
To Talk or to Work: Delay Efficient Federated
Learning over Mobile Edge Devices

Pavana Prakash∗, Jiahao Ding∗, Maoqiang Wu†, Minglei Shu‡, Rong Yu†, and Miao Pan∗
∗Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204

†School of Automation, Guangdong University of Technology, Guangzhou, China
‡Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China

Abstract—Federated learning (FL), an emerging distributed
machine learning paradigm, in conflux with edge computing
is a promising area with novel applications over mobile edge
devices. In FL, since mobile devices collaborate to train a model
based on their own data under the coordination of a central
server by sharing just the model updates, training data is
maintained private. However, without the central availability of
data, computing nodes need to communicate the model updates
often to attain convergence. Hence, the local computation time
to create local model updates along with the time taken for
transmitting them to and from the server result in a delay in
the overall time. Furthermore, unreliable network connections
may obstruct an efficient communication of these updates. To
address these, in this paper, we propose a delay-efficient FL
mechanism that reduces the overall time (consisting of both the
computation and communication latencies) and communication
rounds required for the model to converge. Exploring the impact
of various parameters contributing to delay, we seek to balance
the trade-off between wireless communication (to talk) and local
computation (to work). We formulate a relation with overall time
as an optimization problem and demonstrate the efficacy of our
approach through extensive simulations.

I. INTRODUCTION

Machine learning together with increased capabilities in

mobile devices have led to a tremendous rise in the number of

smart mobile devices and data generated at the edge network.

About 80 billion devices are predicted to be connected to

the Internet by 2025 [1]. Hence, computing networks are

witnessing a paradigm shift from conventional cloud com-

puting setting, by moving closer to the edge where data is

produced, namely multi-access edge computing (MEC). How-

ever, utilizing centralized machine learning algorithms at the

response-accelerated MEC is inefficient, since uploading and

storing bulk data causes a large storage and communication

bottleneck. Therefore, federated learning (FL) was introduced

to solve these challenges where mobile devices jointly train a

shared global model in a decentralized manner [2].

In an FL setup, user devices compute and transmit local

model updates based on the local training data which are

aggregated at the central server, facilitating users to learn

collaboratively. With high-performance processors, modern

mobile devices are equipped to handle such intensive compu-

tations, further aiding the implementation of FL in MEC. This

The work of P. Prakash, J. Ding, and M. Pan was supported in part by the
U.S. National Science Foundation under grants CNS-1801925, CNS-2029569,
and CNS 2107057. The work of M. Wu and R. Yu was supported by National
Natural Science Foundation of China (No. 61971148).

has enabled its presence in a variety of delay-sensitive areas

ranging from smart healthcare devices to predictive models

from electronic health records. In particular, smart health

applications have seen substantial success since they leverage

the bulk data generated by tracking physical activities of its

users from wearable devices such as smart watches, fitness

trackers, and wristbands, to train quality learning models.

Moreover, FL satisfies the privacy requirements of wearable

computing by leaving personal data on the user devices [3].

For these extensive time-critical applications, the feasible

offloading time has to be in the order of milliseconds [4].

In reality, without central availability of data, computing

nodes need to communicate model updates often to attain

convergence in FL. Communication of these updates may

involve long round-trip times posing a limitation to this

paradigm [5]. Moreover, unreliable and unpredictable network

connections between the server and mobile devices could

obstruct smooth transmission of updates. A large number of

participants utilizing the constrained wireless bandwidth to

upload model updates could add to uplink transmission delays.

Therefore, given the nature of frequent exchange of updates in

FL, over an expensive communication involving large number

of mobile devices, reducing the overall time delay is crucial.

To address these challenges, many pioneering works ana-

lyze different aspects of the FL paradigm. Initial works such

as [2] emphasizes on higher local computation to reduce the

communication cost but lacks a theoretical model. Variants

of FedAvg such as [6] and works on distributed optimization

such as [7] aim to ease the communication burden. However,

these works do not consider the limiting factors of wireless

communication that can affect the performance of FL. Further,

recent works including [8] formulate to reduce the time or

energy consumption but do not contemplate the learning

hyperparameters which significantly affect the training time.

