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Abstract

Motivation: Protein function prediction, based on the patterns of connection in a Protein-Protein Interac-
tion (or Association) network, is perhaps the most studied of the classical, fundamental inference problems
for biological networks. A highly successful set of recent approaches use random walk-based low dimen-
sional embeddings, that tend to place functionally similar proteins into coherent spatial regions. However,
these approaches lose valuable local graph structure from the network when considering only the embed-
ding. We introduce GLIDER, a method that replaces a protein-protein interaction or association network
with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method,
which was designed to predict missing links in Protein-Protein Association networks, capturing implicit
local and global (i.e. embedding-based) graph properties.
Results: GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-
validation on a heterogeneous collection of four Human Protein-Protein Association networks derived from
the 2016 DREAM Disease Module Identification Challenge, and also on three different protein-protein as-
sociation networks built from the STRING database. We show that this is due to the strong functional
enrichment that is present in the local GLIDER neighborhood in multiple different types of protein-protein
association networks. Furthermore, we introduce the GLIDER graph neighborhood as a way for biologists
to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER
neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have
known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.
Availability: All code is publicly available and can be accessed here: https://github.com/kap-
devkota/GLIDER
Contact: cowen@cs.tufts.edu
Supplementary information: is available at Bioinformatics online.

1 Introduction
Function prediction, the prediction of appropriate GO functional labels
for a protein of unknown function, based on the patterns of connection
in a Protein-Protein Interaction (or Association) network, is perhaps the
most studied of the classical, fundamental biological network inference
problems. Recently, embedding-based methods for function prediction
have received a great deal of attention (Nelson et al., 2019), where most of

these methods logically decompose into two steps: 1) an embedding step,
where the network is replaced by its low dimensional representation, while
retaining its implicit network features and 2) a classification step where
these embeddings are used for the purpose of multi-label classification,
through the use of an appropriate machine learning classifier.

For creating meaningful embeddings, network propagation, or diffu-
sion methods have been found to be particularly effective (Cowen et al.,
2017). Indeed, it has been shown that for many types of protein-protein as-
sociation data (Choobdar et al., 2019), diffusion-based methods are highly
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successful at creating embeddings that organize proteins based on their
functions. Once an embedding that captures the implicit functional in-
formation is constructed, the entire machine learning standard toolbox
becomes available to perform the classification step; where one can em-
ploy anything from simple k nearest-neighbors (Cao et al., 2014) (knn),
to support vector machines (Cho et al., 2016), or beyond (Grover and
Leskovec, 2016). However, some local information encoded directly in
the links of the original network is destroyed by the embedding.

In this paper, our focus is on creating a new graph-based similarity
network that retains some of this local information while still giving us the
global expressive power of embedding methods. Our similarity measure
is a variant of GLIDE (Devkota et al., 2020), a method we introduced in
2020 for a different classical biological problem (link prediction). GLIDE
combines a simple local score that captures relationships in the dense core,
with a diffusion based embedding that encapsulates the network structure
in the periphery, creating a quasi-kernel.1 Our new method, which we
call GLIDER, uses a variant of GLIDE to create a new similarity network
from the original graph. We demonstrate that this newly created GLIDER
network has more functionally enriched local neighborhoods than the orig-
inal network such that the application of a simple knn classifier produces
a significantly improved function prediction performance.

We show that this GLIDER network, equipped with an ordinary knn
classifier, produces state of the art GO functional label prediction, in each
of the molecular function (MF), biological process (BP), and cellular com-
ponent (CC) portions of the GO hierarchy, competing favorably even with
methods using more sophisticated machine learning classifiers. We com-
pare its performance against competitor methods in cross-validation on
a heterogeneous collection of four Human Protein-Protein Association
(PPA) networks derived from the 2016 DREAM Disease Module Identi-
fication Challenge (Choobdar et al., 2019). This heterogeneous network
collection includes both classical Protein-Protein Interaction (PPI) net-
works, a signalling network, and a co-expression network (see Section 3.1
below for specific details). Moreover, we also used three composite Pro-
tein Association Networks derived from the latest version of STRING(v
11.5) (Szklarczyk et al., 2021) to compare the function prediction capa-
bilities of our method with the existing state-of-the-art algorithms. (The
properties and the construction details of these three composite STRING
networks are also provided in Section 3.1.)

Additionally, the generation of functionally enriched neighborhoods
facilitated by GLIDER naturally provides a graph-based visualization of
protein functional neighborhoods. We examine the local GLIDER graph
neighborhood for a set of GWAS genes from previous studies implicated
in the pathology of Parkinson’s Disease (PD) (Blauwendraat et al., 2020;
Nalls et al., 2019, 2014). In the neighborhoods of proteins in the GLIDER-
constructed network of these known PD genes, we find many genes already
implicated in PD disease pathways, and also identify some interesting new
candidates. We find that GLIDER is a powerful tool to explore function in
biological networks.

2 Methods

2.1 GLIDER

The GLIDER method constructs a graph that is based on a variant of our
GLIDE similarity score (Devkota et al., 2020). GLIDE combines a simple
local score that captures relationships in the dense core, with a diffusion
based embedding that encapsulates the network structure in the periphery.

1 We note because of the local score component, The GLIDE similarity
metric is not exactly a kernel, so we refer to it as a quasi-kernel in this
paper.

For GLIDER networks, we pair a local score based on common neigh-
bors with global score UDSEDγ , a variant of DSEDγ from the original
GLIDE paper (For comparative performance of alternative choices, includ-
ing the local score L3 (Kovács et al., 2019), that was best in many scenarios
for the link prediction problem (Devkota et al., 2020), but under-performs
in our present context, see Supplementary tables S2-S13.) We define these
scores next.

Definition 2.1. DSEγ Embedding (from Devkota et al. (2020)) Let P
∈ RN×N be a Markov transition matrix computed from a graph G with
a unique stationary distribution π and let D be the diagonal degree matrix
representing the weighted degree of all the nodes in the network. Then the
DSEγ embedding is:

DSEγ = I +

∞∑
t=1

γt(P −W )t, (1)

where W is a constant matrix, whose rows are copies of the stationary
distribution π and γ is a parameter satisfying 0 < γ ≤ 1, which is used
to control the contribution of larger time-steps in the computation of the
embedding. We set γ = 1 in all our experiments, as suggested in Devkota
et al. (2020).

