
An In-depth Analysis of Duplicated Linux Kernel

Bug Reports

∗Dongliang Mu, ‡Yuhang Wu, ‡Yueqi Chen, ‡Zhenpeng Lin, §Chensheng Yu
¶‡Xinyu Xing, †Gang Wang

∗School of Cyber Science and Engineering, Huazhong University of Science and Technology
†University of Illinois at Urbana-Champaign Urbana §George Washington University

‡The Pennsylvania State University ¶Northwestern University

dzm91@hust.edu.cn, {yuhang, ycx431, zplin}@psu.edu, i@shiki7.me,

xinyu.xing@northwestern.edu, gangw@illinois.edu

AbstractÐIn the past three years, the continuous fuzzing
projects Syzkaller and Syzbot have achieved great success in
detecting kernel vulnerabilities, finding more kernel bugs than
those found in the past 20 years. However, a side effect of
continuous fuzzing is that it generates an excessive number of
crash reports, many of which are ªduplicatedº reports caused
by the same bug. While Syzbot uses a simple heuristic to group
(deduplicate) reports, we find that it is often inaccurate. In this
paper, we empirically analyze the duplicated kernel bug reports
to understand: (1) the prevalence of duplication; (2) the potential
costs introduced by duplication; and (3) the key causes behind the
duplication problem. We collected all of the fixed kernel bugs from
September 2017 to November 2020, including 3.24 million crash
reports grouped by Syzbot under 2,526 bug reports (identified
by unique bug titles). We found the bug reports indeed had
duplication: 47.1% of the 2,526 bug reports are duplicated with
one or more other reports. By analyzing the metadata of these
reports, we found undetected duplication introduced extra costs
in terms of time and developer efforts. Then we organized Linux
kernel experts to analyze a sample of duplicated bugs (375 bug
reports, unique 120 bugs) and identified 6 key contributing factors
to the duplication. Based on these empirical findings, we proposed
and prototyped actionable strategies for bug deduplication. After
confirming their effectiveness using a ground-truth dataset, we
further applied our methods and identified previously unknown
duplication cases among open bugs.

I. INTRODUCTION

Kernel is the most important software component of an
operating system (OS), the security of which determines the
security of the entire OS and user applications. Vulnerabilities
in kernel programs are often considered to be more severe
than those in user programs [26]. Due to the high privilege of
kernel programs, they have been an attractive target of major
attacks, with well-known examples such as WannaCry [11],
DirtyCow [8], and BleedingTooth [13].

To proactively detect and patch kernel vulnerabilities, the
security community has investigated significant efforts. These

efforts include both developing more advanced fuzzing tools
to detect new vulnerabilities [4], [67], [51] and organizing
security analysts and kernel developers to analyze the reported
bugs and develop patches.

The progress of kernel bug detection has been slow in
the past 20 years until recently when Google initialized
Syzkaller [73] and Syzbot [74] projects in 2016. These are
open-source projects that automatically and continuously fuzz
main Linux kernel branches to find bugs. In addition to the ad-
vanced fuzzing techniques (Syzkaller), another key advantage
is that the system (Syzbot) produces standard crash reports and
structured information fields (e.g., vulnerable kernel versions,
kennel configurations), which makes it easier for security
analysts to reproduce bugs and analyze root causes. These
efforts have been vastly successful. As of November 2020,
the system has found 3,736 kernel bugs in just three years,
which is more than the total number of kernel bugs identified
in the past 20 years before Syzkaller [31].

Bug Report Duplication Problem. While continual fuzzing
of Syzbot has significantly improved the efficiency of kernel
bug discovery, it also produces an excessive amount of crash
reports. In the past three years, Syzbot has generated over
10 million crash reports, the vast majority of which are
ªduplicatedº, meaning that the crashes are triggered by the
same bugs. Considering that security analysts need to manually
analyze these reports to assess the severity of the bug and
pinpoint the root cause, it is highly desirable to group the crash
reports caused by the same bug together. Currently, Syzbot
relies on a simple heuristic to perform deduplication: if the
crashes share the same crash function and crash type, then
they will be grouped under the same bug report, sharing the
same bug title.

Unfortunately, this heuristic-based deduplication method
is not accurate. Anecdotally on Syzbot dashboard, we have
observed that certain crash reports caused by the same bug
were not successfully grouped together (because they have
different crash functions or crash types). As a result, the bug
reports about the same bug were treated as new (different)
bugs, and then were assigned to different analysts. On one
hand, multiple groups of analysts working on the same bug
in parallel without communicating with each other leads to
inefficiency (i.e., redundant manual effort). On the other hand,

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24159
www.ndss-symposium.org



a limited view of the diverse bug behaviors of the same bug
may lead to incomplete patches [21].

Goals and Approaches. In this paper, we empirically analyze
the duplicated kernel bug reports from Syzbot. We define
duplicated bug reports as those that share the same root cause.
Our goal is to understand: (1) the prevalence of duplication;
(2) potential costs introduced by duplication; and (3) the
causing factors to the report duplication. Based on the insights
obtained from the empirical analysis, we further explore low-
cost solutions for bug deduplication.

A key challenge in our study is to obtain the ªground-truthº
for bug report duplication. While this challenge is difficult
to resolve for open bugs that are currently being analyzed
by developers, we could group bugs that are already fixed.
The idea is to link bug reports based on their ªpatchesº Ð
if multiple bug reports are fixed/closed by the same patch,
these bugs are highly likely to be the same bug. After this
initial grouping, we then manually analyze the bugs to confirm
duplication based on root causes. In this work, we have
collected all of the fixed kernel bugs reported on Syzbot from
September 2017 to November 2020. This includes 2,526 bug
reports and over 3.24 million crash reports. Based on their
patches, we group these bug reports into 1,686 unique kernel
bug groups. Out of the 2,526 bug reports, 1,191 (47.1%) are
duplicated with one or more other reports.

We answer the first two questions by analyzing the ground-
truth bug groups. We observe that kernel bugs already take a
long time to fix, even without duplication (the median open
time is 70 days). Bug groups with duplication take an even
longer time to close. Even after the first bug in the group is
fixed, the other duplicated bugs will remain open for extra
time, consuming valuable resources (e.g., developers’ time).
Also, not too surprisingly, bug groups with duplication involve
more developers in the bug fixing process.

To answer the third question, the most effective approach is
to manually analyze these kernel bugs. To ensure the reliability
of results, we have organized security experts and developed
rigorous analysis procedures (including peer-reviews). We se-
lect 120 bug groups that Syzbot failed to detect the duplication
(120/351 = 34.2%). Under the guidance of an approved IRB
protocol, 5 Linux kernel experts are organized to set up the
environments, reproduce the reported bugs, and analyze the
code changes and the developer’s notes to figure out the
causes of bug duplication. In total, we collectively identify
6 main contributing factors include different inputs, thread
interleaving, memory dynamics, kernel versions and branches,
different sanitizers, and inline function.

Based on the empirical findings, we propose and proto-
type five actionable strategies for bug deduplication during
reporting time. For instance, we enhance the existing memory
quarantine mechanism and replace the slab allocator with the
slub allocator in the tested kernel to eliminate the influence
of memory layout dynamics. Then we swap and run the
PoC programs from potentially duplicated bug reports to
observe their behaviors (i.e., mitigating the influence of kernel
implementation and function inline). We inject delay to the
kernel source code and run the PoC programs multiple times
to fully expose the possible thread interleaving. To rule out
the influence of different sanitizers, we run the PoC programs

with the same sanitizer configuration. Finally, we compute the
similarity of PoC programs using a customized Levenshtein
distance to handle the different behaviors caused by input
differences.

We evaluate these strategies with our ground-truth dataset
and show that they can effectively identify duplicated bug
report pairs, with a true positive rate of 80% and a false
positive rate of 0.01%. Among the proposed techniques, the
technique that handles ªdifferent inputsº is the only source of
false positives, and the other four techniques are false-positive-
free by design. We further apply our techniques to the real-
world open bugs and confirm that they can identify previously
unknown bug duplication cases. From both fixed and open
bugs, we have found cases where the developers were misled
to produce incomplete patches due to a limited view of the
diverse bug behaviors.

Contributions. In summary, we have three key contributions:

• First, we empirically analyze duplicated reports of Linux
kernel bugs, and identify the limitations of existing dedupli-
cation heuristics. We show that the undetected duplication
introduces extra costs (time and developer efforts) and even
produces incorrect patches.

• Second, we organize Linux kernel experts to perform an in-
depth analysis of duplicated bug reports. We identify six key
contributing factors to duplication.

• Third, we propose and prototype a series of strategies to
alleviate the bug duplication problem. We evaluate them
against both ground-truth data and current open bugs to
demonstrate their effectiveness. To facilitate future works,
we will release our code and dataset with this paper.

Our work provides new insights into the causing factors
of kernel bug deduplication, and introduces an initial solution.
We have shared our results and findings with the Syzkaller
and Syzbot teams (and some kernel developers), and have
received positive feedback. In the end of the paper, we discuss
the open challenges to kernel bug deduplication. We believe
further research is needed in order to fully address the problem.

II. BACKGROUND AND MOTIVATION

In this section, we describe the background of kernel
fuzzing and bug reports, and introduce Syzkaller and Syzbot.
Then we describe our problem setup and research goals.

