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Abstract 19 

Flash drought often leads to devastating effects in multiple sectors, and presents a unique challenge 20 

for drought early warning due to its sudden onset and rapid intensification. Existing drought 21 

monitoring and early warning systems are based on various hydrometeorological variables 22 

reaching thresholds of unusually low water content. Here we propose a flash drought early warning 23 

approach based on spaceborne measurements of Solar-Induced Chlorophyll Fluorescence (SIF), a 24 

proxy of photosynthesis that captures plant response to multiple environmental stressors. Instead 25 

of negative SIF anomalies, we focus on the sub-seasonal trajectory of SIF and consider slower-26 

than-usual increase or faster-than-usual decrease of SIF as an early warning for flash drought onset. 27 

To quantify the deviation of SIF trajectory from the climatological norm, we adopt existing 28 

formulas for a Rapid Change Index (RCI) and apply the RCI analysis to spatially downscaled 8-29 

day SIF data from GOME-2 during 2007-2018. Using two well-known flash drought events 30 

identified by the operational U.S. Drought Monitor (in 2012 and 2017), we show that SIF RCI can 31 

produce strong predictive signals of flash drought onset with a lead time of two weeks to two 32 

months, and can also predict drought recovery with several weeks of lead time. While SIF RCI 33 

shows great early warning potential, its magnitude diminishes after drought onset and therefore 34 

cannot reflect the current drought intensity. With its long lead time and direct relevance for 35 

agriculture, SIF RCI can support a global early warning system for flash drought and is especially 36 

useful over regions with sparse meteorological data.       37 

Significance Statement 38 

Flash drought has become increasingly common and threatens global food security. To help 39 

proactively manage and prevent the devastating effects of flash drought, we propose a flash 40 

drought early warning approach based on unusually slow increases or unusually fast decreases of 41 

a spaceborne proxy for plant photosynthesis, the Solar-Induced chlorophyll Fluorescence (SIF). 42 

Relative to the operational U.S. Drought Monitor, the SIF-based approach provides a lead time of 43 

two weeks to two months for flash drought onset, and several weeks for drought recovery. It shows 44 

great potential to support the development of a global, agriculturally-relevant early warning system 45 

that will help protect human food security, especially for regions where other drought indices are 46 

limited by sparse hydrometeorological data. 47 

  48 
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Main Text 49 

Introduction 50 

Drought influences all regions of the world, with especially damaging effects on water 51 

resources and agriculture. Based on the scope and impact, droughts are often classified as 52 

meteorological drought, agricultural drought, and hydrological drought; depending on severity and 53 

duration, a meteorological drought may or may not lead to a hydrological or agricultural drought. 54 

In the conventional notion, drought results from a gradual accumulation of negative precipitation 55 

anomalies leading to prolonged water shortage. In the past decade, the term “flash drought” was 56 

coined to describe droughts with a rapid onset and intensification caused by heat, precipitation 57 

deficit, or their combination (1-7). Most flash droughts feature a rapid decline of soil moisture and 58 

can therefore be classified as agricultural drought. A typical flash drought takes 5-30 days to 59 

develop (8). While a flash drought may have a short duration of several weeks to a couple of 60 

months, an event that starts as a flash drought may continue to develop into a longer-lasting 61 

conventional drought. One such example is the 2012 drought in the United States, which has been 62 

the focus of many previous studies. The rapid onset and intensification of flash drought often catch 63 

stakeholders (e.g., farmers and rangers) off-guard, leaving no time or resources for planning and 64 

adaptation (4-9). The “flashness” presents unique challenges for drought monitoring and early 65 

warning.  66 

Multiple approaches have been proposed to detect or identify flash droughts, based on a 67 

wide variety of variables reflecting the state of water resources, agriculture, and natural 68 

ecosystems, including temperature, precipitation, soil moisture, evapotranspiration (ET), potential 69 

ET, vapor pressure deficit (VPD), vegetation index, and gross primary productivity (GPP).  For 70 

example, Mo and Lettenmaier (1-2, 10) used different combinations of  high temperature, low 71 

precipitation, low soil moisture, and high or low ET to identify flash drought, depending on 72 

whether an event was induced by heat or by the lack of precipitation.   Otkin et al. (3, 11) used the 73 