Definition 2.2. Global Score: UDSEDγ Distance.
If DSEγ(p) and DSEγ(q) represent the DSEγ embeddings for the

nodes p and q respectively, we consider the (un-normalized) L2 distance
between their DSEγ embeddings. Formally, this can be written as

UDSEDγ(p, q) =

√√√√ N∑
k=1

(DSEγ(p)k −DSEγ(q)k)2 (2)

Definition 2.3. Local Score: Common Weighted Normalized
Given nodes p, q ∈ G, the Common Weighted Normalized (CWN)

score is

CWN(p, q) =

∑
r∈Np∩Nq

(wp,r + wq,r)√
k(p)k(q)

where for any node x ∈ G, Nx is the neighbor set of x, wx,y is the weight
of the edge (x, y) and k(x) represents the weighted degree of x. Note that
this is slightly different from the CW metric described in Devkota et al.
(2020), because of the square roots in the denominator.

GLIDE score
Just as in Devkota et al. (2020) we define the following score between
each pair of nodes:

GLIDE(p, q) = exp

(
α · global(xi, xj)

global(xi, xj) + β

)
local(xi, xj)

+ global(xi, xj),

where GLIDER chooses local(p, q)=CWN(p, q) andglobal(p, q) =
1/UDSEDγ(p, q). We choose the default values of α and β as suggested
by Devkota et al. (2020) (α = 0.1, β = 1000), where these choices for α
and β makes the local embedding dominant for ranking, while the global
embedding is used to break ties and order nodes with the same strong local
score. For the CWN local score, if nodes have no common neighbors, the
first term is 0 and only the global score is used.

The Construction of the GLIDER Network

Consider the complete graph on the nodes of the network, with edges
weighted by their GLIDE score. The GLIDER network only retains a
subset of these edges of high similarity, as follows: let gmax denote the
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Figure 1: Working schematic of GLIDER-knn. The original graph is transformed into GLIDER(G) both adding and deleting edges. Then for each node
(for example, the starred node), the k-closest direct neighbors in GLIDER(G) vote for all their GO labels.

GLIDE weight of the most similar node (and thus the heaviest edge) to
node g. Let Gmin denote the minimum value of gmax over all the nodes,
i.e.

Gmin = min
g∈V

gmax (3)

The construction of GLIDER(G) follows immediately by adding any
node-pairs inV whose GLIDE score is greater than or equal toGmin. Note
that, the value of Gmin is an intrinsic property of the original network and
the GLIDE parameters, so no additional parameters need to be specified
to generate GLIDER(G) from G.

2.2 knn-based Function Prediction using the GLIDER
network

For each node r, setkr = min(d(r), k), whered(r)denotes the degree of
r in the GLIDER network, andk is a parameter of the method. Our function
prediction method is simply a Majority Vote (Schwikowski et al., 2000) of
all the labels of all the labeled nodes in the kr-GLIDER neighborhood. If q
in p’s kr-GLIDER neighborhood from the training set has multiple labels,
q will vote for each of its labels with equal weight. p then is assigned all
the labels that are above a given confidence threshold.

Let L be a function that given a protein p, returns L(p), the set of
functional labels associated with it. Given a version of GLIDE (with local
and global measures fixed), let Wp denote the set consisting of the kp
closest GLIDE neighbors to p. Then, given a confidence threshold τ (0 ≤
τ ≤ 1), GLIDER-knn returns a list of functional labels of p as presented
in Algorithm 1. We remark that we extend the majority vote framework
to multi-label function predictions by retaining labels that get second or
third place votes (up to a confidence threshold τ ). This will not change a
percent accuracy metric that considers only the winning label (but allows
us also measure performance of GLIDER and competing methods in a
more complex framework, see Section 3.3).

2.2.1 Searching for the optimal value of k
Our experiments across the DREAM and STRING networks (see Supple-
ment Tables S2-13) show that GLIDER-knn is fairly robust to choice of
k, and we can recommend setting k between 15 and 35 to get reasonable
results on human networks, where we present results for GLIDER-25nn
in Tables 2, 3 and 4, and for ease of visualization, results for GLIDER-15
or GLIDER-20 in Section 4.2. In general, however, the choice of k plays
an important role in the performance of GLIDER. In practice, the best k
will depend both on the topology of the network, but also how well it has

already been functionally annotated. In order to set k in a principled way
that is robust for a variety of network settings, we use the training data to
estimate the threshold of GLIDER neighbors that still contain functional
information as follows:

1. Construct GLIDER(G) from G.
2. Compute the average degree of nodes in GLIDER(G), call it davg .

We consider potential settings of k between 1 and davg . We tried 20
different values for k for each network (see Supplement for details).

3. Perform GLIDER-knn on the training set proteins for each k; choose
the value of k that maximizes the average accuracy on the training set
in leave one out cross-validation.

Note that this k is the only parameter that GLIDER-knn needs to
accomplish its function predictions.

Algorithm 1 GLIDER-knn
Input: Protein p of unknown function, Wp = set of the kp closest

neighbors to p in GLIDER(G), where G = (V,E) is the original graph,
τ (a confidence threshold)

Output: A set Lp of predicted functional labels for p.

1: function GLIDER-knn(p,Wp, τ )
2: Let F be a set of all functional labels.
3: For each f ∈ F , let vote(f,Wp) count the number of times f is

present as a label in the proteins of Wp.
4: Let votemax = maxf vote(f,Wp).
5: Initialize Lp = ∅ .
6: ∀f ∈ F , if vote(f)

votemax
> τ add f to Lp.

7: return Lp

8: end function

2.3 Competing Methods

We consider the following competing function prediction methods:

2.3.1 Simple Majority Vote
To label a node in the test set, this method simply has all direct neighbors in
the training set vote for each of their labels, and assigns the node the label
that receives the most votes (Schwikowski et al., 2000). We generalize this
method to also give a weighted confidence to second and third place labels
(and so on), similar as in Lazarsfeld et al. (2021), in order to compute some
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of the performance measures we describe below. In particular, we divide
the number of neighbors that vote for a label by the total number of voting
neighbors, in order to give a confidence between 0 and 1 for each label
appearing at least once among neighboring nodes (all other GO labels are
voted with confidence 0).

2.3.2 Diffusion State Distance based KNN (DSD-knn) Method
DSD-knn (Cao et al., 2014, 2013) is a kernel based function prediction
method that uses random walks across multiple timesteps to compute a
specialized network embedding called Diffusion State Embedding (actu-
ally, we use the variant that uses L2 distance instead of L1 distance, as in
Cowen et al. (2021)). After the embedding is produced, we can use the
Gaussian Kernel to compute the similarity between two node embeddings
in the network. We select K of the nearest nodes by their DSD similarity
score, and have them vote on the node’s function, in a manner similar
to the majority vote method, above. After running DSD-knn on different
values of K (results provided in Tables S14-16), we found best results
fairly stable for K in the range 20 to 35, so used K = 25 (rather than the
recommended setting of K = 10 in Cao et al. (2014)) for comparative
results below.

We also return a confidence in exactly the same way as described in
Section 2.3.1 above.

