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Abstract. Diffusion State Distance (DSD) is a data-dependent met-
ric that compares data points using a data-driven diffusion process and
provides a powerful tool for learning the underlying structure of high-
dimensional data. While finding the exact nearest neighbors in the DSD
metric is computationally expensive, in this paper, we propose a new
random-walk based algorithm that empirically finds approximate k-nearest
neighbors accurately in an efficient manner. Numerical results for real-
world protein-protein interaction networks are presented to illustrate the
efficiency and robustness of the proposed algorithm. The set of approx-
imate k-nearest neighbors performs well when used to predict proteins’
functional labels.

Keywords: Diffusion State Distance, Random Walk, k-nearest neigh-
bors

1 Introduction

A classical and well-studied problem in bioinformatics involves leveraging neigh-
borhood information in protein-protein interaction (PPI) networks to predict
protein functional labels. In a typical setting, a PPI network is provided, where
vertices represent proteins and edges are placed between two proteins if there is
experimental evidence that they interact in the cell. In addition, some vertices
are partially labeled with one or more functional labels representing what is
known about their functional role in the cell. These functional labels are derived
from some biological ontology (most commonly GO, the Gene Ontology [7]).
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Foundation under grant DMS-1812503, CCF-1934553, and OAC-2018149
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The goal is to use the network structure to impute functional labels for the
nodes where they are missing. In 2013, Cao et al. [5] proposed a simple function
prediction method based on a novel metric, Diffusion State Distance (DSD). In
particular, they proposed having the k-nearest neighbors in the DSD distance
vote for their functional label(s) and then assigning the functional label that got
the most votes. They showed that the k-nearest neighbors in the DSD metric can
achieve state-of-the-art results for function prediction. In [4], this approach was
generalized in a straightforward way to incorporate confidence weights on the
edges of the PPI network. The focus of this paper is on whether this algorithm
can be sped up in practice.

Computationally, using the naive algorithm to compute all DSD distances
and then, finding the k-nearest neighbors according to DSD in a brute-force
way takes O(n?) time, where n is the number of nodes in the PPI network.
In [15], computing DSD of a given undirected but possibly weighted graph is
reformulated to solving a series of linear systems of graph Laplacians, which
can be approximately solved by existing graph Laplacian solvers in an efficient
manner. Furthermore, the authors use Johnson-Lindenstrauss Lemma [11] and
random projections [1] to reduce the dimension and, thus, further reduce the
computational cost to O(n?logn).

The next step is to find k-nearest neighbors (NN) based on the DSD met-
ric, which is a kNN search problem. In general, existing exact and approximate
search methods are subject to an unfavorable trade-off: either they need to con-
struct a complex search structure so that the subsequent query retrievals on
it are inexpensive, or they build a simpler data structure for which accurate
searches remain costly [16,12,10,13]. In this paper, our goal is to develop an
accurate approximate kNN algorithm, that downstream, allows us to perform
functional label prediction. In other words, we develop a method that efficiently
computes a set of neighbors that perform well in the kNN function prediction
task, even if they are not exactly the k-nearest neighbors by the DSD metric.
To achieve this, we use the special property that DSD is random-walk based,
and naturally, adopt a random-walk based approach to approximate k-nearest
neighbors in the DSD metric. Comparing with the generic K-dimensional tree
(K-d tree) algorithm [2], our random-walk based approach is more efficient for
the DSD metric. On the other hand, our random-walk based approximate kNN
algorithm is capable of finding a set of neighbors that provide good (or occasion-
ally even better) performance for function predictions in practice. Overall, with
properly chosen parameters, our random-walk based algorithm’s computational
complexity is O(nlogn). Thus, coupling with the algorithm for computing DSD
that is developed in [15], we have a function prediction method with competitive
function prediction performance comparing with the original method developed
in [5], but the running time of the entire procedure is reduced from O(n?) to
O(nlogn).

The structure of the paper is organized as follows: Section 2 introduces ba-
sic matrices related to the graphs and reviews algorithms to compute the exact
and the approximate DSD. In Section 3, we develop random-walk based approx-
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imate kNN algorithms and discuss their computational complexity. Numerical
experiments are presented in Section 4 to show the efficiency and accuracy of
our proposed function prediction algorithm for real-life PPI networks. Finally,
we give some conclusions in Section 5.