Evaporative Stress Index (ESI, defined as the standardized anomalies of the actual to potential ET 74 

ratio (12)) as a soil moisture indicator and proposed the Rapid Change Index (RCI) of ESI as a 75 

metric of rapid drought intensification, and showed that the ESI RCI could detect flash drought 76 

onset four weeks earlier than the operational United States Drought Monitor (USDM). In their 77 

study (3, 11), RCI was defined as the accumulated excess of standardized anomaly of weekly ESI 78 

changes over a certain threshold, and a negative value of RCI indicated an unusually rapid decrease 79 
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of soil moisture over multiple weeks. Hobbins et al. (13) proposed the Evaporative Demand 80 

Drought Index (EDDI), derived from a physically-based estimation of the atmospheric evaporative 81 

demand. Both ESI and EDDI can serve as drought early warning relative to drought detection by 82 

other indicators such as the operational USDM (14-15).   83 

Agriculture and grassland ecosystems are among the most vulnerable to flash drought. 84 

Vegetation responses captured by satellite data such as the Normalized Difference Vegetation 85 

Index (NDVI), the Enhanced Vegetation Index (EVI), and Solar-Induced chlorophyll Fluorescence 86 

(SIF) can therefore provide useful large-scale information on flash drought development and 87 

impact. NDVI and EVI are more indicative of vegetation greenness, which responds to water stress 88 

over a long period and with a delay. However, SIF varies with plant physiological and biochemical 89 

conditions and responds rapidly when plants become drought-stressed (16-19), which makes it 90 

highly relevant for flash drought monitoring. SIF was found to decline during drought episodes 91 

even when NDVI remained constant (20), and showed a clear linear relationship with 92 

photosynthesis or GPP at the sub-seasonal to annual time scales, especially over crop and grass 93 

ecosystems (21-27). Sun et al. (28) demonstrated that the satellite-based SIF successfully captured 94 

the spatiotemporal pattern of the development and severity of the 2011 drought in Texas and 2012 95 

drought over the Great Plains, showing a strong correlation with soil moisture. Similarly, Chen et 96 

al. (29) found that spaceborne SIF successfully characterized the magnitude and spatiotemporal 97 

variation of GPP anomalies induced by the 2009-2010 drought in China, and performed better than 98 

the greenness-based EVI as a large-scale real-time vegetation drought monitor. Although SIF or 99 

anomalies of SIF as used in these studies may perform well as a drought monitor, they cannot 100 

provide sufficient lead time to serve as a drought early warning. As global warming causes drought 101 

to become more frequent, more intense, or to intensify more rapidly (30-32), drought early warning 102 

is becoming increasingly important for regional and global food security. Of particular interest is 103 

early warning for droughts that occur at critical stages of crop development including, for example, 104 

at the emergence stage or during the early reproductive stage when crops are the most vulnerable 105 

to environmental stress (33-34).      106 

At the early stage of flash drought development, the collective effects of soil moisture 107 

depletion, evaporative demand increase, and sometimes heat stress all influence the trajectory of 108 

photosynthesis, which may cause slower-than-usual increase or faster-than-usual decrease of GPP 109 

and SIF, depending on the timing of drought development relative to the growing season. These 110 
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trajectory responses precede and ultimately lead to negative SIF anomalies. We therefore 111 

hypothesize that an unusual rate of subseasonal change in SIF provides an early warning for flash 112 

drought. To test the hypothesis, we quantify the temporal dynamics of SIF prior to and during the 113 

2012 and 2017 flash droughts in the U.S. using the RCI equations of Otkin et al. (3) (see Materials 114 

and Methods), and assess the early warning potential of the SIF RCI through comparison with the 115 

operational USDM. These two droughts are chosen as case studies because they have been 116 

commonly identified as flash droughts, and detailed depiction of drought development is available 117 

from the operational USDM (Supplementary Figures S1 and S2) and from other studies to facilitate 118 

comparison of our results with existing drought metrics (3,15). While our analyses focus primarily 119 

on the downscaled 8-day GOME-2 SIF data (35-37), we also apply the RCI algorithm to the gap-120 

filled 8-day composite GPP and ET data from MODIS/Terra for comparison, as both are closely 121 

related to plant photosynthesis at the process level. In addition, we also examine flash drought 122 

development and intensity from a hydrometeorological perspective based on precipitation, 123 

temperature, vapor pressure deficit, and short-term drought blend data from GridMET (38). 124 

