2110.03553v1 [cs.AR] 7 Oct 2021

arxiv

Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural
Network Training via Memory-Friendly Pattern Retrieving

Qiyu Wan
University of Houston
Houston, Texas, USA

Haojun Xia
University of Sydney
Sydney, Australia

Xingyao Zhang
University of Washington
Seattle, Washington, USA

gwan@uh.edu xhjustc@gmail.com xingyaoz@cs.washington.edu
Lening Wang Shuaiwen Leon Song Xin Fu
University of Houston University of Sydney University of Houston
Houston, Texas, USA Sydney, USA Houston, Texas, USA

Iwang56@uh.edu

ABSTRACT

Bayesian Neural Networks (BNNs) that possess a property of uncer-
tainty estimation have been increasingly adopted in a wide range
of safety-critical Al applications which demand reliable and robust
decision making, e.g., self-driving, rescue robots, medical image
diagnosis. The training procedure of a probabilistic BNN model
involves training an ensemble of sampled DNN models, which in-
duces orders of magnitude larger volume of data movement than
training a single DNN model. In this paper, we reveal that the root
cause for BNN training inefficiency originates from the massive
off-chip data transfer by Gaussian Random Variables (GRVs). To
tackle this challenge, we propose a novel design that eliminates all
the off-chip data transfer by GRVs through the reversed shifting
of Linear Feedback Shift Registers (LFSRs) without incurring any
training accuracy loss. To efficiently support our LFSR reversion
strategy at the hardware level, we explore the design space of the
current DNN accelerators and identify the optimal computation
mapping scheme to best accommodate our strategy. By leveraging
this finding, we design and prototype the first highly efficient BNN
training accelerator, named Shift-BNN, that is low-cost and scalable.
Extensive evaluation on five representative BNN models demon-
strates that Shift-BNN achieves an average of 4.9x (up to 10.8X)
boost in energy efficiency and 1.6X (up to 2.8X) speedup over the
baseline DNN training accelerator.

CCS CONCEPTS

« Computer systems organization — Neural networks; - Hard-
ware — Hardware accelerators.

KEYWORDS

Bayesian neural networks accelerator, energy efficiency, random
number generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480120

leonangel991@gmail.com

xfu8@central.uh.edu

ACM Reference Format:

Qiyu Wan, Haojun Xia, Xingyao Zhang, Lening Wang, Shuaiwen Leon Song,
and Xin Fu. 2021. Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural
Network Training via Memory-Friendly Pattern Retrieving. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO °21), October 18-22, 2021, Virtual Event, Greece. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3466752.3480120

1 INTRODUCTION

Deep learning based Al technologies, such as deep convolutional
neural networks (DNNs), have recently achieved tremendous suc-
cess in numerous application domains, such as object detection,
image classification, etc [7, 12, 22, 47, 50]. However, DNN models
are known to be prone to over-fitting due to insufficient training
data in the real world, which can lead to wrong predictions when
the model is deployed in unfamiliar environments. With the increas-
ing adaptation of safety-critical Al applications (e.g., healthcare and
self-driving), wrong predictions can result in catastrophic incidents.
For example, several accidents have been recently reported regard-
ing poor safety-critical Al designs [40, 51], e.g., in 2020 an autopilot
car crashed into a white truck because the sensor failed to distin-
guish the truck from the bright sky [51]. Therefore, enhancing the
reliability and robustness of deep learning has become an urgent
demand from Al practitioners.

As one of the most popular probabilistic machine learning tools,
Bayesian Neural Networks (BNNs) have been increasingly em-
ployed in a wide range of real-world AI applications which re-
quire reliable and robust decision making such as self-driving,
rescue robots, disease diagnosis, scene understanding, and so on
[1, 32, 38, 57]. BNNs have also emerged as a promising solution
in today’s data center services for improving product experiences
(e.g., Instagram and Youtube), infrastructure, and aiding cutting-
edge research [20]. Different from the traditional DNNs which
require massive training data, BNN models can more easily learn
from small datasets and are more robust to over-fitting issues [6].
Furthermore, BNNs are capable of providing valuable uncertainty
information for users to better interpret the situation without mak-
ing over-confident decisions [2, 13, 24]. Generally, a BNN model
can be viewed as a probabilistic model where each model parameter,
i.e., weight, is a probability distribution. Training a BNN essentially
calculates the probability distribution of weights, which requires
integrating on infinite number of neural networks. This is often

MICRO 21, October 18-22, 2021, Virtual Event, Greece

intractable. To tackle this, recent efforts [6, 26, 46] leverage Gauss-
ian distributions to approximate the target weight distributions via
weight sampling to identify the mean and standard deviation of
each weight.

