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Abstract—Federated learning (FL), an emerging distributed
machine learning paradigm, in conflux with edge computing
is a promising area with novel applications over mobile edge
devices. In FL, since mobile devices collaborate to train a model
based on their own data under the coordination of a central
server by sharing just the model updates, training data is
maintained private. However, without the central availability of
data, computing nodes need to communicate the model updates
often to attain convergence. Hence, the local computation time
to create local model updates along with the time taken for
transmitting them to and from the server result in a delay in
the overall time. Furthermore, unreliable network connections
may obstruct an efficient communication of these updates. To
address these, in this paper, we propose a delay-efficient FL
mechanism that reduces the overall time (consisting of both the
computation and communication latencies) and communication
rounds required for the model to converge. Exploring the impact
of various parameters contributing to delay, we seek to balance
the trade-off between wireless communication (to talk) and local
computation (to work). We formulate a relation with overall time
as an optimization problem and demonstrate the efficacy of our
approach through extensive simulations.

I. INTRODUCTION

Machine learning together with increased capabilities in
mobile devices have led to a tremendous rise in the number of
smart mobile devices and data generated at the edge network.
About 80 billion devices are predicted to be connected to
the Internet by 2025 [1]. Hence, computing networks are
witnessing a paradigm shift from conventional cloud com-
puting setting, by moving closer to the edge where data is
produced, namely multi-access edge computing (MEC). How-
ever, utilizing centralized machine learning algorithms at the
response-accelerated MEC is inefficient, since uploading and
storing bulk data causes a large storage and communication
bottleneck. Therefore, federated learning (FL) was introduced
to solve these challenges where mobile devices jointly train a
shared global model in a decentralized manner [2].

In an FL setup, user devices compute and transmit local
model updates based on the local training data which are
aggregated at the central server, facilitating users to learn
collaboratively. With high-performance processors, modern
mobile devices are equipped to handle such intensive compu-
tations, further aiding the implementation of FL in MEC. This
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has enabled its presence in a variety of delay-sensitive areas
ranging from smart healthcare devices to predictive models
from electronic health records. In particular, smart health
applications have seen substantial success since they leverage
the bulk data generated by tracking physical activities of its
users from wearable devices such as smart watches, fitness
trackers, and wristbands, to train quality learning models.
Moreover, FL satisfies the privacy requirements of wearable
computing by leaving personal data on the user devices [3].
For these extensive time-critical applications, the feasible
offloading time has to be in the order of milliseconds [4].
In reality, without central availability of data, computing
nodes need to communicate model updates often to attain
convergence in FL. Communication of these updates may
involve long round-trip times posing a limitation to this
paradigm [5]. Moreover, unreliable and unpredictable network
connections between the server and mobile devices could
obstruct smooth transmission of updates. A large number of
participants utilizing the constrained wireless bandwidth to
upload model updates could add to uplink transmission delays.
Therefore, given the nature of frequent exchange of updates in
FL, over an expensive communication involving large number
of mobile devices, reducing the overall time delay is crucial.
To address these challenges, many pioneering works ana-
lyze different aspects of the FL paradigm. Initial works such
as [2] emphasizes on higher local computation to reduce the
communication cost but lacks a theoretical model. Variants
of FedAvg such as [6] and works on distributed optimization
such as [7] aim to ease the communication burden. However,
these works do not consider the limiting factors of wireless
communication that can affect the performance of FL. Further,
recent works including [8] formulate to reduce the time or
energy consumption but do not contemplate the learning
hyperparameters which significantly affect the training time.
While majority of the works focus on communication over-
head, the latest surge of research in networks have paved way
for the rapidly expanding 5G and the upcoming 6G networks
which alleviate communication burdens [9]. To illustrate, a
single-step of local computation on ResNet50 model over
GPU consumes few hundreds of milliseconds [10], which is
nearly comparable to the time taken to transmit over a wireless
connection with transmission rate of 1 Gbps. Therefore, it is
worthwhile to investigate the impacts of communication, local
computation in conjunction with convergence over FL.
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Intuitively, if a user performs more local computation to
achieve a high local accuracy, frequent communication can
be avoided due to decrease in the number of model updates.
However, in case of data that is not representative of the
overall distribution, this leads to local overfitting, adding
to the convergence delay [11]. On the contrary, to reduce
computation, we can perform single-step updates which con-
sumes lesser time to compute and communicate each update.
However, it results in additional communications to update the
current model, in order to attain a targeted global accuracy,
increasing the overall time. As a result, the trade-off between
wireless communication (to talk) and local computation (to
work) of mobile devices needs to be balanced.