Results 125 

Flash Drought in 2012 126 

In 2012, abnormal dryness migrated across different regions of the U.S., with severe to extreme 127 

drought signals over the Great Plains and Midwest starting in July and August; the drought 128 

intensified rapidly between July 17th and 31st over the central US, expanded in spatial coverage in 129 

August, and persisted until the end of the year  (Supplementary Figures S1).  Figure 1 presents the 130 

spatiotemporal patterns of RCI for the 8-day composite SIF during the rapid intensification events 131 

in 2012. Prior to the drought in the Midwest and Great Plains region, large positive values of SIF 132 

RCI were found in March and early April, reflecting an unseasonal rapid onset of vegetation 133 

growth in early spring. However, by May the SIF RCI transitioned to large negative values. The 134 

negative RCI signals reflect an unusually rapid decrease in SIF or, in this case, an unusually slow 135 

increase (or even a decrease) at a time when SIF is expected to increase (Figure 2).  136 

While the trajectory of SIF indicated a deterioration of growth conditions over a large 137 

portion of the Great Plains and Midwest starting from early May, the operational USDM did not 138 

spot trouble in the region until late June or early July. The SIF RCI signal is the strongest prior to 139 

drought onset, and does not (and is not expected to) maintain that strength once drought is in full 140 

swing due to the slowing down (or even complete cessation in some areas) of photosynthetic 141 
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activities leaving little room for SIF to further decrease rapidly. Indeed, as the drought further 142 

developed during July-August (Supplementary Figure 1), the SIF RCI over most of the drought-143 

stricken regions had small negative values (Figure 1).  However, no persistent spatially-coherent 144 

positive values of SIF RCI were found through the end of that growing season, indicating that no 145 

recovery was yet in sight, consistent with the fact that the drought lasted for over a year.  146 

Interestingly, the strong RCI signal from SIF prior to the 2012 drought was not 147 

accompanied by a similar signal from the MODIS GPP or ET data (Supplementary Figures S3 and 148 

S4). The ET RCI signal was weak overall and spatially scattered. There were negative RCI values 149 

for GPP over much of the drought-stricken regions, but they were generally small in magnitude; 150 

the strongest signals of negative RCI for GPP were found in late June and July, with a short lead 151 

time over the operational USDM. The rather striking magnitude and timing differences between 152 

SIF RCI (strongest in May, Figure 1) and GPP RCI (strongest in July, Supplementary Figure S3) 153 

may result from differences in sensor sensitivity and ability to capture the fast response of plant 154 

photosynthetic activities to environmental stress.   155 

Across most of the U.S., the monthly aggregated GPP standardized anomalies were 156 

remarkably similar to those of SIF (Figure 3), which highlights the effectiveness of SIF as an index 157 

for vegetation productivity and photosynthetic activities. Both SIF and GPP were unusually high 158 

in March and April over much of the eastern U.S., but the positive anomalies decreased through 159 

the spring and fell below normal by June in most of the Great Plains and Midwest (Figure 3). The 160 

strong positive anomalies of SIF and GPP in March and April (and of ET over the eastern U.S.) 161 

were associated with an abnormally warm condition that kicked off the spring growth way ahead 162 

of the normal growing season. This undoubtedly would accelerate soil moisture depletion which, 163 

in the absence of strong positive precipitation anomalies, may lead to rapid deterioration of growth 164 

conditions for vegetation in late spring/early summer, reducing GPP and SIF. In fact, precipitation 165 

was slightly above normal early in the spring but fell below normal by May. The early onset of 166 

growth was not the only factor (and may not even be the primary factor) causing the rapid depletion 167 

of soil moisture. The warm condition during spring and summer of 2012 was also accompanied 168 

by a persistent higher-than-normal VPD. A recent study (39) found that rapidly-developing spring 169 

droughts in the central United States typically started with a strong subsidence in the atmosphere, 170 

causing an abnormally large VPD prior to the development of other anomalies. The positive VPD 171 

anomalies in 2012 likely contributed to the positive ET anomalies in spring (due to high 172 
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evaporative demand) and the increasingly negative GPP anomalies in spring-summer (by inducing 173 

stomata closure in addition to soil water stress). The first emergence of large negative SIF RCI 174 

values at the beginning of May was a result of vegetation integrating the effects of multiple 175 

stressors, providing an early warning signal for a potentially rapid drought onset to come. In the 176 

several months following, the operational USDM signaled a moderate drought by late June and 177 

severe drought by early August (Supplementary Figure S1), and the drought severity in some areas 178 

underwent a three-category increase over the course of several weeks (3).   179 

Flash Drought in 2017  180 

The 2017 drought was confined to the Northern Great Plains (Supplementary Figures S2). The 181 

abnormal dryness started over Montana and North Dakota at the end of May, reached the “severe” 182 

level in mid-June, and rapidly intensified between July 11th and 25th while also expanding in spatial 183 

coverage (towards the northwest and south). The drought reached its peak intensity by August and 184 

persisted through September (Supplementary Figure S2). The severe drought lasted until October, 185 

after which the drought became more moderate but persisted until the end of the year. The SIF 186 

