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Abstract—In the past three years, the continuous fuzzing
projects Syzkaller and Syzbot have achieved great success in
detecting kernel vulnerabilities, finding more kernel bugs than
those found in the past 20 years. However, a side effect of
continuous fuzzing is that it generates an excessive number of
crash reports, many of which are “duplicated” reports caused
by the same bug. While Syzbot uses a simple heuristic to group
(deduplicate) reports, we find that it is often inaccurate. In this
paper, we empirically analyze the duplicated kernel bug reports
to understand: (1) the prevalence of duplication; (2) the potential
costs introduced by duplication; and (3) the key causes behind the
duplication problem. We collected all of the fixed kernel bugs from
September 2017 to November 2020, including 3.24 million crash
reports grouped by Syzbot under 2,526 bug reports (identified
by unique bug titles). We found the bug reports indeed had
duplication: 47.1% of the 2,526 bug reports are duplicated with
one or more other reports. By analyzing the metadata of these
reports, we found undetected duplication introduced extra costs
in terms of time and developer efforts. Then we organized Linux
kernel experts to analyze a sample of duplicated bugs (375 bug
reports, unique 120 bugs) and identified 6 key contributing factors
to the duplication. Based on these empirical findings, we proposed
and prototyped actionable strategies for bug deduplication. After
confirming their effectiveness using a ground-truth dataset, we
further applied our methods and identified previously unknown
duplication cases among open bugs.

I. INTRODUCTION

Kernel is the most important software component of an
operating system (OS), the security of which determines the
security of the entire OS and user applications. Vulnerabilities
in kernel programs are often considered to be more severe
than those in user programs [26]. Due to the high privilege of
kernel programs, they have been an attractive target of major
attacks, with well-known examples such as WannaCry [11],
DirtyCow [8], and BleedingTooth [13].

To proactively detect and patch kernel vulnerabilities, the
security community has investigated significant efforts. These
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efforts include both developing more advanced fuzzing tools
to detect new vulnerabilities [4], [67], [S1] and organizing
security analysts and kernel developers to analyze the reported
bugs and develop patches.

The progress of kernel bug detection has been slow in
the past 20 years until recently when Google initialized
Syzkaller [73] and Syzbot [74] projects in 2016. These are
open-source projects that automatically and continuously fuzz
main Linux kernel branches to find bugs. In addition to the ad-
vanced fuzzing techniques (Syzkaller), another key advantage
is that the system (Syzbot) produces standard crash reports and
structured information fields (e.g., vulnerable kernel versions,
kennel configurations), which makes it easier for security
analysts to reproduce bugs and analyze root causes. These
efforts have been vastly successful. As of November 2020,
the system has found 3,736 kernel bugs in just three years,
which is more than the total number of kernel bugs identified
in the past 20 years before Syzkaller [31].

Bug Report Duplication Problem. While continual fuzzing
of Syzbot has significantly improved the efficiency of kernel
bug discovery, it also produces an excessive amount of crash
reports. In the past three years, Syzbot has generated over
10 million crash reports, the vast majority of which are
“duplicated”, meaning that the crashes are triggered by the
same bugs. Considering that security analysts need to manually
analyze these reports to assess the severity of the bug and
pinpoint the root cause, it is highly desirable to group the crash
reports caused by the same bug together. Currently, Syzbot
relies on a simple heuristic to perform deduplication: if the
crashes share the same crash function and crash type, then
they will be grouped under the same bug report, sharing the
same bug title.

Unfortunately, this heuristic-based deduplication method
is not accurate. Anecdotally on Syzbot dashboard, we have
observed that certain crash reports caused by the same bug
were not successfully grouped together (because they have
different crash functions or crash types). As a result, the bug
reports about the same bug were treated as new (different)
bugs, and then were assigned to different analysts. On one
hand, multiple groups of analysts working on the same bug
in parallel without communicating with each other leads to
inefficiency (i.e., redundant manual effort). On the other hand,



a limited view of the diverse bug behaviors of the same bug
may lead to incomplete patches [21].

Goals and Approaches. In this paper, we empirically analyze
the duplicated kernel bug reports from Syzbot. We define
duplicated bug reports as those that share the same root cause.
Our goal is to understand: (1) the prevalence of duplication;
(2) potential costs introduced by duplication; and (3) the
causing factors to the report duplication. Based on the insights
obtained from the empirical analysis, we further explore low-
cost solutions for bug deduplication.

A key challenge in our study is to obtain the “ground-truth”
for bug report duplication. While this challenge is difficult
to resolve for open bugs that are currently being analyzed
by developers, we could group bugs that are already fixed.
The idea is to link bug reports based on their “patches” —
if multiple bug reports are fixed/closed by the same patch,
these bugs are highly likely to be the same bug. After this
initial grouping, we then manually analyze the bugs to confirm
duplication based on root causes. In this work, we have
collected all of the fixed kernel bugs reported on Syzbot from
September 2017 to November 2020. This includes 2,526 bug
reports and over 3.24 million crash reports. Based on their
patches, we group these bug reports into 1,686 unique kernel
bug groups. Out of the 2,526 bug reports, 1,191 (47.1%) are
duplicated with one or more other reports.

We answer the first two questions by analyzing the ground-
truth bug groups. We observe that kernel bugs already take a
long time to fix, even without duplication (the median open
time is 70 days). Bug groups with duplication take an even
longer time to close. Even after the first bug in the group is
fixed, the other duplicated bugs will remain open for extra
time, consuming valuable resources (e.g., developers’ time).
Also, not too surprisingly, bug groups with duplication involve
more developers in the bug fixing process.

To answer the third question, the most effective approach is
to manually analyze these kernel bugs. To ensure the reliability
of results, we have organized security experts and developed
rigorous analysis procedures (including peer-reviews). We se-
lect 120 bug groups that Syzbot failed to detect the duplication
(120/351 = 34.2%). Under the guidance of an approved IRB
protocol, 5 Linux kernel experts are organized to set up the
environments, reproduce the reported bugs, and analyze the
code changes and the developer’s notes to figure out the
causes of bug duplication. In total, we collectively identify
6 main contributing factors include different inputs, thread
interleaving, memory dynamics, kernel versions and branches,
different sanitizers, and inline function.

Based on the empirical findings, we propose and proto-
type five actionable strategies for bug deduplication during
reporting time. For instance, we enhance the existing memory
quarantine mechanism and replace the slab allocator with the
slub allocator in the tested kernel to eliminate the influence
of memory layout dynamics. Then we swap and run the
PoC programs from potentially duplicated bug reports to
observe their behaviors (i.e., mitigating the influence of kernel
implementation and function inline). We inject delay to the
kernel source code and run the PoC programs multiple times
to fully expose the possible thread interleaving. To rule out
the influence of different sanitizers, we run the PoC programs

with the same sanitizer configuration. Finally, we compute the
similarity of PoC programs using a customized Levenshtein
distance to handle the different behaviors caused by input
differences.

We evaluate these strategies with our ground-truth dataset
and show that they can effectively identify duplicated bug
report pairs, with a true positive rate of 80% and a false
positive rate of 0.01%. Among the proposed techniques, the
technique that handles “different inputs” is the only source of
false positives, and the other four techniques are false-positive-
free by design. We further apply our techniques to the real-
world open bugs and confirm that they can identify previously
unknown bug duplication cases. From both fixed and open
bugs, we have found cases where the developers were misled
to produce incomplete patches due to a limited view of the
diverse bug behaviors.

Contributions. In summary, we have three key contributions:

e First, we empirically analyze duplicated reports of Linux
kernel bugs, and identify the limitations of existing dedupli-
cation heuristics. We show that the undetected duplication
introduces extra costs (time and developer efforts) and even
produces incorrect patches.

e Second, we organize Linux kernel experts to perform an in-
depth analysis of duplicated bug reports. We identify six key
contributing factors to duplication.

e Third, we propose and prototype a series of strategies to
alleviate the bug duplication problem. We evaluate them
against both ground-truth data and current open bugs to
demonstrate their effectiveness. To facilitate future works,
we will release our code and dataset with this paper.

Our work provides new insights into the causing factors
of kernel bug deduplication, and introduces an initial solution.
We have shared our results and findings with the Syzkaller
and Syzbot teams (and some kernel developers), and have
received positive feedback. In the end of the paper, we discuss
the open challenges to kernel bug deduplication. We believe
further research is needed in order to fully address the problem.

II. BACKGROUND AND MOTIVATION

In this section, we describe the background of kernel
fuzzing and bug reports, and introduce Syzkaller and Syzbot.
Then we describe our problem setup and research goals.

Syzkaller: Kernel Fuzzing to Detect Bugs. To harden the
security of kernel programs, the security community has de-
veloped fuzzing tools to discover kernel bugs [73], [4], [67],
[51]. Among existing fuzzers, Syzkaller [73] is by far the
most successful efforts in practice. Syzkaller is an open-source
project initiated by Google in 2016 (popularized in 2017). As
of November 2020, Syzkaller has found 3,736 kernel bugs
(2,526 of them are now patched) in just three years, which
is more than the total number of kernel bugs identified in the
past 20 years before Syzkaller [31].

Syzkaller has several advanced designs. First, it leverages
a declarative description of syscall interface to manipulate
programs (sequences of syscalls), and uses code coverage
feedback as guidance to explore all the kernel code space.
Second, syzkaller leverages the fault injection mechanism [3]



in Linux kernel to inject failures (e.g., allocation failures) into
the runtime execution of system calls. After a kernel bug
is found, Syzkaller will try to generate (and minimize) syz
and C reproducers. Finally, Syzkaller coordinates with many
different sanitizers (e.g., KASAN [68], [6], KMSAN [70], [7],
KCSAN [12], KUBSAN [17]), kernel detection mechanisms
(e.g., KMEMLEAK [5], ODEBUG [10]) and other pre-defined
assertions (e.g., BUG_ON, WARN_ON) to detect kernel vul-
nerabilities at runtime. These detection tools allow syzkaller
to expose all mainstream security bugs such as memory error
bugs (e.g., Memory Leak, Null Pointer Dereference, Use-
After-Free (UAF), pre-defined assertion (e.g., WARN, BUG),
deadlocks and concurrency bugs. Therefore, Syzkaller can
cover a highly diverse set of bugs and bug types.

