
13638 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

IoT Device Friendly and Communication-Efficient
Federated Learning via Joint Model Pruning

and Quantization
Pavana Prakash , Graduate Student Member, IEEE, Jiahao Ding, Graduate Student Member, IEEE,

Rui Chen , Graduate Student Member, IEEE, Xiaoqi Qin , Member, IEEE,
Minglei Shu , Member, IEEE, Qimei Cui , Senior Member, IEEE,

Yuanxiong Guo , Senior Member, IEEE, and Miao Pan , Senior Member, IEEE

Abstract—Federated learning (FL) through its novel applica-
tions and services has enhanced its presence as a promising
tool in the Internet of Things (IoT) domain. Specifically, in a
multiaccess edge computing setup with a host of IoT devices,
FL is most suitable since it leverages distributed client data
to train high-performance deep learning (DL) models while
keeping the data private. However, the underlying deep neu-
ral networks (DNNs) are huge, preventing its direct deployment
onto resource-constrained computing and memory-limited IoT
devices. Besides, frequent exchange of model updates between
the central server and clients in FL could result in a commu-
nication bottleneck. To address these challenges, in this article,
we introduce GWEP, a model compression-based FL method. It
utilizes joint quantization and model pruning to reap the benefits
of DNNs while meeting the capabilities of resource-constrained
devices. Consequently, by reducing the computational, memory,
and network footprint of FL, the low-end IoT devices may be able
to participate in the FL process. In addition, we provide theoreti-
cal guarantees of FL convergence. Through empirical evaluations,
we demonstrate that our approach significantly outperforms the
baseline algorithms by being up to 10.23 times faster with 11
times lesser communication rounds, while achieving high-model
compression, energy efficiency, and learning performance.

Index Terms—Federated learning (FL), gradient compression,
Internet of Things (IoT) devices, model pruning, quantization.

Manuscript received 28 August 2021; revised 1 December 2021; accepted
7 January 2022. Date of publication 25 January 2022; date of current ver-
sion 25 July 2022. The work of Pavana Prakash, Jiahao Ding, Rui Chen, and
Miao Pan was supported in part by the U.S. National Science Foundation
under Grant CNS-2029569 and Grant CNS-2107057. The work of Qimei Cui
was supported by the National Youth Top-Notch Talent Support Program.
The work of Yuanxiong Guo was supported in part by the U.S. National
Science Foundation under Grant CNS-2029685 and Grant CNS-2106761.
(Corresponding author: Minglei Shu.)

Pavana Prakash, Jiahao Ding, Rui Chen, and Miao Pan are with the
Department of Electrical and Computer Engineering, University of Houston,
Houston, TX 77004 USA (e-mail: pprakash3@uh.edu; jding7@uh.edu;
rchen19@uh.edu; mpan2@uh.edu).

Xiaoqi Qin and Qimei Cui are with the School of Information
and Communication Engineering, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: xiaoqiqin@bupt.edu.cn;
cuiqimei@bupt.edu.cn).

Minglei Shu is with the Shandong Artificial Intelligence Institute, Qilu
University of Technology (Shandong Academy of Sciences), Jinan 250353,
China (e-mail: smlsmile1624@163.com).

Yuanxiong Guo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249 USA
(e-mail: guoyuanxiong@gmail.com).

Digital Object Identifier 10.1109/JIOT.2022.3145865

I. INTRODUCTION

THE UBIQUITOUS trend of connecting physical objects
to the Internet has enabled Internet of Things (IoT) to

reshape the technological landscape. The assistance of deep
learning (DL) to gain deep insights onto the data has fur-
ther fuelled innovative IoT applications and devices, such
as wearables, smart home devices, etc. [1]. However, these
compute-intensive applications seek low latency and high
bandwidth and also generate a remarkable volume of data
on the devices. This creates additional challenges, such as
data management, storage, security, etc. Hence, the need for
enhancing the speed and quality of data processing calls for
a paradigm shift from the typical central cloud processing to
edge computing. Under the architecture of multiaccess edge
computing (MEC), the core of computation and services are
performed at locations close to where the data are generated.
This enables in realizing applications that demand very high
bandwidth and low latency. MEC together with the leap of
DL and the wealth of data at end devices have opened up
countless possibilities for meaningful applications. However,
utilizing centralized machine-learning (ML) algorithms in this
setting is inefficient since uploading and storing private bulk
data creates a large communication and storage requirement.
Moreover, adversarial access to data could pose privacy impli-
cations [2], [3]. Hence, to address these issues, decentralized
methods such as federated learning (FL) is popularly opted.

FL is an emerging distributed ML framework where end
devices collaboratively train a global model with locally avail-
able data, under the coordination of a central server in a
decentralized manner [4]. With joint training offered by FL
without the need to share their private data, coupled with the
edge provided by MEC, FL in MEC is deemed to be a propi-
tious solution to enable on-device training at data sources. This
conflux has indeed paved the way for many widespread appli-
cations ranging from wearable smart healthcare devices [5],
smart vehicles [6] to the classic Google GBoard [7].

While the underlying overparametrized deep neural
networks (DNNs) have shown impressive results on ML tasks,
they consume considerable energy, memory bandwidth, stor-
age, and computational resources. This is due to the fact that a
huge DNN often contains a large number of parameters and the

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

PRAKASH et al.: IoT DEVICE FRIENDLY AND COMMUNICATION-EFFICIENT FEDERATED LEARNING 13639

size of these models have grown bigger and deeper over time.
Apparently, as opposed to intensive computation task pro-
cessing by cloud computing, MEC is a resource-constrained
computing and delay-sensitive environment. Further, while
large operating devices such as central servers have higher pro-
cessing capabilities without restriction on power, IoT devices
are memory-constricted and battery-powered [8]. Thus, being
both computational and memory intensive, the direct deploy-
ment of DNNs on IoT devices is confined, leading to on-device
usage as a challenge.

Additionally, the incurring communication cost is a princi-
pal constraint in edge computing-assisted FL. Since a large
number of users transmit their local updates of model param-
eters and stochastic gradients to the parameter server, and
the server broadcasts the model updates, FL involves a high
communication bandwidth requirement. The problem is wors-
ened when working with high-capacity models with a huge
number of parameters. Therefore, the need for an efficient
FL process has stemmed from the desire for reduced compu-
tation, memory accesses, storage, as well as communication
requirements, while maintaining the performance at par.

Notably, model compression is a growing area of research
that reduces the size of DNNs without compromising on the
model quality and accuracy of performance. In addition, it
reduces the number of memory accesses that generally con-
sume considerable time and energy. This results in increased
memory bandwidth for fetching compressed model param-
eters [9], thus improving the inference time. For example,
quantization represents the model parameters and gradients
with smaller bit widths such that the intermediate data are
stored in lower precision numerical formats such as int8.
This reduces the computational demand of the complex neural
networks, and the frequency of memory accesses. Moreover,
since it replaces the floating-point operations, fetching fixed-
point representations with shorter bit width for weights and
gradients requires lesser memory bandwidth. By running cal-
culations on smaller bits and sparser vectors, the inference
time is reduced. Besides, pruning to a smaller compression
ratio significantly reduces the memory requirements and model
size, which is highly correlated to the inference time [10].
Within the realm of model compression and communication-
efficient FL, a number of notable works have proposed various
schemes. Most communication-efficient methods such as [11]
relieve the communication bottleneck by targeting client-to-
server communication but, fail to consider the computational
capabilities of the devices, limiting their usage on IoT devices.
On the contrary, pioneer works on model compression such
as [12] have aimed to compress the model making it suitable
for resource-constrained devices specifically. However, most of
these works aim at single machine setup and do not consider
a distributed setting restricting its wide applicability.

Moreover in FL, while more focus is typically on relieving
the communication bottleneck, the latest surge of research has
paved the way for the rapidly expanding 5G and the upcom-
ing 6G networks, which mitigate communication burdens [8].
This makes computations nearly comparable with communica-
tions. For instance, a single step of local computation on the

ResNet50 model over GPU consumes few hundreds of mil-
liseconds [13], which nearly corresponds to the time taken to
transmit over a wireless connection with a transmission rate of
1 Gb/s. Therefore, it is also essential to alleviate the computa-
tion burdens while making FL methods more communication
efficient.

Hence, in this article, we jointly address the challenges of
implementing DNNs over resource constricted devices and
propose an efficient FL scheme named GWEP, by applying
double quantization jointly with model pruning. Model prun-
ing is a popular model compression method that removes
a significant portion of the network weights, while nearly
preserving the test accuracy as the original dense models. It not
only reduces the model size but also reduces the inference time
and cost while raising the power efficiency. Correspondingly,
quantization is another compression scheme that reduces the
number of bits representing each connection. Hence, lower
bit mathematical operations of the quantized parameters yield
large computational gains and require less memory accesses
thereby reducing memory bandwidth and latency. Ultimately,
GWEP consolidates the benefits of reducing storage, commu-
nication, and computation requirements along with accelerated
training, into a single framework.