RCI had large negative values from the third week of May through June (Figure 4), suggesting a 187 

rapid deterioration of the vegetation growth condition. Note that a negative RCI value reflects 188 

either a faster-than-usual decrease or a slower-than-usual increase; in this particular case, the SIF 189 

trajectory showed a much-slower-than-usual increase during May and June, a time frame in which 190 

SIF is expected to rapidly increase in normal years (Figure 2).  The SIF RCI signal disappeared 191 

once the drought was in full swing in July, and showed large positive values in August. Clearly, 192 

the negative values of SIF RCI preceded the drought onset and the positive values preceded the 193 

drought recovery, by 2-4 weeks in this case.  194 

The RCI signals of GPP and ET were slightly negative (and scattered) prior to and during 195 

the 2017 flash drought over the drought-stricken region (Supplementary Figures S5 and S6), but 196 

both showed a strong positive signal in August (similar to the SIF RCI) prior to the drought 197 

recovery. Similar to the 2012 event, the SIF temporal dynamics as reflected by RCI showed a 198 

much greater sensitivity to environmental condition changes during the early development stage 199 

of the 2017 flash drought than other variables analyzed. 200 

During the spring and early summer of 2017, GPP and ET were above normal over most 201 

of the U.S. due to the warm and wet conditions in the spring (Figure 5), while the corresponding 202 

SIF was slightly below normal over most of the U.S. This discrepancy in the sign of anomalies is 203 
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a result of the different durations used to define the climatological mean (2007-2018 for SIF, 2001-204 

2019 for GPP and ET), which has little influence on the representation of temporal dynamics and 205 

therefore the estimation of RCI under extreme conditions. Indeed, over the northern Great Plains 206 

region stricken by the 2017 flash drought, SIF, GPP, and ET were consistent in trajectory, and all 207 

transitioned from above normal in April to below normal by June (Figure 5). The SIF signal 208 

experienced the fastest transition among the three, which underlain the strong negative RCI values 209 

of SIF in May and June (Figure 4).   210 

From the meteorological perspective, lower-than-normal precipitation, warmer-than-211 

normal temperature, and higher-than-normal VPD were observed over Montana and North Dakota 212 

in the spring and summer. All three contributed to the 2017 flash drought event; none of the 213 

individual hydrometeorological variables alone, including temperature, precipitation, VPD, and 214 

ET, could provide reliable prediction of the flash drought. The SIF RCI, with the first emergence 215 

of large negative values in the middle of May, warned of the 2017 flash drought several weeks 216 

earlier than the drought onset indicated by the operational USDM.   217 

Despite compelling evidence for the predictive role of the SIF RCI during the 2012 and 218 

2017 events, limited inventory of flash droughts during the study period precluded a more rigorous 219 

assessment on the performance of SIF RCI as a flash drought predictor. As an alternative approach, 220 

we challenged the SFI RCI skill against broader benchmarks ranging from wet (favorable) to dry 221 

(unfavorable) conditions. Given the overwhelming concern about flash drought impact in the 222 

agriculture sector, we examined the predictive relationship of SIF-RCI in May-June with the 223 

general water availability and vegetation growth condition in the peak growing season, July-224 

August, in two 5°x5° sample areas in the Midwest and Northern Great Plains (see Materials and 225 

Methods). The strongest SIF-RCI signal from May-June was significantly correlated with both the 226 

peak ecosystem productivity (reflected by the maximum SIF value) during July-August and the 227 

most “relevant” signal of short-term drought blend during July-August (Figure 6 and 228 