Syzbot: Continuous Kernel Fuzzing and Reporting. For
a long time (before Syzkaller), running kernel fuzzers and
reporting bugs have been almost exclusively manual efforts.
The lack of automation and bug reporting standards has created
significant difficulty in bug reproduction and patching [61].
To automate bug discovery and reporting, the Syzkaller team
further developed a continuous fuzzing system for kernel
programs called Syzbot [74]. Syzbot system continuously
and automatically updates and fuzzes main Linux kernel
branches (e.g., upstream, linux-stable) with different Syzkaller
instances. Once bugs are found, they will be automatically
reported to corresponding kernel developers with standardized
information (e.g., crash reports). Analysts from the kernel
community will first analyze the bug (manually) to confirm
its validity. Then kernel developers will analyze the root cause
of the bug, and develop a patch to fix the bug.

To facilitate bug analysis and information sharing, Syzbot
provides an open forum (called “Syzbot dashboard”) to list
and keep track of the reported kernel bugs. Each bug has its
own web page that contains key information about the bug,
such as the vulnerable kernel versions, the kernel configuration
file, the Syzkaller repositories, reproducer (syz repro or C
repro). Both syz repro and C repro are PoC (Proof-of-Concept)
files to reproduce the crash. The configuration file shows
which sanitizers are enabled in the corresponding kernel crash.
Finally, it is worth noticing that fixed bugs all have a “Fix
commit” which is the kernel commit (patch) that has fixed the
underlying bug.

A key side effect of continuous fuzzing is it generates
a large number of inputs to trigger bugs, which produces
an excessive number of crash reports. In recent three years,
Syzbot has produced over 10 million crash reports, many
of which were actually triggered by the same bug. Such a
duplication level could negatively impact the efficiency of
kernel developers who need to analyze the reported bugs
manually. Currently, Syzbot follows a simple heuristic to group
(or deduplicate) crash reports. If the crashes appear at the
same function and share the same crash type, then these crash
reports will be grouped together, under the same bug title. For
example, under the bug title “KASAN: use-after—-free
Read in map_lookup_elem”, all the crash reports share
the same crash function (i.e., map_lookup_elem) and the
crash type (i.e., “KASAN: use-after-free Read”).

Limitations of the Current Deduplication Method. The
current deduplication method is coarse-grained and error-

prone. Anecdotally on Syzbot dashboard, we observed certain
crash reports caused by the same bug were not successfully
grouped under the same bug ftitles. Instead, they are treated
as distinct bugs and are assigned to different analysts. Such
“duplicated” open bugs lead to concerning problems. First,
multiple groups of analysts working on the same bug in parallel
without communicating is an inefficient way of using the
analysts’ time. Second, once one of the duplicated bugs is
fixed, there will be extra delays to close other bugs that share
the same root causes (i.e., wasting analysts’ time if they keep
working on them). Third, without grouping these bugs, analysts
do not have the complete view of the bug behaviors, which can
lead to incomplete and incorrect patches. We discovered real
cases which will be presented later.

For these reasons, we want to empirically understand the
bug report duplication problem on Syzbot, and answer the
following questions. First, how prevalent is bug report duplica-
tion on Syzbot? Does duplication indeed introduce extra costs
to analyzing and patching the bug (Section III-IV)? Second,
what are the main causes to the report duplcation (Section V)?
Third, how can we effectively deduplicate kernel bug reports
(Section VI)?

III. METHODOLOGY AND DATASET

In this section, we first define our problem scope and then
describe the collected dataset to measure the prevalence of
bug report duplication. Finally, we describe our workflow to
identify the causes of the duplication.

A. Method Overview

Definition of the Root Cause of a Bug. The root cause of
a bug is defined as the faulty code leading the Linux kernel
into an abnormal state. Take the kernel bug #bbebéeea3 [24]
as an example. The root cause of this bug is in the function
array_map_alloc. If the attr->max_entries field goes be-
yond a threshold (i.e., oxfffffffd), an integer overflow will
occur in the variable array_size, causing array_map_alloc to
allocate an oversized buffer. The oversized buffer eventually
leads to a general page fault (GPF) or an Out-of-Bound (OOB)
memory access.

Definition of Unique Bug. A bug is uniquely defined by its
root cause. In other words, if multiple crash reports share the
same root cause, then we define them as duplicated reports. At
the high level, our idea is to collect historical crash reports of
Linux kernels and link reports that share the same root cause
(i.e., reports of the same bug). Based on the linked reports, we
develop an analysis procedure to systematically examine the
reasons for duplication.

We first define the key terms used in this paper. In Figure 10
in the Appendix, we use an example to show the hierarchical
relationships between bug groups, bug titles, and crash reports.
When Syzbot reports a crash, it automatically generates a
bug title formed by a crash function and crash type. For
example, the title “UBSAN: shift-out—-of-bounds in
mceusb_dev_recv” means the crash happens on func-
tion “mceusb_dev_recv” and the crash type is “UBSAN:
shift-out-of-bounds”. Under continuous fuzzing, it is
common for the same bug to be triggered multiple times since



a bug would remain unfixed a certain amount of time. Syzbot
currently groups these crash reports under the same bug fitle.
In the example of Figure 10, Bug Title B has IV crash reports
under the same title.

As mentioned before, grouping crash reports using crash
function and crash type is often inaccurate, because the same
bug may exhibit different crash behaviors (i.e., with different
crash functions or crash types). In the example of Figure 10,
Bug Titles A, B, C are in fact triggered by the same bug and
thus should have been grouped under the same bug group.
Here, the bug group represents the “ground-truth” unique bug.

B. Problem Scope

The current crash deduplication method is coarse-grained
and error-prone, manifesting two undesired outcomes: 1) false
positives (FP)—bug reports with different root causes, grouped
into the same title; and 2) false negatives (FN)—bug reports
with the same root cause are not grouped under the same title.

By design, Syzbot can handle the false positive problem.
Given a false positive case (i.e., bug reports with different
root causes, grouped into the same title), kernel developers
may only fix one of them during their first attempt, leaving
the others unfixed. However, as a continuous fuzzing system,
Syzbot will continue to fuzz the patched version and keep
filing crash reports for the unfixed bugs. According to Syzbot
developers [16], the fact that the new crash reports have the
same title as the fixed one is an indication that there are other
bugs unfixed, and thus developers will continue to work on
it. To this end, the falsely grouped bugs will not be missed’.
For this reason, our paper will focus on “false negative” cases
(i.e., bug report duplication), which can lead to duplicated
effort by kernel developers and reduced efficiency.

Furthermore, we also do not consider the case where one
crash reported by Syzkaller is triggered by multiple bugs.
In practice, this situation is extremely rare. To have a crash
tied to multiple bugs, two conditions must be satisfied: 1) the
input to trigger multiple bugs need to be carefully crafted; 2)
no sanitizers nor internal detection mechanisms are enabled
during the fuzzing process, which will allow an error state
to propagate sufficiently far away from the bug-triggering site.
However, Syzkaller generates random inputs based on the code
coverage feedback during kernel fuzzing, and it enables all
kinds of detection mechanisms mentioned in Section II to find
the bug at its first appearance. As such, it is safe to rule out
such cases.

Challenges. Our first challenge is to link and verify duplicated
reports for the same bug to establish “ground-truth”. Second,
to understand the reasons behind the report duplication, we
need to extensively analyze the crash behaviors (for different
kernel subsystems). This process, unfortunately, is difficult to
fully automate and is time-consuming. Third, even for manual
analysis, kernel bug analysis requires a high level of domain

!'As a concrete example, “memory leak in hub_event” [14] contains multiple
memory leak bugs in different kernel drivers, grouped under the same bug title.
After Syzbot assigns the patch for one of the bugs, we observe that Syzbot
still continues to generate this bug report [15] during fuzzing since not all
bugs are fixed.

Category Crash Reports | Bug Titles | GT Bug Groups
Fixed Bugs 3,243,946 2,526 1,686
Duplicated 803,206 1,191 351
Sampled 90,519 375 120

TABLE I: Dataset overview. “GT Bug Group” refers to the
number of ground-truth bug groups.

expertise. As such, it is difficult to simply crowdsource the
analytic tasks (e.g., via Amazon Mechanical Turk).

Approaches. With these challenges in mind, we consider the
following strategies. First, instead of analyzing the “open”
bugs, we focus on the historical kernel bugs that have been
patched by developers. By analyzing these patches, we can
potentially, in turn, link the bug reports caused by the same
bug (that were not successfully grouped during reporting).
We will further analyze the grouped bug reports manually to
confirm their root causes and establish the “ground-truth”. Sec-
ond, considering the time-consuming nature of bug analysis,
we prioritize the depth of the analysis while maintaining a
reasonable coverage for generalizable results. We randomly
sample a set of bugs that have different crash behaviors (i.e.,
with duplicated reports) and form a focused group of domain
experts to work on deduplication experiments. Based on our
results, we will propose light-weighted solutions to link bug
reports automatically.

C. Kernel Bug Report Dataset

To support our analysis, we collect kernel bug reports from
Syzbot dashboard. Syzbot dashboard provides more complete
and update-to-date bug reports (compared with CVE [1]). More
importantly, Syzbot dashboard has included the necessary
information (e.g., kernel version, kernel configuration, Proof-
of-Concept) needed for bug reproduction (which are often
missing on the CVE site [61]).