In this paper, we mainly aim to realize a balance between
the two, by carefully studying the effect of various parameters,
constraining overall time as the principal factor. We observe
that for FL on each mobile device, the ‘talking’ (i.e., global
communication) time is determined by the local update size
as well as wireless parameters such as transmission power,
channel gain, bandwidth and background noise. Correspond-
ingly, the ‘working’ (i.e., local computation) time of each
mobile device is influenced by the training data size and
hyperparameters, together with the processor capabilities such
as number of cycles and frequency scales. The overall time is
further conditioned by the preset accuracies and the number
of connected mobile devices. Capturing this motivation, our
salient contributions can be summarized as follows,

o We build a theoretical model for FL. on edge GPUs
over wireless networks that considers the impact of both
computation and communication models on the overall
time of training. To this end, we formulate an optimiza-
tion problem to minimize the overall time consumed and
reduce the number of communication rounds required to
achieve FL convergence.

o Based on this model, we propose a delay-efficient FL
solution mechanism by optimizing the influencing param-
eters to reduce the overall time. To realize this, we further
consider the trade-off between local computation (to
work) and wireless global communication (to talk). We
demonstrate the theoretical convergence of the model and
further define computational values based on leveraging
the frequency of GPUs.

o We verify the effectiveness of our solution mechanism
through extensive simulations over real-world datasets
and illustrate the influence of each parameter on the
overall time delay. We demonstrate that our solution
significantly reduces the overall time in comparison with
the baseline methods, while still achieving high accuracy.

II. DELAY-EFFICIENT FEDERATED LEARNING (DEFL)
AND MODEL DESCRIPTION
A. Federated Learning over Mobile Edge Computing

We consider an MEC-assisted FL system consisting of one
edge (parameter) server and a set of M of M mobile devices.
Each mobile device m has a local dataset D,,, of size D,,,

constituting a set of input samples and labels, {z", y" } 2
with d features. The loss function F' with respect to model

parameters w on m’s dataset is given by,

1
Fm(w) = Dim Z fi(w)a (1)
1€Dm
where f;(w) = £;(w; 2", y™) is the loss on data point 7. The
objective of minimizing the global loss is of the form,

M
D m

D

m=1

Frn (W), 2

min F(w) =
weRd ( )

where D = Zﬁf:l D,, is the total data size.

B. Computation Model

Typically, CPUs incur high computation costs [8] and in
contrast, with increased processing power and memory band-
width, GPUs lower the computational costs. Furthermore, its
massively parallel architecture can efficiently handle compute-
intensive manipulations making it most suitable for high
performance deep learning models. Hence in our work, we
build a model for FL over edge GPUs whose frequency
fm € R™, can be given as,

1
fm = g 3)

s + % + far

where ag, a. and ap; are constants related to static, core
frequency f. (including all of GPU’s cores) and memory
frequency fys, respectively [12]. GGy, is the number of GPU
cycles required for local computation by a mobile device and
can be measured offline. We use mini-batch stochastic gradient
descent (SGD) in which the computation is conditioned by
the given batch size b. The local computation time taken to
execute a single iteration of GPU-accelerated mini-batch SGD
at the m-th mobile device can be given by,

e _ Gb.
" fm

The proposed model can also be used with CPUs or other
processors where f,, in (4) is replaced by the given proces-
sor’s frequency value. Since GPUs are capable of parallel
execution and process the whole-batch samples simultane-
ously [13], in our work, we assume a synchronous model
implying parallel local computation by mobile devices. Hence,
the computation time during each communication round de-
pends on the value of the slowest computation i.e., the highest
time consumed by any mobile device given by,