Supplementary Table S1). Judging by the sign of the spatially averaged anomalies, out of the 12 229 

years analyzed, predictions of dry or wet conditions based on SIF RCI would produce no 230 

misclassification in the Northern Great Plains sample area, and one false alarm in the Midwest 231 

sample area (which occurred in a year when both the predictor and the predictand were close to 232 

their long-term means) (Figure 6b). Flash droughts are intrinsically extreme and may 233 

disproportionately influence the correlation. However, for both sample areas analyzed, excluding 234 
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the 2012 or 2017 event from the data did not qualitatively change the relationships (Figure 6 and 235 

Supplementary Table S1). These results provide strong evidence for the robustness of SIF RCI as 236 

a predictor for not only flash drought but also general eco-hydro-meteorological conditions.  237 

 238 

Discussion 239 

This study analyzed satellite-derived data on vegetation functional status prior to and 240 

during two major flash droughts in the U.S., and assessed the potential of sensitive vegetation 241 

response as an early warning of flash drought onset. The underlying hypothesis is that slower-than-242 

usual increases or faster-than-usual decreases of plant photosynthetic activities captured by the SIF 243 

trajectory at a very early stage of drought development can provide an early warning for flash 244 

drought onset. As a quantitative metric, we applied the RCI formulas of Otkin et al. (3) to 245 

spaceborne measurements of SIF, GPP, and ET to assess the degree of unusual rates of change, 246 

and used the 2012 and 2017 U.S. drought as examples.  We found that a large negative RCI value 247 

of SIF during the growing season could warn of a flash drought onset at least several weeks before 248 

the drought could be detected by the operational USDM. The RCI values of GPP and ET did not 249 

provide a reliable or consistent predictor for drought onset. However, a strong positive RCI signal 250 

from all three variables (SIF, GPP, and ET) was found to precede drought recovery by several 251 

weeks. While our analysis was not exhaustive and was limited by the number of well-documented 252 

flash droughts during the time of SIF data  availability, our results showed great potential for SIF 253 

RCI to be used as a predictor for both flash drought onset and recovery, with several weeks of lead 254 

time over the operational USDM. This has significant implications, as the hard-to-predict sudden 255 

onset has been a major challenge for coping with the widespread consequences of flash droughts.  256 

In testing the effectiveness of the SIF RCI as a new drought early warning index, this study 257 

focused on two well-documented events and chose the widely-used operational USDM as a 258 

reference for comparison. Recently, EDDI (13) has gained wide recognition as a physically-based 259 

predictive index with a long lead over the operational USDM. It is worth comparing our SIF RCI 260 

results with published EDDI results (14-15). For the 2012 event, the timing of drought signal 261 

emergence  was similar between SIF RCI and EDDI, both in late April to early May; the SIF RCI 262 

signal rapidly intensified in May, reaching the maximum by late May and early June, while the 263 

EDDI signal reached the maximum one month later in early July. Another important difference is 264 

that after drought onset, EDDI retained its large magnitude reflecting drought intensity, while the 265 
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magnitude of SIF RCI diminished once the drought was in full swing and could not function as a 266 

drought intensity monitor.   267 

The unusual SIF trajectory prior to the flash drought onset is likely a result of vegetation 268 

photosynthetic response to multiple stressors at the early stage of drought intensification. The 269 

predictive skill of SIF RCI in and of itself does not suggest vegetation to be a causal source of 270 

drought predictability. However, in regions of strong land-atmosphere coupling such as the U.S. 271 

Great Plains and Midwest (40-41), vegetation response to drought stress at the subseasonal time 272 

scale may feed back to further suppress precipitation and enhance drought severity. For example, 273 

numerical modeling experiments showed that dry soil moisture anomalies in late spring/early 274 

summer could cause a decrease of summer precipitation, and a major fraction of this effect was 275 

attributed to vegetation feedback through a drought-induced decrease of leaf area index (42-43). 276 

The subseasonal vegetation-climate feedback can certainly contribute to the performance of SIF 277 

RCI as a drought predictor. More concrete identification of the processes and mechanisms 278 

underlying this predictive relationship requires further research beyond the scope of the present 279 

study.       280 

The finding that the GPP or ET trajectories are not as effective or sensitive as the SIF 281 

trajectory in reflecting drought development warrants further discussion. In the real world, both 282 