While majority of the works focus on communication over-

head, the latest surge of research in networks have paved way

for the rapidly expanding 5G and the upcoming 6G networks

which alleviate communication burdens [9]. To illustrate, a

single-step of local computation on ResNet50 model over

GPU consumes few hundreds of milliseconds [10], which is

nearly comparable to the time taken to transmit over a wireless

connection with transmission rate of 1 Gbps. Therefore, it is

worthwhile to investigate the impacts of communication, local

computation in conjunction with convergence over FL.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:30:23 UTC from IEEE Xplore. Restrictions apply.

Intuitively, if a user performs more local computation to

achieve a high local accuracy, frequent communication can

be avoided due to decrease in the number of model updates.

However, in case of data that is not representative of the

overall distribution, this leads to local overfitting, adding

to the convergence delay [11]. On the contrary, to reduce

computation, we can perform single-step updates which con-

sumes lesser time to compute and communicate each update.

However, it results in additional communications to update the

current model, in order to attain a targeted global accuracy,

increasing the overall time. As a result, the trade-off between

wireless communication (to talk) and local computation (to

work) of mobile devices needs to be balanced.

In this paper, we mainly aim to realize a balance between

the two, by carefully studying the effect of various parameters,

constraining overall time as the principal factor. We observe

that for FL on each mobile device, the ‘talking’ (i.e., global

communication) time is determined by the local update size

as well as wireless parameters such as transmission power,

channel gain, bandwidth and background noise. Correspond-

ingly, the ‘working’ (i.e., local computation) time of each

mobile device is influenced by the training data size and

hyperparameters, together with the processor capabilities such

as number of cycles and frequency scales. The overall time is

further conditioned by the preset accuracies and the number

of connected mobile devices. Capturing this motivation, our

salient contributions can be summarized as follows,

• We build a theoretical model for FL on edge GPUs

over wireless networks that considers the impact of both

computation and communication models on the overall

time of training. To this end, we formulate an optimiza-

tion problem to minimize the overall time consumed and

reduce the number of communication rounds required to

achieve FL convergence.

• Based on this model, we propose a delay-efficient FL

solution mechanism by optimizing the influencing param-

eters to reduce the overall time. To realize this, we further

consider the trade-off between local computation (to

work) and wireless global communication (to talk). We

demonstrate the theoretical convergence of the model and

further define computational values based on leveraging

the frequency of GPUs.

• We verify the effectiveness of our solution mechanism

through extensive simulations over real-world datasets

and illustrate the influence of each parameter on the

overall time delay. We demonstrate that our solution

significantly reduces the overall time in comparison with

the baseline methods, while still achieving high accuracy.

II. DELAY-EFFICIENT FEDERATED LEARNING (DEFL)

AND MODEL DESCRIPTION

A. Federated Learning over Mobile Edge Computing

We consider an MEC-assisted FL system consisting of one

edge (parameter) server and a set of M of M mobile devices.

Each mobile device m has a local dataset Dm of size Dm,

constituting a set of input samples and labels, {xm
i , ymi }Dm

i=1

with d features. The loss function F with respect to model

parameters w on m’s dataset is given by,

Fm(w) =
1

Dm

∑
i∈Dm

fi(w), (1)

where fi(w) = fi(w;xm
i , ymi) is the loss on data point i. The

objective of minimizing the global loss is of the form,

min
w∈Rd

F(w) =
M∑

m=1

Dm

D
Fm(w), (2)

where D =
∑M

m=1 Dm is the total data size.

B. Computation Model

Typically, CPUs incur high computation costs [8] and in

contrast, with increased processing power and memory band-

width, GPUs lower the computational costs. Furthermore, its

massively parallel architecture can efficiently handle compute-

intensive manipulations making it most suitable for high

performance deep learning models. Hence in our work, we

build a model for FL over edge GPUs whose frequency

fm ∈ R
m, can be given as,

fm =
1

as +
ac

fc
+ aM

fM

, (3)

where as, ac and aM are constants related to static, core

frequency fc (including all of GPU’s cores) and memory

frequency fM , respectively [12]. Gm is the number of GPU

cycles required for local computation by a mobile device and

can be measured offline. We use mini-batch stochastic gradient

descent (SGD) in which the computation is conditioned by

the given batch size b. The local computation time taken to

execute a single iteration of GPU-accelerated mini-batch SGD

at the m-th mobile device can be given by,

T cp
m =

Gmb

fm
. (4)

