vn })
and m = 103,550 unique, undirected edges (denoted by E). Ad-
ditionally, we assign confidence to PPIs using a scoring scheme
identical to the method found in [2]. Each PPI is thus assigned
a confidence score that translates to an edge weight. We denote
W = {wi j }i j as the weight matrix, where 0 < wi j < 1,∀(vi ,vj ) ∈ E,
and wi j = 0,∀(vi ,vj ) < E. We denote this graph resulting from
BioGRID PPI network as G(V ,E,W ).

2.1.2 Fly Physical Protein Interaction Network from BioGRID. A
Drosphilia melanogaster protein-protein physical interaction net-
work is similarly constructed by considering the physical interac-
tions from BioGRID (version 3.5.170), and again removing edge
redundancy and self-loops. We use the the same interaction confi-
dence scoring scheme described above to assign weights to edges,
and the result is a graph with 8,905 nodes with 52,223 unique, undi-
rected edges.

2.1.3 MIPS Functional Categories. For S. cerevisiae, the Munich In-
formation Center for Protein Sequences (MIPS) functional catalogue
(FunCat, version 2.1 [17]), gives a leveled hierarchy of functional
labels. Similar to [2, 3], we present results for MIPS annotations at
the first level (4,386 nodes with 10,476 annotations in 17 functional
categories in S. cerevisiae, second level (4,372 nodes with 12,266 an-
notations in 74 functional categories), and third level (4,025 nodes
with 9,371 annotations in 154 functional categories), where the
number of categories, and hence the difficulty of the classification
task, increases for the higher levels of MIPS. We denote these three
sets of labels as MIPS1, MIPS2, and MIPS3 in our results further
below.

2.1.4 GO Functional Categories. For both S. cerevisiae and
D. melanogaster, we also present results using annotations from the

more popular Gene Ontology (GO) [1]. We consider the union set
of labels from the molecular function and biological process cate-
gories of the GO hierarchy (OBO format version 1.2, downloaded
on 2019-03-19). We download associations from FuncAssociate 3.0
(downloaded on 2019-03-22), propagating terms so that ancestors
inherit all the terms of their children.

In particular, we include annotations supported by experimental
and high throughput evidence codes (EXP, IMP, HMP, HEP, IDA,
IGI, HGI, IPI, IEP, and HDA). Using the same criteria from [3] and
suggested by [9], we define the set of informative GO terms as
those that 1) are at least three levels below the root and 2) annotate
more than 50 proteins in our dataset. For our GO experiments in
this paper, to better match our MIPS experiments, we restrict our
attention to the informative GO terms that are exactly four levels
down from either root (Biological Process or Molecular Function).
This mimics a single level of the MIPS hierarchy. For the yeast
network, the result is 19 informative molecular process terms and
140 informative biological process terms, where 4,345 of 5,143 nodes
receive at least one annotation (31,294 total annotations). For the fly
network, the result is 12 informative molecular process terms and
168 informative biological process terms, where 3,866 of 8,905 nodes
receive at least one annotation (30,928 total annotations). Note that
this is equivalent to 43% of nodes in the fly network having at least
one label, while 84% of nodes in the yeast network have at least one
label. We denote this label category as GO-MFBP-4 in our results
below.

2.1.5 Computing the cDSD Similarity Matrix. The matrix of cDSD
distances between all nodes in the graph is computed using the
software provided by [2]. The cDSD distance between nodes u
and v is calculated as follows: first, given our graph G(V ,E,W ),
we denote P = {pi j }

n
i, j=0 as the n-dimensional one-step transition

matrix, where the (i, j)’th entry is given by:

pi j =

{ wi j∑n
l=1wil

if (vi ,vj ) ∈ E

0 otherwise

Here, P represents the probability of reaching each neighbor in a
one-step random walk, where neighbors corresponding to higher
edge weights are reached with higher probability. The t-step tran-
sition probability matrix is then defined as P {t } = P t for all pos-
itive t . We denote He {t }(vi ,vj ) as the expected number of times
a random walk of t-steps starting at node vi will visit node vj ,
which can be calculated by

∑t
l=0 p

{l }
i j . The n-dimensional vector

He {t }(vi ),∀vi ∈ V can be constructed accordingly. Finally, for a
fixed number of steps t in the random walk, the cDSD distance
between nodes u and v is given by:

cDSD{t }(u,v) = | |He {t }(u) − He {t }(v)| |1

where we set t = 7 as recommended by [3] and [2].