On the Syzbot dashboard, there are three main queues for
kernel bugs, namely, “Open bugs”, “Fixed bugs”, and “Invalid
bugs”. As of November 2020, there are 8,071 bugs with more
than 10 million crash reports in total in the three queues. As
we discussed above, only the bugs in “Fixed bug” queue can
be linked to establish the ground-truth for our analysis. The
reason is the fixed bugs contain one additional field called “Fix
commit” which shows the patch that fixes the underlying kernel
bug. Reported crashes that are eventually fixed by the same
patch are highly likely to share the same root cause? (i.e., the
same bug). In the following, we leverage the patch information
as a proxy to group duplicated bugs, and will further validate
the ground-truth manually in Section V.

Our Dataset. Focusing on “Fixed bugs”, we crawl the entire
queue from Syzbot dashboard. Our dataset summarized in Ta-
ble I covers all the corresponding crash reports from September
24, 2017, to November 11, 2020. In total, there are 3,243,946
crash reports grouped under 2,526 bug titles. As mentioned, the
bug title only groups crash reports based on the crash function
and crash type, which could be highly inaccurate.

2Using the patch to group crash reports is a reliable method except for rare
cases, e.g., the incorrect patch was assigned due to human errors. We will
discuss such rare cases in detail in Appendix-A.
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Fig. 1: Workflow to analyze the contributing factors to different
crash behaviors

Then we analyze the patches of the bugs and identify
1,686 “ground-truth” bug groups. If a bug group contains more
than one unique bug title, we regard the bug group as having
duplication.

Note that, in theory, this grouping method could incorrectly
group bug reports if one patch is used to fix multiple bugs.
However, our manual analysis on these bug groups (see
Section V) has confirmed that there was no such case, i.e.,
one patch is always used to fix one bug. This is expected
since “one patch per bug” is a policy that the Linux kernel
community has been enforcing before pushing a patch to the
kernel [50]. As such, our ground-truth is valid.

As shown in Table I, we find in total 351 bug groups that
have duplication (20.8%), involving 1,191 unique bug titles
(47.1%) and 803,206 crash reports (24.8%). In other words, in
these groups, multiple bug titles and their crash reports were
failed to be linked together during the time of bug reporting
and patch development. As a result, developers might have
wasted time on analyzing the duplicated crash reports (i.e.,
incorrectly treating them as new bugs).

Sampling Set. To understand the causes of duplication, we
organize domain experts to analyze the reported bugs manually.
As mentioned, we prioritize the depth of analysis, and sample
a subset of bug groups that has duplication. Our sampling
is not completely random, but has two preferences. First,
we prioritize analyzing bugs that cover more diverse crash
behaviors (i.e., based on the crash type and crash function in
the bug title). Second, we prioritize analyzing bugs that have
more severe crash behaviors. For example, Out-Of-Bound,
Use-After-Free, Invalid-Free are considered to be more severe
bugs [30], [45].

From the 351 bug groups that contain duplication, we
sampled 120 bug groups (34.2%) which covers 375 bug
titles and 90,519 crash reports. As shown in Figure 11 (in
Appendix), this sampled set covers diverse crash types.

Justifications on the Dataset Size. We believe our dataset of
120 unique kernel bugs is reasonably large for our purposes.
On one hand, the 120 bugs already cover 34.2% of the bug
groups that have duplication. On the other hand, this dataset
is already several times larger than existing datasets used by
previous works for kernel bug analysis. For example, after a
literature review, we find that most of the used kernel bug
datasets contain fewer than 20 bugs [63], [58], [43], [69], [49],
[78], [77], [27]. Several works studied 20-60 bugs [18], [47],
[29], [28], but they are not focusing on bug reproduction and
root cause analysis. Instead, most of them focus on analyzing

the code changes in the patches that can be easily automated. A
related work [79] collected 373 CVEs to verify the generated
hot patches (for Android kernels), and only used 3 working
exploits to verify the correctness of generated patches.

D. Experiment Design

We design an experiment to examine the reasons that
manifested different crash behaviors for the same bug (i.e.,
the cause of the duplication in bug reports). Our study was
reviewed and approved by our IRB#STUDY00008566).

Crash Deduplication Workflow. The workflow is shown in
Figure 1. (1) Given a bug group, a security analyst collects all
the crash reports and related files (including PoCs). (2) The
analyst downloads and compiles the vulnerable Linux kernel
based on the kernel commit and configuration file, and then
runs the vulnerable Linux kernel in QEMU [20]. The analyst
reproduces the bug with the provided PoC. (3) The analyst
tests the patch and examines the root cause by reading the
commit message and code changes. (4) The analyst identifies
the corrupted variables based on the root cause and then
compares the propagation path of corrupted variables from the
root cause to the crashing site. The analyst then verifies the
factors that contribute to the different crash behaviors.

In the above process, manual analysis is needed for (2)—
(4). This is because, with the fuzzing log alone, it is difficult
to identify the root causes and infer the contributing factors to
the diverse crash behaviors.

The Analyst Team. We have formed a strong team of 5
security analysts to carry out this experiment. Each analyst
has not only in-depth knowledge of the different subsystems
in the Linux kernel but also has first-hand experience analyzing
Linux kernel bugs, writing exploits, and developing patches.
The analysts regularly publish at top security venues and have
rich CTF (Capture-the-Flag) experience. When one security
analyst finishes the analysis of one bug group, this analyst
will present the details of this bug and explain the identified
factors to the other four analysts for a peer review. After all the
analysts confirm the correctness of the results, we then close
the case for the given bug group.

IV. RESULT: IMPACT OF DUPLICATION

In this section, we analyze the crash report dataset and
illustrate the general impact of duplication on bug fixing time
and developer overhead. Later in Section V, we will focus
on the reasons behind the duplication in our expert-driven
analysis.

We first analyze the crash reports and bug groups in our
dataset (Table I). Recall that hundreds or thousands of crash
reports are automatically grouped under a bug title (defined
by crash function and crash type) by Syzbot. However, the
same bug may lead to different crash functions or crash types,
and thus have multiple bug titles (i.e., duplication). In the
following, we characterize the duplicated bug titles and analyze
the costs introduced by duplication.

Duplication Level. Figure 2 shows the number of distinct bug
titles per bug group in our duplication set (351 bug groups in
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total). We find that about 60% of bug groups have only two
bug titles and the duplication level is not very high. However,
about 14% of the bug groups have more than five bug titles.
The largest bug group has 45 distinct bug titles. This indicates
the same bug can cause highly diverse crash behaviors (i.e.,
different crash functions or crash types).

Extra Delay due to Duplication. We suspect that bug groups
with duplication would take a longer time to close (i.e., having
a longer open time) compared to those without duplication.

Figure 3 confirms our hypothesis. More specifically, given a
bug group, we define its open time based on two timestamps:
t1 (the date when the first crash was reported); and to (the
date when the last bug title in this bug group was closed). The
open time of this bug group is simply to — ¢;. Figure 3 shows
two main results. First, kernel bugs, even without duplication,
have a longer open time. The median open time for kernel bugs
without duplication is around 70 days (more than two months).
Among them, about 10% take more than 150 days (5 months)
to close. Some bugs take as long as 900 days (2.4 years).
Second, bug groups with duplication indeed take a longer time
to be closed. For example, for bug groups with duplication,
about 20% are open for more than 150 days.

In Figure 4, we explicitly plot the extra delay introduced
by the duplication. For bug groups with duplication, if all their
bug titles were immediately linked/grouped during the time of
reporting, then all of these bug titles should have been closed
immediately when the first bug title was successfully patched
and closed. However, in practice, these bug titles were not
grouped automatically, and thus some bug titles remain open
even though the bug is already fixed. We calculate the extra
delay as the time gap between the first bug title closing time
and the last bug title closing time in the same bug group. We
find that for 80% of the bug groups, the extra delay is within
50 days. However, a small portion (5%) of the bug groups
have an extra delay of more than 200 days. The extra delays
could be harmful, i.e., wasting the maintainers’ time if they
still treated the bugs as open bugs and kept working on them.

Ideally, once a bug is fixed, the remaining bug titles in the
same group can be recognized (automatically) since these bugs
will no longer be triggered after the patch. In practice, there are
possible reasons for their delayed closing. First, some bug titles
do not have any reproducer, and thus they cannot be tested
automatically to recognize that they are already fixed. Second,
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Fig. 4: Extra delay introduced Fig. 5: Number of maintainers
by duplication. per bug group.

Category Bug Titles | Bug Groups
Sampled Set 375 120
Reproduced 339 109
Final Ground-truth 327 104

TABLE II: Summary of manually analyzed dataset.

some bug titles need to be closed by maintainers manually
with a #syz-fix tag, and thus experience delays.

Less-Optimized Manual Efforts. Another potential cost of
duplication is the inefficient coordination of maintainers. For
example, different groups of maintainers may independently
spend time analyzing the same bug (under different bug titles)
without knowing each others’ work. This could lead to redun-
dant efforts of maintainers or even incomplete patches (see
cases in Section V-C). For each of the fixed bugs in Table I,
we attempted to obtain the list of maintainers. While this
information is not directly available at the Syzbot dashboard,
most bug reports have a google group where maintainers
discuss the bug. We obtain the complete maintainer lists for
82.3% of the bug groups with duplication and 80.8% of the
groups without duplication. Using this data, we plot Figure 5,
which confirms that bug groups with duplication often have
more maintainers than non-duplicated bug groups.

For bug groups with duplication, we further analyze how
much the maintainer lists under different bug titles overlap.
Given a bug group, each bug has its own set of maintainers.
We compute an overlap ratio as the size of the intersection of
these maintainer sets over the size of their union. We find that
16.6% of the bug groups have an overlap ratio of 0, which
means the duplicated bug reports are handled by completely
different groups of maintainers. The average and median ratio
is 0.56 and 0.62 respectively. If these bugs were deduplicated
upon reporting, it would be possible to assign them to the same
set of maintainers to avoid redundant efforts.