With the above motivation, our salient contributions can be
summarized as follows.

1) We propose a novel IoT device friendly, computa-
tion, storage, and communication-efficient mechanism,
called GWEP. It comprises weight and gradient quan-
tizations in conjunction with model pruning and error
feedback. By reducing model redundancy and computa-
tion complexity, it enables originally large-sized DNNs
to be effectively deployed on resource-constrained IoT
devices.

2) We integrate our algorithm with the FL training pro-
cedure to enhance the communication efficiency and
accelerate the training process. In addition, it enhances
the learning performance in the delay-sensitive MEC
environment relieving the communication bottleneck
issue.

3) We establish a theoretical guarantee of convergence
of the proposed algorithm using a distributed adaptive
stochastic gradient method with adaptive learning rate
in the nonconvex stochastic settings.

4) We illustrate the effectiveness of our proposed algorithm
through performance evaluation of applying over real-
world data sets to train large-sized networks for image
classification tasks. Our proposition reduces the model
size significantly and improves the training time and
communication cost while achieving high test accuracy.

The remainder of this article is organized as follows.
Some preliminaries are explained in Section II. Sections III
and IV describe the system model and our proposed method
in detail, respectively. Section V elucidates the main results
with convergence analysis. We perform simulations and pro-
vide performance evaluation with results in Section VI.
Section VII surveys existing literature related to our work,
while Section VIII concludes this article.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

13640 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

TABLE I
LIST OF IMPORTANT NOTATIONS AND DEFINITIONS

Important notations and definitions used in this article are
listed as follows in Table I.

II. PRELIMINARIES

A. Federated Learning

In FL settings, the participating clients (IoT devices) train
a shared global model in a decentralized manner. In a typical
FL setup, the server sends a global model to all connected
clients and each client calculates local model updates based
on its local training data. Only these updates are transmitted
to the server to aggregate and obtain an updated global model,
preserving the users’ data privacy. This process continues until
a global convergence of the model is attained.

B. Pruning

Weight pruning is one of the most promising model com-
pression methods that remove the less contributing weights
and connections, to produce a compressed version of a model
that is suitable for on-device deployment. Besides, it nearly
preserves the test accuracy attained by denser models. Among
other pruning techniques such as pruning before or after
training, dynamic or incremental pruning is a newer pruning
technique where the network is pruned incrementally during
training. The pruning mask is updated based on the network
state at every few iterations, allowing to explore different spar-
sity masks. This saves the effort of determining an optimal
mask in prior and keeping it fixed unlike pruning before the
training method. Further, in saliency-based weight pruning,
the system repeats to learn which weights are important and
removes the least important weights. These result in a mono-
tonic increase in sparsity, eliminating the need for retraining,
which is mandated in methods of pruning after training. Hence,
we consider this approach in our algorithm to perform model
pruning.

Fig. 1. Overview of the proposed communication-efficient FL algorithm.

C. Quantization

Generally, the quantization process reduces the number of
bits required to represent a number. This is especially vital in
DL since running a DNN for a task such as an image clas-
sification, results in millions of multiplication and addition
operations in the hardware. Hence, performing mathemati-
cal operations and intermediate calculations on the quantized
parameters owning lower bits, result in large computational
gains. Besides, quantized data requires lesser memory access
thereby reducing memory bandwidth.

III. SYSTEM MODEL

We consider a user equipment (UE) level-edge level of an
MEC-assisted FL system, consisting of one edge (parameter)
server and a set N = {1, 2, . . . , N} of N IoT edge devices
(clients or UEs). An overview of the system model using
the proposed method is depicted in Fig. 1. The output of the
system for an ML problem is characterized by model parame-
ter w that captures the learning model with the loss function f .
Our goal is to minimize the system-level global loss of the
learning model. This nonconvex loss function is considered as
the stochastic learning problem

min
w

f (w) := min
w

1

N

N∑
n=1

fn(w) (1)

where fn(w) is the local objective function of each client n.
It can be defined as the expected loss of its local sample
distribution as

fn(w) := Eξ∼P

[
f̃ (w, ξ)

]
(2)

where ξ is a random variable with unknown probability distri-
bution P. But, without access to the underlying distribution P
of the random variable ξ , it is improbable to access the exact
gradient ∇f (w). Rather, we use a stochastic estimate of ∇f (w)

as gt := ∇f (wt, ξt) with wt from the given sampled sequence
{ξt}. We assume a synchronous model for both communication
and computation.

To achieve model compression, we use the determin-
istic weight quantization method since it achieves better
performance for quantizing weights [14]. We consider the pop-
ular deterministic ternary compression method used in works
such as [15], which converts the full precision of 32 floating-
point bits to b-bit integer. Accordingly, we describe the weight
quantizer Qw(.) as follows.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

PRAKASH et al.: IoT DEVICE FRIENDLY AND COMMUNICATION-EFFICIENT FEDERATED LEARNING 13641

Example 1: For a weight vector w, we can define a general
quantization mapping Qw(.) : Rn → R

n as

Qw(wi) =
⎧⎨
⎩

+a, if wi > a/2
0, if |wi| ≤ a/2
−a, if wi < −a/2

(3)

in quantization set {−1,−(k − 1/k), . . . ,−(1/k), 0, (1/k), . . . ,
(k − 1/k), 1}. Here, a = ‖w‖∞ denotes the range of the
original vector and k = 2b−1 − 1.

While deterministic weight quantization achieves better
performance than stochastic weight quantization, determinis-
tic gradient quantization makes the quantized gradient biased,
and the analysis more complex. Hence, we consider a more
general stochastic linear quantization of gradients such as the
method proposed in [16] as follows.

Example 2: The stochastic quantization mapping
Qg(·) : R

d → R
d with quantization level p, probability p,

a = ‖g‖, and integer m such that |gi|/a ∈ [m/p, (m + 1)/p],
can be defined as

Qg(gi) = a · sgn(gi) ·
{

m/p, w.p. 1 − p
(|gi|

a , p
)

(m + 1)/p, otherwise.
(4)

The weight and gradient quantization functions Qw(.) and
Qg(.) defined based on (3) and (4), respectively, yield the
corresponding quantized weights ŵ and gradients ĝ. Here,
Qg(gt) is an unbiased estimator of gt. Additionally, we adopt
saliency-based weight pruning as the next model compression
technique. Motivated by [17], we apply mask m ∈ {0, 1}d to
weight vector w ∈ R

d in d-dimension, to obtain a sparse model
ẁ := m
 w.

IV. EFFICIENT FEDERATED LEARNING WITH GWEP

In this section, we present our algorithm called GWEP,
which comprises weight and gradient quantizations, model
pruning, and error feedback in concert. This sequence of model
compression is introduced in the novel setting of FL. By inte-
grating such a sequence with the FL training procedure, we can
design a resource, computation, and communication-efficient
distributed training algorithm.

More specifically, the proposed scheme consists of three pri-
mary components. First, we perform downlink compression by
quantizing the weights of the global model update. As training
large-sized models generate global model updates of the size
of hundreds of megabytes, it may be undesirable for small-
sized devices to download them. Besides, although downlink
bandwidth used by the server to broadcast the updated global
model is much larger than the uplink bandwidth used by the
IoT devices to transmit their local updates, for a substantial
number of participants, the difference between the upload and
download speeds may not be significant enough to ignore the
impact of the downlink as shown in [18]. Second, to lessen
the burden of computation as well as to reduce the latency at
inference, the received model update is pruned to a desired
sparsity. Third, we relieve the communication bottleneck on
the uplink by quantizing each of the gradient updates sent
at every global communicating round from all the connected

Algorithm 1 FL With Quantization and Pruning (GWEP)
1: Parameters: Weight and gradient quantization functions

Qw(.), Qg(.). Choose {αt}, {β t}, {θ t}, target sparsity ratio
Sf . Initial values: mn

0, vn
0, en

1 = 0.
Server executes:

2: Initialize w0 and send to clients
3: for each global iteration t = 0, 1, · · · , T do
4: for each client n ∈ N in parallel do
5: ĝn

t ← clientUpdate(ŵt, t)
6: end for
7: Aggregate updates ĝt = 1

N

∑N
n=1 ĝn

t
8: Global model update wt+1 = wt − ĝt

9: Server sends quantized weights ŵt+1 = Qw(wt+1)

10: end for

On each client, clientUpdate(ŵt, t):
Pruning process:

11: if f|t then
12: Compute current sparsity ratio St using (5)
13: if St < Sf then
14: Compute mask m ← mt(ŵt)

15: Apply mask to obtain pruned weights ẁt ← m
 ŵt

16: else
17: No pruning ẁt ← ŵt

18: end if
19: end if

Local training process:
20: Stochastic gradient for mini-batch ρ at set local iterations,

gn
t = ∇f (ẁt, ρ)

21: mn
t = βtmn

t−1 + (1 − βt)gn
t

22: vn
t = θtvn

t−1 + (1 − θt)[gn
t]

2

23: �n
t = αt

mn
t√

vn
t +ε

Gradient quantization and Error feedback:
24: Send to server → ĝn

t = Qg(�
n
t + en

t)

Error accumulation
25: en

t+1 = �n
t + en

t − ĝn
t

clients to the server. As a result, we accomplish to address the
strong requirements of computation and storage, and the com-
munication bottleneck issues simultaneously. In addition, we
incorporate an adaptive learning rate to further accelerate the
training process and error feedback to alleviate any introduced
compression errors.