2.2 Cascading Framework
2.2.1 Overview. We now more formally describe the procedure
that converts a function prediction method (with or without confi-
dences on label predictions) to a procedure that assigns function
predictions and associated confidences in those predictions in an
iterative series of steps that we call a cascade.
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The input is a graph G = (V ,E,W ) that is partially labeled,
where each labeled node also has an associated label confidence
score between 0 and 1 inclusive. Denote Vk as the set of labeled
nodes, where each label is either a known annotation or a highly-
confident predicted annotation (which we assign as a pseudo-label)
from a previous round in the cascade. A node with a known anno-
tation is assigned a label confidence score of 1, while a node with
a pseudo-label is given a label confidence score equivalent to its
prediction confidence value from the previous round in the cascade.
The remaining, unlabeled nodes are denoted by the set Vu .

The cascading procedure then takes as input four other main
parameters:
i. R - a number of cascade rounds.
ii. h - a ‘high-confidence’ percentile threshold.
iii. F - an algorithm that generates a predicted label (denoted

v .pred) for every node v ∈ Vu .
iv. C - a function that, given the set of predictions generated by F ,

assigns a prediction confidence score between 0 and 1 (denoted
v .conf ) for every node v ∈ Vu .

The final output is the same graphG , where every node has a la-
bel and a label confidence score. We primarily tested our framework
using the underlying function prediction methods of [3] and [2],
which are based on several variants of k-nearest-cDSD-neighbor
voting schemes (see Section 2.2.2). These methods were shown in
[3] and [2] to outperform many of the classical methods for protein
functional label prediction.

During each cascade round, we use F and the information on
nodes in Vk to make a label prediction for every node in Vu . Then
using the prediction confidence function C and given the high-
confidence threshold h (we describe the confidence functions in
more detail in section 2.3.3), we assign pseudo-labels to the nodes
most confident in their predictions, and we also assign label con-
fidence scores to these nodes with values equal to their predic-
tion confidence scores generated by C . Subsequently, these highly-
confident nodes are moved from Vu to Vk for the next round of the
cascade. As we progress through additional rounds, we expect the
size of Vu to decrease as more pseudo-labels are assigned.

Thus for 0 ≤ r < R, the cascading procedure operates as follows:
(1) For allv ∈ Vu , call F to generatev .pred and callC to generate

v .conf.
(2) Let Tr ⊆ Vu denote the set of nodes with ‘high-confidence’

predictions (where v .conf is in the top h percentile of all
confidence scores) at round r .

(3) For each v ∈ Tr assign v .pred as a ‘pseudo-label’ of v , and
assign v .conf as the label confidence score of v . Remove v
from Vu and add v to Vk .

(4) If Vu , ∅ and r < R, repeat the procedure for round r + 1.
During the initial round of the cascading procedure, every node

initially in Vu is assigned a predicted label. Nodes with low con-
fidence predictions (based on C and h) are also assigned new pre-
dictions in subsequent rounds, which may change based on the
influence of the nodes assigned pseudo-labels (which are treated as
known labels by the prediction algorithms).

As described in step (4), the cascading procedure will continue
for all R rounds unless Tr becomes empty.

2.2.2 Protein Function Prediction Methods. For our underlying pre-
diction methods, we use four variations of neighborhood majority
voting algorithms to predict the function of unlabeled proteins:
the first two variants, cDSD-MV and cDSD-WMV, were introduced
by [2, 3]. In these variants, only nodes among the k-nearest neigh-
bors in DSD distance get to vote. The final two variants are newly
defined in this paper in the spirit of sparser annotation: additional
further neighbors are invited to participate in the vote until the
total number of nodes with known labels that get to vote reaches
k . As we shall see below, cascading improves the first two vari-
ants usually by a greater margin than the more flexibly defined
neighborhood voting of the second two variants. More formally,
define:

• (cDSD-MV) - cDSD-Majority vote: the k-nearest neighbors
of nodeu under the cDSDmetric vote for each of their known
(or pseudo) labels, and each neighbor votes proportionally
to their label confidence score. If a neighbor has no known
labels, it does not contribute any votes. The label l receiving
the most votes is assigned as the predicted label of u.

• (cDSD-WMV) - cDSD-Weighted Majority Vote: identical to
cDSD-MV, but each neighbor of u votes for its labels with
a voting power proportional to the reciprocal of its cDSD
distance to u and also to its label confidence score.

• (cDSD-MV-known) - cDSD-Majority Vote with "known"
neighbors: here, we expand the local neighborhood of u
until there are k neighbors under the cDSD metric that have
a known label or pseudo-label. In this regard, every neighbor
contributes a vote.

• (cDSD-WMV-known) - cDSD-WeightedMajority Votewith
"known" neighbors: similar to cDSD-MV-known, but now
using a weighted majority vote, as in cDSD-WMV.

In all 4 variants, when predicting the label of node u, if multi-
ple labels received the most number of votes, the predicted label is
assigned by a tiebreak according to lexicographical order. As recom-
mended by [3] and [2], we set k = 10 for all instances of cDSD-MV,
cDSD-WMV, cDSD-MV-known, and cDSD-WMV-known. Similar
to the results of [3], we find that small increases or decreases in
the value of k do not substantially impact performance (see supple-
mentary tables).