The proposed model can also be used with CPUs or other

processors where fm in (4) is replaced by the given proces-

sor’s frequency value. Since GPUs are capable of parallel

execution and process the whole-batch samples simultane-

ously [13], in our work, we assume a synchronous model

implying parallel local computation by mobile devices. Hence,

the computation time during each communication round de-

pends on the value of the slowest computation i.e., the highest

time consumed by any mobile device given by,

Tcp = max
m

T cp
m . (5)

C. Communication Model

The downlink bandwidth used by the server to broadcast

the updated global model is much larger than the uplink

bandwidth used by the mobile devices to transmit their

local updates. Since this leads to a minimal downlink time

versus uplink time [8], we consider only the uplink time

as the communication time. Further, we assume that the

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:30:23 UTC from IEEE Xplore. Restrictions apply.

local model update size s to be fixed and the same for all

mobile devices. Considering the transmission bandwidth B,

transmission power of the mobile device m as pm, hm being

the channel gain of the link between the mobile device and the

server, No the background noise, the communication time of

one model update from each mobile device to the parameter

server can be given by,

T cm
m =

s

B log2 (1 +
pmhm

No
)
. (6)

Assuming a synchronous model for communication, the

communication time per communication round is given by,

Tcm = max
m

T cm
m . (7)

D. Overall Time
The total computation time per communication round de-

pends on the number of local iterations V and the overall

time depends on communication together with computation

time. Hence, the total time consumed by the system for one

communication round can be defined as,

T = Tcm + V Tcp. (8)

E. To Talk or To Work
Both communication and computation-intensive networks

can significantly benefit from reduced communication as

communication is expensive. In addition, factors such as

slow speed, poor communication channel, congestion in net-

works further challenge the efficient communication of model

updates. Thus, reducing communication is a necessity in

comparison with computation. In this aspect, when mobile

devices perform more local computation to reach a high

preset local accuracy, the number of local updates is reduced,

indeed reducing the frequency of communicating with the

server. This suggests fewer communication rounds implying

savings in communication cost and time. Correspondingly,

when functions across users share some similarity, taking local

steps can lead to faster convergence [14]. Moreover, since the

recent mobile edge devices are equipped with fast processors,

increasing local computation does not burden or compromise

the computation time. Adding parallel computing capabilities

with the utilization of GPUs further aids in speeding up

computation as described in Section II-B. Hence, we reduce

the ‘talking’ over ‘working’ when balancing the trade-off.

F. DEFL Algorithm
Our methodology of FL named DEFL (Delay Efficient

Federated Learning), is described in Algorithm 1. The prob-

lem is formulated at the system-level and the computed values

from the proceeding sections are utilized in our algorithm.

III. THEORETICAL AND CONVERGENCE ANALYSIS

To present the theoretical analysis, we first state the follow-

ing standard assumptions on the local loss function Fm.

Assumption 1. The loss function Fm is L-smooth, that is for
all v and w, we have Fm(v) ≤ Fm(w) + (v −w)T∇Fm +
L
2 ‖v −w‖2.

Algorithm 1 DEFL

Inputs: w0, preset global convergence error ε, computed

values of b∗ and θ∗ ∈ [0, 1].

1: Initialize w0

2: for 1 to H communication rounds for achieving ε, do
3: Local Computation: Each mobile device m performs

local training to compute stochastic gradient on mini-

batch sized b∗, and solves (2) in V local rounds to

achieve θ∗-approximate solution.

4: Wireless Communication: Every participating mobile

device m transmits the local model update wm
v to the

edge server through the communication channel.

5: Aggregation and Broadcast: The parameter server

aggregates the received updates to obtain the global

model, and broadcasts it to the mobile devices.

6: end for

Assumption 2. Let ξmk be sampled from the m-th device’s
local data uniformly at random. The variance of stochastic
gradients in each device is bounded, i.e., E‖∇Fm(wm

k , ξmk)−
∇Fm(wm

k)‖ ≤ σ2.