2 Background

In this section, we review the related background and algorithms of DSD. We
follow the notation in [15] for definitions related to graphs and random walks.
We also briefly summarize the definitions of DSD and algorithms for computing
DSD in this section.

2.1 Notation

In general, PPI networks are presented as connected undirected graphs with
positive edge weights (where the edge weights most typically represent the con-
fidence in the experimental evidence that indicates the proteins are interacting).
We use G = (V, E, W) to denote a connected undirected graph, where V is the
vertex set, I is the edge set and W is the weight set. If two vertices v; and v; are
incident, we denote an edge e;; € E/ with positive weight w;; > 0. We denote the
number of vertex by n = |V| and the number of edges by m = |E|. The degree
of a vertex v; € V is denoted as d;, which is the number of edges connected to
v; and the weighted degree is defined as §; = Zvjev,eijeE Wij.

Next, we introduce several matrices related to the graphs. The adjacency
matrix A € R"*" and the degree matrix D € R"*"™ are defined as follows,

Wij, if €ij € E, 5,;, 1 =7,
Aij = . D;; = 0
0, otherwise. 0, i+# 7.

Then the graph Laplacian is defined as L. = D — A and the normalized graph
Laplacian N is defined as N = D :LD . N is positive semi-definite and 0 is
an eigenvalue of N. The eigenvector d corresponding to the zero eigenvalue is
d:= (5;01412D% 1 where diota = Zviev d; is the total weighted degree and 1 € R"
is the all one vector. Note that ||d|| = 1. Since the idea of DSD is based on
random walks on the graph, we also introduce the transition matrix P which is
defined as P = D~ ! A. Since P is row stochastic and irreducible, the steady state
distribution w € R" is defined as 7w = (5{01alD1, which is the left eigenvector of P,
i.e. 7T P = «”. In addition, 7 is normalized as w71 = 1. Finally, we introduce

W = 1xT which is the so-called Perron projection.

2.2 Diffusion State Distance (DSD)

In this section, we briefly recall the diffusion state distance which was introduced
in [5]. We associate each vertex i with a vector b € R™ such that (h}); represents
the expected number of times for a random walk to start from vertex 7 and visit
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vertex j within ¢ steps. Based on the definition of the transition matrix P,
h{ == (I + PT + (PT)?2 + ... + (PT)%)e;, where e; is the i-th column of the
identity matrix. Then the ¢-th step DSD between the vertex ¢ and the vertex
j is defined as DSD(i, j) := [[h{ — h||,, where || - ||, is the standard ¢,-norm.
Then the diffusion state distance is defined by letting ¢ — oo, i.e, DSD(4, j) :=
lim, oo DSDY(4, 5). In [5,15], it has been shown that the above limit exists and
DSD is well-defined. We only state the convergence theory here.

Theorem 1 (Convergence for DSD [5,15]). Assume that P is row stochas-
tic and irreducible, then DSDI(i,j) converges as ¢ — 0, i.e.,

DSD(i, ) == lim DSDG, ) = X (e: - &)

where X = (I — PT + WT)=1 € R"™" s called the diffusion state.

In practice, to compute DSD between all the pairs of vertices, X is pre-
computed and stored. Furthermore, an alternative formulation, X = Dz (NT +
ddT)D*%, is used in the implementation to improve overall efficiency.

Note that the i-th column of the diffusion state X can be viewed as a new
coordinate presentation of the vertex v; in R™. When n is large, i.e. the coordi-
nates of the new representation are in high dimension, the computational cost
is O(n?) in general and can be improved to O(n?) for sparse graphs. This is
still expensive or even infeasible. Therefore, dimension reduction is needed in
order to further reduce the computational cost. In [15], based on the well-known
Johnson-Lindenstrauss Lemma [11,1], we apply a random matrix Q € R**"
that reduces the dimension of the data from n to s = O(logn) in the I3 norm
with high probability. This approach yields the approximate diffusion state
X == QD%NTD*% € R**". Each column of X represents the coordinates
of each vertex in a vector space of dimension s = O(logn) < n, which naturally
reduces the computational cost to O(mlogn) in general, or O(nlogn) for sparse
graphs [15].

Based on the approximate diffusion state X , the approximate DSD is defined
as ]S\Sf)(i,j) = || X (e; — ¢;)||. The following theorem guarantees the goodness of
its approximation property.