GPP and ET over vegetated land are closely related to stomatal conductance and plant 283 

photosynthesis (therefore SIF). However, from the technical perspective, GPP and ET cannot be 284 

directly measured through remote sensing. Instead, they were derived from MODIS using 285 

equations that involved remote sensing of photosynthetically active radiation and/or vegetation 286 

greenness index as well as meteorological data from reanalysis (44-45), all of which could be 287 

sources of uncertainty. At the process level, although drought-induced stress may cause stomatal 288 

closure (which tends to reduce ET and increase canopy temperature), the large vapor pressure 289 

deficit (whether dynamically induced due to subsidence or thermally induced by high temperature) 290 

increases the atmospheric evaporative demand (which tends to accelerate ET).  Due to these 291 

competing effects, ET may increase or decrease at the early stage of drought development (46) 292 

and therefore cannot serve as a reliable drought predictor. 293 

SIF RCI as an early warning for flash drought has some intrinsic advantages and 294 

limitations. Relying on the response of plant photosynthetic activities, SIF RCI is applicable over 295 
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vegetated land only, and may be more effective in grasslands and croplands than in forests, due to 296 

disparity in SIF’s ability to track plant photosynthesis in different ecosystems (17, 25, 47). While 297 

this is a limitation, it also makes the index highly relevant for agriculture (including rangelands, 298 

pasture, and cropland), the sector most influenced by flash droughts. Herbicides and pests may 299 

cause a localized short-lived signal of negative RCI, but such a signal should be easy to distinguish 300 

from a flash drought signal (which is typically over a large scale for multiple weeks). The global 301 

availability of spaceborne SIF data is a major advantage, especially for regions where the lack of 302 

sufficiently accurate meteorological data limits the accuracy of other drought warning tools. The 303 

downscaled corrected GOME-2 SIF dataset used, available for the 2007-2018 period, compared 304 

remarkably well with SIF data from the Sentinel-5 Precursor Tropospheric Monitoring Instrument 305 

(TROPOMI) during their overlapping period, 2018 (36). It can therefore be used as the historical 306 

archive for the TROPOMI SIF data to facilitate the derivation of SIF RCI in real time. With its 307 

long lead time and direct relevance to agriculture, SIF RCI can support the development of a 308 

globally accessible early warning system for flash droughts. 309 

 310 

Materials and Methods 311 

In this study, we assessed the temporal dynamics of vegetation functioning prior to and 312 

during the 2012 and 2017 U.S. droughts based on data derived from satellite remote sensing. These 313 

include the 8-day GOME-2 SIF data downscaled from 0.5° to 0.05° to better capture the spatial 314 

heterogeneity of ecosystem activities (35-37), and the gap-filled 8-day composite data from 315 

MODIS/Terra on ET (MOD16A2GF) and GPP (MOD17A2HGF) at 500-meter spatial resolution 316 

(available at https://lpdaacsvc.cr.usgs.gov). The ET and GPP data are available for 2000-2019, and 317 

the GOME-2 SIF data are available for 2007-2018. In addition to ET, we also analyzed other 318 

hydrometeorological variables relevant to drought development, including precipitation, 319 

temperature, VPD, and short-term drought blend from the GridMET dataset (38), which has a daily 320 

time step and 4-km spatial resolution.  321 

Our study used the USDM as the drought metric to characterize the 2012 and 2017 flash 322 

droughts. The USDM map shows the weekly updated location and intensity of drought using a 323 

five-category system: abnormally dry (D0), moderate drought (D1), severe drought (D2), extreme 324 

drought (D3), and exceptional drought (D4). Based on weighted averaging of a large number of 325 



12 
 

indicators (including Palmer Drought Severity Index, soil moisture index, streamflow index, and 326 

Standardized Precipitation Index), USDM can account for all types of and all aspects of droughts. 327 

Results from our SIF trajectory analyses were compared against USDM to identify the lead time 328 

for the SIF-derived drought early warning index. 329 

To quantify how much the temporal change rate of SIF deviated from its climatological 330 

mean, we took the RCI formulation of Otkin et al. (3), and applied the RCI approach to the 8-day 331 

GOMES-2 SIF data. For comparison with the SIF RCI, we also conducted the RCI analysis for 332 

two other satellite-derived variables related to vegetation functioning, the 8-day GPP and ET from 333 

MODIS, to assess how different sensors may vary in capturing the temporal dynamics of 334 

photosynthesis. For convenience, the following description refers to the 8-day period as a “week.”  335 