Syzkaller: Kernel Fuzzing to Detect Bugs. To harden the
security of kernel programs, the security community has de-
veloped fuzzing tools to discover kernel bugs [73], [4], [67],
[51]. Among existing fuzzers, Syzkaller [73] is by far the
most successful efforts in practice. Syzkaller is an open-source
project initiated by Google in 2016 (popularized in 2017). As
of November 2020, Syzkaller has found 3,736 kernel bugs
(2,526 of them are now patched) in just three years, which
is more than the total number of kernel bugs identified in the
past 20 years before Syzkaller [31].

Syzkaller has several advanced designs. First, it leverages
a declarative description of syscall interface to manipulate
programs (sequences of syscalls), and uses code coverage
feedback as guidance to explore all the kernel code space.
Second, syzkaller leverages the fault injection mechanism [3]

2



in Linux kernel to inject failures (e.g., allocation failures) into
the runtime execution of system calls. After a kernel bug
is found, Syzkaller will try to generate (and minimize) syz
and C reproducers. Finally, Syzkaller coordinates with many
different sanitizers (e.g., KASAN [68], [6], KMSAN [70], [7],
KCSAN [12], KUBSAN [17]), kernel detection mechanisms
(e.g., KMEMLEAK [5], ODEBUG [10]) and other pre-defined
assertions (e.g., BUG ON, WARN ON) to detect kernel vul-
nerabilities at runtime. These detection tools allow syzkaller
to expose all mainstream security bugs such as memory error
bugs (e.g., Memory Leak, Null Pointer Dereference, Use-
After-Free (UAF), pre-defined assertion (e.g., WARN, BUG),
deadlocks and concurrency bugs. Therefore, Syzkaller can
cover a highly diverse set of bugs and bug types.

Syzbot: Continuous Kernel Fuzzing and Reporting. For
a long time (before Syzkaller), running kernel fuzzers and
reporting bugs have been almost exclusively manual efforts.
The lack of automation and bug reporting standards has created
significant difficulty in bug reproduction and patching [61].
To automate bug discovery and reporting, the Syzkaller team
further developed a continuous fuzzing system for kernel
programs called Syzbot [74]. Syzbot system continuously
and automatically updates and fuzzes main Linux kernel
branches (e.g., upstream, linux-stable) with different Syzkaller
instances. Once bugs are found, they will be automatically
reported to corresponding kernel developers with standardized
information (e.g., crash reports). Analysts from the kernel
community will first analyze the bug (manually) to confirm
its validity. Then kernel developers will analyze the root cause
of the bug, and develop a patch to fix the bug.

To facilitate bug analysis and information sharing, Syzbot
provides an open forum (called ªSyzbot dashboardº) to list
and keep track of the reported kernel bugs. Each bug has its
own web page that contains key information about the bug,
such as the vulnerable kernel versions, the kernel configuration
file, the Syzkaller repositories, reproducer (syz repro or C
repro). Both syz repro and C repro are PoC (Proof-of-Concept)
files to reproduce the crash. The configuration file shows
which sanitizers are enabled in the corresponding kernel crash.
Finally, it is worth noticing that fixed bugs all have a ªFix
commitº which is the kernel commit (patch) that has fixed the
underlying bug.

A key side effect of continuous fuzzing is it generates
a large number of inputs to trigger bugs, which produces
an excessive number of crash reports. In recent three years,
Syzbot has produced over 10 million crash reports, many
of which were actually triggered by the same bug. Such a
duplication level could negatively impact the efficiency of
kernel developers who need to analyze the reported bugs
manually. Currently, Syzbot follows a simple heuristic to group
(or deduplicate) crash reports. If the crashes appear at the
same function and share the same crash type, then these crash
reports will be grouped together, under the same bug title. For
example, under the bug title ªKASAN: use-after-free

Read in map_lookup_elemº, all the crash reports share
the same crash function (i.e., map_lookup_elem) and the
crash type (i.e., ªKASAN: use-after-free Readº).

Limitations of the Current Deduplication Method. The
current deduplication method is coarse-grained and error-

prone. Anecdotally on Syzbot dashboard, we observed certain
crash reports caused by the same bug were not successfully
grouped under the same bug titles. Instead, they are treated
as distinct bugs and are assigned to different analysts. Such
ªduplicatedº open bugs lead to concerning problems. First,
multiple groups of analysts working on the same bug in parallel
without communicating is an inefficient way of using the
analysts’ time. Second, once one of the duplicated bugs is
fixed, there will be extra delays to close other bugs that share
the same root causes (i.e., wasting analysts’ time if they keep
working on them). Third, without grouping these bugs, analysts
do not have the complete view of the bug behaviors, which can
lead to incomplete and incorrect patches. We discovered real
cases which will be presented later.

For these reasons, we want to empirically understand the
bug report duplication problem on Syzbot, and answer the
following questions. First, how prevalent is bug report duplica-
tion on Syzbot? Does duplication indeed introduce extra costs
to analyzing and patching the bug (Section III±IV)? Second,
what are the main causes to the report duplcation (Section V)?
Third, how can we effectively deduplicate kernel bug reports
(Section VI)?

III. METHODOLOGY AND DATASET

In this section, we first define our problem scope and then
describe the collected dataset to measure the prevalence of
bug report duplication. Finally, we describe our workflow to
identify the causes of the duplication.

A. Method Overview

Definition of the Root Cause of a Bug. The root cause of
a bug is defined as the faulty code leading the Linux kernel
into an abnormal state. Take the kernel bug #bbeb6e43 [24]
as an example. The root cause of this bug is in the function
array_map_alloc. If the attr->max_entries field goes be-
yond a threshold (i.e., 0xfffffffd), an integer overflow will
occur in the variable array_size, causing array_map_alloc to
allocate an oversized buffer. The oversized buffer eventually
leads to a general page fault (GPF) or an Out-of-Bound (OOB)
memory access.

Definition of Unique Bug. A bug is uniquely defined by its
root cause. In other words, if multiple crash reports share the
same root cause, then we define them as duplicated reports. At
the high level, our idea is to collect historical crash reports of
Linux kernels and link reports that share the same root cause
(i.e., reports of the same bug). Based on the linked reports, we
develop an analysis procedure to systematically examine the
reasons for duplication.

We first define the key terms used in this paper. In Figure 10
in the Appendix, we use an example to show the hierarchical
relationships between bug groups, bug titles, and crash reports.
When Syzbot reports a crash, it automatically generates a
bug title formed by a crash function and crash type. For
example, the title ªUBSAN: shift-out-of-bounds in

mceusb_dev_recvº means the crash happens on func-
tion ªmceusb_dev_recvº and the crash type is ªUBSAN:
shift-out-of-boundsº. Under continuous fuzzing, it is
common for the same bug to be triggered multiple times since

3



a bug would remain unfixed a certain amount of time. Syzbot
currently groups these crash reports under the same bug title.
In the example of Figure 10, Bug Title B has N crash reports
under the same title.

As mentioned before, grouping crash reports using crash
function and crash type is often inaccurate, because the same
bug may exhibit different crash behaviors (i.e., with different
crash functions or crash types). In the example of Figure 10,
Bug Titles A, B, C are in fact triggered by the same bug and
thus should have been grouped under the same bug group.
Here, the bug group represents the ªground-truthº unique bug.

B. Problem Scope

The current crash deduplication method is coarse-grained
and error-prone, manifesting two undesired outcomes: 1) false
positives (FP)Ðbug reports with different root causes, grouped
into the same title; and 2) false negatives (FN)Ðbug reports
with the same root cause are not grouped under the same title.

By design, Syzbot can handle the false positive problem.
Given a false positive case (i.e., bug reports with different
root causes, grouped into the same title), kernel developers
may only fix one of them during their first attempt, leaving
the others unfixed. However, as a continuous fuzzing system,
Syzbot will continue to fuzz the patched version and keep
filing crash reports for the unfixed bugs. According to Syzbot
developers [16], the fact that the new crash reports have the
same title as the fixed one is an indication that there are other
bugs unfixed, and thus developers will continue to work on
it. To this end, the falsely grouped bugs will not be missed1.
For this reason, our paper will focus on ªfalse negativeº cases
(i.e., bug report duplication), which can lead to duplicated
effort by kernel developers and reduced efficiency.

Furthermore, we also do not consider the case where one
crash reported by Syzkaller is triggered by multiple bugs.
In practice, this situation is extremely rare. To have a crash
tied to multiple bugs, two conditions must be satisfied: 1) the
input to trigger multiple bugs need to be carefully crafted; 2)
no sanitizers nor internal detection mechanisms are enabled
during the fuzzing process, which will allow an error state
to propagate sufficiently far away from the bug-triggering site.
However, Syzkaller generates random inputs based on the code
coverage feedback during kernel fuzzing, and it enables all
kinds of detection mechanisms mentioned in Section II to find
the bug at its first appearance. As such, it is safe to rule out
such cases.

Challenges. Our first challenge is to link and verify duplicated
reports for the same bug to establish ªground-truthº. Second,
to understand the reasons behind the report duplication, we
need to extensively analyze the crash behaviors (for different
kernel subsystems). This process, unfortunately, is difficult to
fully automate and is time-consuming. Third, even for manual
analysis, kernel bug analysis requires a high level of domain

1As a concrete example, ªmemory leak in hub eventº [14] contains multiple
memory leak bugs in different kernel drivers, grouped under the same bug title.
After Syzbot assigns the patch for one of the bugs, we observe that Syzbot
still continues to generate this bug report [15] during fuzzing since not all
bugs are fixed.