Theorem 2 ([15]). Given e,y > 0, let s > fztil logn. Then with probability at
least 1 —n™7, for all pair 0 <i,j <n,

V1= eDSD(i, j) < DSD(4, §) < VI + eDSD(4, ).

In [8], a spectral dimensional reduction approach was introduce to compute

the approximate diffusion state X as well as DSD. We want to point out that
the kNN construction algorithms developed in this paper can be applied to that
case as well. In fact, our algorithm can be applied to any approximation of the
diffusion state X.
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2.3 Construction of k Nearest-Neighbor Set based on DSD

Once the diffusion state X or its approximation X has been computed and
stored, we want to know, for each vertex, the local k-NN set in the DSD metric.

The simplest method to find the k closest vertices to each vertex is the
brute-force method, which computes the distances between all pairs of vertices
and finds the k smallest distances for each vertex. In our case, although this
method gives the exact kNN neighborhood, the computational cost is O(n?) if
we use X and O(n?logn) if we use X. When n is large, the cost of this method
is expensive in practice.

There are several methods that find the exact kNN more efficiently when the
data lie in a low dimensional manifold. For example, the K-d trees [9], where K
is the dimension of the data, has a computational cost of O(Knlogn). However,
when the data sets are high dimensional, these algorithms are still slow. In our
case, if X is used (K = n), the cost of the K-d tree approach is O(n?logn)
and, if X is used (K = O(logn)), the cost is O(nlog?n). This is, of course,
much better than the brute-force method, but still expensive for our biological
application since, as suggested in [9], K-d trees works the best when d = O(1).

One natural idea is to restrict the search to a smaller set for each vertex
instead of considering all the vertices. This subset should contain most of the
target node’s k-nearest neighbors. Then the k-nearest neighbors in this subset
can be returned as the approximate NN set. Motivated by the random walk
interpretation of DSD, we form the neighborhood subset for each vertex via
performing short random walks. We show that the resulting approximate kKNN
sets can be substituted for the exact kNN sets for function prediction, without
loss of prediction percent accuracy.

3 Approximate KNIN Set Construction

In this section, we develop fast algorithms for constructing approximate kNN
set. We first present the general algorithm and then discuss how to apply them
to the diffusion state X and approximate diffusion state X, respectively.

3.1 Random-walk based kINN Set Construction for X

In [5,15], it has been shown that X = I+ PT 4 (PT)* +... = 372 (PT)4,
which reveals how the diffusion state X is closely related to the random walks
on the graph. Based on the fact that the derived infinite series converges, one
can approximate X by its partial sums, namely by doing several steps of random
walks on the graphs to approximate the diffusion state X. Since the goal is to find
k-nearest neighbors under the DSD metric, if the DSD can be approximated via
several steps of random walks, it is natural to assume those k-nearest neighbors
can also be reached via several steps of random walks with high probability.

To be more specific, from a vertex v, if we take one random walk step and
get to uy, we put uy into v’s neighborhood set R(v). Then from w4, if we take
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one more random walk step and get to us (which means we take two steps of
random walk from v to get to uz), then we add ug into the set R(v). We continue
until #; steps of a random walk are done and gather all vertices ever reached in
R(v). Then, we repeat this process to times from vertex v and put all the vertices
that are reached by t; steps of the random walks into the set R(v). Finally, we
find k-nearest neighbors from R(v) for the vertex v. The overall algorithm is
presented in Algorithm 1.

Algorithm 1 Random-walk based kNN set for the diffusion state X

1: for allv € V do
R(v) = 0.
for j =1:%2 do
for h=1:¢ do
R(v) = {u : vertex reached by j steps of random walk from v} UR(v).
end for
end for
Use X to compute the distances between v and vertices in R(v) and find k-nearest
neighbors of v.
9: end for

N

The computational complexity of Algorithm 1 is discussed next.

Theorem 3. The overall computational cost of Algorithm 1 is at most 3t ton?+
(k‘ + 1)t1t2n.

Proof. If we take t; steps of a random walk and repeat this ¢ times to collect
R(v) for one vertex v, the complexity of performing the random walk is ¢;¢o and
the size of R(v) is at most t1t2. Therefore, the computational cost for performing
all random walks over the n vertices is bounded by t;ton.