The convergence bound of the model can be given by the

following theorem using w∗ as a fixed minimizer of F.

Theorem 1 ([7]). Suppose Assumptions 1 and 2 hold, and
a constant stepsize η such that η =

√
M

4L
√
K

is chosen and the
FL algorithm is run on identical data, then we have,

E [F(w̄K)− F(w∗)] ≤
8‖w0 −w∗‖2√

MK
+

σ2

2L
√
MK

+
σ2M(V − 1)

LK
, (9)

where w̄K = 1
K

∑K
k=1 ŵk and ŵk = 1

M

∑M
m=1 w

m
k . Addi-

tionally, the number of gradient steps is K, local rounds is
V , and mobile devices is M .

Remark 1. The result of Theorem 1 is based on each user
only computing a single stochastic gradient in each global
iteration. However, in our FL setting, each mobile device
computes a mini-batch of size b in each communication
round. Thus, we present the following corollary to show the
convergence of DEFL.

Corollary 1. Suppose Assumptions 1 and 2 hold, and a
constant stepsize η such that η =

√
M

4L
√
K

is chosen, with
K ≥ M and the batch size equals b, then we have,

E [F(w̄K)− F(w∗)] ≤
8‖w0 −w∗‖2√

MK
+

σ2

2bL
√
MK

+
σ2M(V − 1)

bLK
. (10)

Proof. Mini-batch SGD is conditioned by the given batch size

b. Using this in (9), we hence obtain this corollary.

Remark 2. From Corollary 1, we can observe that when each
mobile device considers a mini-batch size b in each iteration,
it reduces the variance by a factor of b.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:30:23 UTC from IEEE Xplore. Restrictions apply.

We now use the convergence properties of DEFL, to

estimate the number of communication rounds required to

complete training of the mobile devices in coordination with

the edge server. We hence present the following corollary.

Corollary 2. The number of communication rounds for
achieving an ε-global model convergence, i.e, satisfying
E [F(w̄K)− F(w∗)] ≤ ε is given by,

H = O
(

1

b2ε2MV
+

M

bε

)
, (11)

where O is the big-O notation.

Proof. Since the system satisfies E [F(w̄K)− F(w∗)] ≤ ε to

achieve an ε-accuracy, this is easily seen to be true by setting

the right term in (10) to ε. Further, considering the relation of

number of communication rounds, H = K/V to solve for H
and using the big-O notation in (10), we thus obtain (11).

Remark 3. At the user level, for achieving a θ-accuracy
locally in SGD, i.e., E‖wV − w∗‖22 ≤ θ, the number of
local rounds required for a mobile device’s local model is
V = ν log 1

θ [15], where ν is a constant related to step size
and gradient noise. Then, substituting in (11) and using the
term c to approximate the big-O notation we have,

H =
c

b2ε2Mν log 1
θ

+
cM

bε
. (12)

We can hence define the overall time for convergence as a

product of the number of communication rounds required H ,

and the total time for one communication round T as,

T = HT. (13)

IV. PROBLEM FORMULATION

From our theoretical analysis, we can deduce the impact

of batch size (shown in Remark 2), number of communi-

cation rounds and time, preset accuracies and the number

of participating mobile devices on the convergence rate. We

hence achieve our objective of reducing the overall time

by optimizing these variables. Accordingly, the optimization

problem can be formulated using (13) with values from (12)

and (8) as follows,

minimize
b,θ,Tcp

(
c

b2ε2Mν log 1
θ

+
cM

bε

)
∗
(
Tcm + ν log

1

θ
Tcp

)

(14)

subject to b ∈ {2n|n = 0, 1, ...} (15)

0 ≤ θ ≤ 1 (16)

max
m

Gmb

fm
= Tcp (17)

Constraint (16) defines the relative local accuracy that each

mobile device attains on solving its local sub-problem. Here,

θ = 0 corresponds to the exact solution and θ = 1 implies

no improvement; hence we aim to achieve a lower value of

θ for higher accuracy. This is also in accordance with (12),

which indicates that ‘working’ more to achieve higher local

accuracy results in smaller number of communication rounds.