V. RESULTS: CONTRIBUTING FACTORS

Next, to understand the reasons for the duplication (i.e.,
different crash behaviors for the same bug), we have performed
expert-driven analysis following workflow described in Sec-
tion III-D.

A. Manual Crash Analysis

This analysis is focused on the sampled set that includes
120 bug groups and 90,519 crash reports under 375 bug
titles (see Table I). Among these crash reports, 2,873 of them



Factors Bug Groups | Percentage
Different Inputs 55 50.5%
Thread Interleaving 18 16.5%
Memory Dynamics 18 16.5%
Kernel Versions and Branches 14 12.8%
Different Sanitizers 13 11.9%
Inline Function 8 7.3%

TABLE III: The number of bug groups that are affected by
each factor. One bug group could be affected by multiple
factors.

1 int copy_verifier_ state(...) {

2 struct bpf_func_state =xdst;

3 dst = kzalloc(sizeof (xdst), GFP_KERNEL);

4 if (!dst)

5 return -ENOMEM;

6 return 0;

T}

8

9 int is_state_visited(...) {
10 struct bpf_verifier_state_list *new_sl;
11 copy_verifier_state(&new_sl->state, cur);
12 // no error handler if allocation fails
13 free_verifier_ state(&new_sl->state, false);
14 1}

15

16 int push_stack(struct bpf_verifier_env xenv,

—  ...) A

17 struct bpf_verifier_stack_elem xelem;

18 err = copy_verifier_state(&elem->st, cur);
19 // no error handler if allocation fails
20 pop_stack (env, NULL, NULL);
21}

TABLE IV: The code snippet showing that injecting allocation
fault at different contexts could cause different bug reporting
results.

have included the PoC files needed for bug reproduction. The
analysis tasks took 5 security analysts about 2,400 man-hours
to finish. On average, each kernel bug took 8 hours to complete
all the proposed steps. Based on our experience, the most time-
consuming part is to understand the root cause and identify the
propagation path of corrupted variables from the root cause to
the crashing site.

Out of those 120 bugs, we successfully reproduced and
identified the root causes for 109 bug groups (see Table II).
The other bugs were not reproducible, and thus we could not
proceed with the rest of the analysis. Also, among the 109
bug groups, we find 5 bug groups for which the Syzkaller
team has incorrectly assigned the patch (see more details in
Appendix-A). Therefore, we use the remaining 104 bug groups
as the final set to report our findings on contributing factors
to duplication.

B. Reasons for Duplication

We identify 6 factors leading to bug report duplication. We
summarize these factors in Table III.

Factor 1: Different Inputs. The first reason for duplicated
bug titles is the input difference. Given a kernel bug and
the corresponding buggy code snippet, there could be various
execution contexts and many different paths towards the buggy
code. Following these paths under different contexts, the bug

1 // Thread A

2 void put_pi_state (... pi_state) {

3 if (atomic_dec_and_test (&pi_state->refcount
— ) |

4 kfree (pi_state);

5 }

6 }

-

8 // Thread B

9 wvoid exit_pi_state_list (... curr) {

10 struct list_head xh = &curr->pi_state_list;

11 struct futex_pi_state pi_state =
— list_first_entry(h);

12 lock (&pi_state->pi_mutex.wait_lock);

13 get_pi_state(pi_state);

14 1}

15

16 wvoid get_pi_state(... pi_state) {

17 WARN_ON_ONCE (!atomic_inc_not_zero (&pi_state
— —>refcount));

18 1}

TABLE V: The code snippet illustrating the difference in
thread interleaving could cause duplicated bug reporting.

might demonstrate different errors and thus lead to different
types of crash reports.

Take the bug #bbeb6es3 [24] and its two reports [33],
[34] as an example. The input programs extracted from the
reports have the exact same sequence of system calls but
one difference in the argument. Both programs could interact
with kernel code and trigger the bug. However, they reach the
buggy code through slightly different execution paths, which
stop the kernel execution at two different kernel functions
and demonstrate different types of kernel errors. As a result,
the crash reports cannot be grouped together by the current
deduplication method.

In addition to the different paths, differences in execution
contexts could also lead to duplicated crash reports. Take,
for example, the kernel code shown in Table IV. The func-
tion copy_verifier_ state will throw an error code ENOMEM
« if the allocation function kzalloc fails. Since the buggy
kernel does not handle this error correctly, when the function
copy_verifier_state returns, the kernel will experience a
GPF. Table IV shows that there are two sites calling the
function copy_verifier_state (i.e., line 11 and 18). As
such, when a kernel fuzzer injects the allocation error at
different calling contexts (at the line 11 and 18 respectively),
the kernel reports GPF in different kernel functions (i.e.,
free_verifier_state and pop_stack), resulting in two dif-
ferent crash reports.

Out of the 109 bug groups, we find 55 bug groups (50.5%)
are affected by the input difference (involving 185 distinct bug
titles and 88,456 crash reports). This is the most prevalent
cause of the duplication problem (see Table III).

Factor 2: Thread Interleaving. Linux kernel is an asyn-
chronous system supporting multi-task mechanisms. Incorrect
synchronization (or missing synchronization) between kernel
threads not only introduces concurrency bugs [48], but may
also produce different types of errors (i.e., leading to report
duplication).
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Fig. 6: An example of demonstrating an out-of-bound bug as
what is or an use-after-free error.

To illustrate this problem, Table V shows an example
where pi_state is a variable shared between thread-A and
thread-B. Using the same input program but through different
thread interleaving, the kernel could experience different er-
rors. For example, thread-A invokes the function put_pi_state
— , decreasing the reference count for pi_state to zero (Line
3). Following the reference count being set to zero, thread-B
calls the function get_pi_state at the Line 16. This function
examines whether the reference count for pi_state is zero. If
the condition holds, it reports a warning at Line 17. In addition
to this thread-interleaving, another synchronization between
both threads is to call the function put_pi_state in thread-A
prior to thread-B executing Line 12. In this thread schedul-
ing, thread-A de-allocates the object struct futex_pi_state
— , leaving behind a dangling pointer pi_state. At Line 12,
thread-B dereferences the dangling pointer and a use-after-free
error occurs.

Among all the kernel bugs we inspected, we discover that
thread-interleaving has affected 16.5% of the bug groups that
contain duplicated bug titles. It is the second most prevalent
factor that contributes to bug report duplication (see Table III).

Factor 3: Memory Dynamics. In Linux kernel, SLAB/SLUB
allocator is shared among all kernel components, responsible
for dynamic memory management. Therefore, when PoC pro-
grams trigger bugs, the memory status is non-deterministic,
causing the same bug to manifest different behaviors and
produce duplicated reports.

Take the bug #416dacbs [71] as an example. Before operat-
ing an HID device, the kernel could falsely remove the device
or, in other words, mistakenly deallocate the corresponding
device object. When this occurs, KASAN should have reported
a use-after-free error. However, due to the memory dynamics,
the kernel might recycle the s1ot previously holding the device
object. In this situation, rather than reporting use-after-free, the
KASAN would report a slab-out-of-bound error because the
accessed recycled memory region has already been set as a
red zone.

Unlike the example above, which confuses KASAN to treat
a freed memory region as a recycle one, another example is the
bug #96cc4b69 [44], which indicates another situation of con-
fusing KASAN. As is illustrated in Figure 6, when transmitting
a macvlan packet, the kernel fails to reset the mac_header
— , leaving skb->mac_header with the value of Oxffff. Later,
when accessing the packet’s data, the kernel uses the leftover
value as an offset, referencing an out-of-bound memory region
far away from the spot that the skb->data references. Due to
memory dynamics, the out-of-bound access could touch either
a red zone of an object or a freed spot. This causes the bug
to demonstrate either an out-of-bound or a use-after-free error
and eventually contribute to duplicated bug reports.

1 unsigned int tipc_poll(... sock) {
2 switch (sk—->sk_state) {

3 case TIPC_OPEN:

4 // upstream a8750ddc

5 if (!grp || tipc_group_size(grp))
6 // net-next 594831a8

7 if (!grp || tipc_group_is_open (grp))
8 }

9 1}

TABLE VI: The example indicating different kernel versions
and branches affect the error manifestation.

As we show in Table III, among all the kernel bugs we
inspected, we find that 16.5% of the bug groups are affected
by this memory dynamics factor.

Factor 4: Kernel Versions and Branches. One bug can
reside in several kernel versions and repository branches. When
the fuzzing tools trigger the same bug in different kernel
versions and repository branches, both the fuzzing programs
and the crash behaviors can be different, leading to different
bug reports. As shown in Table VI, bug #60c25306 is a use-
after-free bug existing in many kernel versions. In the commit
ag8750ddc of upstream repository, the error site is reported in
tipc_group_size; However, in the commit 594831a8 of net-
next repository, the error site is in tipc_group_is_open. Both
are in the code block that gets executed when the condition sk
— ->sk_state == TIPC_OPEN holds. The only difference is
the kernel version and branch. As is depicted in Table III,
this factor has caused duplicated reports for 12.8% of the bug
groups we analyzed.

Factor 5: Sanitizers. When performing fuzz testing against
the Linux kernel, security analysts may enable or disable
a sanitizer or use different sanitizers. These sanitizers are
designed to capture errors in different types. Therefore, the
sanitizer setup variation also contributes to the difference in
crashing behaviors and bug report duplication.

Take, for example, the bug #0cbb4baf shown in Ta-
ble VII. When forking a new process, the kernel will start an
UFFD_EVENT_FORK event to duplicate the userfault file descrip-
tor. If this event fails, the kernel frees the userfaultfd_ctx
— object referenced by the pointer new but forgets to nullify
the alias pointer vma->vm_userfaultfd_ctx.ctx (Line 10).
Later on, the function handle_userfault is called to handle
page fault in the new process. The dangling pointer ctx is
dereferenced to access the freed userfaultfd_ctx object. If
KASAN is enabled, in Line 11, a use-after-free behavior is
reported. Otherwise,the kernel continues execution until Line
13 where a BUG is reported because the reference counter of
freed userfaultfd_ctx object is already zero.