Since we are using the diffusion state X here, each vertex is represented by
one column of X whose dimension is n, computing DSD between one pair of
vertex costs 3n and computing DSD between v and vertexes in R(v) costs at
most 3titon. Therefore, for all n vertices, the overall cost for computing DSD is
3t1t2n2.

For finding the k-nearest neighbors, since |R(v)| < t1t2 < n in practice, we
use naive approach to find k-nearest neighbors for each vertex and, the compu-
tational cost is at most ktiton.

To summarize, the overall computational cost of Algorithm 1 is at most
3t1tan? + (k + 1)t1tan, which completes the proof.

3.2 Random-walk based kNN Set Construction for X

In Algorithm 1, using random walks, we avoid computing too many distances,
which reduces the overall computational cost from O(n?) to roughly O(n?). This
is the best we can do for the exact diffusion states, because the diffusion state
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X represents each vertex in R™. Therefore, to further reduce the computational
cost, the approximate diffusion state X should be used since it embeds each
vertex in R® where s = O(logn) < n. This can be done by replacing X with X
in Algorithm 1. However, note that X is an approximation of X, simply using
X might affect the accuracy of the resulting approximate kNN graphs. To miti-
gate the effect, since random projection is used to compute X, we average over
multiple random projections to further improve the quality of the approximate
kNN graph. _

The overall algorithm based on X is presented in Algorithm 2 and we analyze
its computational cost in Theorem 4.

Algorithm 2 Random-walk based kNN set for X

1: Given t3 copies of different {)?Z}fil

2: for all v € V(G) do

3. R(v)=0.

4: for j=1:%¢2 do

5: for h=1:t; do

6: R(v) = {u : vertex reached byj steps of random walk from v} UR(v).
T end for

8: end for

9: fori=1:¢3 do B
10: Compute DSD between v and vertices in R(v) by using X*.
11:  end for

12: end for

13: Compute the average DSD between v and vertices in R(v) and find k nearest
neighbors of v.

Theorem 4. The overall computational cost of Algorithm 2 is at most 3t tatzsn+
(k + 1>t1t2n + t3.

Proof. Following the same argument as in the proof of Theorem 3, performing
random walks to find the set R(v) for all vertices costs t1tan. For each approxi-
mate diffusion state )~(i, computing DSD costs at most 3t1tosn. Since we have t3
copies of X, the total cost for this part is 3t1tot3sn. In the final step, computing
the average DSD costs t3 and finding the k nearest neighbors cost at most ktitan.
Therefore, the overall cost of Algorithm 2 is at most 3t1tatgsn+ (k+1)t1tan+ts.

Remark 1. In our numerical experiments, we choose t; = O(1), t2 = O(1),
ts = O(1), k = O(1), and s = O(logn). Therefore, the computational costs
for Algortihm 1 and 2 are O(n?) and O(nlogn), respectively. Comparing with
K-d trees, Algorithm 2 has a slightly better computational complexity. In the
numerical experiments, we focus on Algorithm 2 and demonstrate that it effi-
ciently computes approximate kNN sets with good approximation qualities, and
that preserve function prediction accuracy.



8 L. J. Cowen, X. Hu, J. Lin, Y. Shen, and K. Wu

4 Numerical Experiments

In this section, we present several numerical experiments to show the efficiency
and accuracy of the proposed random-walk based construction of approximate
kNN graphs.

4.1 Information about the Data Sets

The Disease Module Identification DREAM Challenge [6] released a heteroge-
neous collection of six different human protein-protein association networks with
different biological criteria for placing edges between different protein pairs, in or-
der to benchmark different methods for unsupervised network clustering. Here,
we use the first two of the DREAM networks, DREAM1 and DREAMZ2, to
additionally benchmark our exact and approximate function prediction meth-
ods, where we briefly describe how they were constructed, below. DREAM]1
was derived from the STRING database [17], which integrates known and pre-
dicted protein-protein interactions across multiple resources, including both di-
rect (physical) and indirect (functional) associations. The edge weights are de-
rived from the STRING association score [17]. DREAM2 was produced from the
InWeb database [14], which aggregates evidence that pairs of proteins physically
interact in the cell from different databases. Interaction edges supported by mul-
tiple sources are given higher confidence. Both DREAM1 and DREAM2 are low
diameter and highly connected(see Table 1); note that we remove some small
number of isolated nodes and node-pairs and restrict our study only to the largest
connected component of each network (see Table 1) to guarantee the irreducible
assumption for convergence. We further remark that the typical “small-world”
properties of these networks make shortest-path-based distance metrics very un-
informative in differentiating meaningful neighborhoods for these networks, and
we expect that nearby nodes according to the DSD metric will be more relevant
for understanding function (see discussion in [5]).