As shown in Algorithm 1, weight quantization is executed
at the server, while the remaining steps are performed on
each client. Particularly, model pruning is performed at clients
instead of the server owing to two reasons. First, with the
knowledge of the private training data residing on the users
loaded into the model, the model accuracy is much better com-
pared to pruning without data at the server [19]. Second, since
FL at the edge is run on different types of devices, this gives
a flexibility of choosing different pruning levels and strategies
at different devices as per their requirements. We intend to
include different pruning levels in the theoretical analysis as
part of our future work. The comprehensive procedure of the

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

13642 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

algorithm consists of four stages and we now give detailed
descriptions of each stage.

Weight Quantization: The initial global model w0 is initial-
ized at the edge server. Before broadcasting the global model
to all the clients, the weights are quantized based on (3) to
obtain ŵt, following steps 4–6 in Algorithm 1.

Model Pruning: The quantized weight update broadcasted
by the server is pruned at each client to obtain pruned
weight, ẁt. Note that we employ a dynamic scheme of prun-
ing during training so that the mask is adapted at every
few iterations, based on the weights and stochastic gradient
changes during training. The binary mask is computed and
applied to the weights during the forward execution. Such
weights do not get updated in the backpropagation step and the
backpropagated gradients flow through these masks. We use
magnitude-based unstructured weight pruning where instead of
pruning based on a fixed threshold such as [12], we perform
automated gradual pruning by increasing the sparsity incre-
mentally as in [9]. The weight mask m computation directly
depends on the sparsity condition. For each pruning frequency,
once the current sparsity of the network weights is computed,
the mask computation is triggered if the target sparsity ratio
is not met. Hence, the mask is updated until the desired tar-
get sparsity Sf is reached. The intuition is to rapidly prune the
network in the initial stage where the redundancy is higher and
then to gradually reduce when there are fewer weights spared.
With an initial sparsity value Si starting at t0 training step
over a span of T global iterations (communication rounds),
the sparsity at iteration t inline with the pruning frequency f
can be evaluated as

St = Sf + (Si − Sf)

(
1 − t − t0

Tf

)3

. (5)

In effect, weights with smaller magnitude are pruned to
achieve the preset target network sparsity as summarized in
steps 12–16 of the algorithm.

Gradient Quantization: We further quantize the gradients
evaluated over the pruned model to help reduce the uplink
bandwidth requirements from the clients to the server. We
replace the full precision of 32-bit floating point with a lower
bit width INT8 format. The stochastic gradient gt is computed
over the pruned weight ẁt which was quantized previously
in step 4. Given its robustness to hyperparameter settings and
fast convergence, we use the adaptive moment estimation algo-
rithm, Adam [20]. We apply this gradient-based optimization
of the stochastic objective function albeit on the quantized
and pruned weights in this article. The computation then fol-
lows the iterates of this optimizer for the set number of local
iterations over mini-batch ρ. We adopt an adaptive learning
rate over the quantized and pruned weights, that accelerates
training and avoids the effort of choosing a fixed learning
rate and parameter tuning. The gradient quantization Qg(.)

is then applied to the obtained gradient along with error
feedback et, to arrive at the quantized gradient ĝn

t . This is
transmitted to the server instead of the unquantized original
gradient to relieve the uplink communication bottleneck. This
local training and gradient quantization are summarized in
steps 18–22.

The compressive sequence of our method introduces two
main challenges. First, while adequate model compression
along with good learning performance is achieved, the result-
ing values, however, include errors introduced by the compres-
sion. This leads to lower generalization and hence convergence
of the system is affected. Second, a challenge persists in choos-
ing the compression levels of each of the methods in GWEP,
since there exists a tradeoff between compression and learn-
ing performance. In order to overcome this, we theoretically
analyze the impact of pruning and quantization levels on con-
vergence in detail in Section V. Further, to reduce the impact
of compression errors, we incorporate error compensation into
the FL procedure as illustrated below.

Error Feedback: We utilize an error compensation term
et, to alleviate the errors introduced by the compression.
As shown in [21], adding error feedback mitigates the error
caused by compression and can help in recovering the actual
performance accuracy. The main idea is to accumulate the
compressed error and add it to the next compression step as
shown in steps 22 and 23 of the algorithm. This leads to
accelerating the global convergence.

Under synchronous mode, the above steps are performed
at each client in parallel and sent to the server. The server
gathers the gradient updates and aggregates to compute ĝt as
shown in step 8 of the algorithm. The updated global model
is computed based on ĝt (step 9) and the weights are then
quantized before sending it back to the clients. This process
continues until a global convergence of the model is attained.

V. CONVERGENCE ANALYSIS

In this section, we first derive the upper estimate of the gra-
dient in (1) of the quantized and pruned model characterized
by the adaptive learning rate. Then, we derive the convergence
rate of our algorithm for nonconvex problems in FL settings.
We state the necessary standard assumptions and definitions
required in the context of analyzing stochastic algorithms as
follows.

Assumption 1: The assumptions about the objective func-
tion f can be summarized as follows.

1) The gradient ∇f is L-Lipschitz continuous such that,
‖∇f (u) − f (v)‖ ≤ L‖u − v‖ ∀u, v ∈ R

d, for a constant
L > 0,

2) The minimum value is lower bounded, i.e., f ∗ =
minw∈Rd f (w) > −∞,

3) The gradient estimation gt is upper bounded and unbi-
ased, i.e., ‖gt‖ ≤ G and E[gt] = ∇f (wt).

In order to establish convergence in the case of biased
compression operators, existing methods commonly use the
contraction property and then rely on the guarantees stated
in [22]. Likewise, we state the following assumptions with
regard to our compressors.

Assumption 2: The quantization functions Q(.) satisfy the
τ -contraction property. Accordingly, the weight quantization
involving a constant 0 < τw ≤ 1 satisfies the following:

‖w − Qw(w)‖ ≤ (1 − τw)‖w‖. (6)

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

PRAKASH et al.: IoT DEVICE FRIENDLY AND COMMUNICATION-EFFICIENT FEDERATED LEARNING 13643

Similarly, for a sequence of gradients, there exists a constant
0 < τg ≤ 1 such that the following inequality holds:

∥∥g − Qg(g)
∥∥ ≤ (1 − τg)‖g‖. (7)

Besides, the pruning level τp can be assessed to be a
parameter that determines the quality of pruning such that
τp ∈ [0, 1] [17]. Hence, it follows the following assumptions.

Assumption 3: For a given pruning level τp, the inequality
‖w − ẁ‖ ≤ √

τp‖w‖ is satisfied.
In order to establish the convergence rate, we make the fol-

lowing assumptions about the optimizer parameters, namely,
base learning rate αt, momentum parameter βt, and expo-
nential moving average parameter θt. This is based on the
hyperparameter values used in the sufficient condition in [23].

Assumption 4: Let αt = (α/
√

t), βt ∈ [0, β], where β ∈
[0, 1] and θt = 1 − (θ/t). Let constant A = ∏P

i=1([θi]/[θ ′]),
where θ ′ is a positive constant satisfying β2 < θ ′ < 1 and
P = max{i|θi < θ ′}.

To illustrate the convergence analysis of Algorithm 1,
we state theorem, useful lemmas, and consider the fol-
lowing relations. Let Et[.] be the conditional expectation
with respect to wt conditioned on {wt−1, wt−2, . . . , w1}. We
denote the step size relations as η̂n

t = (αt/[
√

v̂n
t + ε]),

v̂n
t = θtv̂n

t−1 + (1 − θt)[σ n2
t], and σ n2

t = E[gn2
t]. We fur-

ther denote �n
t = αt([mn

t]/[
√

vn
t + ε]) on each client and

denote �t = (1/N)
∑N

n=1 �n
t as the aggregate of �n

t . The
upper bound of this aggregated gradient and the estimation
of the noisy gradient incorporating the error feedback can be
computed using the following two lemmas.