2.2.3 Prediction Confidence Functions. We introduce three simple
yet robust functions that, given a scheme that predicts functional
labels based on neighborhood voting, return a confidence value
for predicted node labels. We note that these measures are of inde-
pendent interest, even though the focus of the current paper is on
incorporating them into cascading schemes for predicting function
over multiple rounds using variants of cDSD-based majority voting.

For each confidence function, we denote l̂i as the predicted label
of node vi , and Li as the set of labels that received votes during a
cDSD-MV or cDSD-WMV round. For each nodevi , each confidence
function outputs a score ci between 0 and 1 inclusive, where higher
scores indicate higher confidence in the predicted label. Our three
confidence functions are described as follows:
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• Count-Conf (CC): analogous to majority voting, where ci
is the ratio of votes for the winning label l̂i and the sum of
votes over all labels in Li :

ci =
# votes for l̂i∑
l ∈Li # votes for l

• Weighted-Count-Conf (WCC): analogous to weighted ma-
jority voting, where ci is the ratio of the sum of weighted
votes for the winning label l̂i and the weighted sum of votes
over all labels in Li :

ci =
sum of weighted votes for l̂i∑
l ∈Li sum of weighted votes for l

• Entropy-Conf (EC): in this function, we attempt to measure
the ‘purity’ of Li compared to a uniform distribution of votes.
For all l ∈ Li , we denote pl as the proportion of votes for l ,
and u as the reciprocal of total unique labels:

pl =
# of votes for l∑

j ∈Li # of votes for j
u =

1
|Li |

Then the confidence score for node vi is given by:

ci = 1 −
∑
l ∈Li pl log2 pl∑
l ∈Li u log2 u

Here, ci will be near 0 when each label in Li received a similar
number of votes, and near 1 when a single label received
most votes.

In addition to these three primary confidence functions, we also
define a fourth function used primarily as a control in the cascading
procedure:

• Random-conf (RC): a random integer between 0 and 100
scaled between 0 and 1:

ci =
x ∼ [0, 100]

100

2.3 Evaluation
2.3.1 Multi-fold cross-validation tasks. We considerm-fold cross
validation tasks where m = 2, 4, 6 according to the following
scheme: in each of them-fold cross validation tasks, we first ran-
domly split the annotated proteins intom sets. We use the annota-
tions of nodes in each of them sets once as a training set to predict
annotations on the remainingm − 1 sets. We then average the per-
formance over them-folds of cross validation. We conduct 10 runs
of eachm-fold cross validation task and report means and standard
deviations of our performance measures over these 10 runs.

Note that this is the opposite training-testing proportional split
from the most commonly used cross-validation setups. At each fold
as m increases, the number of nodes in our training set will de-
cline (whereas in ordinary cross validation the number of training
nodes increases). For example, our 2-fold CV tasks use 50% of our
annotated nodes as a training set, our 4-fold CV tasks use 25% of
annotated nodes as a training set, and our 6-fold CV tasks use 17%
of annotated nodes as a training set. We did this deliberately to
target the interesting case of having smaller and smaller labeled

training sets of nodes with known labels. As an alternative to down-
sampling known labels, this allows us to understand the effective-
ness of the cascading procedure when the full network topology
is known, but the amount of known annotations is limited. This is
a particularly important scenario when trying to design function
prediction mechanisms that will still be effective in less well-studied
and therefore less well-annotated organisms.

For both GO and MIPS annotations, we consider the following
two performance measurements:
a. Prediction accuracy, which is calculated as the percentage of

proteins that are assigned a correct annotation [18]. An anno-
tation is considered correct if it appears among the true labels
assigned to the protein.

b. F1 score, which is the performance suggested in [8] and calcu-
lated as:

F1 =
2 * precision * recall
precision + recall

Here, precision and recall are calculated by looking at the top α
predicted annotations of each protein, and we average F1 scores
over the individual functions to obtain the overall F1 score for a
round of predictions. As in [3] and [2], we set α = 3.

3 RESULTS
3.1 Results on S. cerevisiae
In order to define a cascading framework, four parameters need
to be set. These are: the choice of voting method, the choice of
confidence function, the number of cascade rounds, and the high-
confidence threshold. Table 1 reports average percent accuracy
and F1 Score on the S. cerevisiae network across all four majority
vote variants described in Section 2.2.3 using the EC confidence
function, 12 cascade rounds, and a 35% high-confidence threshold
(where we explain further how we tuned these parameters below).
Additionally, tables that report the same statistics but using the
CC and WCC confidence functions appear in the supplement. We
compare this to accuracy and F1 Score using each predictionmethod
without cascading, and we report over 2-folds, 4-folds, and 6-folds of
cross validation for MIPS1, MIPS2, MIPS3, and GO-MFBP-4 labels.