“4)

Tep = max TSP, &)

C. Communication Model

The downlink bandwidth used by the server to broadcast
the updated global model is much larger than the uplink
bandwidth used by the mobile devices to transmit their
local updates. Since this leads to a minimal downlink time
versus uplink time [8], we consider only the uplink time
as the communication time. Further, we assume that the
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local model update size s to be fixed and the same for all
mobile devices. Considering the transmission bandwidth B,
transmission power of the mobile device m as p,,, h,, being
the channel gain of the link between the mobile device and the
server, N, the background noise, the communication time of
one model update from each mobile device to the parameter
server can be given by,

S
= : (6)
B 10g2 (1 + p'r}zv}:;'m)

Assuming a synchronous model for communication, the
communication time per communication round is given by,

Tem = max T (7

D. Overall Time

The total computation time per communication round de-
pends on the number of local iterations V' and the overall
time depends on communication together with computation
time. Hence, the total time consumed by the system for one
communication round can be defined as,

T =Tem + V. ()
E. To Talk or To Work

Both communication and computation-intensive networks
can significantly benefit from reduced communication as
communication is expensive. In addition, factors such as
slow speed, poor communication channel, congestion in net-
works further challenge the efficient communication of model
updates. Thus, reducing communication is a necessity in
comparison with computation. In this aspect, when mobile
devices perform more local computation to reach a high
preset local accuracy, the number of local updates is reduced,
indeed reducing the frequency of communicating with the
server. This suggests fewer communication rounds implying
savings in communication cost and time. Correspondingly,
when functions across users share some similarity, taking local
steps can lead to faster convergence [14]. Moreover, since the
recent mobile edge devices are equipped with fast processors,
increasing local computation does not burden or compromise
the computation time. Adding parallel computing capabilities
with the utilization of GPUs further aids in speeding up
computation as described in Section II-B. Hence, we reduce
the ‘talking’ over ‘working’” when balancing the trade-off.

F. DEFL Algorithm

Our methodology of FL named DEFL (Delay Efficient
Federated Learning), is described in Algorithm 1. The prob-
lem is formulated at the system-level and the computed values
from the proceeding sections are utilized in our algorithm.

III. THEORETICAL AND CONVERGENCE ANALYSIS
To present the theoretical analysis, we first state the follow-

ing standard assumptions on the local loss function F,,.

Assumption 1. The loss function F,, is L-smooth, that is for
all v and w, we have F,,(v) < Fp,(w) + (v — w)TVF,, +
Fllv —wlf*.

Algorithm 1 DEFL
Inputs: wg, preset global convergence error e, computed
values of b* and 0* € [0, 1].

1: Initialize w

2: for 1 to H communication rounds for achieving ¢, do

3:  Local Computation: Each mobile device m performs
local training to compute stochastic gradient on mini-
batch sized b*, and solves (2) in V' local rounds to
achieve 6*-approximate solution.

4:  Wireless Communication: Every participating mobile
device m transmits the local model update w]" to the
edge server through the communication channel.

5:  Aggregation and Broadcast: The parameter server
aggregates the received updates to obtain the global
model, and broadcasts it to the mobile devices.

6: end for

Assumption 2. Let &' be sampled from the m-th device’s
local data uniformly at random. The variance of stochastic
gradients in each device is bounded, i.e., E||VF,(w}", &) —
VE, (Wi < o

The convergence bound of the model can be given by the
following theorem using w, as a fixed minimizer of F.

Theorem 1 ( [7]). Suppose Assumptions 1 and 2 hold, and

a constant stepsize n such that n = 7 \1‘//% is chosen and the

FL algorithm is run on identical data, then we have,

_ 8||W0 - W*H2 o?
E — *
Fwee) =F(wo)l s=— e + ST AR
o?M(V —1)
—IK ©)

where W = % Zle Wy, and Wy, = ﬁ Z%Zl w'. Addi-
tionally, the number of gradient steps is K, local rounds is
V', and mobile devices is M.