Lemma 1 (Upper Estimate of �t [24]): Using the definition
of mt satisfying ‖mt‖2 ≤ G2 and from the definition of �t,
its upper estimation can be derived as follows:

∑T
t=1 ‖�t‖2 ≤

(G2/ε)
∑T

t=1(α
2/t).

Lemma 2 (Noisy Gradient Estimation [24]): With the error
feedback en

t as defined in Algorithm 1 and �n
t , it holds that

E

[
1

N2

T∑
t=1

N∑
n=1

∥∥en
t

∥∥∥∥�n
t

∥∥] ≤ 1 − τg

Nτg

N∑
n=1

E

[
T∑

t=1

∥∥�n
t

∥∥2

]
.

In our work, we discuss the convergence rate of our algo-
rithm in terms of the average of the �2 norm of the gradient,
computed over the quantized and pruned weights. In order to
attain its value, we first compute the upper estimate of ∇f (ẁt)

through the following lemma which yields a value based on
the weighted norm of the step size.

Lemma 3 (Estimate on Quantized and Pruned Weights):
For a model ẁt that is weight quantized and pruned, we have
the following estimate:

E

[∥∥∇f
(
ẁt

)∥∥2
]

≤
√

G2 + εd

α
√

TN

N∑
n=1

E

[
T∑

t=1

∥∥∇f
(
ẁt

)∥∥2
η̂n

t

]
.

Proof: The proof is provided in Appendix A.
Utilizing the Lipschitz continuity of the gradient, we arrive

at the relation with the pruning and quantization levels by
introducing the following lemma.

Lemma 4 (Upper Estimate of Mt): We obtain the upper
estimate as follows for Mt = E[〈∇f (ẁt),�t〉 + L‖�t‖2]:

T∑
t=1

Mt ≤ 1√
A

(
1 − √

γ
)
[(

L(2 − τg)G2α2
t

ετg
+ Bθ

)
T∑

t=1

1

t

+ 4(1 − τw)LDGαt
√

T√
ε

(
1 + √

τp
)]

− (1 − β)

2N

N∑
n=1

E

[
T∑

t=1

∥∥∇f
(
ẁt

)∥∥2
η̂n

t

]
. (8)

Proof: Refer to the proof provided in Appendix B.
Theorem 1: Considering the sequence of iterative points ẁt

generated by Algorithm 1, with Assumptions 1–4 satisfied and
the iterates ‖ẁt‖ ≤ D upper bounded, the convergence result
of Algorithm 1 holds as

E

[∥∥∇f
(
ẁt

)∥∥2
]

≤ C + D∑T
t=1

1
t√

T
+ E

where B is from Lemma 4 as (16), as shown at the bottom of
the p. 11

C = 2
√

G2 + εd

(1 − β)α

(
f (w1) − f ∗)

D = 2
√

G2 + εd

(1 − β)α
√
A(1 − √

γ)

(
L(2 − τg)G2α2

ετg
+ Bθ

)

and

E = 8
√

G2 + εd(1 − τw)LDG√
A

(
1 − √

γ
)√

ε(1 − β)

(
1 + √

τp
)
.

Proof: Refer to the proof in Appendix C.
Remark 1: Theorem 1 demonstrates that the proposed algo-

rithm converges to the neighborhood of stationary point of
Problem (3) up to a constant related to the weight and gra-
dient quantization levels (τw and τg) and is affected by the
quality of pruning (τp). Moreover, the limit point of the iterate
is affected only by the pruning and weight quantization lev-
els. Lower sparsity implies less pruning with smaller τp and
higher bit quantization implies less quantization leading to a
faster convergence. Contraction factors are a function of T .

Extension to Other Compression Methods: Along with prun-
ing, while we used quantization in our theoretical analysis,
GWEP can be generalized to other compression schemes as
long as they satisfy the properties stated in Assumption 2.
For example, Qg in Algorithm 1 can be replaced by other
compressors such as top-k sparsification or biased quantization
methods. Theoretically, using the contraction property for the
gradient quantization helps us to establish convergence guar-
antees. Error feedback not only alleviates the error caused by
compression but also aids in recovering the actual performance
accuracy. Therefore, by incorporating it, we can generalize our
scheme to biased compressors as well, where the value of τ

can be set to 1 in (7). Furthermore, through it, the unbiased
compressors can achieve better convergence rates, and biased
compressors can benefit from rates close to its uncompressed
counterparts as shown in [21].

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

13644 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
communication and delay-efficient FL via simulations.

A. Settings and Data

To evaluate the performance of our proposed scheme, we
apply the proposed algorithm to train large-sized DNNs.
We perform image classification tasks on large-sized popular
DNNs: 1) ResNet20 [25] which is a 20 layers deep con-
volutional neural network and 2) LeNet5 [26] which is a
convolutional neural network comprising seven layers with a
composition of three convolutional layers, two subsampling
layers, and two fully connected layers. Classification is per-
formed using the following image data sets on ResNet20 and
LeNet5, respectively. 1) CIFAR-10: containing labeled sam-
ples of color images in ten classes and 6000 images per
class divided into 50 000 training and 10 000 test images and
2) MNIST: a database of grayscale images of handwritten dig-
its with ten classes of 60 000 training and 10 000 test examples.
We choose three baseline algorithms as benchmarks that are
most related to our work: 1) FedAvg [4] is the vanilla FL algo-
rithm with the dense model; 2) QAdam [24] employs a double
quantization of weights and gradients on a single machine and
distributed settings; and 3) DPF [17] adopts magnitude-based
pruning with error feedback. Further, we jointly vary the spar-
sity ratio and quantization levels and use them to compare
the performance of GWEP. These are indicated as “GWEP
(quantization bits and sparsity ratio)” in Fig. 3(a)–(d).

For all evaluations but energy, we perform simulations
over NVIDIA RTX8000. For energy computation experiments,
we use the Jetson TX2 module occupied with one NVIDIA
Pascal GPU to model the edge computing environment in
practice for IoT devices. In all of our evaluations, we use
mini-batch sized 128, five local computation rounds with ten
clients communicating with one parameter server in the FL
setup. Besides, since the convergence variables depend on the
hyperparameters, we empirically choose their values satisfy-
ing Assumption 4 with ε as 10−5, β as 0.9, and θ as 0.999
with an initial learning rate of 0.001 for MNIST and 0.005
for CIFAR-10 with step size α/

√
t consistent with the theory.

B. Compression

A challenge persists in choosing the compression levels of
each of the methods in GWEP, since there exists a tradeoff
between compression and learning performance. In order to
overcome this, we use the theoretical analysis from our derived
theorem to assess the impact of pruning and quantization lev-
els on convergence. Hence, we elucidate the results of varying
the sparsity levels of the model and quantization bits used
for weight and gradient quantizations. To verify Remark 1
that pruning level affects the convergence rate, we test the
Sf values incrementally between 0.01 and 0.98 to achieve
the desired compression and obtain between 10% and 98%
sparse models, respectively. For results in Fig. 2(a), we trained
LeNet5 on MNIST for 60 communication rounds and set the
initial sparsity value Si as 0 and increased the sparsity grad-
ually following (5) to achieve the desired Sf . As observed,

Fig. 2. Performance of GWEP at different compression levels. (a) GWEP
at different sparsity levels. (b) GWEP at different quantized bits.

even at an extremely high sparsity level of 98%, with model
redundancy significantly removed, GWEP exhibits a reason-
able performance of around 95% test accuracy on MNIST.
Correspondingly, on ResNet20, we observed 85.09% on a
98% sparse model. Further, in the realm of Definition 3, we
use the same training settings as above and alter the quan-
tization bits from 1 to 32 to evaluate its impact on model
performance. As seen in Fig. 2(b), for an 8-bit quantization
and above, we achieve 98.62% top-1 accuracy and for 2 bits,
the accuracy is still reasonable at 94.2%. Hence, the higher
bit quantization setting performs better which is also shown
in the theoretical convergence analysis. Thus, finding a bal-
ance between performance and communication time, we set
8-bit quantization levels implementing the error feedback.