Category Crash Reports Bug Titles GT Bug Groups

Fixed Bugs 3,243,946 2,526 1,686
Duplicated 803,206 1,191 351
Sampled 90,519 375 120

TABLE I: Dataset overview. ªGT Bug Groupº refers to the
number of ground-truth bug groups.

expertise. As such, it is difficult to simply crowdsource the
analytic tasks (e.g., via Amazon Mechanical Turk).

Approaches. With these challenges in mind, we consider the
following strategies. First, instead of analyzing the ªopenº
bugs, we focus on the historical kernel bugs that have been
patched by developers. By analyzing these patches, we can
potentially, in turn, link the bug reports caused by the same
bug (that were not successfully grouped during reporting).
We will further analyze the grouped bug reports manually to
confirm their root causes and establish the ªground-truthº. Sec-
ond, considering the time-consuming nature of bug analysis,
we prioritize the depth of the analysis while maintaining a
reasonable coverage for generalizable results. We randomly
sample a set of bugs that have different crash behaviors (i.e.,
with duplicated reports) and form a focused group of domain
experts to work on deduplication experiments. Based on our
results, we will propose light-weighted solutions to link bug
reports automatically.

C. Kernel Bug Report Dataset

To support our analysis, we collect kernel bug reports from
Syzbot dashboard. Syzbot dashboard provides more complete
and update-to-date bug reports (compared with CVE [1]). More
importantly, Syzbot dashboard has included the necessary
information (e.g., kernel version, kernel configuration, Proof-
of-Concept) needed for bug reproduction (which are often
missing on the CVE site [61]).

On the Syzbot dashboard, there are three main queues for
kernel bugs, namely, ªOpen bugsº, ªFixed bugsº, and ªInvalid
bugsº. As of November 2020, there are 8,071 bugs with more
than 10 million crash reports in total in the three queues. As
we discussed above, only the bugs in ªFixed bugº queue can
be linked to establish the ground-truth for our analysis. The
reason is the fixed bugs contain one additional field called ªFix
commitº which shows the patch that fixes the underlying kernel
bug. Reported crashes that are eventually fixed by the same
patch are highly likely to share the same root cause2 (i.e., the
same bug). In the following, we leverage the patch information
as a proxy to group duplicated bugs, and will further validate
the ground-truth manually in Section V.

Our Dataset. Focusing on ªFixed bugsº, we crawl the entire
queue from Syzbot dashboard. Our dataset summarized in Ta-
ble I covers all the corresponding crash reports from September
24, 2017, to November 11, 2020. In total, there are 3,243,946
crash reports grouped under 2,526 bug titles. As mentioned, the
bug title only groups crash reports based on the crash function
and crash type, which could be highly inaccurate.

2Using the patch to group crash reports is a reliable method except for rare
cases, e.g., the incorrect patch was assigned due to human errors. We will
discuss such rare cases in detail in Appendix-A.

4







Factors Bug Groups Percentage

Different Inputs 55 50.5%
Thread Interleaving 18 16.5%
Memory Dynamics 18 16.5%
Kernel Versions and Branches 14 12.8%
Different Sanitizers 13 11.9%
Inline Function 8 7.3%

TABLE III: The number of bug groups that are affected by
each factor. One bug group could be affected by multiple
factors.

1 int copy_verifier_state(...) {

2 struct bpf_func_state *dst;

3 dst = kzalloc(sizeof(*dst), GFP_KERNEL);

4 if (!dst)

5 return -ENOMEM;

6 return 0;

7 }

8

9 int is_state_visited(...) {

10 struct bpf_verifier_state_list *new_sl;

11 copy_verifier_state(&new_sl->state, cur);

12 // no error handler if allocation fails

13 free_verifier_state(&new_sl->state, false);

14 }

15

16 int push_stack(struct bpf_verifier_env *env,

↪→ ...) {

17 struct bpf_verifier_stack_elem *elem;

18 err = copy_verifier_state(&elem->st, cur);

19 // no error handler if allocation fails

20 pop_stack(env, NULL, NULL);

21 }

TABLE IV: The code snippet showing that injecting allocation
fault at different contexts could cause different bug reporting
results.

have included the PoC files needed for bug reproduction. The
analysis tasks took 5 security analysts about 2,400 man-hours
to finish. On average, each kernel bug took 8 hours to complete
all the proposed steps. Based on our experience, the most time-
consuming part is to understand the root cause and identify the
propagation path of corrupted variables from the root cause to
the crashing site.

Out of those 120 bugs, we successfully reproduced and
identified the root causes for 109 bug groups (see Table II).
The other bugs were not reproducible, and thus we could not
proceed with the rest of the analysis. Also, among the 109
bug groups, we find 5 bug groups for which the Syzkaller
team has incorrectly assigned the patch (see more details in
Appendix-A). Therefore, we use the remaining 104 bug groups
as the final set to report our findings on contributing factors
to duplication.

B. Reasons for Duplication

We identify 6 factors leading to bug report duplication. We
summarize these factors in Table III.

Factor 1: Different Inputs. The first reason for duplicated
bug titles is the input difference. Given a kernel bug and
the corresponding buggy code snippet, there could be various
execution contexts and many different paths towards the buggy
code. Following these paths under different contexts, the bug

1 // Thread A

2 void put_pi_state(... pi_state) {

3 if (atomic_dec_and_test(&pi_state->refcount

↪→ ) {

4 kfree(pi_state);

5 }

6 }

7

8 // Thread B

9 void exit_pi_state_list(... curr) {

10 struct list_head *h = &curr->pi_state_list;

11 struct futex_pi_state pi_state =

↪→ list_first_entry(h);

12 lock(&pi_state->pi_mutex.wait_lock);

13 get_pi_state(pi_state);

14 }

15

16 void get_pi_state(... pi_state) {

17 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state

↪→ ->refcount));

18 }

TABLE V: The code snippet illustrating the difference in
thread interleaving could cause duplicated bug reporting.

might demonstrate different errors and thus lead to different
types of crash reports.

Take the bug #bbeb6e43 [24] and its two reports [33],
[34] as an example. The input programs extracted from the
reports have the exact same sequence of system calls but
one difference in the argument. Both programs could interact
with kernel code and trigger the bug. However, they reach the
buggy code through slightly different execution paths, which
stop the kernel execution at two different kernel functions
and demonstrate different types of kernel errors. As a result,
the crash reports cannot be grouped together by the current
deduplication method.

In addition to the different paths, differences in execution
contexts could also lead to duplicated crash reports. Take,
for example, the kernel code shown in Table IV. The func-
tion copy_verifier_state will throw an error code ENOMEM

↪→ if the allocation function kzalloc fails. Since the buggy
kernel does not handle this error correctly, when the function
copy_verifier_state returns, the kernel will experience a
GPF. Table IV shows that there are two sites calling the
function copy_verifier_state (i.e., line 11 and 18). As
such, when a kernel fuzzer injects the allocation error at
different calling contexts (at the line 11 and 18 respectively),
the kernel reports GPF in different kernel functions (i.e.,
free_verifier_state and pop_stack), resulting in two dif-
ferent crash reports.

Out of the 109 bug groups, we find 55 bug groups (50.5%)
are affected by the input difference (involving 185 distinct bug
titles and 88,456 crash reports). This is the most prevalent
cause of the duplication problem (see Table III).

Factor 2: Thread Interleaving. Linux kernel is an asyn-
chronous system supporting multi-task mechanisms. Incorrect
synchronization (or missing synchronization) between kernel
threads not only introduces concurrency bugs [48], but may
also produce different types of errors (i.e., leading to report
duplication).

7





1 void userfaultfd_event_wait_completion(...)

↪→ {

2 struct userfaultfd_ctx *new;

3 new = (struct userfaultfd_ctx *)

4 ewq->msg.arg.reserved.reserved1;

5 userfaultfd_ctx_put(new);

6 }

7

8 int handle_userfault(...) {

9 struct userfaultfd_ctx *ctx =

10 vmf->vma->vm_userfaultfd_ctx.ctx;

11 BUG_ON(ctx->mm != mm);

12 if (!atomic_inc_not_zero(&ctx->refcount))

13 BUG(); // BUG if KASAN is disabled

14 }

TABLE VII: An example showing that switching on and off
KASAN could result in different error reporting results.

causing errors caught by different sanitizers. If KMSAN [7] is
enabled, using the shadow memory designed specifically for
uninitalization bugs, it catches an uninit-value error immedi-
ately in Line 3 and reports the root cause of the bug. However,
if KASAN [6] is enabled, the kernel will not be aware of this
error but propagate the uninitialized value to its consecutive
execution until the error is amplified as an out-of-bounds read.

Similar to the impact of the aforementioned two factors
± memory dynamics and kernel version issues, we find that
11.9% of the bug groups (with duplication) are affected by
this factor (see Table III).

Factor 6: Inline Function. The ways to compile the kernel
code can also affect the behaviors of bugs. In particular, the
compiler can make an opposite decision regarding whether to
inline a function, which depends on the kernel configurations,
the compiler (GCC or Clang) selection, and the compiler
version. When this happens, we observe that one bug is
triggered in different functions while in fact, they are the same
program site. Our analysis shows that this factor has affected
7.3% of the bug groups we analyzed.