Table 1: Largest connected components of the DREAM networks

[Vertices[ Edges [Type[ Edge Weight
Network 1| 17,388 |2,232,398| PPI |Confidence score
Network 2| 12,325 | 397,254 | PPI |Confidence score

4.2 Numerical Results on Approximate kNN Set Construction

To test if the constructed approximate kNN graph is both efficient and accurate
in preserving distance in different networks, we compare it with the standard K-d
tree approach. As mentioned in Section 1, K-d trees require n > 2% to achieve
the best performance, where K is the dimension of a data point. Therefore,
we focus on the approximate diffusion state X in our tests. Note that, for X,
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the computational complexity of the K-d tree is O(n log? n) while our proposed
Algorithm 2 costs O(nlogn).

The numerical tests are conducted on a 2.8 GHz Intel Core i7 CPU with
16 GB of RAM. The K-d tree approach is implemented based on the built-
in MATLAB functions KDTreeSearcher and knnsearch based on the approx-
imated DSD computed by X. For comparison, Algorithm 2 is implemented in
MATLAB as well. In our comparison, we fix ¢ = 0.5 (tolerance for generating
approximate diffusion state X ), & = 10 (the number of nearest neighbors for
the kNN neighborhood — matching the recommended choice of this parameter
in [5]), and fix t3 = 1 (number of copies of X used in Algorithm 2). We first
perform a parameter study to find suitable choices of ¢; and to and compare the
accuracy and efficiency of Algorithm 2 with the K-d tree approach. The accu-

" NNeyzact(i NN, .
Zz:l ‘{k t(Z)} N {k I)P(Z)H’ where kNNexact(i)

k-n
is the set of k-nearest neighbors of node 4 using the exact DSD computed by the
exact diffusion state X. kN N, (¢) is the set of approximate k-nearest neighbors
of node ¢ found by either the K-d tree approach or our method (Algorithm 2)

racy is measured by

using the approximate DSD computed by the approximate diffusion state X.

CPU time of K-d tree: 990.63 Accuracy with K-d tree: 0.1873

by 5 10 20 30 bl 5 10 15 20
tz t2
40 [36.81 44.07 57.48 86.01 109.76 40 | 0.3258 0.2687 0.2399 0.2171 0.2064
50 |34.25 48.85 66.45 101.53 130.07 50 | 0.3321 0.2678 0.2401 0.2170 0.2063
60 |35.81 50.71 70.65 110.53 146.92 60 | 0.3367 0.2672 0.2403 0.2163 0.2051

70 [38.84 54.02 76.30 122.21 165.19 70 | 0.3377 0.2664 0.2380 0.2155 0.2043

(a) CPU time in seconds (b) ENN accuracy

Table 2: CPU time in seconds and kNN accuracy of applying Algorithm 2 on
DREAMI.

CPU time of K-d tree: 442.07 Accuracy of K-d tree: 0.4565

by 2 3 4 5 bl 2 3 4 5
tz t2
110[15.46 19.83 23.72 20.63 30.74 110 0.4591 0.5643 0.5440 0.5201 0.5215
120 [15.68 20.42 24.39 30.21 32.22 120 0.4607 0.5660 0.5455 0.5318 0.5224
130 |15.57 20.77 25.14 29.06 33.92 130 | 0.4596 0.5671 0.5452 0.5332 0.5221

140 |15.72 21.62 26.04 30.19 35.19 140 0.4608 0.5657 0.5446 0.5331 0.5217

(a) CPU time in seconds (b) ENN accuracy

Table 3: CPU time in seconds and kNN accuracy of applying Algorithm 2 on
DREAM2.
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For DREAM1 (Table 2), as to (times of repeating the random walk process)
increases, the CPU time needed increases, and the accuracy gets better slightly
as expected. On the other hand, the accuracy gradually decreases as t1 (steps
of random walk) gets larger, which means, in practice, we actually do not need
to take long random walks to find k-NN, especially for clustered networks such
as DREAM 1. We observe similar results for DREAM?2, see Table 3. Basically,
for high-density networks, relatively shorter random walks should be used and
we do not need to repeat the random walks many times. In addition, for both
DREAM1 and DREAM2, comparing with the K-d tree approach, our proposed
Algorithm 2 is consistently faster (about 6x to 29x speedup for DREAM1 and
13x to 29x speedup for DREAM2) while achieves higher kNN accuracy. This
demonstrates the efficiency and effectiveness of Algorithm 2.