C. Convergence Analysis

For the main results, we train ResNet20 over CIFAR-10
for 200 communication rounds and LeNet5 over MNIST for
100 communication rounds, setting the target sparsity ratio
as 0.5, targeting a resulting 50% sparse model. The pruning
frequency is set to 2 as a large value has a negligible impact
on the final model quality. We set 8-bit quantization levels for
both weight and gradient quantizations, implementing the error
feedback term. For ease of comparison, in the baselines, we set
8-bit quantization in QAdam and 50% sparsity in DPF. From
the convergence performance of different methods on MNIST
LeNet5 shown in Fig. 3(a), GWEP has a convergence rate
comparable with FedAvg and is considerably faster than DPF.
The convergence of QAdam is close to GWEP, albeit slower.
A similar convergence trend is observed on training ResNet20
over CIFAR-10 as shown in Fig. 3(c). The performance accu-
racy of GWEP mainly exceeds the baseline values as shown in
Fig. 3(b) for MNIST and Fig. 3(d) for CIFAR. In fact, a small
improvement in the accuracy is seen which can be attributed
to a reduction in overfitting and increased generalization due
to unstructured pruning. This is also in line with the finding
in [12], [27], etc. Furthermore, we examine the performance of
GWEP by scaling the number of clients in FL to 100 and 250
and observe that the number of training rounds remains nearly
the same and the training time is still reasonable between 6
and 10 min, with high top-1 accuracy for 100 training rounds
on LeNet5 on MNIST as shown in Fig. 5(d).

D. Discussion on Time and Energy

We record the time as the time taken for training the respec-
tive models using different methods. Since we perform the

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

PRAKASH et al.: IoT DEVICE FRIENDLY AND COMMUNICATION-EFFICIENT FEDERATED LEARNING 13645

Fig. 3. Training loss and test accuracy showing convergence rate of different methods for fixed number of communication rounds. (a) Training loss on
MNIST. (b) Test accuracy on MNIST. (c) Training loss on CIFAR. (d) Test accuracy on CIFAR.

TABLE II
PERFORMANCE EVALUATION OF DIFFERENT METHODS FOR FIXED

NUMBER OF COMMUNICATION ROUNDS

TABLE III
PERFORMANCE EVALUATION FOR PRESET TEST ACCURACY

tests in simulated settings, the time values technically comprise
both local computation and communication time. To record the
time values, first, we fix the communication rounds T simi-
lar to the ones in the previous sections as 100 for MNIST
and 200 for CIFAR-10 and summarize the results in Table II.
Next, instead of fixing the rounds, we set an attainable accu-
racy value of 97% for MNIST and 82% for CIFAR-10 and
when this preset accuracy is met, we tabulate the results in
Table III. As observed, our algorithm outperforms the baseline
methods in both the cases, both in terms of overall time and
test accuracy. With the regularization properties of network
pruning, GWEP even outperforms the corresponding dense
model on ResNet20. For LeNet5 trained on MNIST, GWEP
performs better than the baselines and attains nearly the same
test accuracy as the dense model, FedAvg. Hence, GWEP not
only reduces the computation and communication cost but also
retains the performance of the original dense model. Using our
algorithm, the real gain comes from faster inference and accel-
erated training. On ResNet20, GWEP is more than ×10 faster
than the baseline DPF and ×6.45 faster than its dense coun-
terpart, FedAvg as shown in Fig. 4(a). GWEP also consumes
fewer communication rounds of less than half the number that
original FedAvg takes and 90% lesser than DPF and 60%
lesser than QAdam. The energy values of GWEP are lesser up
to ×6 in comparison with the baselines as seen in Fig. 4(b).
Overall, our method reduces the time and energy drastically,
without compromising on the learning performance.

Fig. 4. Time and energy values on ResNet20 trained on CIFAR-10.
(a) Accuracy versus time. (b) Loss versus consumed energy.

E. Communication Efficiency

With sufficient compression, the main gain of GWEP is
the reduction in communication cost. We fix the test accu-
racy to be attained by all the methods as 97% for MNIST and
82% for CIFAR-10 and observe the number of communica-
tion rounds required by each method. As shown in Fig. 5(a)
and (b), GWEP substantially reduces the number of commu-
nication rounds required for training. T values for MNIST
on GWEP are smaller by ×10.83, ×2.5, and ×1.6 than the
baselines DPF, FedAvg, and QAdam. Similarly, smaller on
CIFAR-10 by ×11, ×5.1, and ×2.6 than DPF, FedAvg, and
QAdam, respectively. Furthermore, since FL mainly deals with
data heterogeneity across devices, we extend the tests on non-
IID data. Without additional tuning of hyperparameters, we
run MNIST with non-IID data on ten clients for 1000 com-
munication rounds. MNIST data are first sorted by labels and
then partitioned into 200 shards of size 300 and each client
is assigned 20 shards, resulting in non-IID data distribution
among the clients. As shown in Fig. 5(c), GWEP outper-
forms the baseline methods with a higher test accuracy of
87.25% and faster convergence. This added communication
efficiency makes our method suitable for resource-constrained
environments such as IoT devices for edge training.

As seen from the simulation results, GWEP exhibits a sub-
stantial saving in the overall training time which includes the
time taken at all stages of FL. This includes the local com-
putation on each user device, communication of gradients to
the server by all clients, and transmission of global model
updates from the server to all connected clients. We attribute
this speedup to our method adopting model compression in
threefold. First, as a result of quantization, communication of
the quantized parameters is faster since they comprise fewer
bits than the full bit-sized model parameters. This has a dual

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

13646 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

Fig. 5. Communication rounds of GWEP in comparison with different methods on MNIST and CIFAR-10 for fixed accuracy values and non-IID data sets.
(a) Communication rounds on MNIST. (b) Communication rounds on CIFAR-10. (c) Performance on non-IID data. (d) Scaling GWEP’s number of clients.

advantage of not only reducing the communication time and
cost but also reducing the memory bandwidth due to less
memory accesses. Second, by setting the unimportant weights
of the model to zero through pruning, subsequent training and
computations are based on the remaining important weights.
GWEP also inherits the properties of pruning and quantiza-
tion of faster inference, reduction of memory accesses, and
bandwidth due to the smaller-sized fixed-point model parame-
ters and gradients. Further, in our method, since we prune all
the layers unlike most other works where pruning is primarily
focused on the fully connected layers, GWEP results in a more
sparse model. Therefore, the local computation time and cost
are reduced, accelerating the training. Hence, by coalescing
this method with the FL process, we successfully achieve a
reduction in communication cost and time, which is a neces-
sity in the time-sensitive MEC environment. Likewise, the
reduction in computation requirements and memory accesses
makes it suitable for resource and memory-constrained IoT
devices. In essence, these strengthen the goals of accelerat-
ing the overall time taken using GWEP and making way for
low-end devices to be able to participate in the FL process.

VII. RELATED WORK

Different aspects of IoT devices and FL have been studied
extensively in the literature and several works focus on vari-
ous challenges posed by them. For example, from the privacy
perspective, Zheng et al. [28] highlighted the potential threats
and privacy issues of linkable data in smart IoT systems and
Xiong et al. [29] used differential privacy for privacy pro-
tection in FL with non-IID data. Moreover, Pang et al. [30]
focused on heterogeneity by implementing a reinforcement
learning (RL)-based intelligent central server with the capabil-
ity of recognizing heterogeneity. In order to tackle the overall
training delay in FL over mobile devices, Prakash et al. [31]
balanced the tradeoff between wireless communication and
local computation. Furthermore, in the context of model com-
pression in FL and in edge networks, previous works have
used different compression techniques in the FL settings.
Sattler et al. [32] proposed sparse ternary compression to
enable downstream compression for gradient sparsification.
Li et al. [33] focused on energy-efficient FL over mobile-edge
devices by adopting flexible top-k with dynamic batches to
achieve gradient sparsification. Lossy compression along with
Federated Dropout was used for reducing communication bot-
tleneck in [34]. Wang et al. [35] used atomic decomposition of
the given gradient for communication-efficient learning. Deep

gradient compression to reduce the communication bandwidth
was proposed in [36].

While pruning is now a popular model compression tech-
nique, the earliest work on model pruning was performed
in [37] where parameters were pruned based on saliency and
the network was retrained. The process was further improved in
state of the art in [12] with one-shot pruning of a dense model
followed by fine-tuning. Based on this are many recent works
such as [38] with variations. Guerra et al. [39] proposed auto-
pruning techniques where the former prunes the network by
optimizing a set of auxiliary parameters instead of the original
weights. Model pruning in coordination with the FL training
procedure was introduced in [19] where the clients share sam-
ples from the private data sets with the server. However, while
this retains the performance accuracy, it defeats the purpose of
FL’s guarantee of training data privacy. Besides, their proposed
sample-less pruning affects the performance of the model neg-
atively. In our work, however, the data are maintained at the
client providing privacy guarantees.