C. Case Study

Through our analysis, we observed interesting cases where
developers were misled to develop incorrect patches due to
their incomplete view of the diverse bug behaviors (as the bug
reports were not correctly linked).

For example, bug #416dacb8 manifests two different
behaviors: KASAN: slab-out-of-bounds Read in

↪→ hidraw_ioctl [39] and KMSAN: use-after-free in

↪→ hidraw_ioctl [40]. The first out-of-bound read behavior
was disclosed earlier. The kernel maintainers mistakenly
thought that the root cause of this bug was the incorrect
output range. Therefore, they developed a patch which limited
the output size of copy_to_user. However, this bug is actually
a use-after-free bug, and it has manifested out-of-bound read
due to Factor-3. More specifically, the freed slot is recycled
to hold another object. The new object is smaller than the
freed object and thus the accessed region becomes a red zone,
misleading KASAN to report an out-of-bound read behavior.
This incorrect patch has been committed (deployed) without
being noticed. At a later time, the developers realized that
the two behaviors were actually associated with the same

1 struct aa_profile *aa_fqlookupn_profile(

2 ..., char *fqname, size_t n) {

3 name = aa_splitn_fqname(fqname, n, ...);

4 }

5

6 char *aa_splitn_fqname(char *fqname, size_t

↪→ n, ...) {

7 char *name = skipn_spaces(fqname, n);

8 if (!name)

9 return NULL;

10 *ns_name = NULL;

11 *ns_len = 0;

12 }

TABLE VIII: An example demonstrating the influence of
different sanitizers upon bug reporting results.

bug [46], and the initial root cause was invalid. This example
illustrates that the limited visibility to diverse bug behaviors
can mislead bug patching.

VI. BUG REPORT DEDUPLICATION

In this section, we provide a set of new strategies to
deduplicate bug reports and prototype these strategies as a
tool. Then, we evaluate this prototype tool and examine its
applicability to real-world open bugs. It should be noted that
our prototype is a straightforward implementation of the pro-
posed strategies. We do not claim our prototype could pinpoint
all duplicated reports. Instead, we use these straightforward
implementations to answer the following three questions. ❶

What kinds of duplicated reports could be effectively and
accurately pinpointed by merely following our strategies and
corresponding implementations? ❷ Compared with commonly
adopted stack similarity algorithms, does our prototype provide
a more accurate detection? ❸ For what kinds of bug reports do
we still need technical improvements for the deduplication? We
hope the answers to these questions could unveil the directions
for future research.

A. Deduplication Strategies

Based on the observations from our manual inspection,
we recommend five additional strategies (in addition to those
that are already integrated into kernel fuzzing) that kernel
developers (or Syzbot) may follow to deduplicate kernel bug
reports.

First, given a bug report that looks different from previ-
ously seen bug reports in terms of the enclosed PoC and/or
crashing stack trace, a kernel developer wants to determine
whether the report is a duplicated copy. This developer can
swap the PoC in their report and rerun it on the version of
kernel specified in other bug reports. In this way, they can
have different PoCs (extracted from different reports) run on
the same kernel versions and thus eliminate their influence
upon bug report deviation.

Second, a kernel developer can stabilize the memory layout
and run the PoC programs under a relatively stable memory
layout. With this, they can expect the violated memory access
always lies in the same memory regions (e.g., allocated and
freed memory spots) and thus minimize the influence of
memory layout dynamics on bug reporting results.

9



Third, a kernel developer should mutate the thread inter-
leaving and run the corresponding PoC multiple times under
different thread interleaving. If the thread interleaving matters
for bug report difference, this could allow a kernel developer
to vary a kernel bug’s panic behaviors, expose all its possible
reports and thus treat these reports as duplicated bug reports
accordingly.

Fourth, recall that a bug report also includes the kernel
setup and configuration for the kernel fuzzing (e.g., the sani-
tizers they enabled). A kernel developer, therefore, should also
replace the kernel fuzzing setup with the setup or configuration
specified in other reports (e.g., disabling KASAN and enabling
KMSAN specified in another report). By doing so, kernel
developers could have the PoC run on the same setup and thus
eliminate the impact of sanitizers upon bug report difference.

Last but not least, a kernel developer can also compare
the PoC program and/or the stack trace with those extracted
from other reports. If the bug report duplication does not result
from other factors but the difference in PoC or the sites where
the kernel faults are injected, the difference between PoCs is
generally less significant when the bug reports reference the
same kernel bug.

B. Deduplication Tool

Following the strategies mentioned above, we propose a
unified tool to facilitate bug report deduplication. The tool
takes a pair of kernel bug reports as input, and passes them
to five distinct technical components. For each component, it
determines whether the pair of reports are duplicated because
of the corresponding factor. We present each of the technical
components below.

Different Sanitizers. Given a pair of bug reports, the first
component examines whether the reports are duplicated be-
cause of the utilization of different sanitizers (e.g., KASAN
and KMSAN). To do so, we first examine the sanitizers
involved in each report. If there is only one report that indicates
the utilization of a sanitizer (e.g., KASAN or KMSAN)
during the kernel fuzzing, our configuration simply disables
the sanitizer on the corresponding kernel specified in the
report. Then, we re-run the corresponding PoC attached in
that report and observe whether the sanitizer-disabled kernel
still experiences unexpected termination while it takes as input
the PoC program. If an unexpected kernel panic still occurs
and the kernel panic is as same as the one observed on the
other kernel report (i.e., the same crashing trace), we argue
the report difference is contributed by the enabled sanitizer.
Thus, we conclude the two reports reference the same kernel
bug.

If both reports indicate the usage of a sanitizer but the
sanitizers-in-use are different (e.g., one uses KASAN and the
other uses KMSAN), we perform the following operation.
First, we take one report as our reference and configure the
kernel based on the information in this reference report. Mean-
while, we disable the corresponding sanitizer of the reference
report and enable the sanitizer specified in the other report.
After this configuration and setup, we re-run the PoC program
attached to the reference report on the reference kernel and
inspect whether the kernel panic still manifests. If unexpected
kernel panics still exist and the observed panic is as same as the

one demonstrated in the report, we conclude both reports link
to the same kernel bug. It is simply because, after having both
kernels enable the same sanitizer, we eliminate the influence
of ªsanitizer differenceº. If the unexpected panic becomes
identical, the two reports are just two different exhibitions of
the same bug.

Note that when we switch the reference kernel’s sanitizer
to the one specified in the other report, it is possible that the
new sanitizer is not compatible with the version of the kernel
specified in the reference report. For example, KMSAN was
introduced only after kernel version 4.4, and it does not support
an earlier version of the reference kernel. Moreover, KMSAN
is maintained in another GitHub repository. To address this
issue, we take an alternative approach that disables sanitizers
on both kernels and re-runs the corresponding PoC on both
sanitizer-disabled kernels. If the unexpected kernel panic still
occurs and the crashing reports indicate the same termination
behaviors, we conclude both reports reference the same kernel
bug.

Memory Dynamics. To offset the influence of memory layout
dynamics upon bug report duplication, we not only enhance
an existing memory quarantine mechanism but also replace the
slab allocator with the slub allocator. Under these two changes,
we can minimize the memory layout dynamics. Further, by re-
running the PoC programs from different reports, if the new
reporting results are the same, we can safely conclude the bug
reports are duplicated.

Linux community has implemented a memory quarantine
mechanism [9] in both SLAB and SLUB allocators. Its basic
idea is to put freed objects in a separate queue and delay
their reallocation. Using this mechanism, when a dangling
pointer touches a memory region, the kernel can ensure that
memory will have a lower chance of being recycled too
quickly. As such, the quarantine mechanism could prevent a
use-after-free bug exhibiting an out-of-bound activity and thus
minimize the impact of memory layout dynamics. However,
our manual analysis discovers, even if many Linux kernel
distros have adopted this mechanism, memory dynamics still
greatly contribute to the report duplication issue.

In this work, we take a closer look at the reason behind
the quarantine’s incompetency, and discover that the problems
roots in the insufficient space of the separate queue. When the
extracted PoC program performs race conditions, it usually
allocates and deallocates many kernel objects. These freed
objects could quickly push the quarantined memory space out
of the queue and put them back into recycling. As such, the
same bug could be reported differently, resulting in report
duplication (e.g., sometimes reported as use-after-free and
sometimes as out-of-bound access). To address this problem,
we double the size of the quarantine queue and insert sleep
operations after each race iteration. In this way, we not only
leave sufficient space for freed objects but also prevent the
race from exhausting the queue too quickly.

In addition to improving the memory quarantine mecha-
nism, we also replace the slab allocator with the slub allocator.
Based on our observations in Section V, we note that both the
size of the redzone and that of the kernel cache contribute
to the difference in reporting results. Given slab allocators,
the KASAN introduces only a relatively small memory space

10



for the redzone. Therefore, some out-of-bound kernel bugs
could jump over the redzone region, touch non-deterministic
memory regions, and thus report the post-triggering activities
differently. In addition, when the slab allocator is in use, out-
of-bounds memory access could more easily cross the cache

boundary, touching a cache totally irrelevant to the bug, and
thus come up with different reporting results.