4.3 Numerical Results on Function Prediction

Predicting proteins’ functions based on proteins with known labels and the net-
work structure is a classical and well-studied problem in computational biology.
We can make inferences for the proteins with unknown labels because proteins
that are close to each other (under some appropriate metric) tend to share similar
functions. In this section, we want to show that the approximate kNN neigh-
bors produced by Algorithm 2 can provide accurate function prediction results
in biological applications.

We carry out the tests on the DREAM1 and DREAM?2 networks. The biolog-
ical function labels were collected from both the Biological Process (BP) and the
Molecular Function (MF) hierarchies from the Gene Ontology database [7] via
FuncAssociate3.0 [3] on 04/24/2020. On each network, we only consider the GO
labels that represent neither too general nor too specific functions by restrict-
ing to labels that appear between 100 and 500 times in the largest connected
component of that network. The experiments were performed separately for la-
bels in the Biological Process hierarchy and the Molecular Function hierarchy.
In our cross-validation experiments, we will mark a functional label prediction
correct if it matches one of the functional labels that FuncAssociate assigns to
that node. The percent accuracy of the function prediction method represents
the percent of top predicted GO functional labels that are correct. The num-
ber of functional labels to be voted are different across network and functional
hierarchies (BP and MF); the proteins in the largest connected component of
DREAMI1 have 1007 BP and 165 MF labels that appear between 100 and 500
times. For DREAMZ2, the numbers are 888 BP and 139 MF labels.

On each network, we carry out five-fold cross-validation on its largest con-
nected component to obtain a percent accuracy score for the top predicted GO
functional labels. For every protein ¢ in the test set, we find its k-nearest neigh-
bors {ri,ra,...,r:} based on Algorithm 2 and use them to perform function
prediction by majority voting with weights m, for j =1,2,...,k, where
each protein in the training set votes with this Weitht for all its functional labels.
The label with the most (weighted) votes is then assigned as the top function
prediction label for the protein.
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The accuracy score of function prediction for the network is the average
percentage of correct assignments in the cross-validation test. We compare the
function prediction result based on the k-nearest neighbors obtained by using
Algorithm 2 using approximate diffusion state X to the one based on the exact
kNN measured in exact DSD computed by the exact diffusion state X.

In our test, we set k = 10 (number of the nearest neighbors, as recommended
by [5]) and t3 = 1 for Algorithm 2, i.e., only 1 copy of the approximate dif-
fusion state X (computed by fixing the tolerance e = 0.5) was used. Different
combinations of random walk steps t; and repetitions t, are tested for both
GO Biological Process hierarchy and Molecular Function hierarchy of function
labels. The results are averaged over 100 cross-validation trials.

Accuracy with exact kNN: 0.0245 Accuracy with exact kNN: 0.0236

by 5 10 15 20 h

£ £ 1 ) 10 15 20

1 |0.0178 0.0178 0.0225 0.0242 0.0232 1 | 0.0477 0.0488 0.0315 0.029 0.0278
5 10.0178 0.0238 0.0225 0.0238 0.0246 5 | 0.0487 0.0296 0.0266 0.0269 0.0308
10 |0.0191 0.0243 0.0244 0.0227 0.0238 10 | 0.0387 0.028 0.0298 0.0275 0.0267
15 ]0.0201 0.0238 0.0248 0.0237 0.0242 15 | 0.0338 0.0277 0.0279 0.0276 0.0270
20 {0.0206 0.0238 0.0255 0.0256 0.0229 20 | 0.0328 0.0289 0.0296 0.0268 0.0278
25 (0.0228 0.0263 0.0245 0.0255 0.0234 25 | 0.0325 0.0279 0.0291 0.0263 0.0272
30 {0.0216 0.0247 0.0251 0.0237 0.0244 30 | 0.0327 0.0274 0.0285 0.0268 0.0284

(a) Biological Process (b) Molecular Function

Table 4: Accuracy score of function prediction on DREAMI1 for GO Biological
Process and Molecular Function hierarchy labels. The cells are shaded when the
function prediction performance is comparable or even better than the perfor-
mance obtained by using exact k nearest neighbors measured in exact DSD.