We find that for the variants of majority vote that appeared in
[2, 3] (cDSD-MV and cDSD-WMV), cascading leads to substantial
accuracy improvements in all label categories and over all levels
of cross validation. Additionally, we notice that accuracy improve-
ments increase as the number of initially labeled nodes decreases
(CV fold size gets larger). For example, using MIPS1 labels and the
cDSD-WMV function, cascading improved accuracy by 1.15% in
2-fold CV, by 4.93% in 4-fold CV, and by 10.04% in 6-fold CV. For
the two new variants of majority vote that dynamically expand the
scope of each node’s local neighborhood under the cDSD metric to
find labeled neighbors (cDSD-MV-Known and cDSD-WMV-Known),
we find that cascading improves accuracy, but by more modest lev-
els. In some cases, like using the cDSD-WMV-Known method on
MIPS1 labels with 2-fold CV, cascading leads to essentially the same
level of performance as running a single round of predictions. Over-
all we notice that the cDSD-WMV-Known method using cascading
leads to the highest average prediction accuracy across all label
types and levels of CV.
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Table 1: Summary of results for S. cerevisiae using cascading across label type, prediction method, and CV fold size. We report
mean and standard deviation across 10 random splits of testing and training data. A fixed cascading setting (12 rounds, 35%
high confidence threshold, EC confidence function) is used.

2-Fold 4-Fold 6-Fold
acc. F1 acc. F1 acc. F1

MIPS1 cDSD-MV 66.71 ± 0.57 41.43 ± 0.29 57.96 ± 0.32 40.43 ± 0.23 49.38 ± 0.31 37.86 ± 0.26
cDSD-MV casc. 67.54 ± 0.25 41.99 ± 0.20 62.30 ± 0.36 42.08 ± 0.24 59.05 ± 1.44 40.67 ± 0.21
cDSD-MV-Known 67.65 ± 0.52 41.69 ± 0.25 64.21 ± 3.24 41.89 ± 0.15 62.34 ± 0.23 41.01 ± 0.06
cDSD-MV-Known casc. 67.96 ± 0.40 42.03 ± 0.22 65.10 ± 0.25 42.42 ± 0.14 62.80 ± 0.26 41.54 ± 0.17
cDSD-WMV 66.71 ± 0.42 42.07 ± 0.24 57.83 ± 0.52 41.07 ± 0.22 49.06 ± 0.24 38.26 ± 0.22
cDSD-WMV casc. 67.86 ± 0.58 42.59 ± 0.26 62.76 ± 0.63 42.41 ± 0.14 59.10 ± 0.56 40.98 ± 0.11
cDSD-WMV-Known 68.31 ± 0.36 42.40 ± 0.31 64.91 ± 0.30 42.74 ± 0.14 63.06 ± 0.28 41.99 ± 0.15
cDSD-WMV-Known casc. 68.37 ± 0.46 42.34 ± 0.12 65.43 ± 0.37 42.77 ± 0.17 63.63 ± 0.53 41.94 ± 0.15

MIPS2 cDSD-MV 53.50 ± 0.71 32.55 ± 0.22 44.32 ± 0.29 30.30 ± 0.09 37.29 ± 0.38 27.85 ± 0.23
cDSD-MV casc. 54.74 ± 0.55 32.83 ± 0.29 49.08 ± 0.32 31.04 ± 0.13 44.90 ± 0.34 29.01 ± 0.13
cDSD-MV-Known 54.70 ± 0.39 32.87 ± 0.23 50.39 ± 0.18 31.70 ± 0.09 48.17 ± 0.19 30.36 ± 0.14
cDSD-MV-Known casc. 55.26 ± 0.38 33.09 ± 0.20 51.31 ± 0.24 32.08 ± 0.15 49.15 ± 0.26 30.68 ± 0.13
cDSD-WMV 55.02 ± 0.58 33.57 ± 0.24 45.94 ± 0.47 31.38 ± 0.18 38.03 ± 0.33 28.70 ± 0.15
cDSD-WMV casc. 55.72 ± 0.59 33.96 ± 0.21 49.74 ± 0.28 32.02 ± 0.16 45.46 ± 0.38 29.85 ± 0.15
cDSD-WMV-Known 55.85 ± 0.59 33.87 ± 0.19 51.86 ± 0.38 32.93 ± 0.17 49.42 ± 0.21 31.51 ± 0.11
cDSD-WMV-Known casc. 56.27 ± 0.53 34.11 ± 0.15 52.09 ± 0.33 33.04 ± 0.11 49.86 ± 0.22 31.69 ± 0.11