Few notable works on weight quantization are
BinaryConnect [40] where each weight is binarized using the
sign function and [15], where a threshold-based ternary function
is optimized to get an approximated solution. Reference [41]
which used stochastically quantized gradients on the unbi-
ased gradient and [16] which utilized a general stochastic
linear quantization are popular works in gradient quantiza-
tion. A combination of quantization and pruning is seen in
works, such as [39] which prunes a quantized neural network
and [42] which performs pruning and quantization in parallel.
Our pruning methodology is more close to [9] which proposed
magnitude-based pruning during training by increasing the
sparsity ratio gradually and [17], where the dynamic model
pruning is performed with an error feedback that dynamically
adapts the mask at every few iterations. However, in our work,
we do not maintain a simultaneous dense model, and we use
a different reparameterization strategy.

VIII. CONCLUSION

In this article, we introduced an IoT device friendly and
communication-efficient FL algorithm named, GWEP, via
threefold model compression. By performing model compres-
sion through joint model pruning and quantization of model
parameters and gradients, we illustrated that our proposed
approach can effectively reduce storage, communication, and
computation requirements, accelerating the training process.
We theoretically analyzed the FL convergence and discussed

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

PRAKASH et al.: IoT DEVICE FRIENDLY AND COMMUNICATION-EFFICIENT FEDERATED LEARNING 13647

the extension to other suitable methods. Through empirical
evaluations, we demonstrated that our approach significantly
outperforms the baseline methods in terms of reducing the
training time, communication rounds, and energy, while still
achieving high test accuracy and compression. The results
have shown that our FL method exhibits a great potential
in accommodating originally large-sized DNNs over resource-
constrained IoT devices.

APPENDIX A
PROOF OF LEMMA 3

Proof: Based on v̂n
t = θtv̂n

t−1 + (1 − θt)[σ n2
t], and σ n2

t =
E[gn2

t], we have∥∥v̂n
t

∥∥
1 = θt

∥∥v̂n
t−1

∥∥
1 + (1 − θt)

∥∥σ n
t

∥∥2
1. (9)

Then, using Assumption 1, we have the inequality,
‖v̂n

t ‖1 ≤ G2. Therefore, by induction, the following inequality
holds: ∥∥v̂n

t + ε
∥∥
1 ≤ G2 + εd. (10)

Using this inequality, we can express the gradient estimation
over N clients as follows:

∥∥∇f
(
ẁt

)∥∥2 = 1

N

N∑
n=1

∥∥∇f
(
ẁt

)∥∥2√∥∥v̂n
t + ε

∥∥
1

√∥∥v̂n
t + ε

∥∥
1

= 1

N

N∑
n=1

√∥∥v̂n
t + ε

∥∥
1

d∑
j=1

∣∣∇jf
(
ẁt

)∣∣2√∑d
j=1 v̂n

t,j + ε

≤ 1

N

N∑
n=1

√∥∥v̂n
t + ε

∥∥
1α

−1
t

d∑
j=1

αt√
v̂n

t,j + ε

∣∣∇jf
(
ẁt

)∣∣2

= 1

N

N∑
n=1

√∥∥v̂n
t + ε

∥∥
1α

−1
t

d∑
j=1

η̂n
t,j

∣∣∇jf
(
ẁt

)∣∣2

≤
√

G2 + εd

αtN

N∑
n=1

∥∥∇f
(
ẁt

)∥∥2
η̂n

t
. (11)

Equation (11) is obtained using (10) and the weighted norm of
the step size relation of η̂n

t . Then, with the definition of αt and
for t chosen randomly from {1, 2, . . . , T}, we can thus deduce

E

[∥∥∇f
(
ẁt

)∥∥2
]

≤
√

G2 + εd

α
√

TN

N∑
n=1

E

[
T∑

t=1

∥∥∇f
(
ẁt

)∥∥2
η̂n

t

]
.

APPENDIX B
PROOF OF LEMMA 4

Proof: Using the definitions, vn
t = θtvn

t−1 + (1 − θt)[gn
t]

2

and v̂n
t = θtvn

t−1 + (1 − θt)[σ n2
t] and steps close to [23] and

[24], we obtain the following results:

�n
t − βαt√

θtαt−1
�n

t−1

= −(1 − β)η̂n
t gn

t + P + Q + R + S + T

P = η̂n
t gn

t
(1 − θt)gn

t√
vn

t + ε

⎡
⎣ βmn

t−1√
vn

t + ε
√

θtvn
t−1 + θtε

E
〈∇f

(
ẁt

)
,�t

〉 = 1

N

N∑
n=1

E
〈∇f

(
ẁt

)
,�n

t

〉

= 1

N

N∑
n=1

βαt√
θtαt−1

E
〈∇f

(
ẁt

)
,�n

t−1

〉 + E

〈
∇f

(
ẁt

)
,�n

t − βαt√
θtαt

�n
t−1

〉

= 1

N

N∑
n=1

βαt√
θtαt−1

[
E
〈∇f

(
ẁt−1

)
,�n

t−1

〉 + E
〈∇f (ẁt) − ∇f (ẁt−1),�

n
t−1

〉] + E
〈∇f (ẁt),−(1 − β)η̂n

t gn
t

〉
+ E

〈∇f (ẁt),P
〉 + E

〈∇f (ẁt),Q
〉 + E

〈∇f (ẁt),R
〉 + E

〈∇f (ẁt),S
〉 + E

〈∇f (ẁt), T
〉

(12)

T∑
t=1

[
1

N

N∑
n=1

βαt√
θtαt−1

[
E
〈∇f (ẁt−1),�

n
t−1

〉 + E
〈∇f (ẁt) − ∇f (ẁt−1),�

n
t−1

〉]]

≤
T∑

t=1

[
1

N

N∑
n=1

βαt√
θtαt−1

[
E
〈∇f (ẁt−1),�

n
t−1

〉 + {
LE

[∥∥(wt − ŵt) − ẁt
∥∥] + LE

[∥∥(wt−1 − ŵt−1) − ẁt−1
∥∥]

+ LE
[∥∥wt − ŵt

∥∥] + LE
[∥∥wt−1 − ŵt−1

∥∥] + LE
[‖wt − wt−1‖

]}∥∥�n
t−1

∥∥]]
≤

T∑
t=1

[
βαt√
θtαt−1

[
1

N

N∑
n=1

E
〈∇f (ẁt−1),�

n
t−1

〉 + 1

N2
L(2 − τg)

N∑
n=1

E
∥∥�n

t−1

∥∥2

+ 1

N2
L(2 − τg)

N∑
n=1

E
∥∥�n

t−1

∥∥∥∥en
t−1

∥∥ + 1

N
2(1 − τw)LD

N∑
n=1

E
∥∥�n

t−1

∥∥ + 1

N
2
√

τp(1 − τw)LD
N∑

n=1

E
∥∥�n

t−1

∥∥]]
(13)

E
〈∇f (ẁt),−(1 − β)η̂n

t gn
t

〉 = −(1 − β)

T∑
t=1

[
E
〈∇f (ẁt), η̂

n
t gn

t

〉] = − (1 − β)

N

T∑
t=1

[
N∑

n=1

E

[∥∥∇f (ẁt)
∥∥2

η̂n
t

]]
(14)

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

13648 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

+ (1 − β)gn
t√

vn
t + ε + √

v̂n
t + ε

]

Q = −η̂n
t σ

n
t

(1 − θt)gn
t√

vn
t + ε

(1 − β)σ n
t√

vn
t + ε + √

v̂n
t + ε

R = η̂n
t ε

(1 − θt)√
vn

t + ε

βmn
t−1√

vn
t + ε

√
θtvn

t−1 + θtε

S = η̂n
t

√
σ n2

t + ε
(1 − θt)gn

t√
vn

t + ε

βmn
t−1√

θtvn
t−1 + θtε

√
1 − θtgn

t√
vn

t + ε +
√

θtvn
t−1 + θtε

√
1 − θt

√
σ n2

t + ε√
v̂n

t + ε +
√

θtvn
t−1 + θtε

T = η̂n
t

√
σ n2

t + ε
(1 − θt)

√
ε√

vn
t + ε

βmn
t−1√

θtvn
t−1 + θtε

√
1 − θt

√
ε√

vn
t + ε +

√
θtvn

t−1 + θtε

√
1 − θt

√
σ n2

t + ε√
v̂n

t + ε +
√

θtvn
t−1 + θtε

.