Remark 1. The result of Theorem 1 is based on each user
only computing a single stochastic gradient in each global
iteration. However, in our FL setting, each mobile device
computes a mini-batch of size b in each communication
round. Thus, we present the following corollary to show the
convergence of DEFL.

Corollary 1. Suppose Assumptions 1 and 2 hold, and a
constant stepsize 1 such that n = 4% is chosen, with
K > M and the batch size equals b, then we have,

2

E[F(wi) — F(w,)] <SWo—Wall? | o

- VMK 20LVMK
oM (V —1)
_ 10
bLK (10)
Proof. Mini-batch SGD is conditioned by the given batch size
b. Using this in (9), we hence obtain this corollary. O

Remark 2. From Corollary 1, we can observe that when each
mobile device considers a mini-batch size b in each iteration,
it reduces the variance by a factor of b.

Authorized licensed use limited to: University of Houston. Downloaded on August 05,2022 at 03:30:23 UTC from IEEE Xplore. Restrictions apply.



We now use the convergence properties of DEFL, to
estimate the number of communication rounds required to
complete training of the mobile devices in coordination with
the edge server. We hence present the following corollary.

Corollary 2. The number of communication rounds for
achieving an e-global model convergence, i.e, satisfying
E[F(wk) — F(w.)] < € is given by,

1 M
H=0(—-—4+2
o <b2e2MV + be) ’

where O is the big-O notation.

(11)

Proof. Since the system satisfies E [F(wg) — F(w,)] < € to
achieve an e-accuracy, this is easily seen to be true by setting
the right term in (10) to e. Further, considering the relation of
number of communication rounds, H = K/V to solve for H
and using the big-O notation in (10), we thus obtain (11). [

Remark 3. Ar the user level, for achieving a 0-accuracy
locally in SGD, ie., E|lwy — w.||3 < 0, the number of
local rounds required for a mobile device’s local model is
V = Vlog% [15], where v is a constant related to step size
and gradient noise. Then, substituting in (11) and using the
term c to approximate the big-O notation we have,

c cM

H=—1———+4+ —. 12
b2e2Mvlog % be (12)

We can hence define the overall time for convergence as a
product of the number of communication rounds required H,
and the total time for one communication round 7 as,

T = HT. (13)

IV. PROBLEM FORMULATION

From our theoretical analysis, we can deduce the impact
of batch size (shown in Remark 2), number of communi-
cation rounds and time, preset accuracies and the number
of participating mobile devices on the convergence rate. We
hence achieve our objective of reducing the overall time
by optimizing these variables. Accordingly, the optimization
problem can be formulated using (13) with values from (12)
and (8) as follows,

L c cM 1
miiive (s + G )+ (Ton + w10 57 )
(14
subject to b€ {2"|n=0,1,...} (15)
0<h<1 (16)
max C;mb =T, (17)

Constraint (16) defines the relative local accuracy that each
mobile device attains on solving its local sub-problem. Here,
6 = 0 corresponds to the exact solution and § = 1 implies
no improvement; hence we aim to achieve a lower value of
0 for higher accuracy. This is also in accordance with (12),
which indicates that ‘working’ more to achieve higher local
accuracy results in smaller number of communication rounds.

Although, this is in line with achieving our objective, (14)
indicates that an inverse dependence on ¢ along with the
relation with other parameters imply that we can only benefit
a certain level by achieving a full relative accuracy of close
to 0. Hence, this control helps in avoiding local overfitting
condition that otherwise delays convergence. Constraint (15)
sets a range of the most commonly used effective batch size
values starting from 1, which is the case of SGD. For a given
target global accuracy, a larger b leads to smaller number of
communication rounds as per (12). Further, since we ‘work’
more to achieve a preset local accuracy to balance the trade-
off, computation time determined by the slowest computation
is defined by constraint (17).