MIPS3 cDSD-MV 47.95 ± 0.49 27.06 ± 0.22 39.54 ± 0.28 26.76 ± 0.30 32.59 ± 0.28 25.31 ± 0.27
cDSD-MV casc. 49.18 ± 0.50 27.47 ± 0.18 44.04 ± 0.16 27.14 ± 0.18 39.95 ± 0.24 25.70 ± 0.17
cDSD-MV-Known 49.15 ± 0.43 27.46 ± 0.17 44.42 ± 0.22 26.84 ± 0.18 41.48 ± 0.26 25.50 ± 0.11
cDSD-MV-Known casc. 49.71 ± 0.42 27.57 ± 0.19 45.66 ± 0.20 27.14 ± 0.09 42.95 ± 0.36 25.69 ± 0.13
cDSD-WMV 50.03 ± 0.34 28.41 ± 0.24 41.31 ± 0.35 27.79 ± 0.27 34.07 ± 0.38 26.00 ± 0.27
cDSD-WMV casc. 50.81 ± 0.56 28.56 ± 0.15 44.97 ± 0.49 28.11 ± 0.17 40.72 ± 0.38 26.43 ± 0.16
cDSD-WMV-Known 50.70 ± 0.46 28.33 ± 0.11 46.64 ± 0.27 28.13 ± 0.11 43.66 ± 0.33 26.83 ± 0.11
cDSD-WMV-Known casc. 51.36 ± 0.39 28.69 ± 0.21 46.99 ± 0.18 28.26 ± 0.17 44.13 ± 0.38 26.85 ± 0.17

GO-MFBP-4 cDSD-MV 47.41 ± 0.59 13.24 ± 0.18 37.98 ± 0.29 10.77 ± 0.11 31.19 ± 0.44 9.03 ± 0.07
cDSD-MV casc. 49.05 ± 0.53 13.51 ± 0.09 42.36 ± 0.27 11.40 ± 0.09 37.96 ± 0.28 9.88 ± 0.06
cDSD-MV-Known 49.07 ± 0.57 13.68 ± 0.10 44.09 ± 0.34 12.48 ± 0.11 41.31 ± 0.18 11.76 ± 0.06
cDSD-MV-Known casc. 49.87 ± 0.57 13.77 ± 0.10 45.50 ± 0.33 12.59 ± 0.05 43.01 ± 0.17 11.75 ± 0.05
cDSD-WMV 49.41 ± 0.41 13.67 ± 0.10 39.48 ± 0.43 11.23 ± 0.10 31.98 ± 0.36 9.35 ± 0.10
cDSD-WMV casc. 50.46 ± 0.55 13.85 ± 0.13 43.41 ± 0.54 11.69 ± 0.08 38.52 ± 0.23 10.15 ± 0.08
cDSD-WMV-Known 50.49 ± 0.45 14.06 ± 0.16 45.99 ± 0.36 12.93 ± 0.07 43.42 ± 0.21 12.16 ± 0.08
cDSD-WMV-Known casc. 51.06 ± 0.69 14.03 ± 0.15 46.70 ± 0.36 13.01 ± 0.11 44.11 ± 0.33 12.14 ± 0.07

We now provide some information on how the cascading param-
eters used to generate the cross validation results in Table 1 were
set. First we found that the EC confidence function, compared to
the other confidence functions, was the most likely to generate con-
fidence scores that correlated with correct predictions in yeast. This
can be observed in Table 2, where we performed 2-fold cross valida-
tion using the cDSD-MV function without cascading, and used each
of our three main confidence functions (and also the RC function as
a control) to generate confidence scores on each prediction. Given
a high-confidence threshold of 10% or 25%, we separated nodes
into high-confidence and low-confidence sets, and we measured
the average accuracy of predictions among the nodes in both sets
independently. Here, we notice that across all label types, using
the EC confidence function leads to the highest levels of accuracy
among high-confidence predictions. The other two main confidence
functions, CC and WCC, also show a significant margin between

the accuracy of high and low confidence predictions, which is in
comparison to the RC function (used as a control), which indicates
no discernible difference in the prediction performance between
high and low confidence nodes. These trends continue over high-
confidence thresholds of 40% and 50%, and those results are found
in the supplement.

We also measured how prediction accuracy was affected by in-
creasing the high-confidence threshold or the number of cascade
rounds within the cascading framework. We first evaluate the for-
mer, where we use each of our confidence functions in a cascading
procedure in 2-fold, 4-fold, and 6-fold CV settings with the cDSD-
MV prediction method. We use a constant 10 cascade rounds and
set the high-confidence threshold to 10%, 20%, 30%, 40%, and 50%.
We present plots of these results in Figure 3 for MIPS1 and GO-
MFBP-4 labels, and we notice that using each of the three main
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Table 2: Avg. Distribution of accuracy among high and low confidence predictions after 1 round of voting across confidence
functions, using high-confidence thresholds of 10% and 25%; Results shown for S. cerevisiae using 2-Fold CV (50% of training
data) and cDSD-MV. We report mean and standard deviation across 10 random splits of testing and training data.