In Table 4(a) and 5(a) and (b), the function prediction accuracy increases
as to increases. In Table 4(b), the trend is the opposite with performance peaks
when t; = 1 or t = 5. We observe improved function prediction performance
by voting with the approximate k-nearest neighbors computed by appropriate
choice of t; and to values instead of voting with the exact kNN neighbors mea-
sured with the exact DSD distance, for both the Biological Process and Molecu-
lar Function labels, in both DREAM1 and DREAM?2 networks. We remark that
this similar or even improved prediction accuracy is obtained at a much lower
computational cost than the exact kNN version.

The strong performance of approximate kNN on the function prediction task
is curious. We hypothesize that in addition to producing a set of neighbors that
largely overlaps the kNN neighbors, the approximate kNN neighbors produced
by averaged local random walks are somehow denoising the signal as well to
improve the function prediction accuracy.
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Accuracy with exact kNN: 0.1047 Accuracy with exact kNN: 0.0991

by 5 10 15 20 h

1 1 1
£ £ 5 0 5 20

1 10.0308 0.027 0.0873 0.1157 0.1156 1 |0.0612 0.0489 0.1112 0.1107 0.1102
0.0303 0.2472 0.2401 0.2330 0.2324 5 |0.0563 0.1977 0.1937 0.1889 0.1882

10 |0.1060 0.2821 0.2755 0.2733 0.2670 10 | 0.1533 0.2214 0.2136 0.2120 0.2077
15 10.1887 0.2981 0.2885 0.2822 0.2798 15 | 0.1711 0.2326 0.2264 0.2170 0.2153
20 [0.2055 0.3051 0.2964 0.2893 0.2843 20 | 0.1791 0.2356 0.2293 0.2215 0.2237
25 10.2175 0.3059 0.2990 0.2953 0.2941 25 | 0.1853 0.2407 0.232 0.2262 0.2261
30 {0.2207 0.3124 0.3027 0.2992 0.2938 30 | 0.1852 0.2395 0.2337 0.2315 0.2256

(a) Biological Process (b) Molecular Function

Table 5: Accuracy score of function prediction on DREAM2 for GO Biological
Process and Molecular Function hierarchy labels. The cells are shaded when the
function prediction performance is comparable or even better than the perfor-
mance obtained by using exact k-nearest neighbors measured in exact DSD.

5 Conclusions

In this paper, we consider the k-nearest neighbors problem for the DSD met-
ric. Since DSD is a diffusion-based distance and closely related to the random
walks on the graph, we developed approximate kNN algorithms that use ran-
dom walks to find a set of possible neighbors of each vertex and then identify
k nearest ones from this set. Our approach provides a good approximation of
the kNN while reducing the computational cost since the size of the set that
is explored is kept small. More precisely, when combined with the approximate
DSD computed by approximate diffusion state X, the computational complex-
ity of our approximate kNN algorithm (Algorithm 2) is O(nlogn). This is not
only much better than the naive kNN approach which has complexity O(n?3) for
DSD but also slightly better than the K-d tree approach which has complexity
O(n log? n) for approximate DSD in theory. In practice, for the DREAM net-
works, our random-walk based algorithm can achieve about 30 times speed up
in time while maintaining or even achieving better kNN accuracy. In addition,
when applying our algorithm for biological applications such as function predic-
tions on PPI networks, our method provides competitive prediction performance
while significantly reducing the computational cost. The focus in this paper was
on the relative performance of exact and approximate measures for function pre-
diction, not absolute performance. However, we note that in our setting, in an
absolute sense, we are doing much better on the function prediction task using
DREAM2 than using DREAM1. This is probably because DREAM1 is filled
with lots of very low confidence edges, and even the way the confidence weights
are incorporated from DREAMI1 may be insufficient to denoise the signal, with-
out further thresholding or tuning. DREAM2 is only including edges that pass
a confidence filter.
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