V. SOLUTION

The formulated problem to relieve the communication bot-
tleneck by allowing more distributed computation is difficult
to solve and involves a mix of integers and continuous
variables. Hence, firstly, we introduce an auxiliary variable
a = log(1/0) to aid the optimization process, where a €
[0,400) since 6 € [0, 1]. Second, since constraint (17) is non-
convex, we can transform it to convex to alleviate solving.
Third, we relax the constraint of b in (15) from an integer to
continuous; (14) can be reformulated as,

M

M ipize (me e ) * Tom +volep)  (18)
subject to b >1 (19)
a>0 (20)

G'mb
Tep > 7 Ym e M 21

Proof. We use Karush-Kuhn-Tucker (KKT) conditions to
solve the delay minimization problem (18). We first write the
Lagrangian of (18) as follows,

T, cMT, cT,
b T.,. A _ cm cm cp
£b, @ Tep, A, 1) <b2€2Ml/Oé+ e PeM
M
cMvaly, Gnb
Ve ) N (b= = D= pim (Toy — 222 ) |
) o) 3 o (T~ )

(22)

where A;, Ao, and {p,, }M_; are non-negative dual variables.

We take the first order derivatives of (22) with respect
to the dual and optimization variables giving the stationary
conditions from Egs. (23)-(25) and list the rest of the KKT
conditions as in Egs. (26)-(28) shown by,

% 2T T oy M 2cT,
b be2Mra b2e b3e2 M
MT, mGm
_MTgra L BnGn o e M, @23)
b26 fn'l/
oL —cT, cTon My
9= - e Y =0 2
Oa  b2e2Mva? be 2 ’ 24
M

oL ¢ Y =0, YmeM, (25

0T, M | be
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A(b—1)=0, Aaa)=0, (26)
L (Tc — C;mb> =0, Vme M, 27
)\1 > 07 )\2 > 07 Hm > 07 Vm € M. (28)

Since the inequality constraints are nonlinear yet differen-
tiable and lower-bounded with a non-negative duality gap, the
KKT necessary conditions serve as the optimality conditions.
Hence, considering the above dual feasibility and complemen-
tary slackness conditions to solve the derivatives, KKT points
are obtained. We check all of the obtained points for feasibility
of the problem to finally deduce the optimal values as,

o =) rEdE—, YmeM;
b* = 2cM ) Temlme i € M; (29)
ij:maxmg}'—y, Ym e M.

O

From these relations, theoretically, the computation time is
vastly affected by loads from all the mobile devices and the
processors’ computational capabilities and speed. Further, the
batch size has a direct impact on T, with larger b leading
to higher computation and faster convergence. Both b and
the relative local error # are impacted by the set global
convergence error €, M, along with other parameters. A lower
value of #* (which can be computed from «*) implying higher
local accuracy, results in more ‘working’ and less ‘talking’.

V1. PERFORMANCE EVALUATION
A. Settings

To evaluate the proposed delay efficient FL, we perform
simulations using image classification tasks on the widely
used MNIST! and CIFAR-10? datasets using CNN. For the FL
tasks, we consider 1 parameter server and 10 mobile devices
with distributed data and a learning rate of 0.01. In accordance
with our computational model in (3), we use Nvidia RTX8000
with the number of GPU cycles of 30 cycles/bit and following
constraint (17), we consider an equal maximum computation
capacity of f,, = 2 GHz for all the mobile devices. For
communication model, we assume the bandwidth B = 20
MHz and noise N, = —174 dBm/Hz.