By replacing the slab allocator with the slub allocator,
we can minimize the impact of redzone and the cache upon
reporting difference. This is because the size of redzone for
each slot in SLUB allocator is larger than that in SLAB
allocator. Following this setup, out-of-bounds memory access
is more likely to fall in the redzone. Another reason is SLAB
allocator starts allocation from the end of the pages whereas
SLUB allocator prioritizes the allocation of slots at the
beginning of the pages. With this setup, the cross-boundary
situation to some extent could be mitigated. Note that in order
to further mitigate the cross-boundary issue, we also increase
the number of pages assigned to each cache. In this setup,
the possibility of cross-cache-boundary access could be further
reduced.

Thread Interleaving. Our idea is to mutate the thread in-
terleaving to determine whether a pair of bug reports is
duplicated. To be specific, we first analyze the bug report and
extract the crashing stack traces. For the bug report tied to
OOB/UAF caught by sanitizers, i.e., KASAN, we also extract
stack traces that allocates and frees the object that leads to
kernel panic.

With these stack traces, we could know all the kernel
functions that have been invoked but not returned at the time
of kernel panic. Also, we can know the kernel objects that have
been allocated or freed. According to a recent study [80], the
functions most close to the crashing site are more likely to be
the buggy function. In addition, prior research [55] also finds
the crashing stack trace sometimes indicates the execution path
of one of concurrent threads. As a result, we follow the work
proposed in [60], focusing our consecutive analysis on the last
five functions in the stack trace.

Our method could extract three different stack traces (the
crashing stack trace, the stack trace related to the object free
operation, and the stack trace related to the object allocation
operation). For each stack trace, we select their functions most
close to the crashing site. Then, we leverage SystemTap[2] to
insert time delay to the starting and returning sites of these
functions. Following this setup, we further extract the PoC
programs from the reports under our examination, and re-run
these programs multiple times (10 times by default). If we
observe a crash behavior that has already been presented in
the other report, we conclude that the corresponding reports
point to the same bug. It should be noted that we choose the
delay time by following the heuristics applied in KCSAN (i.e.,
randomly selecting a value between [1,80] µs for tasks, [1,20]
µs for interrupts).

Inline Function and Kernel Versions/Branches. We propose
two straightforward approaches to determine whether report
duplication is caused by the function inline mechanism or
different kernel versions/branches.

1. nr_rx_frame

2. nr_insert_socket 4. sk_add_node

3. sock_hold 5. refcount_inc_checked

Fig. 7: The last five functions in the crashing trace from the
bug group #4638faac. represents function not inlined and

are for those inlined in both bug reports. stands for the
function inline in one report but not inline in another.

To address the function inline issue, we simply extract and
compare the dead functions from the crashing stack traces. If
both crashing stacks share the same dead functions in the same
sequence, then the difference between crash titles is due to an
inline function, and we can conclude the two reports are about
the same bug. The reason behind this design is again based
on results from Section II. Syzkaller uses the last crashing
function to name the title of the bug report. In the process of
the last crashing function extraction, Syzkaller not only skips
some generic functions, but also ignores the inline functions.
Take the crashing trace shown in Figure 7 as an example. The
crashing stack traces show different function inline, and the
reports deem crashing function as nr_insert_socket and
nr_rx_frame respectively. In this work, by using the entire
crashing stack trace, we can restore the footprint of the inline
function, enable a more accurate crashing function comparison,
and thus eliminate the influence of function inline for bug
report deduplication.

To eliminate the influence of different kernel version-
s/branches, we first examine both reports and ensure the kernel
information specified is truly different. With the confirmation,
we then configure the kernels based on the specified infor-
mation and rerun the corresponding PoC across kernels (i.e.,
running the PoC extracted from one report on the version
of kernel specified in the other report). If we observe the
swapped PoC demonstrates the kernel panic as same as that
indicated in its original report, we safely conclude the pair
of reports are about the same bug. The rationale behind this
approach is that, if both reports trigger the same bug but exhibit
different behaviors only because of the different versions
of the underlying kernel, swapping PoC could remove the
influence of this factor and thus have the corresponding kernel
demonstrate the same panic behavior under two different PoCs.

Input Difference. Given a pair of kernel bug reports, to
determine whether they are duplicated by input difference,
we compare the similarity of PoC programs extracted from
both reports. We deem the reports are duplicated if their PoC
programs are highly similar because when the PoC programs
trigger the same bug, they generally use similar types of system
calls and arguments.

To compare a pair of PoC programs, we first categorize
system calls by using the specification provided by Syzkaller.
For example, as described in the system call templates of
Syzkaller, the system call lsetxattr and fsetxattr belong
to the same category, taking the responsibility of setting
an extended attribute for a file. With all the system calls
categorized, we extract the system call sequences from each
of the PoC programs and compare the sequence as follows.

11



Method TP Rate FP Rate

Baseline 364/717 = 50.8% 829/79,083 = 1.05%

Our method 572/717 = 79.8% 10 /79,083 = 0.01%

TABLE IX: Detecting duplicated bug report pairs.

First, we assign a unique ID for each category of system
calls. Second, for both system call sequences extracted from
the PoC programs, we map the name of the system call to
the corresponding ID (the system calls in the same group
share the same ID) and convert the system call sequence
into a list of IDs. The arguments of each system call are
the elements associated with the ID. Finally, we compute the
similarity of two PoC programs by measuring the similarity
of the two corresponding ID lists. In this work, we perform
the list similarity measurement by using a customized version
of Levenshtein distance. Due to the space limit, we present
the customized distance measure in Appendix-B. We deem
the reports with a similarity score greater than 0.65 as the
duplicated ones. Details of the threshold selection method are
also presented in Appendix-B.

Summary of Proposed Techniques. We propose five technical
components to address the 6 factors of bug duplication (ªIn-
line Functionº and ªKernel Versions/Branchesº are addressed
together in one component). It should be noted that four of
the five components are false-positive-free (the only exception
is the one for ªinput differenceº). This is because these four
components determine bug duplication by explicitly resolving
the differences in the original pair of reports. The technique
for ªinput differenceº is based on PoC similarity, which could
have false positives. Further discussion and evaluation are in
the next Section VI-C.

C. Ground-truth Evaluation

Dataset and Metrics. We construct a dataset to evaluate
our method. First, for the duplicated reports, we directly use
the final ground-truth set in Table II which contains 104
bug groups and 327 bug reports (i.e., bug titles). Then we
introduce another 73 bug reports randomly selected from the
non-duplicated bug titles (we manually confirmed the non-
duplication). In total, the dataset contains 400 bug reports
covering 177 unique kernel bugs (i.e., 177 bug groups).

Considering our method takes pairs of bug reports as
inputs, we format the dataset by exhaustively pairing the
reports. This generates a ground-truth dataset of 717 duplicated
pairs (positive) and 79,083 non-duplicated pairs (negative).

We consider two common evaluation metrics. TP (True
Positive) rate is the ratio of the real duplicated pairs that
are successfully detected (marked out) by our method. FP
(False Positive) rate is the ratio of the non-duplicated pairs
that are incorrectly detected as duplicated pairs. Considering
our dataset is skewed, we also report the raw numbers (true
positives and false positives) along with these rates. In this
section, our analysis is focused on bug report pairs. Further
discussion of the bug-group level performance is in Appendix-
C.

Baseline Method. It is difficult to find a direct baseline since
there is little work on bug deduplication for Linux kernel.

Factor GT Detected Contributed
Pairs Pairs FP

Different Sanitizers 33 33 0
Memory Dynamics 178 178 0
Inline Function 43 43 0
Thread Interleaving 122 62 0
Input Difference 341 256 10

Total 717 572 10

TABLE X: Performance breakdown for each factor and its
sub-method. ªGT Pairsº means the number of ground-truth
duplicated pairs associated with each factor. ªDetected Pairsº
means the number of duplicated pairs detected by the corre-
sponding method designed for each factor.

The most relevant deduplication heuristics for kernel space
are already used by Syzkaller. Our method is built on top
of Syzkaller’s deduplication results (i.e., their bug titles) to
make further improvements. There are indeed deduplication
methods used in user space for fuzzing tasks, which could be
used as a baseline. Here, we choose a popular stack similarity
algorithm from ClusterFuzz [19] which can work well with
the stack traces of Syzkaller’s kernel crash reports. We follow
their deduplication policy and re-implement it to compare the
stack traces of kernel crash reports. We present the detail of
our re-engineering effort in Appendix-D.

Detecting Duplicated Bug Pairs. The detection results are
summarized in Table IX. We show that our method achieves
good performance and outperforms the baseline. More specifi-
cally, our method detects 572 of the 717 duplicated pairs with
a true positive rate near 80% (50.8% for the baseline). At the
time, we have introduced 10 false positives (0.01%) which
is much lower than the baseline (829 false positives, 1.05%).
The result confirms that simply comparing the stack traces
is insufficient to detect duplicated bugs (baseline method).
To further understand the sources of errors (especially false
positives), we break down duplicated reports based on the
contributing factors, as shown in Table X. For example, there
are 33 duplicated pairs caused by ªDifferent Sanitizersº. We
find that all 33 pairs are successfully marked by the proposed
method with 0 (zero) false positive. Table X confirms that the
only source of false positives (FP) is the method for ªInput
Differencesº. All other methods proposed for other factors
are FP-free (by design). At the same time, we observe that
the proposed methods for ªDifferent Sanitizersº, ªMemory
Dynamicsº, and ªInline Functionº have a perfect true positive
rate (100%). While the method for ªThread Interleavingº has
missed some duplicated pairs, it does not introduce any false
positives.