2.3.3 node2vec Method
The node2vec algorithm of Grover and Leskovec (2016) learns a
low-dimensional embedding for nodes in a graph by optimizing a
neighborhood-preserving objective. The algorithm accommodates various
definitions of network neighborhoods by simulating biased random walks,
utilizing hyperparameters (p and q) that must be trained for each network.
After obtaining the node embeddings, a one-vs-rest logistic regression
classifier is used to infer the function annotations of unlabeled nodes.
Note that because node2vec is automatically a one-vs-rest logistic regres-
sion, the classifier simultaneously predicts multiple labels with confidence
scores. We fixed the hyperparameters to be consistent with the optimal
specifications outlined in Grover and Leskovec (2016): window-size = 10,
num-walks = 10, dimension = 100, p, q = 1.

2.3.4 deepNF Method
deepNF is a network fusion method based on multimodal deep autoen-
coders (MDA) to extract high-level features of proteins from multiple
heterogeneous interaction networks (Gligorijević et al., 2018). This
method, which uses Random Walk with Restart (RWR) to obtain a high
dimensional structural information of the network(s), passes it to a MDA,
resulting in a low dimensional node representation. Function prediction
from this low dimensional representation is then done through one-vs-rest
SVM classifier. As above, we automatically get multiple labels with con-
fidence scores. We used default deepNF settings to generate the deepNF
embeddings (MDA Hidden Dims = [1000, 500, 1000]).

2.3.5 MASHUP (Single Network)
MASHUP (Cho et al., 2016), though designed for multiple networks, can
also be used in a single network setting. The MASHUP network embedding
is constructed by running a localized network diffusion process on the
network to obtain the distribution for each node, followed by a dimension-
reduction step. Similar to the deepNF method, MASHUP uses a one-vs-rest
SVM classifier on the obtained low-dimensional embedding for function
prediction. As with node2vec and deepNF, the classifier automatically
produces multiple label predictions with confidence scores. We set the size
of the reduced dimension to be 1000, which is within the recommended
range of settings (5-10% of the network), as outlined in Cho et al. (2016).
Also, we found the computation of the true MASHUP embedding to be

infeasible for larger networks, so we instead used its SVD approximation,
as described in Cho et al. (2016).

2.3.6 GLIDER-MASHUP
As seen from the description above, MASHUP embeds a graph, and then
uses a one-vs-rest SVM classifier on the obtained low-dimensional embed-
ding for function prediction. We wondered if replacing the original graph
with the GLIDER graph, and then putting MASHUP’s embedding and
SVM pipeline downstream, would improve on our simple GLIDER-knn
classifier. Here, we have described how we set the k in knn for GLIDER-
knn above; MASHUP sets its SVM parameters using linear weights based
on the training data in a supervised manner as well. We show below,
that GLIDER-MASHUP does not improve on MASHUP in accuracy and
F1 score, but it does in average Resnik score (see below, and further
discussions in the Section 4.1.2).

3 Experimental Setup

3.1 Networks

We test the efficacy of the similarity networks constructed through
GLIDER on the four different benchmark networks from the recent
DREAM disease module identification challenge Choobdar et al. (2019),
and the latest version of the STRING human network (version 11.5,
Szklarczyk et al. (2021)). These human protein-protein interaction and
protein-protein association networks are highly heterogeneous; DREAM1
is a heterogeneous protein-protein association network derived from
STRING (Szklarczyk et al., 2014), DREAM2 is a more classical PPI de-
rived from the Inweb database (Li et al., 2017), DREAM3 is a signalling
network derived from OmniPath (Türei et al., 2016) (in the DREAM chal-
lenge, DREAM3 was presented as a directed network, but for this work, we
considered an undirected version where all directed edges were made auto-
matically bi-directional), and DREAM4 is a co-expression network based
on Affymetrix HG-U133 Plus 2 arrays extracted from the GEO46. We
summarize the graph properties of these networks in Supplementary Table
S1. Additionally, in Section S4 of the Supplement, we use the GLIDER
neighborhood measure to further explore natural differences in functional
neighborhood cluster size for the different DREAM networks.

For evaluation using the STRING database, we extracted three sets of
interactions from the STRING human network to generate three composite
PPI networks. The first network, which we refer to as STRING-E, contains
only the interactions labeled "experimental", where all the associations in-
volve actual physical binding of proteins. The second network, denoted
as STRING-ED, contains interactions that are labeled either "experimen-
tal" or "database" (STRING labels physical interactions as "database" if
they are obtained from curated sources). The third network, referred to as
STRING-EDC, further adds protein co-expression data into the "STRING-
ED". The network properties of the three composite STRING networks
are provided in the Supplement (Table S1).

3.2 Functional Labels

We used GO Functional Labels for H. Sapiens (version: 2021-02-01, using
the python package goatools). We considered the GO labels from each
of the root hierarchies separately: Molecular Function (MF), Biological
Process (BP) and Cellular Component (CC), pruning both the most general
and the most specific GO terms as follows. We first removed GO-terms
that are less than distance 5 in shortest path distance from their root node.
We also removed GO-terms if the number of proteins annotated by that
label is below 50. Table 1 shows the number of GO labels that satisfies the
above restrictions for DREAM1-4 and the composite STRING networks.
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Networks
GO Hierarchies
MF BP CC

DREAM1 45 272 86
DREAM2 38 218 72
DREAM3 28 120 31
DREAM4 38 213 71
STRING-E 47 277 89
STRING-ED 47 278 90
STRING-EDC 47 278 90

Table 1. The number of GO labels having their shortest path distance from the
root nodes ≥ 5, and annotating at least 50 proteins, for DREAM1-4, STRING
networks and GO hierarchies: MF, BP and CC.

3.3 Evaluation

We used three different evaluation metrics to compare performance of
GLIDER and its competitors in 5-fold cross validation. We compared the
single top prediction using the oldest, classical simple percent accuracy
measure. However, as is now the standard in the CAFA challenges, Jiang
et al. (2016); Radivojac et al. (2013) and Zhou et al. (2019) recommend
considering functional multi-label methods. We use two statistics in this
regard: a hierarchy unaware F1∗ method (that nonetheless can capture
label predictions at different specificities), and in order to take least com-
mon ancestors on the GO hierarchical DAG into account, we also utilized
a Resnik-derived similarity score (Zhao and Wang, 2018), that generalizes
to sets of genes as in Jiang et al. (2016).

3.3.1 Evaluation Method 1: Percent Accuracy
This metric simply measures the percent of nodes whose top predicted
functional label is correct, meaning it is among the set of true functional
labels assigned to that node.