Different from the example above, which generates du-
plicated reports because of switching on and off a sanitizer,
another example is the bug #250f2da4 [59], indicating another
situation that causes different error behavior reporting. As is
shown in Table VIII, the root cause of this bug is that if the first
argument fqgname contains only space or the second argument
n is zero for the function aa_splitn_fqgname, kernel will return
early in Line 9 without initializing ns_name and ns_len (Line
10 and 11). The caller function aa_fglookupn_profile then
uses the uninitialized ns_name and ns_1en for memory access,



1 wvoid userfaultfd_event_wait_completion(...)

— {

2 struct userfaultfd_ctx *new;

3 new = (struct userfaultfd ctx x)

4 ewg->msg.arg.reserved.reservedl;

5 userfaultfd_ctx_put (new);

6 }

-

8 int handle_userfault(...) {

9 struct userfaultfd_ctx *ctx =

10 vmf->vma->vm_userfaultfd_ctx.ctx;
11 BUG_ON (ctx—>mm != mm) ;
12 if (!atomic_inc_not_zero (&ctx->refcount))
13 BUG(); // BUG if KASAN is disabled
14 1}

TABLE VII: An example showing that switching on and off
KASAN could result in different error reporting results.

causing errors caught by different sanitizers. If KMSAN [7] is
enabled, using the shadow memory designed specifically for
uninitalization bugs, it catches an uninit-value error immedi-
ately in Line 3 and reports the root cause of the bug. However,
if KASAN [6] is enabled, the kernel will not be aware of this
error but propagate the uninitialized value to its consecutive
execution until the error is amplified as an out-of-bounds read.

Similar to the impact of the aforementioned two factors
— memory dynamics and kernel version issues, we find that
11.9% of the bug groups (with duplication) are affected by
this factor (see Table III).

Factor 6: Inline Function. The ways to compile the kernel
code can also affect the behaviors of bugs. In particular, the
compiler can make an opposite decision regarding whether to
inline a function, which depends on the kernel configurations,
the compiler (GCC or Clang) selection, and the compiler
version. When this happens, we observe that one bug is
triggered in different functions while in fact, they are the same
program site. Our analysis shows that this factor has affected
7.3% of the bug groups we analyzed.

C. Case Study

Through our analysis, we observed interesting cases where
developers were misled to develop incorrect patches due to
their incomplete view of the diverse bug behaviors (as the bug
reports were not correctly linked).

For example, bug #416dacbs manifests two different
behaviors: KASAN: slab-out-of-bounds Read in
<~ hidraw_ioctl [39] and KMSAN: use-after-free in
< hidraw_ioctl [40]. The first out-of-bound read behavior
was disclosed earlier. The kernel maintainers mistakenly
thought that the root cause of this bug was the incorrect
output range. Therefore, they developed a patch which limited
the output size of copy_to_user. However, this bug is actually
a use-after-free bug, and it has manifested out-of-bound read
due to Factor-3. More specifically, the freed s1ot is recycled
to hold another object. The new object is smaller than the
freed object and thus the accessed region becomes a red zone,
misleading KASAN to report an out-of-bound read behavior.
This incorrect patch has been committed (deployed) without
being noticed. At a later time, the developers realized that
the two behaviors were actually associated with the same

1 struct aa_profile xaa_fqglookupn_profile (

2 ., char xfgname, size_t n) {

3 name = aa_splitn_fqgname (fgname, n, ...);
4 '}

5

6 char *aa_splitn_fgname (char *fgname, size_t

—n, ...) {

7 char xname = skipn_spaces (fgname, n);

8 if (!name)

9 return NULL;

10 *ns_name = NULL;
11 *ns_len = 0;
12}

TABLE VIII: An example demonstrating the influence of
different sanitizers upon bug reporting results.

bug [46], and the initial root cause was invalid. This example
illustrates that the limited visibility to diverse bug behaviors
can mislead bug patching.

VI. BUG REPORT DEDUPLICATION

In this section, we provide a set of new strategies to
deduplicate bug reports and prototype these strategies as a
tool. Then, we evaluate this prototype tool and examine its
applicability to real-world open bugs. It should be noted that
our prototype is a straightforward implementation of the pro-
posed strategies. We do not claim our prototype could pinpoint
all duplicated reports. Instead, we use these straightforward
implementations to answer the following three questions. @
What kinds of duplicated reports could be effectively and
accurately pinpointed by merely following our strategies and
corresponding implementations? @ Compared with commonly
adopted stack similarity algorithms, does our prototype provide
a more accurate detection? ® For what kinds of bug reports do
we still need technical improvements for the deduplication? We
hope the answers to these questions could unveil the directions
for future research.

A. Deduplication Strategies

Based on the observations from our manual inspection,
we recommend five additional strategies (in addition to those
that are already integrated into kernel fuzzing) that kernel
developers (or Syzbot) may follow to deduplicate kernel bug
reports.

First, given a bug report that looks different from previ-
ously seen bug reports in terms of the enclosed PoC and/or
crashing stack trace, a kernel developer wants to determine
whether the report is a duplicated copy. This developer can
swap the PoC in their report and rerun it on the version of
kernel specified in other bug reports. In this way, they can
have different PoCs (extracted from different reports) run on
the same kernel versions and thus eliminate their influence
upon bug report deviation.

Second, a kernel developer can stabilize the memory layout
and run the PoC programs under a relatively stable memory
layout. With this, they can expect the violated memory access
always lies in the same memory regions (e.g., allocated and
freed memory spots) and thus minimize the influence of
memory layout dynamics on bug reporting results.



Third, a kernel developer should mutate the thread inter-
leaving and run the corresponding PoC multiple times under
different thread interleaving. If the thread interleaving matters
for bug report difference, this could allow a kernel developer
to vary a kernel bug’s panic behaviors, expose all its possible
reports and thus treat these reports as duplicated bug reports
accordingly.

Fourth, recall that a bug report also includes the kernel
setup and configuration for the kernel fuzzing (e.g., the sani-
tizers they enabled). A kernel developer, therefore, should also
replace the kernel fuzzing setup with the setup or configuration
specified in other reports (e.g., disabling KASAN and enabling
KMSAN specified in another report). By doing so, kernel
developers could have the PoC run on the same setup and thus
eliminate the impact of sanitizers upon bug report difference.

Last but not least, a kernel developer can also compare
the PoC program and/or the stack trace with those extracted
from other reports. If the bug report duplication does not result
from other factors but the difference in PoC or the sites where
the kernel faults are injected, the difference between PoCs is
generally less significant when the bug reports reference the
same kernel bug.

B. Deduplication Tool

Following the strategies mentioned above, we propose a
unified tool to facilitate bug report deduplication. The tool
takes a pair of kernel bug reports as input, and passes them
to five distinct technical components. For each component, it
determines whether the pair of reports are duplicated because
of the corresponding factor. We present each of the technical
components below.

Different Sanitizers. Given a pair of bug reports, the first
component examines whether the reports are duplicated be-
cause of the utilization of different sanitizers (e.g., KASAN
and KMSAN). To do so, we first examine the sanitizers
involved in each report. If there is only one report that indicates
the utilization of a sanitizer (e.g., KASAN or KMSAN)
during the kernel fuzzing, our configuration simply disables
the sanitizer on the corresponding kernel specified in the
report. Then, we re-run the corresponding PoC attached in
that report and observe whether the sanitizer-disabled kernel
still experiences unexpected termination while it takes as input
the PoC program. If an unexpected kernel panic still occurs
and the kernel panic is as same as the one observed on the
other kernel report (i.e., the same crashing trace), we argue
the report difference is contributed by the enabled sanitizer.
Thus, we conclude the two reports reference the same kernel
bug.

If both reports indicate the usage of a sanitizer but the
sanitizers-in-use are different (e.g., one uses KASAN and the
other uses KMSAN), we perform the following operation.
First, we take one report as our reference and configure the
kernel based on the information in this reference report. Mean-
while, we disable the corresponding sanitizer of the reference
report and enable the sanitizer specified in the other report.
After this configuration and setup, we re-run the PoC program
attached to the reference report on the reference kernel and
inspect whether the kernel panic still manifests. If unexpected
kernel panics still exist and the observed panic is as same as the
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one demonstrated in the report, we conclude both reports link
to the same kernel bug. It is simply because, after having both
kernels enable the same sanitizer, we eliminate the influence
of “sanitizer difference”. If the unexpected panic becomes
identical, the two reports are just two different exhibitions of
the same bug.

Note that when we switch the reference kernel’s sanitizer
to the one specified in the other report, it is possible that the
new sanitizer is not compatible with the version of the kernel
specified in the reference report. For example, KMSAN was
introduced only after kernel version 4.4, and it does not support
an earlier version of the reference kernel. Moreover, KMSAN
is maintained in another GitHub repository. To address this
issue, we take an alternative approach that disables sanitizers
on both kernels and re-runs the corresponding PoC on both
sanitizer-disabled kernels. If the unexpected kernel panic still
occurs and the crashing reports indicate the same termination
behaviors, we conclude both reports reference the same kernel
bug.

Memory Dynamics. To offset the influence of memory layout
dynamics upon bug report duplication, we not only enhance
an existing memory quarantine mechanism but also replace the
slab allocator with the slub allocator. Under these two changes,
we can minimize the memory layout dynamics. Further, by re-
running the PoC programs from different reports, if the new
reporting results are the same, we can safely conclude the bug
reports are duplicated.