MIPS1 MIPS2 MIPS3 GO-MFBP-4
high-conf low-conf high-conf low-conf high-conf low-conf high-conf low-conf

[CC] 10% 83.0 ± 1.1 62.8 ± 0.5 82.0 ± 0.4 46.7 ± 0.5 79.7 ± 0.9 40.9 ± 0.7 61.9 ± 1.6 44.5 ± 0.3
25% 78.3 ± 0.8 57.5 ± 0.8 70.5 ± 0.6 39.4 ± 0.7 68.0 ± 1.0 32.5 ± 0.6 56.0 ± 1.0 41.9 ± 0.6

[WCC] 10% 84.5 ± 1.3 62.5 ± 0.4 84.1 ± 1.1 46.5 ± 0.5 79.7 ± 0.7 40.3 ± 0.7 63.4 ± 1.6 44.0 ± 0.8
25% 79.4 ± 0.5 57.4 ± 0.7 72.9 ± 0.9 39.2 ± 0.5 69.6 ± 1.1 31.9 ± 0.9 56.7 ± 0.9 41.7 ± 0.7

[EC] 10% 87.1 ± 1.0 61.9 ± 0.5 85.9 ± 0.7 46.4 ± 0.5 83.7 ± 1.1 39.6 ± 0.6 76.7 ± 1.2 41.1 ± 0.5
25% 79.9 ± 0.6 56.4 ± 0.6 77.1 ± 1.0 35.7 ± 0.6 75.7 ± 0.7 27.4 ± 0.7 69.5 ± 0.7 32.0 ± 0.6

[RC] 10% 66.5 ± 2.1 67.1 ± 0.4 53.8 ± 2.0 53.8 ± 0.5 47.7 ± 1.9 48.1 ± 0.5 48.3 ± 2.3 48.0 ± 0.6
25% 66.8 ± 0.6 67.2 ± 0.9 53.8 ± 1.0 54.0 ± 0.7 47.9 ± 1.0 48.0 ± 0.6 47.8 ± 0.9 48.7 ± 0.9

confidence functions (CC, WCC, and EC), prediction accuracy gen-
erally increased as the threshold grew from 10% to 20%, but ulti-
mately plateaued when the threshold went beyond 30%. This trend
is present over both label types and across levels of CV.

We then measure the effect of increasing the number of cascade
rounds in a similar manner: we set a constant high-confidence
threshold of 30%, and using the cDSD-MV prediction method, we
evaluate prediction accuracy for MIPS1 and GO-MFBP-4 labels
across CV fold levels using 2, 4, 8, 12, and 15 cascade rounds. These
results are found in Figure 4, and here we notice that across all
levels of CV, accuracy grows sharply within the first 8 rounds of
cascading, but beyond 12 rounds performance levels off. This indi-
cates that the initial cascade rounds contribute most to accuracy
improvements, but additional rounds tend to limit (but not neces-
sarily hurt) performance. Given the results of these three analyses,
we chose the cascade setting of our main cross-validation in Table 1
to use the EC confidence function with 12 cascade rounds and a
35% high-confidence threshold.

3.2 Results on D. Melanogaster
Given our interest in evaluating the effectiveness of cascading on
less-studied organisms, we perform a similar set of cross validation
tasks on the D. melanogaster network. Note that unlike yeast, we
could not obtain reliable MIPS labels, so results are only presented
using GO. First, the same cascade setting from Table 1 is used (EC
confidence function, 12 rounds of cascading, 35% high-confidence
threshold), and these results can be found in the supplementary
tables. Here, we observe similar results as on the yeast network:
cascading with the cDSD-MV and cDSD-WMV functions leads
to substantial prediction accuracy improvements, while improve-
ments seen using the cDSD-MV-Known and cDSD-WMV-Known
functions are marginal (in a few cases, cascading leads to slight
degradations in accuracy, but always within the standard deviation
of the non-cascading result). We also cross validate on the fly net-
work with a second cascade setting that uses the CC confidence
function (rather than the EC function) with 12 rounds of cascading
and a 35% high-confidence threshold. A summary of these results

is found in Table 3, and we observe slightly stronger overall per-
formance than the first setting. This means we would recommend
using the CC confidence function for this sparser network.

3.2.1 Generating predictions for unlabeled nodes. We were curious
to see what new functional labels we predict among nodes with
no label at level 4 in the GO biological process or Molecular Func-
tion hierarchies in fly. A predicted label was generated for each
unlabeled node (5,039 nodes) using all annotated nodes (3,866) as a
training set. (Note that since we consider nodes unlabeled if they do
not have a GO annotation at four levels below the roots of the MF or
BP categories of the GO hierarchy, some of our “unlabeled" nodes are
actually nodes assigned more general GO labels).

The CC confidence functionwas used in a cascadewith 12 rounds
and a 35% high-confidence threshold. Table 4 gives the top 20 pre-
dictions based on final label confidence score.