B. Impact of optimization parameters over convergence

According to (29), the computed values of b*, 6* and in
turn 777, are conditioned by the relative global convergence
error €. Hence, we empirically choose a value which leads to
both increased performance yet takes less overall time. From
the values in Fig. 1(a), we thus set ¢ = 0.01. The optimized
variables computed from our solution are used in (12) to
determine the number of communication rounds H, which

'Downloaded from: http://yann.lecun.com/exdb/mnist
2Downloaded from: http://www.cs.toronto.edu/~kriz/cifar.html

can be empirically shown as in Fig. 1(d). We now study the
impact of the parameters on the overall time as follows.
Batch size. Generally, larger batch size to train the model
allows computational speedups from the parallelism of GPUs.
However, too large a batch size may lead to lower gener-
alization, resulting in more overall time. Whereas, smaller
batch sizes are shown to have less computation but are not
guaranteed to converge to the global optima. Theoretically,
the value of b computed from (29) has a lower limit of 1
and can be rounded off to 32 (for MNIST data size) which
also corresponds to a value from the initial constraint (15).
Empirically, as shown in Fig. 1(b), to achieve the same target
¢, while b = 64 has the shortest overall time, it has a lower
test accuracy. On the other hand, b = 16 achieves the highest
test accuracy but takes more time of about 200 seconds.
Consequently, the computed value of b = 32 achieves a good
trade-off between prediction performance and overall time.
Relative Local Error. A lower value of relative local error
f (i.e., higher local accuracy), induces the model to ‘work’
more to achieve f-accurate solution locally. This implies that
fewer communication rounds is necessary according to (12)
and consequently, lesser communication time than the original
FedAvg algorithm. This behavior is captured in Fig. 1(d),
where the theoretically calculated 6 ~ 0.15 from (29) has a
higher computation time (due to ‘working’ more), but smaller
H due to reduced number of model updates. Conversely,
higher 6 is undesired since lower computation results in
‘talking’ more with larger number of H and higher overall
time. Further, as shown in Fig. 1(c), € is just as low as to
achieve a better performance in terms of reduced training loss
at the same overall time while avoiding local overfitting.
Computation Time. The computed batch size influences
the computation time since the training dataset is processed
batch-wise, subject to device capabilities. Accordingly, in-
creasing b implies taking advantage of the available computa-
tional resources of the mobile devices. As seen in Fig. 1(d),
higher computation leads to reduced number of communica-
tion rounds which in turn leads to reduced overall time.
Comparison with Baseline. For evaluation, we use Feder-
ated Averaging (FedAvg) from [2] as a baseline to compare
the performance of our proposed solution. For FedAvg on
MNIST IID data using CNN, we set the parameter values
as recommended by the authors through their experiments as
b =10 and V' = 20. We then choose random values of b = 16
and V' = 15 for MNIST and b = 64 and V' = 30 for CIFAR-
10 to test the effect of parameters as a whole, marked by
‘Rand.’. For our work marked as ‘DEFL’, we choose values
as per our delay-efficient optimized solution from Section
V and as verified in Section VI. With a preset ¢ ensuring
more computation, along with the optimized b and fixed €, we
observe from Fig. 2 that, although we achieve nearly the same
test accuracy, DEFL significantly outperforms the baseline in
terms of the overall time. Comparatively, we reduce the overall
time by nearly 70% compared with FedAvg for MNIST and
by 18% for CIFAR. Similarly, there is a reduction of around
38% comparing with ‘Rand.” for MNIST and 75% for CIFAR.
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Fig. 2. Performance evaluation of DEFL over MNIST and CIFAR-10 datasets.

Hence, DEFL can be useful in accelerating the FL process on
mobile edge devices such as wearable devices.

VII. CONCLUSION

In this paper, we introduced a delay efficient FL. mechanism
suitable for mobile edge devices such as wearable devices,
by studying the trade-off between wireless communication
(to talk) and local computation (to work) with respect to
the overall time. With careful consideration of this prevailing
balance, we interpreted the effects of the learning model, wire-
less communication and hyper parameters in conjunction over
the total time consumed. Guided by this theoretical model,
we demonstrated the impact of these parameters through
extensive simulations. Empirical evaluations have shown that
DEFL can reduce the overall time delay while achieving high
performance accuracy, implying that FL. can be accommodated
in delay-sensitive applications suitable for mobile devices.
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