3.3.2 Evaluation Method 2: Hierarchy Agnostic F1∗ Method
This evaluation metric, which corresponds to the protein-centric evaluation
method in the CAFA challenge (Radivojac et al., 2013; Zhou et al., 2019),
scores a multi-label function prediction set, but still ignores the hierarchical
nature of the GO annotations while scoring predictions. For a particular
protein i, let Ti be the set representing its true GO annotation and Pi(τ)

represent the set of GO annotations predicted by the Function Prediction
method with likelihood greater than the confidence threshold τ . Then, we
can compute the precision and recall for the protein i at the threshold τ as

preci(τ) =
|Pi(τ) ∩ Ti|

|Pi(τ)|
(4)

recalli(τ) =
|Pi(τ) ∩ Ti|

|Ti|
(5)

The average precision and recall for a particular confidence threshold τ is:

prec(τ) =
1

M

M∑
i=1

precατ (i)(τ) (6)

recall(τ) =
1

N

N∑
i=1

recalli(τ) (7)

where ατ represents the set of all proteins which have at least one GO
annotation predicted at the confidence interval τ (ατ (i) represents its ith

member), M is the size of the set ατ (i) and N is the total number of
proteins in the test set.

We can then compute the F1 score at confidence τ , and F1∗ as

F1(τ) = 2
prec(τ) · recall(τ)
prec(τ) + recall(τ)

(8)

F1∗ = max
τ

F1(τ) (9)

3.3.3 Evaluation Method 3: Resnik Similarity Metric
This metric models the hierarchical nature of the GO by introducing the
information content of a GO-term (Jiang et al., 2016) in the context of
its ancestors. Let ℓ be a GO-term and L be the subgraph generated by all
its ancestor labels, including ℓ. The information content of ℓ, is defined
formally as

i(ℓ) = − log(Pr(L)) (10)

where the joint probability Pr(L) is computed as

Pr(L) =
∏
v∈L

Pr(v|P(v)) (11)

The term Pr(v|P(v)), v being a GO-term and P(v) representing the
parents of v, denotes the probability that we get v from P(v) after further
ontological specialization. Expression (9) can be further simplified using
(10) to obtain

i(ℓ) = −
∑
v∈L

Pr(v|P(v)) (12)

=
∑
v∈L

ia(v) (13)

The term ia(v), referred to as information accretion of the annotation
v, denotes the increase in the information obtained through the addition
of child GO-term (v) to the set of its parent terms (or P(v)).

Resnik similarity (restt) between two GO-terms, x and y, is

restt(x, y) = i(lca(x, y)) (14)

where lca(x, y) represents the least common ancestor between x and y.
We next extend this similarity measure between GO terms to a simi-

larity metric between two sets of GO-terms, using the averaging scheme
outlined in Pandey et al. (2008). Let X and Y be two GO-sets; then the
Average Resnik Score (written as resss(X,Y )) can be computed as in
Pandey et al. (2008):

resss(X,Y ) =

∑
x∈X,y∈Y restt(x, y)

|X||Y |
(15)

Let Q be the set containing all the test proteins, Tq be the true GO-
terms and Pq(τ) be the predicted GO-terms at the confidence interval τ ,
for a protein q ∈ Q. Then we compute the Resnik score as:

RES = max
τ

1

|Q|
∑
q∈Q

resss(Tq , Pq(τ)) (16)

4 Results

4.1 Best Local and Global GLIDER Variant

We tested alternative variants of the local and global GLIDE score, by
evaluating GLIDER-knn performance on the 4 DREAM networks. Fur-
thermore, we used the parameter selection method described in Section
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2.3.1 to choose for the optimal k from the range of options listed in
Supplement (see Section S6 in the Supplement).

Complete results for BP, MF and CC hierarchies over DREAM1-4 net-
works appears in the Supplement (Tables S2-13). Interestingly, we find the
UDSEDγ version performs significantly better than the DSEDγ score
from the original GLIDE paper. In addition, CWN versions of GLIDER
were either slightly or significantly better than L3 versions (depending
on the network and GO hierarchy). It is particularly interesting that the
choice of CWN over L3 scores mostly improved the scores for function
prediction. This is in contrast to what we found for the link prediction
problem (Devkota et al., 2020), where incorporation of details of inter-
connection structure as suggested by Kovács et al. (2019), helped improve
performance in many settings. When all that is required is functionally
enriched local neighborhoods, rather than the exact interconnection struc-
ture, as in the setting of the present paper, we find the simple normalized
common neighbors measure better correlates with functional enrichment.

Across the board, in all experiments, we find DREAM1-3 produced
much more meaningful results than DREAM4, regardless of which of the
four versions of GLIDER was used, or how k was set (and replicated in
results of competitor methods, see below).

Finally, we observed how the choice of the optimal GLIDER neigh-
borhoods, obtained from the training scheme described in Section 2.2.1,
differs for different DREAM networks, across all the GLIDER settings
and GO hierarchies. Our observations for the optimal k under different
modalities appears in Figure S4 in the Supplement. We see that, on dense
networks, like DREAM1 and DREAM2, a smaller k neighborhood value
is better. This pattern though, did not repeat for DREAM4, which although
being a relatively dense network, required more GLIDER-neighbors for
its optimal functional enrichment. One of the reasons behind this might be
that, co-expression networks, like DREAM4, capture weaker functional
coherence between proteins. It might also be that the DREAM4 network
is uniquely noisy, even among the co-expression networks.

For sparser regulatory networks like DREAM3, the optimal setting of
k was relatively high. However, unlike in DREAM4, we assume this is
more due to the sparsity of the original network than a weak signal. In
fact, DREAM3 is in some sense the opposite of DREAM4, being a more
curated but sparser set of high-confidence associations. The performance
results for DREAM3 are on par with PPI networks like DREAM2 under
all GO settings, and similar settings of k gave similar performance for all
three version of the STRING networks we tested (see Tables 2, 3 and 4 ).

4.1.1 Comparison With Other Function Prediction Methods

We tested GLIDER against all competing methods described in Sec-
tion 2.3. Tables 2, 3 and 4 show that GLIDER-knn, regardless of the choice
of the evaluation metric, almost always produces the best score for all
three GO hierarchies. This pattern is more evident in dense, strongly con-
nected PPI-adjacent networks like DREAM1 and the composite STRING
networks, where GLIDER-knn outpaces other methods by a significant
margin. In DREAM2, even though the gap in performance is not as signif-
icant as that of DREAM1, GLIDER still outperforms the other methods
in most of the evaluation metrics for MF and BP GO hierarchies (for CC,
DSD-knn slightly beats GLIDER). We see a similar pattern in DREAM3,
where GLIDER is out-performing other methods in the MF hierarchy but
for BP and CC, the results are very close between GLIDER and DSD-knn.
The exception is DREAM4, where the the tables show GLIDER being
overtaken by Majority Vote (MV) by a very small margin in MF and BP
categories, and by DSD-knn in the CC category. Note that absolute per-
formance in DREAM4 is also much weaker especially for MF and BP:
showing perhaps that coexpression networks contains less functionally
relevant information than the actual PPI binding networks.