Although, this is in line with achieving our objective, (14)

indicates that an inverse dependence on θ along with the

relation with other parameters imply that we can only benefit

a certain level by achieving a full relative accuracy of close

to 0. Hence, this control helps in avoiding local overfitting

condition that otherwise delays convergence. Constraint (15)

sets a range of the most commonly used effective batch size

values starting from 1, which is the case of SGD. For a given

target global accuracy, a larger b leads to smaller number of

communication rounds as per (12). Further, since we ‘work’

more to achieve a preset local accuracy to balance the trade-

off, computation time determined by the slowest computation

is defined by constraint (17).

V. SOLUTION

The formulated problem to relieve the communication bot-

tleneck by allowing more distributed computation is difficult

to solve and involves a mix of integers and continuous

variables. Hence, firstly, we introduce an auxiliary variable

α = log(1/θ) to aid the optimization process, where α ∈
[0,+∞) since θ ∈ [0, 1]. Second, since constraint (17) is non-

convex, we can transform it to convex to alleviate solving.

Third, we relax the constraint of b in (15) from an integer to

continuous; (14) can be reformulated as,

minimize
b,α,Tcp

(
c

b2ε2Mνα
+

cM

bε

)
∗ (Tcm + ναTcp) (18)

subject to b ≥ 1 (19)

α ≥ 0 (20)

Tcp ≥ Gmb

fm
, ∀m ∈ M (21)

Proof. We use Karush-Kuhn-Tucker (KKT) conditions to

solve the delay minimization problem (18). We first write the

Lagrangian of (18) as follows,

L(b, α, Tcp, λ, μ) =

(
cTcm

b2ε2Mνα
+

cMTcm

bε
+

cTcp

b2ε2M

+
cMναTcp

bε

)
−λ1(b−1)−λ2α−

M∑
m=1

μm

(
Tcp −

Gmb

fm

)
,

(22)

where λ1, λ2, and {μm}Mm=1 are non-negative dual variables.

We take the first order derivatives of (22) with respect

to the dual and optimization variables giving the stationary

conditions from Eqs. (23)-(25) and list the rest of the KKT

conditions as in Eqs. (26)-(28) shown by,

∂L
∂b

=
−2cTcm

b3ε2Mνα
− cTcmM

b2ε
− 2cTcp

b3ε2M

− cMTcpνα

b2ε
− λ1 +

μmGm

fm
= 0, ∀m ∈ M, (23)

∂L
∂α

=
−cTcm

b2ε2Mνα2
+

cTcmMν

bε
− λ2 = 0, (24)

∂L
∂Tcp

=
c

b2ε2M
+

cMνα

bε
− μm = 0, ∀m ∈ M, (25)

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:30:23 UTC from IEEE Xplore. Restrictions apply.

λ1(b− 1) = 0, λ2(α) = 0, (26)

μm

(
Tcp −

Gmb

fm

)
= 0, ∀m ∈ M, (27)

λ1 ≥ 0, λ2 ≥ 0, μm ≥ 0, ∀m ∈ M. (28)

Since the inequality constraints are nonlinear yet differen-

tiable and lower-bounded with a non-negative duality gap, the

KKT necessary conditions serve as the optimality conditions.

Hence, considering the above dual feasibility and complemen-

tary slackness conditions to solve the derivatives, KKT points

are obtained. We check all of the obtained points for feasibility

of the problem to finally deduce the optimal values as,⎧⎪⎪⎨
⎪⎪⎩

α∗ =
√

Tcmfm
M2εν2Gm

, ∀m ∈ M;

b∗ = 2cM
√

Tcmfmε
Gm

, ∀m ∈ M;

T ∗
cp = maxm

Gmb∗
fm

, ∀m ∈ M.

(29)

From these relations, theoretically, the computation time is

vastly affected by loads from all the mobile devices and the

processors’ computational capabilities and speed. Further, the

batch size has a direct impact on Tcp with larger b leading

to higher computation and faster convergence. Both b and

the relative local error θ are impacted by the set global

convergence error ε, M , along with other parameters. A lower

value of θ∗ (which can be computed from α∗) implying higher

local accuracy, results in more ‘working’ and less ‘talking’.