Detailed Error Analysis - FN. Our methods for ªInput
Differencesº and ªThread Interleavingº have missed some truly
duplicated pairs. We manually examine these cases and find
that, under ªinput differencesº, the errors are mostly caused by
the PoC programs which have a low similarity in their system
call sequences and arguments. Take the duplicated reports [37]
and [36] for example, one PoC invokes 16 system calls while
the other involves only one system call. Further work is
needed to address such cases with auxiliary information. We
argue that this does not necessarily dismiss the value of the

12



proposed technique since it still recovers 256/341 (75%) of the
duplicated pairs caused by input differences.

For ªthread interleavingº, we find that the missed pairs are
mostly caused by three reasons. First, not all crashing stacks
are directly involved in the thread synchronization. As such,
inserting time delays to the functions extracted from crashing
stacks does not always work. Second, for certain cases, the
time delay needs to have a specific value to trigger the expected
results. As such, a random time delay could be insufficient.
Third, the inserted time delay could potentially influence the
thread interleaving but does not guarantee the thread synchro-
nization to occur as expected. Overall, we believe further work
is needed to improve the time delay insertion (based on static
and dynamic program analysis) and perform more fine-grained
thread scheduling control for deduplication.

Detailed Error Analysis - FP. As shown in Table X, the
ªinput differenceº method is the only source of the 10 false
positives. In practice, conservative developers (or Syzbot)
could use all the other FP-free techniques to automatically
group bug reports. For the input difference method, Syzbot can
use it to make recommendations to developers on ªpotentially
duplicatedº reports or optimize the maintainer assignment
process (i.e., assigning the same set of maintainers to the
detected bug pairs). Because it has FP (even though small),
we do not recommend using it to automatically merge/remove
duplicates. We have manually examined these false positives,
and determined that their PoC programs have highly similar
system calls. For example, bug reports [38] and [35] are about
different bugs, but the two PoCs are using the same pseudo
system call syz_usb_connect to trigger the bug. The only
difference between the PoCs is the arguments passed to the
system call. Such a minor difference results in a high similarity
measure and thus false positives.

As discussed in Section III-B, false positive cases have
a lower impact because Syzbot can effectively handle them
with continuous fuzzing. If a few corner cases are grouped
incorrectly by the input difference method, Syzbot can ensure
that these bugs will not be ignored by kernel developers. More
specifically, after a patch is developed, Syzbot will continue to
test the patched kernel version. If not all bugs are fixed, Syzbot
will continue to file crash reports, and kernel developers will
work on these reports to patch the remaining bugs.

Applicability. While this paper is focused on Linux kernel,
the proposed techniques are applicable to other open-source
kernels such as FreeBSD, NetBSD, and OpenBSD. Note that
Syzbot already supports fuzzing these kernels, and it has
already generated crash reports for them.

Scalability. We want to briefly discuss given the fact that
deduplication requires testing a large number of bug pairs.
During our analysis, we find that the runtime for analyzing
each bug pair varies significantly. There are two reasons. First,
if one strategy can successfully confirm duplication, we will
stop testing the remaining strategies. Second, we only apply
a specific deduplication strategy when their corresponding
conditions are met. The applicable strategies for each pair may
differ, which affects the runtime. For example, if a pair of bug
reports have different sanitizers, we will apply the strategy for
different sanitizers. In this case, the most time-consuming part

is kernel recompilation. It only takes about 1 minute to run
PoC testing in the QEMU VM. However, it takes an 8-core
desktop 15±20 minutes (depending on the kernel configuration)
to recompile the Linux kernel.

When applying these deduplication techniques in practice,
we do not need to compare a new bug report (title) with all
the historical reports. Instead, we only need to compare it with
ªOpen Bugsº. The open bug queue usually contains < 1, 000

open bugs. Given the rate of bug discovery (e.g., about ten
bugs per week), this overhead is manageable. Furthermore,
we can run deduplication strategies in parallel (e.g., compiling
Linux kernel with different configurations or run the same
PoC in different VMs) to improve the runtime efficiency. As
a reference point, it took about two weeks to run our ground-
truth evaluation, which involves testing about 80,000 bug pairs
using two commodity servers. With improved parallelization
and additional computation resources, we argue such overhead
is acceptable to companies such as Google.

D. Applying Our Methods to Open Bugs

The above ground-truth experiments confirmed the effec-
tiveness of our methods. We next apply our methods to real-
world open bugs to catch previously unknown duplication.

Analyzing Open Bugs. In January 2021, we collected all
the bug titles from the ªOpen bugsº queue on the Syzbot
dashboard. These bugs are have been reported but are not yet
fixed. We obtained 652 bug reports that contained reproducers
at the time of the experiment. While we can exhaustively apply
our automated techniques to all the bug report pairs (212,226
pairs), to validate the correctness of results, we need to select
a small subset of pairs for the time-consuming manual testing
and validation.

We first extracted the crash function, crash type, the PoC
program, and the stack trace from each bug report. Then, for
each bug report pair, we automatically computed the similarity
of their crash description, the PoC program using the method
discussed in Section VI-B. We kept the bug report pair for
further examination if it satisfies one of the following criteria:
❶ The two crashes occur in the same function; ❷ The two
bug reports manifest the same crash type associated with the
same subsystem (i.e., the crash functions are defined in the
same directory); ❸ The similarity of the PoC programs in
the two bug reports is greater than 0.65; ❹ The five recently
called functions in the two stack traces are the same. After the
filtering, we have 455 pairs left for further investigation.

Findings. We confirmed that our techniques were practically
effective in identifying previously unknown bug duplication.
In total, we identified 27 groups of duplicate bugs. These bug
groups involved 66 bug titles and 66,594 crash reports. By
examining the causes of duplication, we find that the most
commonly observed factors are ‘inline functionº (affecting 13
bug groups) and ªdifferent inputsº (affecting 8 bug groups).
For the rest of the factors, each affects ≤ 7 bug groups.

Since we do not have the ªground truthº for open bugs,
we randomly select 20 groups of duplicate bugs (flagged by
our techniques) and 20 non-duplicate groups to validate the
effectiveness of our methods. Through manual analysis, we do
not observe any false positives. We only find 1 false negative

13



from the non-duplicate groups. The underlying reason is that
the PoCs between the two groups are highly different, with
different syscall sequences and different syscall arguments.
Our tool cannot effectively group them together.

When analyzing the flagged duplicate bug groups, we
have several key observations. First, for cases that are af-
fected by ªinline functionº, our tools can effectively iden-
tify the functions with different inline status in different
reports. For example, in the bug group of WARNING: refcount

↪→ bug in qrtr_node_lookup and WARNING: refcount bug

↪→ in qrtr_recvmsg, our tool can identify the function
qrtr_node_lookup, which is inline in one report and non-
inline in the other report. Second, there is a case identified by
ªkernel versions and branchesº. We find two similar-looking
but actually different key functions between two different
kernel versions: sctp_ulpevent_notify_peer_addr_change

and sctp_ulpevent_nofity_peer_addr_change. Note that one
function name contains the keyword notify, the other function
name contains the keyword nofity (notify vs. nofity). Third,
there is a case detected by ªdifferent sanitizersº, where we
switch from KMSAN to KASAN in one crash report and re-
compile the source code. After that, we observe the same crash
behaviors in another crash report. Fourth, for a case affected by
ªmemory dynamicsº, our method helps to stably manifest the
crash behavior in another report. Finally, our PoC similarity
analysis has helped to verify cases affected by ªinput differ-
enceº. For example, the PoCs for general protection fault

↪→ in l2cap_sock_getsockopt and general protection

↪→ fault in sco_sock_getsockopt have a high similarity ex-
cept for the socket type in syz_init_net_socket.

When analyzing open bugs, we again find a similar case to
that described in Section V-C. This bug group contains one
bug report that shows a UBSAN: shift-out-of-bounds in

↪→ mceusb_dev_recv behavior [42] and another report shows
a UBSAN: shift-out-of-bounds in mceusb_dev_printdata

↪→ behavior [41]. In fact, there has already been a patch
developed and discussed in the community for the first be-
havior. This patch adds a sanity check only in the function
mceusb_dev_recv. However, after analyzing the root cause, we
concluded that the two bug reports are indeed duplicated and
more importantly, the patch only mitigates the first behavior.
This again confirms that a limited view of the diverse bug
behaviors indeed leads to incomplete patches.

Result Sharing and Communication. A recent work [21]
shows that knowing the multiple behaviors of the same bug
can help to improve crash analysis. To this end, we have
further reported the duplicated bugs we found to the Syzbot
dashboard and notified the corresponding developers. We hope
our findings can help with ongoing bug analysis.

At the same time, we have communicated our results
and findings with the Syzkaller and Syzbot team. The initial
response from the team was positive, echoing the importance
of finding the duplicated bugs given the backlog of open bugs
they are currently accumulating. We are in the process of
introducing our tool, and exploring the opportunity to integrate
it into Syzbot to improve the current deduplication system.