Similarly in the STRING composite networks, which are also dense
networks, we find that the addition of "dataset" and "coexpression" edges
decrease performance from the STRING-E network, which is not surpris-
ing, given the relative information content we saw for these different types
of edges in the DREAM networks. Interestingly, MASHUP(S) performs
best when all types of edges are included, leading us to postulate that ei-
ther the MASHUP embedding or the more sophisticated SVM classifier
can learn which edges are more reliable and incorporate that information.

Tables 2-4 also show that the GLIDER-knn method is highly robust
to the choice of k for the STRING and DREAM networks. In every ex-
perimental setting, we see GLIDER-25nn results being very close to, and
in some cases slightly beating, the GLIDER-knn scores obtained after
training for k using the LOOCV method. This stability in the choice of
k for the DREAM networks is important for our findings in Section 4.2
regarding the Parkinson’s Disease genes, where we fixed the size of k in
our analysis.

In short, out of the 63 tests conducted to compare the performance of
the different function prediction methods (characterized by rows in Tables
2, 3 and 4), GLIDER produced the best results in 50 out of 63 experiments
(≈ 80%), and in the remaining 13 experiments, GLIDER was almost
always the strong second, with its score being very close to the top scoring
method.

4.1.2 Comparing GLIDER-knn and GLIDER-MASHUP
Because we were interested in whether our gain was coming from the
GLIDER graph or the knn classifier, we also chose to measure the perfor-
mance of GLIDER-MASHUP as well (see Section 2.3.6), The results
in Tables 2, 3 and 4 show GLIDER-knn significantly outperforming
GLIDER-MASHUP in all the networks and GO categories (with the sole
exception of BP for DREAM3, where neither performs as well as DSD-
knn). Evidently, the GLIDER local neighborhood is so strong in recovering
function that a simple knn classifier tends to do the job.

Furthermore, it is interesting to note that the addition of coexpression
edges in the STRING-ED network resulted in a noticeable performance de-
cline in GLIDER-MASHUP, exactly the opposite of what we observed for
MASHUP(S). This decline can be attributed to GLIDER’s weakness in pro-
ducing strong functional associations in heterogeneous networks, where
edges can signify different meanings. So, the low scores of GLIDER-
MASHUP on STRING-EDC (compared to STRING-E) is probably due
to the negative returns from GLIDER counteracting the effectiveness of
MASHUP while dealing with heterogeneous networks like STRING-EDC.

4.2 Biological Case Study: Parkinson’s Disease Genes

4.2.1 A collection of Disease gene neighborhood subgraphs
We consider the GLIDER-15 Neighborhood subgraphs for a set of genes
known, based on GWAS studies, to be implicated in Parkinson’s disease
(PD). More specifically, a set of GWAS genes associated with PD was
collected from the previously published literature (Blauwendraat et al.,
2020; Nalls et al., 2019, 2014), where we considered the set of 40 GWAS
genes from these papers that appear in all four of DREAM1-4 (see Table 5
for the gene names). For each of these PD GWAS genes, we looked at its
15 GLIDER neighborhood subgraph in each of DREAM1-4. For example,
Figure 2 gives the subgraph of genes for DREAM1 and DREAM2. We
further explore the characterization of this collection of 40x4 GLIDER
neighborhood subgraphs, each anchored by a GWAS gene. (Cytoscape
plots of all the 15 GLIDER neighborhood subgraphs of all 40 GWAS genes
in Table 5 are available as suppplementary material from the GLIDE github
repository.)

We first wished to compare the similarity and differences among the 40
subgraphs when switching between different DREAM networks. Figure S3
in the supplement shows the histogram of the average clustering coeffcients
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Network Metric GLIDER-knn GLIDER-25nn Majority-Vote DSD-knn node2vec deepNF(S) MASHUP(S) GLIDER-MASHUP

DREAM1

Accuracy

0.671± 0.017 0.643± 0.013 0.356± 0.022 0.451± 0.011 0.439± 0.016 0.182± 0.011 0.605± 0.020 0.600± 0.007

DREAM2 0.421± 0.006 0.418± 0.006 0.314± 0.012 0.364± 0.015 0.247± 0.011 0.267± 0.012 0.386± 0.010 0.384± 0.006

DREAM3 0.407± 0.015 0.392± 0.016 0.229± 0.016 0.365± 0.016 0.253± 0.019 0.197± 0.010 0.366± 0.014 0.374± 0.017

DREAM4 0.281± 0.013 0.244± 0.018 0.288± 0.018 0.249± 0.015 0.091± 0.015 0.186± 0.018 0.201± 0.015 0.175± 0.020

STRING-E 0.702± 0.003 0.685± 0.010 0.375± 0.003 0.379± 0.006 0.449± 0.009 0.382± 0.015 0.636± 0.007 0.625± 0.011

STRING-ED 0.698± 0.009 0.685± 0.010 0.410± 0.008 0.438± 0.010 0.474± 0.005 0.384± 0.018 0.659± 0.007 0.624± 0.010

STRING-EDC 0.670± 0.009 0.664± 0.004 0.432± 0.008 0.387± 0.010 0.425± 0.018 0.362± 0.011 0.660± 0.014 0.619± 0.008

DREAM1

F1

0.663± 0.009 0.615± 0.003 0.406± 0.010 0.463± 0.011 0.360± 0.009 0.187± 0.014 0.580± 0.009 0.573± 0.011

DREAM2 0.416± 0.010 0.415± 0.008 0.332± 0.011 0.361± 0.006 0.248± 0.010 0.236± 0.015 0.379± 0.008 0.365± 0.007

DREAM3 0.401± 0.018 0.386± 0.018 0.262± 0.008 0.360± 0.019 0.263± 0.012 0.228± 0.028 0.377± 0.014 0.378± 0.015

DREAM4 0.285± 0.008 0.250± 0.006 0.296± 0.006 0.259± 0.008 0.127± 0.003 0.210± 0.015 0.212± 0.016 0.188± 0.009

STRING-E 0.677± 0.013 0.655± 0.010 0.400± 0.011 0.391± 0.004 0.384± 0.008 0.324± 0.099 0.598± 0.004 0.599± 0.003

STRING-ED 0.698± 0.011 0.664± 0.013 0.438± 0.008 0.456± 0.010 0.401± 0.007 0.327± 0.009 0.614± 0.012 0.605± 0.009

STRING-EDC 0.666± 0.011 0.637± 0.010 0.452± 0.016 0.404± 0.011 0.348± 0.008 0.322± 0.009 0.625± 0.005 0.588± 0.012

DREAM1

Resnik

2.451± 0.049 2.388± 0.013 1.629± 0.029 1.870± 0.035 1.254± 0.041 0.859± 0.015 1.934± 0.051 1.998± 0.042