VI. PERFORMANCE EVALUATION

A. Settings

To evaluate the proposed delay efficient FL, we perform

simulations using image classification tasks on the widely

used MNIST1 and CIFAR-102 datasets using CNN. For the FL

tasks, we consider 1 parameter server and 10 mobile devices

with distributed data and a learning rate of 0.01. In accordance

with our computational model in (3), we use Nvidia RTX8000
with the number of GPU cycles of 30 cycles/bit and following

constraint (17), we consider an equal maximum computation

capacity of fm = 2 GHz for all the mobile devices. For

communication model, we assume the bandwidth B = 20
MHz and noise No = −174 dBm/Hz.

B. Impact of optimization parameters over convergence

According to (29), the computed values of b∗, θ∗ and in

turn T ∗
cp are conditioned by the relative global convergence

error ε. Hence, we empirically choose a value which leads to

both increased performance yet takes less overall time. From

the values in Fig. 1(a), we thus set ε = 0.01. The optimized

variables computed from our solution are used in (12) to

determine the number of communication rounds H , which

1Downloaded from: http://yann.lecun.com/exdb/mnist
2Downloaded from: http://www.cs.toronto.edu/∼kriz/cifar.html

can be empirically shown as in Fig. 1(d). We now study the

impact of the parameters on the overall time as follows.

Batch size. Generally, larger batch size to train the model

allows computational speedups from the parallelism of GPUs.

However, too large a batch size may lead to lower gener-

alization, resulting in more overall time. Whereas, smaller

batch sizes are shown to have less computation but are not

guaranteed to converge to the global optima. Theoretically,

the value of b computed from (29) has a lower limit of 1
and can be rounded off to 32 (for MNIST data size) which

also corresponds to a value from the initial constraint (15).

Empirically, as shown in Fig. 1(b), to achieve the same target

ε, while b = 64 has the shortest overall time, it has a lower

test accuracy. On the other hand, b = 16 achieves the highest

test accuracy but takes more time of about 200 seconds.

Consequently, the computed value of b = 32 achieves a good

trade-off between prediction performance and overall time.

Relative Local Error. A lower value of relative local error

θ (i.e., higher local accuracy), induces the model to ‘work’

more to achieve θ-accurate solution locally. This implies that

fewer communication rounds is necessary according to (12)

and consequently, lesser communication time than the original

FedAvg algorithm. This behavior is captured in Fig. 1(d),

where the theoretically calculated θ ≈ 0.15 from (29) has a

higher computation time (due to ‘working’ more), but smaller

H due to reduced number of model updates. Conversely,

higher θ is undesired since lower computation results in

‘talking’ more with larger number of H and higher overall

time. Further, as shown in Fig. 1(c), θ is just as low as to

achieve a better performance in terms of reduced training loss

at the same overall time while avoiding local overfitting.

Computation Time. The computed batch size influences

the computation time since the training dataset is processed

batch-wise, subject to device capabilities. Accordingly, in-

creasing b implies taking advantage of the available computa-

tional resources of the mobile devices. As seen in Fig. 1(d),

higher computation leads to reduced number of communica-

tion rounds which in turn leads to reduced overall time.

Comparison with Baseline. For evaluation, we use Feder-

ated Averaging (FedAvg) from [2] as a baseline to compare

the performance of our proposed solution. For FedAvg on

MNIST IID data using CNN, we set the parameter values

as recommended by the authors through their experiments as

b = 10 and V = 20. We then choose random values of b = 16
and V = 15 for MNIST and b = 64 and V = 30 for CIFAR-

10 to test the effect of parameters as a whole, marked by

‘Rand.’. For our work marked as ‘DEFL’, we choose values

as per our delay-efficient optimized solution from Section

V and as verified in Section VI. With a preset θ ensuring

more computation, along with the optimized b and fixed ε, we

observe from Fig. 2 that, although we achieve nearly the same

test accuracy, DEFL significantly outperforms the baseline in

terms of the overall time. Comparatively, we reduce the overall

time by nearly 70% compared with FedAvg for MNIST and

by 18% for CIFAR. Similarly, there is a reduction of around

38% comparing with ‘Rand.’ for MNIST and 75% for CIFAR.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:30:23 UTC from IEEE Xplore. Restrictions apply.