When we look at FlyBase entries for these genes, we imme-
diately find that the top 5 most confident predictions (with .75
confidence) are almost certainly correct: these genes code for RNA,
not proteins, and based on sequence similarity can be identified
as small Cajal body-specific RNAs. These belong to the class of
Small nucleolar RNAs (snoRNAs), which are small RNA molecules
that primarily guide chemical modifications of other RNAs, mainly
ribosomal RNAs, transfer RNAs, and small nuclear RNAs. So the
label of "RNA Binding" seems correct. On the other hand, we could
not find any evidence, either positive or negative, around the pre-
dictions of CG18094, CG42700 and CG12782 for the label "Response
to Decreased Oxygen Levels." For CG7697, the label "Nucleic Acid
Metabolic Process" is probably a correct prediction; FlyBase reports
that the protein is part of a complex involved in RNA polyadeny-
lation. However CG15102, which is predicted also to be involved
in "Nucleic Acid Metabolic Process" with identical confidence as
CG7697, is probably an incorrect prediction; there is some evidence
on FlyBase that this protein is involved instead with response to
decreased oxygen levels.

Additionally, we generate a similar set of predicted labels for the
798 unlabeled nodes in yeast using the 4345 labeled nodes to train.
The same cascade setting used in fly (CC confidence function, 12
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Figure 3: Prediction accuracy on S. cerevisiae with varying high confidence thresholds using the cDSD-MV method and 10
rounds of cascading. We see performance generally plateau (and in some instances slightly decline) at each CV fold level as
the high-confidence threshold grows past 30 or 40 percent.

Figure 4: Prediction accuracy on S. cerevisiae with varying cascade rounds using the cDSD-MV method and a 35% high confi-
dence threshold. As the number of cascade rounds increases past 12, prediction accuracy tends to level off.

cascade rounds, 35% high-confidence threshold) is used. Table 5
reports the top 20 predictions based on final label confidence score.

4 DISCUSSION
By incorporating confidence scores into existing function predic-
tion methods, we have shown that the iterative, semi-supervised

cascading framework can improve the prediction performance of
existing function prediction methods in PPI networks. We observe
that this performance improvement is especially significant using
the original cDSD-based majority vote variants from [2, 3].

The function prediction methods used while developing and
testing the cascading framework all stem from the cDSD-based
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majority vote algorithms used in [2]. The results presented within
this study are thus able to naturally incorporate the prediction
confidence scores into subsequent rounds of predictions by allowing
nodes assigned pseudo-labels to vote with weights proportional
to their prediction confidence scores from previous rounds. From
our analysis of tuning the number of rounds used in the cascade
framework, we observe that prediction accuracy tends to plateau,
rather than decrease, as the number of cascade rounds continues
increasing.

This leads to several interesting questions related to the self-
limiting behavior of the cascading procedure. Namely, why does
performance level-off, and not sharply decrease, as we perform
more cascading rounds? This could in part stem from the use of label
confidence scores in voting weight when using our cDSD-based
majority vote algorithms: if these confidence scores are numerically
small, then even the predictions we deem as "highly-confident" in
later rounds might not contribute much weight to a majority vote.

As an alternative to multiple cascading rounds, we could also
imagine a scheme that runs one cascading round at a time, pro-
moting high-confidence nodes to a confidence of 1 and demoting
low-confidence nodes to a confidence of 0. Thus the high-confidence
nodes assigned pseudo-labels each vote with a full weight of 1 in
later rounds. It is an open question whether this would improve or
hurt predictive performance.

The results in this paper are run separately for each level of
MIPS, or only for GO terms at level 4 from the Biological Process or
Molecular Function root nodes. However, terms at different levels of
these hierarchies have ancestor-descendant relationships that could
help inform function predictions. The correct way to define confi-
dence functions that incorporate this type of hierarchical function
information inheritance is an important topic for future research.

Finally, we note that results presented here only incorporate
the function prediction methods of [3] and [2]. The work of [5]
combined diffusion-based methods and dimensionality reduction to

Table 3: Summary of results for D. melanogaster using cascading across label type, prediction method, and CV fold size. We re-
portmean and standard deviation across 10 random splits of testing and training data. A fixed cascading setting (CC confidence
function, 12 rounds, 35% high confidence threshold) is used.