DREAM2 1.740± 0.041 1.740± 0.035 1.316± 0.056 1.469± 0.056 0.936± 0.011 0.770± 0.027 1.301± 0.038 1.353± 0.045

DREAM3 1.580± 0.054 1.567± 0.038 1.081± 0.056 1.515± 0.051 1.023± 0.032 0.837± 0.047 1.296± 0.038 1.390± 0.061

DREAM4 1.309± 0.042 1.213± 0.021 1.295± 0.019 1.234± 0.008 0.773± 0.018 0.871± 0.079 0.925± 0.016 0.909± 0.027

STRING-E 2.670± 0.012 2.583± 0.022 1.557± 0.029 1.621± 0.054 1.343± 0.020 1.056± 0.021 1.985± 0.028 2.095± 0.033

STRING-ED 2.633± 0.056 2.593± 0.050 1.720± 0.028 1.820± 0.035 1.435± 0.024 1.069± 0.009 2.100± 0.031 2.155± 0.034

STRING-EDC 2.552± 0.044 2.520± 0.009 1.742± 0.034 1.683± 0.016 1.251± 0.020 1.074± 0.029 2.136± 0.031 2.107± 0.010

Table 2. Accuracy, F1 and Resnik score results on DREAM1-4 and STRING composite networks for different Function Prediction Methods, using the Molecular
Function (MF) category of GO, reporting mean and standard deviation over 5-fold cross validation. Best performance bolded. All method parameters set as described
in Section 2.

Network Metric GLIDER-knn GLIDER-25nn Majority-Vote DSD-knn node2vec deepNF(S) MASHUP(S) GLIDER-MASHUP

DREAM1

Accuracy

0.561± 0.010 0.544± 0.007 0.381± 0.003 0.476± 0.008 0.352± 0.017 0.273± 0.015 0.534± 0.009 0.521± 0.016

DREAM2 0.366± 0.005 0.363± 0.008 0.314± 0.006 0.372± 0.006 0.225± 0.015 0.215± 0.008 0.3562± 0.0103 0.334± 0.009

DREAM3 0.338± 0.024 0.333± 0.019 0.255± 0.018 0.342± 0.022 0.208± 0.013 0.200± 0.012 0.347± 0.026 0.341± 0.014

DREAM4 0.179± 0.011 0.157± 0.007 0.180± 0.005 0.164± 0.009 0.076± 0.006 0.093± 0.014 0.142± 0.014 0.146± 0.010

STRING-E 0.545± 0.015 0.521± 0.007 0.375± 0.003 0.353± 0.007 0.351± 0.010 0.273± 0.016 0.504± 0.012 0.505± 0.005

STRING-ED 0.602± 0.002 0.573± 0.008 0.418± 0.010 0.401± 0.011 0.417± 0.005 0.300± 0.010 0.568± 0.008 0.547± 0.010

STRING-EDC 0.560± 0.008 0.545± 0.008 0.406± 0.011 0.345± 0.014 0.375± 0.011 0.282± 0.013 0.521± 0.016 0.529± 0.018

DREAM1

F1

0.484± 0.008 0.461± 0.006 0.364± 0.010 0.410± 0.008 0.272± 0.010 0.259± 0.021 0.440± 0.010 0.444± 0.009

DREAM2 0.317± 0.006 0.320± 0.005 0.285± 0.004 0.301± 0.003 0.212± 0.004 0.200± 0.008 0.308± 0.005 0.285± 0.006

DREAM3 0.306± 0.012 0.302± 0.011 0.244± 0.001 0.301± 0.007 0.211± 0.005 0.185± 0.012 0.296± 0.173 0.278± 0.014

DREAM4 0.171± 0.010 0.158± 0.004 0.174± 0.001 0.162± 0.004 0.088± 0.001 0.106± 0.009 0.136± 0.007 0.146± 0.010

STRING-E 0.479± 0.005 0.439± 0.007 0.400± 0.011 0.319± 0.008 0.292± 0.003 0.240± 0.006 0.433± 0.005 0.428± 0.007

STRING-ED 0.512± 0.004 0.487± 0.004 0.365± 0.003 0.355± 0.004 0.334± 0.001 0.281± 0.005 0.474± 0.002 0.468± 0.010

STRING-EDC 0.498± 0.007 0.463± 0.005 0.359± 0.004 0.308± 0.003 0.284± 0.003 0.253± 0.005 0.479± 0.002 0.448± 0.007

DREAM1

Resnik

2.663± 0.025 2.615± 0.007 2.164± 0.063 2.465± 0.069 1.162± 0.036 0.751± 0.038 1.751± 0.015 1.876± 0.038

DREAM2 1.964± 0.035 1.965± 0.030 1.885± 0.018 1.944± 0.042 1.090± 0.013 0.906± 0.020 1.321± 0.004 1.394± 0.028

DREAM3 1.894± 0.042 1.651± 0.052 1.627± 0.036 1.959± 0.048 1.123± 0.011 1.128± 0.029 1.346± 0.046 1.426± 0.078

DREAM4 1.144± 0.042 1.155± 0.030 1.145± 0.022 0.177± 0.024 0.729± 0.020 0.783± 0.084 0.865± 0.020 0.873± 0.017

STRING-E 2.625± 0.043 2.189± 0.031 1.557± 0.029 2.011± 0.034 1.207± 0.045 0.905± 0.024 1.767± 0.028 1.897± 0.049

STRING-ED 2.883± 0.027 2.787± 0.031 02.249± 0.018 2.238± 0.044 1.317± 0.042 0.978± 0.020 1.920± 0.013 2.079± 0.042

STRING-EDC 2.731± 0.045 2.652± 0.033 2.134± 0.053 1.960± 0.036 1.199± 0.041 1.091± 0.058 2.008± 0.060 2.039± 0.047

Table 3. Accuracy, F1 and Resnik score results on DREAM1-4 and STRING composite networks for different Function Prediction Methods, using the Biological
Process (BP) category of GO, reporting mean and standard deviation over 5-fold cross validation. Best performance bolded. All method parameters set as described
in Section 2.

for all the GLIDER subgraphs of GWAS genes in DREAM1-4. A cursory
inspection of the histogram shows that the subgraphs on DREAM1 and
DREAM4 were often significantly different from the that of DREAM2 and
DREAM3 in terms of graph connectivity. In fact, DREAM1 and DREAM4
subgraphs were more likely to be highly connected compared to the rest.
This can be largely explained by the fact that the number of edges in
DREAM1 and DREAM4 were significantly greater than that of DREAM3
and DREAM4. The lack of good connectivity in DREAM3 subgraphs,
which can be seen by comparing the histogram in Figure S3c to the rest,
was expected as DREAM3 is a fairly sparse network.