Linux community has implemented a memory quarantine
mechanism [9] in both SLAB and SLUB allocators. Its basic
idea is to put freed objects in a separate queue and delay
their reallocation. Using this mechanism, when a dangling
pointer touches a memory region, the kernel can ensure that
memory will have a lower chance of being recycled too
quickly. As such, the quarantine mechanism could prevent a
use-after-free bug exhibiting an out-of-bound activity and thus
minimize the impact of memory layout dynamics. However,
our manual analysis discovers, even if many Linux kernel
distros have adopted this mechanism, memory dynamics still
greatly contribute to the report duplication issue.

In this work, we take a closer look at the reason behind
the quarantine’s incompetency, and discover that the problems
roots in the insufficient space of the separate queue. When the
extracted PoC program performs race conditions, it usually
allocates and deallocates many kernel objects. These freed
objects could quickly push the quarantined memory space out
of the queue and put them back into recycling. As such, the
same bug could be reported differently, resulting in report
duplication (e.g., sometimes reported as use-after-free and
sometimes as out-of-bound access). To address this problem,
we double the size of the quarantine queue and insert sleep
operations after each race iteration. In this way, we not only
leave sufficient space for freed objects but also prevent the
race from exhausting the queue too quickly.

In addition to improving the memory quarantine mecha-
nism, we also replace the slab allocator with the slub allocator.
Based on our observations in Section V, we note that both the
size of the redzone and that of the kernel cache contribute
to the difference in reporting results. Given slab allocators,
the KASAN introduces only a relatively small memory space



for the redzone. Therefore, some out-of-bound kernel bugs
could jump over the redzone region, touch non-deterministic
memory regions, and thus report the post-triggering activities
differently. In addition, when the slab allocator is in use, out-
of-bounds memory access could more easily cross the cache
boundary, touching a cache totally irrelevant to the bug, and
thus come up with different reporting results.

By replacing the slab allocator with the slub allocator,
we can minimize the impact of redzone and the cache upon
reporting difference. This is because the size of redzone for
each siot in SLUB allocator is larger than that in SLAB
allocator. Following this setup, out-of-bounds memory access
is more likely to fall in the redzone. Another reason is SLAB
allocator starts allocation from the end of the pages whereas
SLUB allocator prioritizes the allocation of slots at the
beginning of the pages. With this setup, the cross-boundary
situation to some extent could be mitigated. Note that in order
to further mitigate the cross-boundary issue, we also increase
the number of pages assigned to each cache. In this setup,
the possibility of cross-cache-boundary access could be further
reduced.

Thread Interleaving. Our idea is to mutate the thread in-
terleaving to determine whether a pair of bug reports is
duplicated. To be specific, we first analyze the bug report and
extract the crashing stack traces. For the bug report tied to
OOB/UAF caught by sanitizers, i.e., KASAN, we also extract
stack traces that allocates and frees the object that leads to
kernel panic.

With these stack traces, we could know all the kernel
functions that have been invoked but not returned at the time
of kernel panic. Also, we can know the kernel objects that have
been allocated or freed. According to a recent study [80], the
functions most close to the crashing site are more likely to be
the buggy function. In addition, prior research [55] also finds
the crashing stack trace sometimes indicates the execution path
of one of concurrent threads. As a result, we follow the work
proposed in [60], focusing our consecutive analysis on the last
five functions in the stack trace.

Our method could extract three different stack traces (the
crashing stack trace, the stack trace related to the object free
operation, and the stack trace related to the object allocation
operation). For each stack trace, we select their functions most
close to the crashing site. Then, we leverage SystemTap[2] to
insert time delay to the starting and returning sites of these
functions. Following this setup, we further extract the PoC
programs from the reports under our examination, and re-run
these programs multiple times (10 times by default). If we
observe a crash behavior that has already been presented in
the other report, we conclude that the corresponding reports
point to the same bug. It should be noted that we choose the
delay time by following the heuristics applied in KCSAN (i.e.,
randomly selecting a value between [1,80] us for tasks, [1,20]
ps for interrupts).

Inline Function and Kernel Versions/Branches. We propose
two straightforward approaches to determine whether report
duplication is caused by the function inline mechanism or
different kernel versions/branches.
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1. nr_rx_frame 3. sock_hold 5. refcount_inc_checked

——>0——>0——>0——>0——0

2. nr_insert_socket 4. sk_add_node

Fig. 7: The last five functions in the crashing trace from the
bug group #4638faac. O represents function not inlined and
@ are for those inlined in both bug reports. @ stands for the
function inline in one report but not inline in another.

To address the function inline issue, we simply extract and
compare the dead functions from the crashing stack traces. If
both crashing stacks share the same dead functions in the same
sequence, then the difference between crash titles is due to an
inline function, and we can conclude the two reports are about
the same bug. The reason behind this design is again based
on results from Section II. Syzkaller uses the last crashing
function to name the title of the bug report. In the process of
the last crashing function extraction, Syzkaller not only skips
some generic functions, but also ignores the inline functions.
Take the crashing trace shown in Figure 7 as an example. The
crashing stack traces show different function inline, and the
reports deem crashing function as nr_insert_socket and
nr_rx_frame respectively. In this work, by using the entire
crashing stack trace, we can restore the footprint of the inline
function, enable a more accurate crashing function comparison,
and thus eliminate the influence of function inline for bug
report deduplication.

To eliminate the influence of different kernel version-
s/branches, we first examine both reports and ensure the kernel
information specified is truly different. With the confirmation,
we then configure the kernels based on the specified infor-
mation and rerun the corresponding PoC across kernels (i.e.,
running the PoC extracted from one report on the version
of kernel specified in the other report). If we observe the
swapped PoC demonstrates the kernel panic as same as that
indicated in its original report, we safely conclude the pair
of reports are about the same bug. The rationale behind this
approach is that, if both reports trigger the same bug but exhibit
different behaviors only because of the different versions
of the underlying kernel, swapping PoC could remove the
influence of this factor and thus have the corresponding kernel
demonstrate the same panic behavior under two different PoCs.

Input Difference. Given a pair of kernel bug reports, to
determine whether they are duplicated by input difference,
we compare the similarity of PoC programs extracted from
both reports. We deem the reports are duplicated if their PoC
programs are highly similar because when the PoC programs
trigger the same bug, they generally use similar types of system
calls and arguments.

To compare a pair of PoC programs, we first categorize
system calls by using the specification provided by Syzkaller.
For example, as described in the system call templates of
Syzkaller, the system call 1setxattr and fsetxattr belong
to the same category, taking the responsibility of setting
an extended attribute for a file. With all the system calls
categorized, we extract the system call sequences from each
of the PoC programs and compare the sequence as follows.



Method TP Rate FP Rate
Baseline 364/717 = 50.8% | 829/79,083 = 1.05%
Our method | 572/717 = 79.8% | 10 /79,083 = 0.01%

TABLE IX: Detecting duplicated bug report pairs.

First, we assign a unique ID for each category of system
calls. Second, for both system call sequences extracted from
the PoC programs, we map the name of the system call to
the corresponding ID (the system calls in the same group
share the same ID) and convert the system call sequence
into a list of IDs. The arguments of each system call are
the elements associated with the ID. Finally, we compute the
similarity of two PoC programs by measuring the similarity
of the two corresponding ID lists. In this work, we perform
the list similarity measurement by using a customized version
of Levenshtein distance. Due to the space limit, we present
the customized distance measure in Appendix-B. We deem
the reports with a similarity score greater than 0.65 as the
duplicated ones. Details of the threshold selection method are
also presented in Appendix-B.

Summary of Proposed Techniques. We propose five technical
components to address the 6 factors of bug duplication (“In-
line Function” and “Kernel Versions/Branches” are addressed
together in one component). It should be noted that four of
the five components are false-positive-free (the only exception
is the one for “input difference”). This is because these four
components determine bug duplication by explicitly resolving
the differences in the original pair of reports. The technique
for “input difference” is based on PoC similarity, which could
have false positives. Further discussion and evaluation are in
the next Section VI-C.

C. Ground-truth Evaluation

Dataset and Metrics. We construct a dataset to evaluate
our method. First, for the duplicated reports, we directly use
the final ground-truth set in Table II which contains 104
bug groups and 327 bug reports (i.e., bug titles). Then we
introduce another 73 bug reports randomly selected from the
non-duplicated bug titles (we manually confirmed the non-
duplication). In total, the dataset contains 400 bug reports
covering 177 unique kernel bugs (i.e., 177 bug groups).

Considering our method takes pairs of bug reports as
inputs, we format the dataset by exhaustively pairing the
reports. This generates a ground-truth dataset of 717 duplicated
pairs (positive) and 79,083 non-duplicated pairs (negative).

We consider two common evaluation metrics. TP (True
Positive) rate is the ratio of the real duplicated pairs that
are successfully detected (marked out) by our method. FP
(False Positive) rate is the ratio of the non-duplicated pairs
that are incorrectly detected as duplicated pairs. Considering
our dataset is skewed, we also report the raw numbers (true
positives and false positives) along with these rates. In this
section, our analysis is focused on bug report pairs. Further
discussion of the bug-group level performance is in Appendix-
C.

Baseline Method. It is difficult to find a direct baseline since
there is little work on bug deduplication for Linux kernel.
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Factor GT Detected | Contributed
Pairs Pairs FP
Different Sanitizers 33 33 0
Memory Dynamics 178 178 0
Inline Function 43 43 0
Thread Interleaving 122 62 0
Input Difference 341 256 10
Total 717 572 10

TABLE X: Performance breakdown for each factor and its
sub-method. “GT Pairs” means the number of ground-truth
duplicated pairs associated with each factor. “Detected Pairs”
means the number of duplicated pairs detected by the corre-
sponding method designed for each factor.