(a) Impact of ε on T and convergence. (b) Impact of b with the chosen ε. (c) Impact of θ with b∗ and chosen ε. (d) Impact of θ, Tcp on H .

Fig. 1. Studying the impact of different parameters on the overall time and performance.

(a) Overall time vs. comm. rounds. (b) Test accuracy vs. comm. rounds. (c) Overall time vs. comm. rounds. (d) Test accuracy vs. comm. rounds.

Fig. 2. Performance evaluation of DEFL over MNIST and CIFAR-10 datasets.

Hence, DEFL can be useful in accelerating the FL process on

mobile edge devices such as wearable devices.

VII. CONCLUSION

In this paper, we introduced a delay efficient FL mechanism

suitable for mobile edge devices such as wearable devices,

by studying the trade-off between wireless communication

(to talk) and local computation (to work) with respect to

the overall time. With careful consideration of this prevailing

balance, we interpreted the effects of the learning model, wire-

less communication and hyper parameters in conjunction over

the total time consumed. Guided by this theoretical model,

we demonstrated the impact of these parameters through

extensive simulations. Empirical evaluations have shown that

DEFL can reduce the overall time delay while achieving high

performance accuracy, implying that FL can be accommodated

in delay-sensitive applications suitable for mobile devices.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World
from Edge to Core,” IDC White Paper, 2018.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Artificial Intelligence and Statistics, Fort Lauderdale, FL,
Apr 2017, pp. 1273–1282.

[3] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A Fed-
erated Transfer Learning Framework for Wearable Healthcare,” IEEE
Intelligent Systems, vol. 35, no. 4, pp. 83–93, 2020.

[4] A. Al-Shuwaili and A. Lawey, “Achieving Low-Latency Mobile Edge
Computing by Uplink and Downlink Decoupled Access in HetNets,”
arXiv preprint arXiv:1809.04717, 2018.

[5] H. Trinh, P. Calyam, D. Chemodanov, S. Yao, Q. Lei, F. Gao, and
K. Palaniappan, “Energy-aware mobile edge computing and routing for
low-latency visual data processing,” IEEE Transactions on Multimedia,
vol. 20, no. 10, pp. 2562–2577, 2018.

[6] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communi-
cation Efficiency,” in NIPS Workshop on Private Multi-Party Machine
Learning, Barcelona, Spain, Dec 2016.

[7] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter Theory for Local
SGD on Identical and Heterogeneous Data,” in The 23rd International
Conference on Artificial Intelligence and Statistics (AISTATS 2020),
Sicily, Italy, Jun 2020, pp. 4519–4529.

[8] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
“Federated Learning over Wireless Networks: Optimization Model De-
sign and Analysis,” in IEEE Conference on Computer Communications
(INFOCOM). Paris, France: IEEE, Apr 2019, pp. 1387–1395.

[9] D. Shi, L. Li, R. Chen, P. Prakash, M. Pan, and Y. Fang, “Towards
Energy Efficient Federated Learning over 5G+ Mobile Devices,” arXiv
preprint arXiv:2101.04866, 2021.

[10] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Ky-
rola, A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour,” arXiv preprint arXiv:1706.02677, 2017.

[11] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braver-
man, J. Gonzalez, and R. Arora, “FetchSGD: Communication-Efficient
Federated Learning with Sketching,” in Thirty-seventh International
Conference on Machine Learning, Virtual, Jul 2020.

[12] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres, “Power
and Performance Characterization and Modeling of GPU-Accelerated
Systems,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, May 2014, pp. 113–122.

[13] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To Talk or to Work:
Flexible Communication Compression for Energy Efficient Federated
Learning over Heterogeneous Mobile Edge Devices,” in IEEE Inter-
national Conference on Computer Communications (INFOCOM’21),
Virtual Conference, May 2021.

[14] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic Controlled Averaging for Federated Learn-
ing,” in Thirty-seventh International Conference on Machine Learning,
Virtual, Jul 2020.

[15] J. Konečnỳ, Z. Qu, and P. Richtárik, “Semi-stochastic Coordinate
Descent,” Optimization Methods and Software, vol. 32, no. 5, pp. 993–
1005, 2017.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:30:23 UTC from IEEE Xplore. Restrictions apply.