Using the values from (7), (6), and Assumption 3, we
obtain (13), shown at the bottom of the previous page, for
the first term in (12), shown at the bottom of the previous

page. Similarly, since the learning rate is independent of the
gradient, the second term of (12) can be obtained as (14), shown
at the bottom of the previous page, and the remaining terms
follow similar proof from [24]. Using these results, we can
hence derive the upper bound for the term E〈∇f (ẁt),�t〉 as

E
〈∇f (ẁt),�t

〉 ≤
T∑

t=1

[
βαt√
θtαt−1

Mt−1 + B(1 − θt)

− 1

N

N∑
n=1

1 − β

2
E

[∥∥∇f (ẁt)
∥∥2

η̂n
t

]]
(19)

where the value of B is derived as in [24] as (16), shown at
the bottom of the page.

Using the above results and (19) in the definition of Mt, (15),
shown at the bottom of the page, can be deduced. Using the
results from Lemmas 1–3 in (15), we can thus show the upper
estimate of Mt as (8).

APPENDIX C
PROOF OF THEOREM 1

Proof: With w̃t = wt − (1/N)
∑N

n=1 en
t , we can write

w̃t+1 = wt+1 − 1

N

N∑
n=1

en
t+1. (20)

From Algorithm 1, we have wt+1 = wt − ĝt, en
t+1 = �n

t +en
t −

ĝn
t , and ĝt = 1

N

∑N
n=1 ĝn

t . Using the above relations and the
definition of �t, we can write (20) as (21)

w̃t+1 = wt − ĝt − 1

N

N∑
n=1

(
�n

t + en
t − ĝn

t

)

T∑
t=1

Mt ≤ 1√
A(1 − √

γ)

[
T∑

t=1

1

N
L(2 − τg)

N∑
n=1

E
∥∥�n

t−1

∥∥2 + 1 − τg

τgN
L(2 − τg)

N∑
n=1

E
∥∥�n

t−1

∥∥2

+ 2(1 − τw)LD

N

N∑
n=1

E
∥∥�n

t−1

∥∥ + 2
√

τp(1 − τw)LD

N

N∑
n=1

E
∥∥�n

t−1

∥∥ + B(1 − θt)

]
− (1 − β)

2N

N∑
n=1

E

T∑
t=1

[∥∥∇f (ẁt)
∥∥2

η̂n
t

]
(15)

B = 5αG3(1 − β)

2ε
√

θ

[
β

(1 − β)
√

θ1A(1 − γ)
+ 1

]2

+ 5αG3

2ε
√

θ
+ 5αd

√
εβ2

2
√

θ(1 − β)θ1A(1 − γ)

+ 5α
√

G2 + εG2β2

2
√

θ(1 − β)θ1A(1 − γ)ε
+ 5α

√
G2 + εβ2d

2
√

θ(1 − β)θ1A(1 − γ)
(16)

E
[
f (w̃t+1)

] ≤ E

[
f (w̃t) + 1

N

N∑
n=1

〈∇f (w̃t),�
n
t

〉 + L

2N2

N∑
n=1

∥∥�n
t

∥∥2

+ 1

N
√

τp(1 − τw)LD
N∑

n=1

∥∥�n
t

∥∥ + 1

N
(1 − τw)LD

N∑
n=1

∥∥�n
t

∥∥ + L

N2

N∑
n=1

∥∥en
t

∥∥∥∥�n
t

∥∥] ≤ E
[
f (w̃t)

] + Mt (17)

E

[∥∥∇f (ẁt)
∥∥2

]
≤

√
G2 + εd

α
√

TN

N∑
n=1

E

[
T∑

t=1

∥∥∇f (ẁt)
∥∥2

η̂n
t

]

≤ 2
√

G2 + εd

(1 − β)α
√

T

[
f (w1) − f ∗ + 1√

A(1 − √
γ)

[
L(2 − τg)G2α2

ετg
+ Bθ

T∑
t=1

1

t
+ 4(1 − τw)LDGα

√
T√

ε

(
1 + √

τp
)]]

(18)

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

PRAKASH et al.: IoT DEVICE FRIENDLY AND COMMUNICATION-EFFICIENT FEDERATED LEARNING 13649

=
(

wt − 1

N

N∑
n=1

en
t

)
− ĝt + ĝt − �t

= w̃t − �t. (21)

Considering that f and the stochastic gradients gt satisfy
Assumption 1, that is, by the Lipschitz continuity of the
gradient of f and Schwartz inequality, we obtain

f (w̃t+1) ≤ f (w̃t) + 〈∇f (w̃t),�t〉 + L

2
‖�t‖2

= f (w̃t) + 〈∇f (ẁt),�t
〉 + L

2
‖�t‖2

+ 〈(∇f (wt) − ∇f
(
ŵt

)) − ∇f (ẁt),�t
〉

+ 〈∇f (wt) − ∇f (ŵt),�t
〉 + 〈∇f (w̃t) − ∇f (wt),�t〉. (22)

Using the definitions of quantization and pruning parame-
ters as in (7), (6), Assumption 3, and the upper estimate as
in (8), we obtain (17), shown at the bottom of the previous
page. Taking summation on both sides of the inequality, the
following holds:

f ∗ ≤ E
[
f (w̃t+1)

] ≤ f (w1) +
T∑

t=1

Mt. (23)

Rearranging the terms above as per Lemma 3 and using the
value of Mt from (8), we can hence derive (18), shown at the
bottom of the previous page. Thereby proving the theorem,
E[‖∇f (ẁt)‖2] ≤ ([C + D∑T

t=1(1/t)]/
√

T)+ E .

REFERENCES

[1] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and
H. V. Poor, “Federated learning for Internet of Things: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1622–1658,
3rd Quart., 2021.

[2] P. Prakash, J. Ding, H. Li, S. M. Errapotu, Q. Pei, and M. Pan, “Privacy
preserving facial recognition against model inversion attacks,” in Proc.
GLOBECOM IEEE Global Commun. Conf., Taipei, Taiwan, Dec. 2020,
pp. 1–6.

[3] M. Wu et al., “Evaluation of inference attack models for deep learning
on medical data,” 2020, arXiv:2011.00177.

[4] H. B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” 2016, arXiv:1602.05629.

[5] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intell. Syst.,
vol. 35, no. 4, pp. 83–93, Jul.-Aug. 2020.

[6] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular
edge computing: A selective model aggregation approach,” IEEE Access,
vol. 8, pp. 23920–23935, 2020.

[7] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604.

[8] D. Shi, L. Li, R. Chen, P. Prakash, M. Pan, and Y. Fang, “Towards
energy efficient federated learning over 5G+ mobile devices,” 2021,
arXiv:2101.04866.

[9] M. H. Zhu and S. Gupta, “To prune, or not to prune: Exploring the effi-
cacy of pruning for model compression,” in Proc. 6th Int. Conf. Learn.
Represent., Vancouver, BC, Canada, Apr. 2018. [Online]. Available:
https://openreview.net/forum?id=Sy1iIDkPM

[10] D. Gao, X. He, Z. Zhou, Y. Tong, K. Xu, and L. Thiele, “Rethinking
pruning for accelerating deep inference at the edge,” in Proc. 26th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2020,
pp. 155–164.

[11] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” in Proc. NIPS Workshop Private Multi-Party
Mach. Learn., Barcelona, Spain, Dec. 2016. [Online]. Available:
https://arxiv.org/abs/1610.05492

[12] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. 29th Conf. Neural
Inf. Process. Syst., Montreal, QC, Canada, Dec. 2015, pp. 1135–1143.

[13] P. Goyal et al., “Accurate, large minibatch SGD: Training imagenet in
1 hour,” 2017, arXiv:1706.02677.

[14] L. Hou, R. Zhang, and J. T. Kwok, “Analysis of quantized mod-
els,” in Proc. 7th Int. Conf. Learn. Represent., New Orleans, LA,
USA, May 2019. [Online]. Available: https://openreview.net/forum?id=
ryMIoAqYX

[15] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016,
arXiv:1605.04711.

[16] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. 31st Conf. Neural Inf. Process. Syst., Long Beach, CA, USA,
Dec. 2017, pp. 1709–1720.

[17] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi,
“Dynamic model pruning with feedback,” in Proc. Int. Conf. Learn.
Represent., Addis Ababa, Ethiopia, Apr. 2020. [Online]. Available:
https://openreview.net/forum?id=SJem8lSFwB

[18] C. Philippenko and A. Dieuleveut, “Bidirectional compression in het-
erogeneous settings for distributed or federated learning with partial
participation: Tight convergence guarantees,” 2020, arXiv:2006.14591.

[19] Y. Jiang et al., “Model pruning enables efficient federated learning on
edge devices,” 2019, arXiv:1909.12326.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., San Diego, CA, USA, May 2015.
[Online]. Available: https://openreview.net/forum?id=8gmWwjFyLj

[21] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error feed-
back fixes SignSGD and other gradient compression schemes,” in Proc.
36th Int. Conf. Mach. Learn. (ICML), Long Beach, CA, USA, Jun. 2019,
pp. 3252–3261.