The most relevant deduplication heuristics for kernel space
are already used by Syzkaller. Our method is built on top
of Syzkaller’s deduplication results (i.e., their bug titles) to
make further improvements. There are indeed deduplication
methods used in user space for fuzzing tasks, which could be
used as a baseline. Here, we choose a popular stack similarity
algorithm from ClusterFuzz [19] which can work well with
the stack traces of Syzkaller’s kernel crash reports. We follow
their deduplication policy and re-implement it to compare the
stack traces of kernel crash reports. We present the detail of
our re-engineering effort in Appendix-D.

Detecting Duplicated Bug Pairs. The detection results are
summarized in Table IX. We show that our method achieves
good performance and outperforms the baseline. More specifi-
cally, our method detects 572 of the 717 duplicated pairs with
a true positive rate near 80% (50.8% for the baseline). At the
time, we have introduced 10 false positives (0.01%) which
is much lower than the baseline (829 false positives, 1.05%).
The result confirms that simply comparing the stack traces
is insufficient to detect duplicated bugs (baseline method).
To further understand the sources of errors (especially false
positives), we break down duplicated reports based on the
contributing factors, as shown in Table X. For example, there
are 33 duplicated pairs caused by “Different Sanitizers”. We
find that all 33 pairs are successfully marked by the proposed
method with O (zero) false positive. Table X confirms that the
only source of false positives (FP) is the method for “Input
Differences”. All other methods proposed for other factors
are FP-free (by design). At the same time, we observe that
the proposed methods for “Different Sanitizers”, “Memory
Dynamics”, and “Inline Function” have a perfect true positive
rate (100%). While the method for “Thread Interleaving” has
missed some duplicated pairs, it does not introduce any false
positives.

Detailed Error Analysis - FN. Our methods for “Input
Differences” and “Thread Interleaving” have missed some truly
duplicated pairs. We manually examine these cases and find
that, under “input differences”, the errors are mostly caused by
the PoC programs which have a low similarity in their system
call sequences and arguments. Take the duplicated reports [37]
and [36] for example, one PoC invokes 16 system calls while
the other involves only one system call. Further work is
needed to address such cases with auxiliary information. We
argue that this does not necessarily dismiss the value of the



proposed technique since it still recovers 256/341 (75%) of the
duplicated pairs caused by input differences.

For “thread interleaving”, we find that the missed pairs are
mostly caused by three reasons. First, not all crashing stacks
are directly involved in the thread synchronization. As such,
inserting time delays to the functions extracted from crashing
stacks does not always work. Second, for certain cases, the
time delay needs to have a specific value to trigger the expected
results. As such, a random time delay could be insufficient.
Third, the inserted time delay could potentially influence the
thread interleaving but does not guarantee the thread synchro-
nization to occur as expected. Overall, we believe further work
is needed to improve the time delay insertion (based on static
and dynamic program analysis) and perform more fine-grained
thread scheduling control for deduplication.

Detailed Error Analysis - FP. As shown in Table X, the
“input difference” method is the only source of the 10 false
positives. In practice, conservative developers (or Syzbot)
could use all the other FP-free techniques to automatically
group bug reports. For the input difference method, Syzbot can
use it to make recommendations to developers on “potentially
duplicated” reports or optimize the maintainer assignment
process (i.e., assigning the same set of maintainers to the
detected bug pairs). Because it has FP (even though small),
we do not recommend using it to automatically merge/remove
duplicates. We have manually examined these false positives,
and determined that their PoC programs have highly similar
system calls. For example, bug reports [38] and [35] are about
different bugs, but the two PoCs are using the same pseudo
system call syz_usb_connect to trigger the bug. The only
difference between the PoCs is the arguments passed to the
system call. Such a minor difference results in a high similarity
measure and thus false positives.

As discussed in Section III-B, false positive cases have
a lower impact because Syzbot can effectively handle them
with continuous fuzzing. If a few corner cases are grouped
incorrectly by the input difference method, Syzbot can ensure
that these bugs will not be ignored by kernel developers. More
specifically, after a patch is developed, Syzbot will continue to
test the patched kernel version. If not all bugs are fixed, Syzbot
will continue to file crash reports, and kernel developers will
work on these reports to patch the remaining bugs.

Applicability. While this paper is focused on Linux kernel,
the proposed techniques are applicable to other open-source
kernels such as FreeBSD, NetBSD, and OpenBSD. Note that
Syzbot already supports fuzzing these kernels, and it has
already generated crash reports for them.

Scalability. We want to briefly discuss given the fact that
deduplication requires testing a large number of bug pairs.
During our analysis, we find that the runtime for analyzing
each bug pair varies significantly. There are two reasons. First,
if one strategy can successfully confirm duplication, we will
stop testing the remaining strategies. Second, we only apply
a specific deduplication strategy when their corresponding
conditions are met. The applicable strategies for each pair may
differ, which affects the runtime. For example, if a pair of bug
reports have different sanitizers, we will apply the strategy for
different sanitizers. In this case, the most time-consuming part
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is kernel recompilation. It only takes about 1 minute to run
PoC testing in the QEMU VM. However, it takes an 8-core
desktop 15-20 minutes (depending on the kernel configuration)
to recompile the Linux kernel.

When applying these deduplication techniques in practice,
we do not need to compare a new bug report (title) with all
the historical reports. Instead, we only need to compare it with
“Open Bugs”. The open bug queue usually contains < 1,000
open bugs. Given the rate of bug discovery (e.g., about ten
bugs per week), this overhead is manageable. Furthermore,
we can run deduplication strategies in parallel (e.g., compiling
Linux kernel with different configurations or run the same
PoC in different VMs) to improve the runtime efficiency. As
a reference point, it took about two weeks to run our ground-
truth evaluation, which involves testing about 80,000 bug pairs
using two commodity servers. With improved parallelization
and additional computation resources, we argue such overhead
is acceptable to companies such as Google.

D. Applying Our Methods to Open Bugs

The above ground-truth experiments confirmed the effec-
tiveness of our methods. We next apply our methods to real-
world open bugs to catch previously unknown duplication.

Analyzing Open Bugs. In January 2021, we collected all
the bug titles from the “Open bugs” queue on the Syzbot
dashboard. These bugs are have been reported but are not yet
fixed. We obtained 652 bug reports that contained reproducers
at the time of the experiment. While we can exhaustively apply
our automated techniques to all the bug report pairs (212,226
pairs), to validate the correctness of results, we need to select
a small subset of pairs for the time-consuming manual testing
and validation.

We first extracted the crash function, crash type, the PoC
program, and the stack trace from each bug report. Then, for
each bug report pair, we automatically computed the similarity
of their crash description, the PoC program using the method
discussed in Section VI-B. We kept the bug report pair for
further examination if it satisfies one of the following criteria:
® The two crashes occur in the same function; ® The two
bug reports manifest the same crash type associated with the
same subsystem (i.e., the crash functions are defined in the
same directory); ® The similarity of the PoC programs in
the two bug reports is greater than 0.65; @ The five recently
called functions in the two stack traces are the same. After the
filtering, we have 455 pairs left for further investigation.

Findings. We confirmed that our techniques were practically
effective in identifying previously unknown bug duplication.
In total, we identified 27 groups of duplicate bugs. These bug
groups involved 66 bug titles and 66,594 crash reports. By
examining the causes of duplication, we find that the most
commonly observed factors are ‘inline function” (affecting 13
bug groups) and “different inputs” (affecting 8 bug groups).
For the rest of the factors, each affects < 7 bug groups.

Since we do not have the “ground truth” for open bugs,
we randomly select 20 groups of duplicate bugs (flagged by
our techniques) and 20 non-duplicate groups to validate the
effectiveness of our methods. Through manual analysis, we do
not observe any false positives. We only find 1 false negative



from the non-duplicate groups. The underlying reason is that
the PoCs between the two groups are highly different, with
different syscall sequences and different syscall arguments.
Our tool cannot effectively group them together.

When analyzing the flagged duplicate bug groups, we
have several key observations. First, for cases that are af-
fected by “inline function”, our tools can effectively iden-
tify the functions with different inline status in different
reports. For example, in the bug group of WARNING: refcount
~— bug in grtr_node_lookup and WARNING: refcount bug
< in grtr_recvmsg, our tool can identify the function
grtr_node_lookup, Which is inline in one report and non-
inline in the other report. Second, there is a case identified by
“kernel versions and branches”. We find two similar-looking
but actually different key functions between two different
kernel versions: sctp_ulpevent_notify_peer_addr_change
and sctp_ulpevent_nofity_peer_addr_change. Note that one
function name contains the keyword not i fy, the other function
name contains the keyword nofity (notify vs. nofity). Third,
there is a case detected by “different sanitizers”, where we
switch from KMSAN to KASAN in one crash report and re-
compile the source code. After that, we observe the same crash
behaviors in another crash report. Fourth, for a case affected by
“memory dynamics”, our method helps to stably manifest the
crash behavior in another report. Finally, our PoC similarity
analysis has helped to verify cases affected by “input differ-
ence”. For example, the PoCs for general protection fault
— 1in l2cap_sock_getsockopt and general protection
< fault in sco_sock_getsockopt have a high similarity ex-
cept for the socket type in syz_init_net_socket.

When analyzing open bugs, we again find a similar case to
that described in Section V-C. This bug group contains one
bug report that shows a UBSAN: shift-out-of-bounds in
< mceusb_dev_recv behavior [42] and another report shows
a UBSAN: shift-out-of-bounds in mceusb_dev_printdata
— behavior [41]. In fact, there has already been a patch
developed and discussed in the community for the first be-
havior. This patch adds a sanity check only in the function
mceusb_dev_recv. However, after analyzing the root cause, we
concluded that the two bug reports are indeed duplicated and
more importantly, the patch only mitigates the first behavior.
This again confirms that a limited view of the diverse bug
behaviors indeed leads to incomplete patches.

Result Sharing and Communication. A recent work [21]
shows that knowing the multiple behaviors of the same bug
can help to improve crash analysis. To this end, we have
further reported the duplicated bugs we found to the Syzbot
dashboard and notified the corresponding developers. We hope
our findings can help with ongoing bug analysis.