The RCI estimation involves two steps. First, the standardized anomalies of the temporal 336 

change rate of SIF are calculated as: 337 

 338 

∆𝑉𝑉(𝑤𝑤1,𝑤𝑤2,𝑦𝑦) =
[𝑉𝑉(𝑤𝑤2,𝑦𝑦) − 𝑉𝑉(𝑤𝑤1,𝑦𝑦)]− 1

𝑁𝑁∑ [𝑉𝑉(𝑤𝑤2,𝑦𝑦) − 𝑉𝑉(𝑤𝑤1,𝑦𝑦)]𝑁𝑁
𝑦𝑦=1

𝜎𝜎(𝑤𝑤1,𝑤𝑤2)
 339 

 340 

Where V(w, y) is the SIF composite for week w and year y. On the right-hand side of the equation, 341 

the second term in the numerator defines the climatological mean of the rate of change between 342 

weeks w1 and w2 over N years, and the denominator is its standard deviation for the corresponding 343 

time, respectively. A negative ΔV represents a slower-than-usual increase or faster-than-usual 344 

decrease of SIF, while a positive ΔV indicates a faster-than-usual increase or slower-than-usual 345 

decrease of SIF. 346 

An anomalous weather pattern can persist for multiple weeks and cause drought 347 

development or recovery. Therefore, the response of vegetation functioning and moisture stress 348 

can be seen through unusual rate of change over an extended period. The second step of the RCI 349 

calculation involves the time accumulation of ΔV (Otkin et al., 2014):   350 

   𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − �𝑎𝑎𝑎𝑎𝑎𝑎(∆𝑉𝑉)− 0.75                  𝑖𝑖𝑖𝑖 ∆𝑉𝑉 < −0.75 351 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + �𝑎𝑎𝑎𝑎𝑎𝑎(∆𝑉𝑉) − 0.75                      𝑖𝑖𝑖𝑖 ∆𝑉𝑉 > 0.75 352 

 353 
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Here, RCIprev is the RCI value from the previous week.  RCI as formulated above represents the 354 

temporal accumulation of excess ΔV above the set threshold of 0.75 (3, 48). The RCI value remains 355 

unchanged if ∆𝑉𝑉 is of the same sign as in the previous week but its magnitude does not exceed the 356 

set threshold of 0.75, and is reset to zero if ∆𝑉𝑉 changes sign from the previous week.  357 

During the growing season, a large negative value of RCI indicates an upcoming drought 358 

onset, and a large positive value of RCI indicates an upcoming recovery from drought. RCI is 359 

designed to capture temporal dynamics, but does not directly reflect the magnitude or intensity of 360 

the drought after its onset. For example, RCI would be close to zero after the onset and before the 361 

beginning of the recovery of a long persistent drought. As a monitoring measure for drought 362 

intensity (as opposed to early warning), the standardized anomalies of several relevant variables 363 

were also analyzed, including SIF, GPP, ET, temperature, precipitation, and VPD. To facilitate 364 

comparison, all data at different spatiotemporal resolutions were first aggregated to a common 0.5-365 

degree and monthly resolution. Standardized anomalies were then estimated as the anomalies 366 

(deviation of the monthly data from the climatological mean of that month) divided by the 367 

corresponding standard deviation to remove the impact of seasonality.   368 

To examine the robustness of SIF RCI as an early warning index, we expanded our analysis 369 

to include the full range of hydro-meteorological conditions. Instead of using the operational 370 

USDM data, which focus on dry extremes, we used the short-term blend of drought indicators 371 

from gridMET, which ranges from dry to wet. Here we chose the strongest SIF RCI signal (positive 372 

or negative) during May-June of each year, and related that to two types of benchmark during the 373 

peak growing season, July-August. One was the maximum SIF value as a metric for ecosystem 374 

productivity, and one was the short-term drought blend from GridMET as a metric for water 375 

availability. The short-term blend in some years showed strong temporal dynamics due to multiple 376 

short-duration events. To identify the most “relevant” event in each year, we chose the lowest 377 

(highest) short-term blend during July-August if the strongest SIF RCI signal during May-June is 378 

negative (positive). We assessed the relationships between the predictor (strongest SIF RCI signal) 379 

and the predictands (two benchmarks) over two 5°x5°sample areas that were hit hard by the 2012 380 

and 2017 flash droughts, respectively, one in Midwest (35-40°N, 95-100°W) and one in Northern 381 