4.2.2 Edge density of the gene neighborhood subgraphs does not
correlate with functional enrichment.

The average edge density of the GWAS subgraphs in a particular DREAM
network did not correlate consistently with functional enrichment. We

used the FuncAssociate 3.0 API (Berriz et al., 2009) to calculate the func-
tional enrichment of the collection of 40 GLIDER neighborhood GWAS
subgraphs, calling a subgraph enriched if it returned at least one GO Func-
tional label with an adjusted p value of p < 0.05. Table 6 plots the
percentage of the 40 GWAS genes whose GLIDER neighborhood sub-
graph of closest k genes was found by FuncAssociate to be enriched for at
least one GO label, for each of DREAM1-4 and k = 5, 10, 15 and 50. The
percent functionally enriched ranges from a high of 98% for DREAM1 to
a low of 48% for DREAM4. When we extend out to the neighborhood of
50 closest GLIDE genes, over 95% of the 40 gene neighborhoods show
functional enrichment in DREAM1-3, and 87.5% do so for DREAM4.

4.2.3 Case Analysis of Two PD GWAS Genes: VAMP4 and PINK1
We first look in more depth at the neighborhood subgraph of VAMP4.
We find that the neighborhood subgraphs of VAMP4 in DREAM1 and
DREAM2 have > 1/3 of their genes in common (marked in blue in
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Network Metric GLIDER-knn GLIDER-25nn Majority-Vote DSD-knn node2vec deepNF(S) MASHUP(S) GLIDER-MASHUP

DREAM1

Accuracy

0.596± 0.005 0.599± 0.008 0.567± 0.005 0.585± 0.008 0.374± 0.011 0.330± 0.017 0.526± 0.003 0.517± 0.013

DREAM2 0.529± 0.016 0.527± 0.015 0.494± 0.007 0.533± 0.006 0.218± 0.018 0.230± 0.012 0.410± 0.009 0.378± 0.010

DREAM3 0.601± 0.016 0.596± 0.017 0.504± 0.015 0.595± 0.009 0.318± 0.015 0.518± 0.016 0.501± 0.016 0.464± 0.016

DREAM4 0.483± 0.005 0.471± 0.005 0.471± 0.012 0.477± 0.008 0.091± 0.006 0.248± 0.056 0.282± 0.010 0.247± 0.007

STRING-E 0.626± 0.013 0.625± 0.012 0.554± 0.013 0.555± 0.008 0.369± 0.009 0.356± 0.013 0.549± 0.010 0.545± 0.006

STRING-ED 0.635± 0.003 0.629± 0.005 0.575± 0.002 0.576± 0.009 0.382± 0.010 0.329± 0.012 0.565± 0.009 0.553± 0.006

STRING-EDC 0.626± 0.007 0.625± 0.009 0.567± 0.015 0.529± 0.013 0.371± 0.098 0.361± 0.020 0.594± 0.010 0.572± 0.017

DREAM1

F1

0.556± 0.008 0.547± 0.008 0.544± 0.003 0.550± 0.007 0.327± 0.011 0.351± 0.018 0.469± 0.005 0.469± 0.002

DREAM2 0.497± 0.017 0.492± 0.014 0.474± 0.006 0.532± 0.006 0.208± 0.010 0.264± 0.018 0.366± 0.008 0.334± 0.004

DREAM3 0.544± 0.010 0.542± 0.007 0.471± 0.012 0.543± 0.002 0.334± 0.014 0.418± 0.021 0.436± 0.008 0.410± 0.016

DREAM4 0.450± 0.005 0.437± 0.007 0.456± 0.009 0.445± 0.002 0.111± 0.005 0.310± 0.007 0.259± 0.009 0.234± 0.007

STRING-E 0.579± 0.007 0.577± 0.005 0.546± 0.006 0.519± 0.007 0.341± 0.010 0.344± 0.007 0.485± 0.013 0.492± 0.003

STRING-ED 0.588± 0.006 0.585± 0.005 0.559± 0.004 0.538± 0.005 0.350± 0.007 0.344± 0.010 0.499± 0.010 0.503± 0.010

STRING-EDC 0.587± 0.006 0.584± 0.009 0.549± 0.003 0.499± 0.003 0.334± 0.013 0.359± 0.007 0.517± 0.013 0.509± 0.007

DREAM1

Resnik

1.554± 0.023 1.483± 0.010 1.296± 0.009 1.422± 0.021 0.927± 0.009 0.708± 0.015 1.146± 0.022 1.239± 0.032

DREAM2 1.221± 0.023 1.232± 0.022 1.134± 0.018 1.236± 0.026 0.822± 0.008 0.755± 0.015 0.976± 0.017 1.003± 0.016

DREAM3 1.089± 0.007 1.108± 0.014 1.011± 0.021 1.103± 0.031 0.884± 0.020 0.990± 0.058 1.042± 0.021 1.005± 0.023

DREAM4 1.032± 0.018 1.057± 0.016 1.020± 0.014 1.083± 0.015 0.673± 0.016 0.761± 0.020 0.848± 0.026 0.848± 0.023

STRING-E 1.592± 0.021 1.553± 0.015 1.222± 0.007 1.404± 0.018 0.931± 0.015 0.796± 0.027 1.226± 0.029 1.314± 0.023

STRING-ED 1.642± 0.034 1.598± 0.038 1.298± 0.002 1.485± 0.045 0.987± 0.015 0.768± 0.022 1.260± 0.021 1.356± 0.023

STRING-EDC 1.654± 0.019 1.596± 0.009 1.229± 0.015 1.357± 0.018 0.963± 0.022 0.927± 0.030 1.358± 0.032 1.381± 0.010

Table 4. Accuracy, F1 and Resnik score results on DREAM1-4 and STRING composite networks for different Function Prediction Methods, using the Cellular
Component (CC) category of GO, reporting mean and standard deviation over 5-fold cross validation. Best performance bolded. All method parameters set as
described in Section 2.

(a) (b)

Figure 2: GLIDER neighbors and their induced subgraph for the protein VAMP4 in (a) DREAM1, and (b) DREAM2 networks. The number of top
VAMP4 (colored red in the figure) GLIDER neighbors k is set to 15. Note: Blue colored nodes are present in both DREAM1 and DREAM2. The green
nodes in the DREAM1 subgraph (Figure 2(a)) are absent in the whole of DREAM2. The gold colored nodes are only present in one of the subgraphs in
Figure 2(a) and (b), even though these nodes are present in both DREAM1 and DREAM2.