At the same time, we have communicated our results
and findings with the Syzkaller and Syzbot team. The initial
response from the team was positive, echoing the importance
of finding the duplicated bugs given the backlog of open bugs
they are currently accumulating. We are in the process of
introducing our tool, and exploring the opportunity to integrate
it into Syzbot to improve the current deduplication system.
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VII. RELATED WORK

In this work, we perform a large-scale measurement to
study the bug report duplication phenomenon on Syzbot, with
the purpose of improving root cause diagnosis and facilitating
bug patching. As such, we consider the works in the following
directions as related.

Bug Report Deduplication. Prior works have explored dif-
ferent methods to deduplicate bugs discovered by automatic
tools. One method is to leverage stack trace in the bug report
to determine whether two reports are referring to the same
bug. Fuzzing tools, including SmartFuzz [60], VUzzer [64],
FuzzSim [76], CERT BFF [25], and Syzkaller [73], generate a
stack hash using the function name, line number, and file name
on the call stack for deduplication. Other works (e.g., [65],
[75]) calculate stack edit distance and TF-IDF for deduplica-
tion. ReBucket [32] measures the similarities of call stacking
using an Dependent Model (PDM) algorithm. Another method
considers the basic block transition in the execution path,
which is widely employed by AFL-based fuzzers (e.g., [23],
[22], [67], [21], [57], [62], [53], [56]) Unfortunately, a study
by Klees et al. [52] shows that this approach could yield
excessive false positives and false negatives. Finally, Ton-
der et al. [72] propose a method that groups the bugs with
similar fixes. Despite these efforts, none of the previous works
are focused on reasoning the factors that have caused different
crash behaviors and designing solutions to handle these factors
(the main focuses of our work).

Empirical Studies of Kernel Bugs. Researchers have per-
formed empirical studies of kernel bugs, with different pur-
poses compared to our paper. For example, Abal et al. [18]
have studied 42 bugs in the Linux kernel. They observed that
variability bugs do not exclusively belong to any particular
bug types, error-prone features, or source code locations, while
the variability property has greatly increased the complexity
of bugs in the Linux kernel. PDiff [47] performed a compre-
hensive study to understand the patch presence testing prob-
lem. They identified two essential challenges in the testing:
third-party code customization and diversities in the building
configuration. Xu et al. [79] empirically studied real-world
Android kernel vulnerability patches. They found that the code
changes of security patches are generally small compared to
non-security patches and large security patches usually contain
several small individual patches. Li and Paxson [54] conducted
an empirical study of security patches to understand their
development life cycles. They show that security patches are
more localized (than other non-security patches) but usually
suffer from a long delay. Mu et al. [61] analyzed crowd-
reported vulnerability reports to assess their reproducibility.
Our work is the first to study the factors causing the report
duplication problems for kernel bugs. In addition to the em-
pirical study, we also provide suggestions to deduplicate bug
reports to facilitate root cause diagnosis and bug patching.

VIII. CONCLUSION AND FUTURE WORK

We discover the duplicated kernel bug reports are prevalent
and could potentially cause the delay of kernel bug remedy.
Through intensive manual efforts, we analyze the root cause
behind the duplicated reports and summarize six key factors di-
rectly contributing to report duplication. Under the guidance of



our discovery, we prototype a series of deduplication strategies.
We conclude the newly proposed deduplication strategies could
group a majority of duplicated kernel bug reports correctly
and even facilitate correct kernel patch development. As is
described in Section VI-C, our proposed deduplication method
is merely the initial exploration. Our future research will focus
on exploring more advanced technical approaches to better
cluster duplicated reports or in other words further reduce
the errors introducing in the report grouping. Besides, we will
study how to use the grouped reports to better diagnose the root
cause of corresponding kernel bugs and thus further benefit
bug remedy. Finally, we will also study the bug duplication
problem for other OSes (e.g., Windows and XNU).
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Fig. 8: A sample matrix obtained from Levenshtein distance
computation.

APPENDIX
APPENDIX-A: CORNER CASES OF BUG GROUPS

Our “ground-truth” bug groups are determined based on
the patches of those fixed bugs. This methodology is reliable,
except for a handful of corner cases. We discover such corner
cases during our manual analysis, which turns out to be caused
by human errors of syzbot maintainers. More specifically,
thorough our analysis (described in Section III-D), we find
that 5 bug groups (4.59%) contain the wrong patches for 10
of their bugs. Note that this is not a contributing factor to bug
duplication (but may have some relationship with duplication).
More specifically, after a bugfix is developed, certain syzbot
maintainers may manually assign the bugfix to one or more
bug titles since they expect there are duplications. We find
that sometimes the patch assignment is wrong. The mistake
is mostly caused by human errors during their manual bug
analysis (e.g., recognizing the wrong bug in the same parts
of the code). To mitigate this issue, we recommend simply
re-running the PoC to verify if the patch is indeed fixing
for the assigned bug. We have reported this problem to the
corresponding syzbot maintainers.

APPENDIX-B: SIMILARITY MEASURE

Levenshtein distance. The Levenshtein distance equation
takes as input two lists, outputting a matrix by using the
equation below

max(i, ), if min(i,j) = 0.
Levsys/(i - 1,]) + 1,

min { Levs g (i,j — 1) + 1, Otherwise.
Levg g/ (i — 1,5 — 1) + cost(Ss, S5),

chs’s/(i,j) =

As is depicted in Figure 8, the Levenshtein distance com-
putation can identify the element aligned across the lists. In
our application, they indicate the syscalls aligned across the
pair of PoC. In addition, the value in the lower-right corner of
the matrix also indicates the minimal edit needed for flipping
one list into the other. It is in a range from 0 to oo. In our
work, we normalize this value into the range between 0 and 1
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by using the equation below.
Lev(S,S")
maz(len(S),len(S"))

We use this normalized value as the similarity between the two
lists extracted from the PoCs.

Similarity(S,S) =1 — 2

Customized Levenshtein distance. Different from the orig-
inal Levenshtein distance equation, our customized version
replaces the cost function of the original version from the form
cost(a;, bj) ,==b, to the form below

==

1aL':bJ ; Oa

1 ID(S;) # 1D(5;),

cost(Si, ;) = {N/M ID(S;) = ID(S;) ©

Here, the new cost function is designed to augment the
Levenshtein distance equation with the ability to capture the
argument deviation of system calls in the same family. As
we can observe from Figure 9, if the syscall aligned in both
PoC have the exact same arguments, we assign 0 to the cost
function. Otherwise, we deem % as the value of the cost
function. Here, N represents the total number of arguments
sharing no value whereas M indicates the total number of
arguments in the syscall’s argument list.

Threshold selection. To determine what value of the similarity
measure should be taken as a signal for duplicated report
identification, we use the customized Levenshtein distance
to compute the pairwise similarity for non-duplicated kernel
reports gathered from Syzbot. We note the average pairwise
similarity measure for these non-duplicated reports is 0.16,
and their standard deviation is 0.14. Based on the univariant
outlier detection technique [66], we use the mean value plus
the 3.5x standard deviation as our cutoff threshold value. We
deem a pair of reports have a highly similar PoC program if
their similarity measure is above this threshold.

APPENDIX-C: DETECTION PERFORMANCE OF BUG
GROUPS

The evaluation of the proposed techniques (Section VI-C)
has been focused on the detection of duplicated bug pairs.
Here, we briefly discuss the detection performance at the
bug group level. More specifically, we grouped the detected
duplicated pairs into bug groups and compared them with
the ground truth. For our proposed method, we find that
the detection has O (zero) error for 70 bug groups (out of
104 ground-truth groups). This means our techniques have
perfectly discovered these bug groups. In comparison, the
baseline method only discovered 44 bug groups without any
errors. At the same time, our method only produces 5 bug
groups that contain false positives (10 FP pairs in total). In
comparison, the baseline method has produced 70 bug groups
with false positives in the group. The rest of the bug groups do
not have false positives, but may have missed duplicated bug
titles. Overall, the results confirm that our method significantly
outperforms the existing baseline method. Further discussion
on how false positives should be handled is in Section VI-C.

APPENDIX-D: IMPLEMENTATION OF THE BASELINE
METHOD

As is mentioned in Section VI, when grouping duplicated
bug reports gathered from Syzbot, we re-implemented the
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Fig. 9: The demonstration of our customized Levenshtein distance computation.

Bug Group as duplicate bug reports. Otherwise, we deemed them as non-
l l l duplicated bug reports.
Bug Title A Bug Title B Bug Title C
Crash Crash Crash Crash Crash
Reports Report 1 Report 2 Report N Reports

Fig. 10: Relationships between bug groups, bug titles, and
crash reports.
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Fig. 11: Number of bug titles under each distinct crash type
in our sampled dataset.

method used by ClusterFuzz. In this work, we used this method
as our comparison baseline to demonstrate the effectiveness
of our proposed deduplication method. Here, we detail our
re-implementation effort. Given a pair of Linux kernel bug
reports, we first extracted the crashing stack trace from each
report. In this step, we customized ClusterFuzz’s deduplication
method by reconsidering the format of Linux kernel stack
trace and kernel sanitizers. Meanwhile, we excluded certain
functions at the kernel stack trace (e.g., dump_stack) to
prevent its adverse effect upon the similarity comparison of
the stack traces. Second, we then compared the stack traces
of the two bug reports one by one, starting from the first
function invoked. When performing a comparison against two
functions, we utilized the Levenshtein distance to calculate the
similarity of their function names. In our implementation, we
added up all the similarity scores, and divided the sum by the
total number of functions under comparison. This produced a
normalized similarity score of the stack traces from the two
bug reports. If the similarity of the stack traces is more than
a threshold (i.e., 0.8 used in ClusterFuzz), we treated them
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