[22] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, QC,
Canada, Dec. 2018, pp. 4452–4463.

[23] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufficient condition for
convergences of adam and RMSprop,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Long Beach, CA, USA, Jun. 2019, pp. 11127–11135.

[24] C. Chen, L. Shen, H. Huang, Q. Wu, and W. Liu, “Quantized adam with
error feedback,” 2020, arXiv:2004.14180.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” in Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[27] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” 2020, arXiv:2003.03033.

[28] X. Zheng, Z. Cai, and Y. Li, “Data linkage in smart Internet of Things
systems: A consideration from a privacy perspective,” IEEE Commun.
Mag., vol. 56, no. 9, pp. 55–61, Sep. 2018.

[29] Z. Xiong, Z. Cai, D. Takabi, and W. Li, “Privacy threat and defense
for federated learning with non-IID data in AIoT,” IEEE Trans. Ind.
Informat., vol. 18, no. 2, pp. 1310–1321, Feb. 2022.

[30] J. Pang, Y. Huang, Z. Xie, Q. Han, and Z. Cai, “Realizing the hetero-
geneity: A self-organized federated learning framework for IoT,” IEEE
Internet Things J., vol. 8, no. 5, pp. 3088–3098, Mar. 2021.

[31] P. Prakash, J. Ding, M. Wu, M. Shu, R. Yu, and M. Pan, “To talk or
to work: Delay efficient federated learning over mobile edge devices,”
2021, arXiv:2111.00637.

[32] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-IID. data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Sep. 2020.

[33] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to
work: Flexible communication compression for energy efficient feder-
ated learning over heterogeneous mobile edge devices,” in Proc. IEEE
Int. Conf. Comput. Commun. (INFOCOM), May 2021, pp. 1–10.

[34] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” 2018, arXiv:1812.07210.

[35] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and
S. Wright, “ATOMO: Communication-efficient learning via atomic spar-
sification,” in Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, QC,
Canada, Dec. 2018, pp. 9872–9883.

[36] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep
gradient compression: Reducing the communication band-
width for distributed training,” in Proc. 6th Int. Conf. Learn.
Represent., Vancouver, BC, Canada, Apr. 2018. [Online]. Available:
https://openreview.net/pdf?id=SkhQHMW0W

[37] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Proc. Adv. Neural Inf. Process. Syst., 1990, pp. 598–605.

[38] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. 4th Int. Conf. Learn. Represent., San Juan, Puerto
Rico, May 2016. [Online]. Available: https://arxiv.org/abs/1510.00149

[39] L. Guerra, B. Zhuang, I. Reid, and T. Drummond, “Automatic pruning
for quantized neural networks,” 2020, arXiv:2002.00523.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

13650 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

[40] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[41] W. Wen et al., “Terngrad: Ternary gradients to reduce communication
in distributed deep learning,” in Proc. 31st Conf. Neural Inf. Process.
Syst., Long Beach, CA, USA, Dec. 2017, pp. 1509–1519.

[42] F. Tung and G. Mori, “CLIP-Q: Deep network compression learning
by in-parallel pruning-quantization,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 7873–7882.

Pavana Prakash (Graduate Student Member, IEEE)
received the B.Eng. degree in instrumentation
technology from the JSS Academy of Technical
Education, VT University, Belgaum, India, in 2010.
She is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Houston, Houston, TX, USA.

She worked as a Technical Lead and a Software
Engineer in the computer networking industry from
2010 to 2017. Her research interests include deep
learning privacy, wireless edge networks compatible

federated learning, and distributed optimization.
Ms. Prakash is a Student Member of ACM.

Jiahao Ding (Graduate Student Member, IEEE)
received the B.S. degree in electronic information
engineering from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2017. He is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, University of Houston, Houston, TX,
USA.

His research interests include private data ana-
lytics, trustworthy machine learning, and distributed
optimization.

Mr. Ding is a Student Member of AAAI.

Rui Chen (Graduate Student Member, IEEE)
received the B.S. degree from the Marine Electrical
Engineering College, Dalian Maritime University,
Dalian, China, in 2018. She is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Houston,
Houston, TX, USA.

Her major research interests include data-driven
optimization, federated learning, differential privacy,
resource management in wireless networks, and
wireless for AI.

Xiaoqi Qin (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electrical and com-
puter engineering from Virginia Tech, Blacksburg,
VA, USA, in 2011, 2013, and 2016, respec-
tively.

She is currently an Associate Professor with
the School of Information and Communication
Engineering, Beijing University of Posts and
Telecommunications, Beijing, China. Her research
focuses on exploring performance limits of next-
generation wireless networks and developing inno-

vative solutions for intelligent and efficient machine-type communications.

Minglei Shu (Member, IEEE) received the B.S.
degree in automation, the M.Sc. degree in power
electronics and power transmission, and the Ph.D.
degree in communication and information systems
from Shandong University, Jinan, China, in 2003,
2006, and 2016, respectively.

He is currently working with the Shandong
Artificial Intelligence Institute, Qilu University
of Technology (Shandong Academy of Sciences),
Jinan. His research interests include computer
vision, medical image segmentation, IoT medical

care, and wireless sensor networks.

Qimei Cui (Senior Member, IEEE) received the
B.E. and M.S. degrees in electronic engineering
from Hunan University, Changsha, China, in 2000
and 2003, respectively, and the Ph.D. degree in
information and communications engineering from
Beijing University of Posts and Telecommunications
(BUPT), Beijing, China, in 2006.

She has been a Full Professor with the School
of Information and Communication Engineering,
BUPT, since 2014. She was a Visiting Professor
with the Department of Electronic Engineering,

University of Notre Dame, Notre Dame, IN, USA, in 2016. Her research
interests include B5G/6G wireless communications, mobile computing,
and IoT.

Prof. Cui won the Best Paper Award at IEEE ISCIT 2012, IEEE WCNC
2014, and WCSP 2019, the Honorable Mention Demo Award at ACM
MobiCom 2009, and the Young Scientist Award at URSI GASS 2014.
She serves as an Editor for Science China Information Science and a
Guest Editor for the EURASIP Journal on Wireless Communications and
Networking, International Journal of Distributed Sensor Networks, and
Journal of Computer Networks and Communication. She serves as the
Technical Program Chair for APCC 2018, the Track Chair for IEEE/CIC
ICCC 2018, and the Workshop Chair for WPMC 2016. She also serves as a
Technical Program Committee Member of several international conferences,
such as the IEEE ICC, the IEEE WCNC, the IEEE PIMRC, the IEEE ICCC,
the WCSP 2013, and the IEEE ISCIT 2012.

Yuanxiong Guo (Senior Member, IEEE) received
the B.Eng. degree in electronics and information
engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2009,
and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Florida, Gainesville, FL, USA, in 2012 and 2014,
respectively.

Since 2019, he has been an Assistant Professor
with the Department of Information Systems and
Cyber Security, University of Texas at San Antonio,

San Antonio, TX, USA. His current research interests include machine learn-
ing, data-driven decision making, security and privacy with applications to
Internet of Things, and edge computing.

Dr. Guo was a recipient of the Best Paper Award in the IEEE Global
Communications Conference 2011. He is on the Editorial Board of IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY and servers as the Track
Co-Chair for IEEE VTC 2021-Fall.

Miao Pan (Senior Member, IEEE) received the
B.Sc. degree in electrical engineering from Dalian
University of Technology, Dalian, China, in 2004,
the M.A.Sc. degree in electrical and computer
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2007, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Florida, Gainesville,
FL, USA, in 2012.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,

University of Houston, Houston, TX, USA. His research interests include
wireless/AI for AI/wireless, deep learning privacy, cybersecurity, and under-
water communications and networking.

Dr. Pan was a recipient of the NSF CAREER Award in 2014. His work won
the IEEE Technical Committee on Green Communications and Computing
Best Conference Paper Awards 2019 and the Best Paper Awards at ICC
2019, VTC 2018, Globecom 2017, and Globecom 2015, respectively. He
is an Editor of IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, an
Associate Editor of IEEE INTERNET OF THINGS (IOT) JOURNAL (Area 5:
Artificial Intelligence for IoT), and used to be an Associate Editor of IEEE
INTERNET OF THINGS (IOT) JOURNAL (Area 4: Services, Applications, and
Other Topics for IoT) from 2015 to 2018. He has also been serving as a
Technical Organizing Committee for several conferences, such as the TPC
Co-Chair for Mobiquitous 2019 and ACM WUWNet 2019. He is a member
of AAAI and ACM.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:17:04 UTC from IEEE Xplore. Restrictions apply.