VII. RELATED WORK

In this work, we perform a large-scale measurement to
study the bug report duplication phenomenon on Syzbot, with
the purpose of improving root cause diagnosis and facilitating
bug patching. As such, we consider the works in the following
directions as related.

Bug Report Deduplication. Prior works have explored dif-
ferent methods to deduplicate bugs discovered by automatic
tools. One method is to leverage stack trace in the bug report
to determine whether two reports are referring to the same
bug. Fuzzing tools, including SmartFuzz [60], VUzzer [64],
FuzzSim [76], CERT BFF [25], and Syzkaller [73], generate a
stack hash using the function name, line number, and file name
on the call stack for deduplication. Other works (e.g., [65],
[75]) calculate stack edit distance and TF-IDF for deduplica-
tion. ReBucket [32] measures the similarities of call stacking
using an Dependent Model (PDM) algorithm. Another method
considers the basic block transition in the execution path,
which is widely employed by AFL-based fuzzers (e.g., [23],
[22], [67], [21], [57], [62], [53], [56]) Unfortunately, a study
by Klees et al. [52] shows that this approach could yield
excessive false positives and false negatives. Finally, Ton-
der et al. [72] propose a method that groups the bugs with
similar fixes. Despite these efforts, none of the previous works
are focused on reasoning the factors that have caused different
crash behaviors and designing solutions to handle these factors
(the main focuses of our work).

Empirical Studies of Kernel Bugs. Researchers have per-
formed empirical studies of kernel bugs, with different pur-
poses compared to our paper. For example, Abal et al. [18]
have studied 42 bugs in the Linux kernel. They observed that
variability bugs do not exclusively belong to any particular
bug types, error-prone features, or source code locations, while
the variability property has greatly increased the complexity
of bugs in the Linux kernel. PDiff [47] performed a compre-
hensive study to understand the patch presence testing prob-
lem. They identified two essential challenges in the testing:
third-party code customization and diversities in the building
configuration. Xu et al. [79] empirically studied real-world
Android kernel vulnerability patches. They found that the code
changes of security patches are generally small compared to
non-security patches and large security patches usually contain
several small individual patches. Li and Paxson [54] conducted
an empirical study of security patches to understand their
development life cycles. They show that security patches are
more localized (than other non-security patches) but usually
suffer from a long delay. Mu et al. [61] analyzed crowd-
reported vulnerability reports to assess their reproducibility.
Our work is the first to study the factors causing the report
duplication problems for kernel bugs. In addition to the em-
pirical study, we also provide suggestions to deduplicate bug
reports to facilitate root cause diagnosis and bug patching.

VIII. CONCLUSION AND FUTURE WORK

We discover the duplicated kernel bug reports are prevalent
and could potentially cause the delay of kernel bug remedy.
Through intensive manual efforts, we analyze the root cause
behind the duplicated reports and summarize six key factors di-
rectly contributing to report duplication. Under the guidance of

14



our discovery, we prototype a series of deduplication strategies.
We conclude the newly proposed deduplication strategies could
group a majority of duplicated kernel bug reports correctly
and even facilitate correct kernel patch development. As is
described in Section VI-C, our proposed deduplication method
is merely the initial exploration. Our future research will focus
on exploring more advanced technical approaches to better
cluster duplicated reports or in other words further reduce
the errors introducing in the report grouping. Besides, we will
study how to use the grouped reports to better diagnose the root
cause of corresponding kernel bugs and thus further benefit
bug remedy. Finally, we will also study the bug duplication
problem for other OSes (e.g., Windows and XNU).

ACKNOWLEDGMENTS

We would like to thank our shepherd Antonio Bianchi
and the anonymous reviewers for their helpful feedback. This
project was supported in part by IBM Ph.D. Fellowship
(2020-2022), NSF grants 1955719, 1954466, and 2055233,
and by National Natural Science Foundation of China under
Grant 62102154. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of any funding
agencies.

REFERENCES

[1] ªCommon Vulnerabilities and Exposures (CVE),º 1999, https://cve.
mitre.org/.

[2] ªSystemtap,º 2005, https://sourceware.org/systemtap/.

[3] ªFault injection capabilities infrastructure,º 2006, https://www.kernel.
org/doc/html/latest/fault-injection/fault-injection.html.

[4] ªTrinity: Linux system call fuzzer.º 2006, https://github.com/
kernelslacker/trinity.

[5] ªKernel memory leak detector,º 2011, https://www.kernel.org/doc/html/
latest/dev-tools/kmemleak.html.

[6] ªKernel address sanitizer,º 2014, https://www.kernel.org/doc/html/
latest/dev-tools/kasan.html.

[7] ªKernel memory sanitizer,º 2015, https://github.com/google/kmsan.

[8] ªDirty COW (CVE-2016-5195),º 2016, https://dirtycow.ninja/.

[9] ªmm: kasan: Initial memory quarantine implementation,º 2016, https:
//lore.kernel.org/patchwork/patch/658546/.

[10] ªThe object-lifetime debugging infrastructure,º 2016, https://www.
kernel.org/doc/html/latest/core-api/debug-objects.html.

[11] ªWannaCry Ransomware Attack,º 2017, https://en.wikipedia.org/wiki/
WannaCry ransomware attack.

[12] ªThe kernel concurrency sanitizer (kcsan),º 2019, https://www.kernel.
org/doc/html/latest/dev-tools/kcsan.html.

[13] ªGoogle researcher found bleedingtooth flaws in linux bluetooth,º
2020, https://securityaffairs.co/wordpress/109500/hacking/
bluetooth-bleedingtooth-vulnerabilities.html.

[14] ªmemory leak in hub event,º 2021, https://syzkaller.appspot.com/bug?
id=66fe8eb71f455a245547576eb8d36fec957d2424.

[15] ªmemory leak in hub event (2),º 2021, https://syzkaller.appspot.com/
bug?id=91adc3631f0fd2b51356949a8cc20b994856d6ee.

[16] ªNew bug left in the closed and duplicated bug reports,º 2021, https:
//groups.google.com/g/syzkaller/c/ roBlPUWp04/m/Na lAPP7AwAJ.

[17] ªThe undefined behavior sanitizer - ubsan,º 2021, https://www.kernel.
org/doc/html/latest/dev-tools/ubsan.html.

[18] I. Abal, C. Brabrand, and A. Wasowski, ª42 variability bugs in the linux
kernel: A qualitative analysis,º in Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering, ser. ASE
’14, 2014.

[19] A. Arya and C. Neckar, ªFuzzing for security,º 2014, https://blog.
chromium.org/2012/04/fuzzing-for-security.html.

[20] F. Bellard, ªQEMU, a fast and portable dynamic translator,º in Pro-

ceedings of the Annual Conference on USENIX Annual Technical

Conference, ser. USENIX ATC ’05, 2005.

[21] T. Blazytko, M. SchlÈogel, C. Aschermann, A. Abbasi, J. Frank,
S. WÈorner, and T. Holz, ªAURORA: Statistical crash analysis for
automated root cause explanation,º in Proceedings of the 29th USENIX

Security Symposium, ser. USENIX SEC ’20, 2020.

[22] M. BÈohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, ªDi-
rected greybox fuzzing,º in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’17,
2017.

[23] M. BÈohme, V.-T. Pham, and A. Roychoudhury, ªCoverage-based grey-
box fuzzing as markov chain,º in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’16,
2016.

[24] D. Borkmann, ªbpf, array: fix overflow in max entries
and undefined behavior in index mask,º 2018, https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
bbeb6e4323dad9b5e0ee9f60c223dd532e2403b1.

[25] CERT, ªBFF - basic fuzzing framework,º 2016, https://vuls.cert.org/
confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework.

[26] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, ªLinux kernel vulnerabilities: State-of-the-art defenses and
open problems,º in Proceedings of the Second Asia-Pacific Workshop

on Systems, ser. APSys ’11, 2011.

[27] W. Chen, X. Zou, G. Li, and Z. Qian, ªKOOBE: Towards facilitating
exploit generation of kernel out-of-bounds write vulnerabilities,º in
Proceedings of the 29th USENIX Security Symposium, ser. USENIX
SEC ’20, 2020.

[28] Y. Chen, Z. Lin, and X. Xing, ªA systematic study of elastic objects
in kernel exploitation,º in Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’20,
2020.

[29] Y. Chen and X. Xing, ªSLAKE: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel,º in Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’19, 2019.

[30] ClusterFuzz, ªCrash type in clusterfuzz,º 2019, https://google.github.io/
clusterfuzz/reference/glossary/#crash-type.

[31] CVE Details, ªLinux Kernel,º 2021, https://www.cvedetails.com/
product/47/Linux-Linux-Kernel.html?vendor id=33.

[32] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, ªReBucket:
A method for clustering duplicate crash reports based on call stack
similarity,º in Proceedings of the 34th International Conference on

Software Engineering, ser. ICSE ’12, 2012.

[33] S. dashboard, ªKASAN: use-after-free read in
map lookup elem,º 2018, https://syzkaller.appspot.com/bug?id=
fcd138b2ad0188e5eed65d3351ab983f4bc1c3b6.

[34] ÐÐ, ªKASAN: use-after-free write in ar-
ray map update elem,º 2018, https://syzkaller.appspot.com/bug?
id=19cf067af88c8f151825cefa7b199e7a8b7dc861.