Great Plains (45-50°N, 100-105°W).  382 

Since an individual drought event may influence a large area, data from different grid cells 383 

within each sample area are not independent. Lumping data from all grid cells in the correlation 384 
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analysis (e.g., in Supplementary Figure S7) would overestimate the degree of freedom (therefore 385 

the statistical significance of the correlation). To address this uncertainty, we used the spatial 386 

averages of the data across each sample area to derive the least squares linear regression lines and 387 

the Pearson correlation coefficients (Figure 6). The spatial variability within each sample area (as 388 

reflected by the error bars around each data point in Figure 6) is heavily influenced by the size of 389 

the sample area and is therefore not intrinsic to the relationships analyzed here.  390 

 391 
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Figure Legend 527 

Figure 1: The 8-day SIF RCI values during April-August 2012. Negative values indicate slower-528 

than-usual increase or faster-than-usual decrease of SIF, while positive values indicate faster-than-529 

usual increase or slower-than-usual decrease of SIF.  530 

Figure 2: The 8-day time series of spatially averaged SIF during A) 2012 and B) 2017, in 531 

comparison with climatology, for a 5°x5° sample region in Midwest (35-40°N, 95-100°W) and 532 

Northern Great Plains (45-50°N, 100-105°W), respectively.   533 

Figure 3: Standardized anomalies of monthly SIF, GPP, temperature, precipitation, and 534 

evapotranspiration prior to and during the 2012 drought. 535 

Figure 4: The 8-day SIF RCI values during April-August 2017. Negative values indicate slower-536 

than-usual increase or faster-than-usual decrease of SIF, while positive values indicate faster-than-537 

usual increase or slower-than-usual decrease of SIF. 538 

Figure 5: Standardized anomalies of monthly SIF, GPP, temperature, precipitation, and 539 

evapotranspiration prior to and during the 2017 drought. 540 

Figure 6: Scatter plot between the maximum signal of SIF-RCI during May-June and two 541 

benchmarks during July-August: the short-term drought blend (A, B) and maximum SIF (C, D), 542 

spatially averaged over a 5°x5° sample region in the Northern Great Plains (45-50°N, 100-543 

105°W) and in the Midwest (35-40°N, 95-100°W) respectively; error bars indicate the spatial 544 

variability within the sample area. The maximum RCI signal refers to the RCI value (positive or 545 

negative) whose magnitude is the largest among all values during May-June of each year. Also 546 

shown are the linear regression lines with (solid) and without (dashed) the extreme drought 547 

(marked with a red circle). The blue circle (in B) marks the false alarm case for RCI-based 548 

drought early warning. All correlations are statistically significant. 549 

 550 
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Figures 554 

 555 
Figure 1: The 8-day SIF RCI values during April-August 2012. Negative values indicate slower-556 

than-usual increase or faster-than-usual decrease of SIF, while positive values indicate faster-than-557 

usual increase or slower-than-usual decrease of SIF.   558 
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 560 

 561 

 562 

Figure 2: The 8-day time series of spatially averaged SIF during A) 2012 and B) 2017, in 563 

comparison with climatology, for a 5°x5° sample region in Midwest (35-40°N, 95-100°W) and 564 

Northern Great Plains (45-50°N, 100-105°W), respectively.   565 
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 567 
 568 

Figure 3: Standardized anomalies of monthly SIF, GPP, temperature, precipitation, and 569 

evapotranspiration prior to and during the 2012 drought. 570 
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 572 

 573 

Figure 4: The 8-day SIF RCI values during April-August 2017. Negative values indicate slower-574 

than-usual increase or faster-than-usual decrease of SIF, while positive values indicate faster-than-575 

usual increase or slower-than-usual decrease of SIF. 576 
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 578 
 579 

Figure 5: Standardized anomalies of monthly SIF, GPP, temperature, precipitation, and 580 

evapotranspiration prior to and during the 2017 drought. 581 
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 583 

Figure 6: Scatter plot between the maximum signal of SIF-RCI during May-June and two 584 

benchmarks during July-August: the short-term drought blend (A, B) and maximum SIF (C, D), 585 

spatially averaged over a 5°x5° sample region in the Northern Great Plains (45-50°N, 100-586 

105°W) and in the Midwest (35-40°N, 95-100°W) respectively; error bars indicate the spatial 587 

variability within the sample area. The maximum RCI signal refers to the RCI value (positive or 588 

negative) whose magnitude is the largest among all values during May-June of each year. Also 589 

shown are the linear regression lines with (solid) and without (dashed) the extreme drought 590 

(marked with a red circle). The blue circle (in B) marks the false alarm case for RCI-based 591 

drought early warning. All correlations are statistically significant. 592 