2-Fold 4-Fold 6-Fold
acc. F1 acc. F1 acc. F1

GO-MFBP-4 cDSD-MV 31.34 ± 0.57 6.23 ± 0.07 22.71 ± 0.32 5.39 ± 0.04 17.78 ± 0.16 4.52 ± 0.06
cDSD-MV casc. 33.37 ± 0.46 6.51 ± 0.08 26.03 ± 0.32 5.63 ± 0.04 21.42 ± 0.30 4.76 ± 0.04
cDSD-MV-Known 34.62 ± 0.40 6.76 ± 0.06 32.08 ± 0.28 6.98 ± 0.07 30.96 ± 0.20 6.85 ± 0.03
cDSD-MV-Known casc. 35.39 ± 0.59 6.90 ± 0.10 32.74 ± 0.32 6.88 ± 0.05 31.45 ± 0.28 6.56 ± 0.05
cDSD-WMV 32.20 ± 0.46 6.30 ± 0.15 23.60 ± 0.21 5.42 ± 0.05 18.30 ± 0.27 4.60 ± 0.04
cDSD-WMV casc. 33.96 ± 0.58 6.52 ± 0.13 26.54 ± 0.41 5.67 ± 0.09 21.77 ± 0.37 4.81 ± 0.05
cDSD-WMV-Known 35.92 ± 0.50 7.02 ± 0.05 33.23 ± 0.24 7.19 ± 0.05 31.72 ± 0.22 7.08 ± 0.03
cDSD-WMV-Known casc. 35.96 ± 0.31 6.98 ± 0.12 33.27 ± 0.34 6.91 ± 0.06 31.62 ± 0.23 6.59 ± 0.05

Table 4: The top 20 predictions by label confidence score for unannotated nodes in the D. melanogaster network. Labels were
predicted using cDSD-WMV-Known, the CC confidence function, 12 cascade rounds, and a 35% high-confidence threshold.

Node Pred. Label Pred. Label Name Label Conf.
CR43569 GO:0003723 RNA Binding 0.750
CR32863 GO:0003723 RNA Binding 0.750
CR33716 GO:0003723 RNA Binding 0.750
CR43572 GO:0003723 RNA Binding 0.750
CR43602 GO:0003723 RNA Binding 0.750
CG18094 GO:0036293 Response to Decreased Oxygen Levels 0.375
CG42700 GO:0036293 Response to Decreased Oxygen Levels 0.333
CG12782 GO:0036293 Response to Decreased Oxygen Levels 0.333
CG8395 GO:0060255 Regulation of Macromolecule Metabolic Process 0.278
CG9606 GO:0060255 Regulation of Macromolecule Metabolic Process 0.278
CG7697 GO:0090304 Nucleic Acid Metabolic Process 0.276
CG15102 GO:0090304 Nucleic Acid Metabolic Process 0.276
CG10110 GO:0090304 Nucleic Acid Metabolic Process 0.276
CG5645 GO:0051276 Chromosome Organization 0.269
CG2202 GO:0051276 Chromosome Organization 0.269
CG34110 GO:0051276 Chromosome Organization 0.269
CG43427 GO:0051276 Chromosome Organization 0.269
CG6689 GO:0051276 Chromosome Organization 0.269
CG5618 GO:0036293 Response to Decreased Oxygen Levels 0.261
CG4585 GO:0036293 Response to Decreased Oxygen Levels 0.261
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Table 5: The top 20 predictions by label confidence score for unlabeled nodes in the S. cerevisiae network. Labels were predicted
using cDSD-WMV-Known, the CC confidence function, 12 cascade rounds, and a 35% high-confidence threshold.

Node Pred. Label Pred. Label Name Label Conf.
YLR003C GO:0090304 Nucleic Acid Metabolic Process 0.667
YOR065W GO:0045333 Cellular Respiration 0.500
YLR336C GO:0090304 Nucleic Acid Metabolic Process 0.417
YDR119W-A GO:0045333 Cellular Respiration 0.350
YLR367W GO:0090304 Nucleic Acid Metabolic Process 0.320
YKL082C GO:0090304 Nucleic Acid Metabolic Process 0.300
YOR356W GO:0007005 Mitochondrion Organization 0.296
YHR203C GO:0090304 Nucleic Acid Metabolic Process 0.290
YLR287C-A GO:0090304 Nucleic Acid Metabolic Process 0.281
YOR252W GO:0090304 Nucleic Acid Metabolic Process 0.276
YHR172W GO:0007010 Cytoskeleton Organization 0.259
YER002W GO:0090304 Nucleic Acid Metabolic Process 0.258
YNL096C GO:0090304 Nucleic Acid Metabolic Process 0.257
YGR283C GO:0090304 Nucleic Acid Metabolic Process 0.250
YOR182C GO:0090304 Nucleic Acid Metabolic Process 0.242
YGR027C GO:0090304 Nucleic Acid Metabolic Process 0.219
YNL132W GO:0090304 Nucleic Acid Metabolic Process 0.214
YDR115W GO:0065003 Protein-Containing Complex Assembly 0.208
YDR012W GO:0003723 RNA Binding 0.206
YOR369C GO:0090304 Nucleic Acid Metabolic Process 0.205

improve prediction performance over standalone, DSD-basedmajor-
ity vote methods into a model called Diffusion Component Analysis
(DCA) [5]. It is natural to ask if there is a setting where DCA can
also be integrated into a cascading framework and whether this
would improve that underlying method as well. A first step would
be to determine the best way to compute confidences on DCA
predictions.
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