Figure 2). The genes colored green are missing in the DREAM2 net-
work all together; the genes colored gold in Figure 2 are present in both
DREAM1 and DREAM2, but either present in the GLIDER-15 subgraph
for DREAM1 and not DREAM2, or in DREAM2 but not DREAM1.

We went to the literature to see what was known about the genes in these
subgraphs and their disease and pathway involvement. For VAMP4, there is
substantial overlap between the neighborhood subgraphs for DREAM1-2,
and in particular, many genes involved in both subgraphs are impli-
cated in SNARE complexes. In particular, STX5, GOSR1, YKT6, and
BET1L make up the Cis-Golgi SNARE complex, and VAMP4 itself along

with STX16, STX6, and VT1A make up the Trans-Golgi SNARE com-
plex (Climer et al., 2015). There is increasing evidence that these SNARE
complexes, that regulate ER-Golgi transport, become disregulated in
Parkinson’s Disease (Ahmadpour et al., 2020; Martínez-Menárguez et al.,
2019; Rendón et al., 2013).

We note that the DREAM3 subgraph for VAMP4 shows no functional
enrichment for any GO term with FuncAssociate, involves no DREAM3
edges, and probably just indicates that many of the relevant VAMP4
connections are missing from the very sparse DREAM3.

PINK1 is chosen as an example that is very different than VAMP4
in that the DREAM1 and DREAM2 GLIDER-15 neighborhoods identify
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(a) (b) (c)

Figure 3: GLIDER neighbors and their induced subgraph for the protein PINK1 in (a) DREAM1, (b) DREAM2, and (c) DREAM3 networks. The number
of PINK1 (colored red in the figure) neighbors was chosen to be 20. Note: The gold-colored nodes (in 3(a)-(c)) also appear as nodes in DREAM1. The
green-colored nodes (in Figure 3(a)) are absent in DREAM2 while the green-colored node in 3(b) (GPR103) is absent in DREAM1.

BAG3 CTSB HTRA2 PARK7 SREBF1
BCKDK DLG2 KPNA1 PINK1 STK39
BRIP1 DYRK1A MAP4K4 RIMS1 SYNJ1
CD19 EIF4G1 MAPT RIT2 SYT11

CHRNB1 FBXO7 NOD2 SATB1 UBTF
CLCN3 FCGR2A NSF SETD1A USB25
CNTN1 FYN NUCKS1 SHEGL2 VAMP4
CRHR1 GBF1 PAM SHEGL2 WNT3

Table 5. List of 40 GWAS genes implicated for Parkinson’s disease, that are
present in all the DREAM1-4 networks

Network k = 5 k = 10 k = 15 k = 50

DREAM1 0.90 0.98 0.95 0.98
DREAM2 0.63 0.80 0.73 0.95
DREAM3 0.68 0.70 0.75 0.98
DREAM4 0.50 0.48 0.65 0.875

Table 6. Table of the fraction of the GWAS genes whose GLIDE neighbors
enriched at least one GO label, using FuncAssociate (version 3.0), when the
number of GLIDE neighbors is k.

completely different sets of genes; when we extend to the GLIDER-20
neighborhood (see Figure 3), the important PARK2 (also called parkin)
known to interact with PINK1, shows up in both the DREAM1 and
DREAM2 neighborhoods of PINK1. Mutations in PARK2 associate with
inherited early-onset recessive PD (Djarmati et al., 2004; Huttenlocher
et al., 2015). The GLIDER-15 neighborhood of PINK1 in DREAM1 also
contains TOMM70A, NIPSNAP1, and MARCH5, all of which have been
linked to PD, and are involved in autophagy and clearance of damaged mi-
tochondria, a process with increasing evidence of a centralized role in PD.
More specifically, Bertolin et al. (2013) showed PD-causing PARK2 mu-
tations weakened or disrupted the molecular interaction between PARK2
and TOMM70A; Abudu et al. (2019) showed that NIPSNAP1 has a role
in recognition of damaged mitochondria, as well as demonstrated that
zebrafish lacking a functional Nipsnap1 display parkinsonism.

Koyano et al. (2019) showed that the initial step in PARK2 recruit-
ment is delayed following depletion of the mitochondrial E3, MARCH5.

They propose a model in which the initial step in PARK2 recruitment and
activation requires protein ubiquitylation by MARCH5 with subsequent
PINK1-mediated phosphorylation.

The GLIDE neighborhood of PINK1-PARK2 in DREAM3 consists
of entirely different genes from DREAM1, but a large subset also appear
to have strong known associations with PD. Intermediate-length polyQ
expansions (>24 Qs) of ATXN2 were found in 7 ADPD patients and no
controls (Yamashita et al., 2014). Jo et al. (2020) suggest that AIMP2
contributes to PD pathogenesis. The orphan G-protein-coupled receptor 37
(GPR37) is a substrate of parkin, and its insoluble aggregates accumulate in
brain tissue samples of Parkinson’s disease patients, including Lewy bodies
and neurites (Marazziti et al., 2009). Abnormal accumulation or turnover
of RanBP2 and its substrates, may contribute to neuronal cell death in
PD. (Um et al., 2006). VDAC1 is necessary for PINK1/Parkin-directed
autophagy of damaged mitochondria. (Geisler et al., 2010). Grossmann
et al. (2020) shows the functional interaction of RHOT1 with other PD
gene products linked to mitochondrial quality control.

5 Discussion
We introduced GLIDER, a simple function prediction method based on
the GLIDE quasi-kernel, and showed its utility for function prediction
in a heterogeneous collection of human PPA networks. A case study of
GLIDER neighborhoods of known PD disease genes was presented, sup-
porting involvement of SNARE complexes and mitochondrial autophagy
in PD disease processes.

The DREAM networks were deliberately kept universal so they could
be applied to a wide range of different human traits and conditions (Choob-
dar et al., 2019); thus in DREAM1, for example genes in the GLIDER-15
neighborhood of PD GWAS gene BCKDK include PDK1-4, four isoforms
of PDK, that have very different tissue expression profiles (Shi and Mc-
Quibban, 2017). PDK2 is ubiquitously expressed and has been shown to
be a key regulator of PINK1/PARKIN-mediated mitophagy, a key path-
way disregulated in PD. (Shi and McQuibban, 2017). PDK4 is also highly
expressed in brain tissue, but PDK1 is expressed almost exclusively in
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heart tissue (Di et al., 2010) whereas PDK3 has only been found ex-
pressed in kidney and testes (Bowker-Kinley et al., 1998). Thus PDK1
and PDK3 are unlikely to be associated with PD, a class of false positives
that would be eliminated by running GLIDER instead on tissue-specific
networks (Magger et al., 2012) customized for brain.
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