[35] ÐÐ, ªgeneral protection fault in flex-
cop usb probe,º 2019, https://syzkaller.appspot.com/bug?id=
c0203bd72037d07493f4b7562411e4f5f4553a8f.

[36] ÐÐ, ªgeneral protection fault in ip6 sublist rcv,º
2019, https://syzkaller.appspot.com/bug?id=
cdfd70388a396eb80fe860a5251c2e1232b1e407.

[37] ÐÐ, ªgeneral protection fault in ip sublist rcv,º 2019, https://syzkaller.
appspot.com/bug?id=f07ddeedf116ac76456528915123a4d8d4d709bd.

[38] ÐÐ, ªKASAN: invalid-free in disconnect rio
(2),º 2019, https://syzkaller.appspot.com/bug?id=
35acc31cfe715b32b649129f286c960dba2d49c5.

[39] ÐÐ, ªKASAN: slab-out-of-bounds read in
hidraw ioctl,º 2019, https://syzkaller.appspot.com/bug?id=
0141bd6b37153edec9c4ffa0f0e990c7228897f9.

[40] ÐÐ, ªKMSAN: use-after-free in hidraw ioctl,º 2019, https://syzkaller.
appspot.com/bug?id=572cfde68d72a02f41e60c6a6c060157c6e6a750.

15



[41] ÐÐ, ªUBSAN: shift-out-of-bounds in mceusb dev printdata,º
2020, https://syzkaller.appspot.com/bug?id=
df1efbbf75149f5853ecff1938ffd3134f269119.

[42] ÐÐ, ªUBSAN: shift-out-of-bounds in mceusb dev recv,º
2020, https://syzkaller.appspot.com/bug?id=
50d4123e6132c9563297ecad0479eaad7480c172.

[43] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, ªPT-Rand: Practical
mitigation of data-only attacks against page tables.º in Proceedings of

The Network and Distributed System Security Symposium, ser. NDSS
’17, 2017.

[44] E. Dumazet, ªmacvlan: do not assume mac header
is set in macvlan broadcast(),º 2018, https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
96cc4b69581db68efc9749ef32e9cf8e0160c509.

[45] J. Foote, ªThe exploitable gdb plugin,º 2015, https://github.com/jfoote/
exploitable.

[46] googlegroup, ªKASAN: slab-out-of-bounds read in hidraw ioctl,º
2019, https://groups.google.com/g/syzkaller-bugs/c/O90aBzvp uE/m/
-Q0j14aUBwAJ.

[47] Z. Jiang, Y. Zhang, J. Xu, Q. Wen, Z. Wang, X. Zhang, X. Xing,
M. Yang, and Z. Yang, ªPDiff: Semantic-based patch presence testing
for downstream kernels,º in Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’20,
2020.

[48] G. Jin, W. Zhang, and D. Deng, ªAutomated concurrency-bug fixing,º
in 10th USENIX Symposium on Operating Systems Design and Imple-

mentation, ser. OSDI ’12, 2012.

[49] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, ªRet2dir:
Rethinking kernel isolation,º in Proceedings of the 23rd USENIX

Conference on Security Symposium, ser. USENIX SEC ’14, 2014.

[50] L. Kernel, ªSubmitting patches: the essential guide to getting your code
into the kernel,º 2021, https://www.kernel.org/doc/html/v4.10/process/
submitting-patches.html.

[51] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, ªHFL:
Hybrid fuzzing on the linux kernel,º in Proceedings of The Network

and Distributed System Security Symposium, ser. NDSS ’20, 2020.

[52] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, ªEvaluating
fuzz testing,º in Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS ’18, 2018.

[53] C. Lemieux and K. Sen, ªFairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,º in Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineer-

ing, ser. ASE ’18, 2018.

[54] F. Li and V. Paxson, ªA large-scale empirical study of security patches,º
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS’17, 2017.

[55] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, ªEfficient scalable
thread-safety-violation detection: Finding thousands of concurrency
bugs during testing,º in Proceedings of the 27th ACM Symposium on

Operating Systems Principles, ser. SOSP ’19, 2019.

[56] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
ªSteelix: program-state based binary fuzzing,º in Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering, ser.
FSE ’17, 2017.

[57] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
ªMOPT: Optimized mutation scheduling for fuzzers,º in Proceedings

of the 28th USENIX Conference on Security Symposium, ser. USENIX
SEC ’19, 2019.

[58] A. Milburn, H. Bos, and C. Giuffrida, ªSafeInit: Comprehensive and
Practical Mitigation of Uninitialized Read Vulnerabilities,º in Proceed-

ings of The Network and Distributed System Security Symposium, ser.
NDSS ’17, 2017.

[59] Z. Mithra, ªapparmor: Fix uninitialized value in aa split fqname,º
2018, https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=250f2da49cb8e582215a65c03f50e8ddf5cd119c.

[60] D. Molnar, X. C. Li, and D. A. Wagner, ªDynamic test generation to
find integer bugs in x86 binary linux programs,º in Proceedings of the

18th USENIX Conference on Security Symposium, ser. USENIX SEC
’09, 2009.

[61] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
ªUnderstanding the reproducibility of crowd-reported security vulnera-
bilities,º in Proceedings of the 27th USENIX Security Symposium, ser.
USENIX SEC ’18, 2018.

[62] H. Peng, Y. Shoshitaishvili, and M. Payer, ªT-Fuzz: fuzzing by program
transformation,º in Proceedings of the 2018 IEEE Symposium on

Security and Privacy, ser. SP ’18, 2018.

[63] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, ªxMP: Selective memory protection for kernel and user
space,º in Proceedings of the 2020 IEEE Symposium on Security and

Privacy, ser. SP ’20, 2020.

[64] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
ªVUzzer: Application-aware evolutionary fuzzing.º in Proceedings of

The Network and Distributed System Security Symposium, ser. NDSS
’17, 2017.

[65] P. Runeson, M. Alexandersson, and O. Nyholm, ªDetection of duplicate
defect reports using natural language processing,º in Proceedings of the

29th International Conference on Software Engineering, ser. ICSE ’07,
2007.

[66] S. Santoyo, ªA brief overview of outlier detec-
tion techniques,º 2017, https://towardsdatascience.com/
a-brief-overview-of-outlier-detection-techniques-1e0b2c19e561.

[67] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
ªkAFL: Hardware-assisted feedback fuzzing for OS kernels,º in Pro-

ceedings of the 26rd USENIX Conference on Security Symposium, ser.
USENIX SEC ’17, 2017.

[68] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, ªAddress-
Sanitizer: A fast address sanity checker,º in Proceedings of the 2012

USENIX Conference on Annual Technical Conference, ser. USENIX
ATC ’12, 2012.

[69] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, ªEnforcing
kernel security invariants with data flow integrity.º in Proceedings of

The Network and Distributed System Security Symposium, ser. NDSS
’16, 2016.

[70] E. Stepanov and K. Serebryany, ªMemorySanitizer: Fast detector of
uninitialized memory use in c++,º in Proceedings of the 13th Annual

IEEE/ACM International Symposium on Code Generation and Opti-

mization, ser. CGO ’15, 2015.

[71] A. Stern, ªHID: hidraw: Fix invalid read in hidraw ioctl,º 2019,
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=416dacb819f59180e4d86a5550052033ebb6d72c.

[72] R. van Tonder, J. Kotheimer, and C. Le Goues, ªSemantic crash buck-
eting,º in Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, ser. ASE ’18, 2018.

[73] D. Vyukov, ªSyzkaller,º 2016, https://github.com/google/syzkaller.

[74] ÐÐ, ªSyzbot Dashboard,º 2017, https://github.com/google/syzkaller/
blob/master/docs/syzbot.md.

[75] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, ªAn approach to
detecting duplicate bug reports using natural language and execution
information,º in Proceedings of the 30th International Conference on

Software Engineering, ser. ICSE’08, 2008.

[76] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, ªScheduling black-
box mutational fuzzing,º in Proceedings of the 2013 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’13,
2013.

[77] W. Wu, Y. Chen, X. Xing, and W. Zou, ªKEPLER: Facilitating control-
flow hijacking primitive evaluation for linux kernel vulnerabilities,º in
Proceedings of the 28th USENIX Conference on Security Symposium,
ser. USENIX SEC ’19, 2019.

[78] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, ªFUZE: Towards
facilitating exploit generation for kernel use-after-free vulnerabilities,º
in Proceedings of the 27th USENIX Conference on Security Symposium,
ser. USENIX SEC ’18, 2018.

[79] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and Y. Liu,
ªAutomatic hot patch generation for android kernels,º in Proceedings

of the 29th USENIX Security Symposium, ser. USENIX SEC ’20, 2020.

[80] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and
T. Reps, ªConseq: Detecting concurrency bugs through sequential
errors,º SIGPLAN Not., vol. 46, no. 3, p. 251±264, Mar. 2011.

16






	Introduction
	Background and Motivation
	Methodology and Dataset
	Method Overview
	Problem Scope
	Kernel Bug Report Dataset
	Experiment Design

	Result: Impact of Duplication
	Results: Contributing Factors
	Manual Crash Analysis
	Reasons for Duplication
	Case Study

	Bug Report Deduplication
	Deduplication Strategies
	Deduplication Tool
	Ground-truth Evaluation
	Applying Our Methods to Open Bugs

	Related Work
	Conclusion and Future Work
	References
	Appendix