Training DNN models on current hardware devices has long
been considered as a slow and energy-consuming task [16, 25, 52].
Compared with the traditional DNN training, BNN training inef-
ficiency is further exacerbated by the requirement of training an
ensemble of sampled DNN models to ensure robustness. In conse-
quence, we have observed that the total data movement during a
BNN training procedure can be orders of magnitude larger than
training one single DNN model. Moreover, as the existing DNN
training optimization techniques [45, 54, 60, 64, 65] are oblivious
to the unique sampling process of the probabilistic BNN models,
they lack the capabilities to efficiently and effectively deal with
the excessive data movement induced by the memory-intensive
BNN training, resulting in poor energy efficiency and long training
latency.

In this paper, we first conduct a comprehensive characterization
of the state-of-the-art BNN training on current DNN accelerators
and analyze its inefficiency. By carefully breaking down the mem-
ory activities in each BNN layer, we observe that the dominant
factor that induces BNN training inefficiency is the massive data
movement from Gaussian random variables (GRVs). These variables
are generated during forward propagation for weight sampling and
sent to off-chip memory for later reuse during backward propaga-
tion. They contribute the major portion of the total off-chip memory
accesses for BNN training (e.g., up to 71%). To tackle this challenge,
we propose a novel design that is capable of eliminating all the
off-chip memory accesses by GRVs without incurring any training
accuracy loss. Our design is based on a key observation that the
software-level “forth-back" training procedure shares great similar-
ity with the classic hardware-level reversed shifting of the Linear
Feedback Shift Registers (LFSRs) which are used in modern BNNs
to generate the GRVs [9]. By leveraging the reversible property of
LFSR, we build a highly efficient memory-friendly design based on
LFSR reversed shifting, which can accurately retrieve all the GRVs
(i.e., bit patterns generated in forward propagation) locally during
backpropagation without ever storing them during the forward
propagation. Furthermore, to investigate the compatibility of our
LFSR reversion strategy on real hardware, we qualitatively study
the design possibilities by directly integrating our strategy to the
existing DNN accelerators that adopt various computation mapping
schemes, and eventually identify the optimal mapping to support
our BNN training design. Based on this knowledge, we design and
prototype the first highly efficient hardware accelerator for BNN
training, named Shift-BNN, that takes advantage of drastically re-
duced data movement enabled by our LFSR reversion strategy. This
study makes the following contributions:

e We characterize modern BNN training on the state-of-the-art
DNN accelerators and reveal that the root cause for its train-
ing inefficiency originates from the massive data transfer
induced by GRVs;

e We propose a novel design that eliminates all the off-chip
data transfer related to GRVs through local LFSR reversed
shifting without affecting the training accuracy;

Qiyu Wan, et al.

e We present the potential hardware-level challenges when di-
rectly applying our design to BNN training and significantly
mitigate these issues via a sophisticated and qualitative de-
sign space exploration;

e We design and prototype the first highly-efficient BNN train-
ing accelerator that is low-cost and scalable, well supported
by a hybrid dataflow;

e Extensive evaluation on five representative BNN models
demonstrates that Shift-BNN achieves an average of 4.9x
(up to 10.8x) improvement in energy efficiency and 1.6X (up
to 2.8X) speedup over the baseline accelerator. Shift-BNN
also scales well to larger BNN model sample sizes.

2 BACKGROUND
2.1 Training BNNs with Variational Inference

A Bayesian neural network (BNN) can be viewed as a probabilistic
model in which each model parameter,e.g., weight, is a probability
distribution. One of the most popular method for training BNN
models is known as Variational Inference [5, 29, 63] , which finds
a probability distribution g(w|f) € Q to approximate the target
weight distribution (Q is a common distribution family). Searching
for q(w|0) is an optimization problem that aims to minimize the
loss function with respect to 6 (Eq.1).

s
L(w,0) = > logg(w|0) —log P(w!) —log P(ylx, w?) (1)
i=1
InEq.1, w(denotes the ith sample of weights drawn from the ap-
proximation distribution g(w|@). Typically, g(w|0) is assumed to be
a Gaussian distribution q(w|(y, o)) where p and o are the mean and
standard deviation of the Gaussian distribution, respectively. Each
sample of weight w(can be obtained by using w(d) = o+ eWog,
where ¢V denotes the ith random variable drawn from unit Gauss-
ian distribution NV (0,I) and o represent point-wise multiplication.
log q(w(i) |0), log P(w(i)) and log P(y|x, w<i)) are defined as poste-
rior Ps , prior P, and log-likelihood, respectively. In summary, the
model parameters y and o can be learned progressively by repeating
the following steps (details are shown in Fig.1 (a)):
1. Generate S €’s from N (0,I) for each weight;
2. Obtain S samples for each weight via w) = g+ ¢e® o 5;
3. Calculate the loss function £(w, 0), where 0 = (g, 0);
4. Calculate the gradients with respect to y and o;
5. Update model parameters y and o.

2.2 Computation Flow of BNN Training

From an algorithmic perspective, Fig.1 (a) illustrates the compu-
tation flow of BNN training which consists of three main stages:
Forward (FW), Backward (BW) and Gradient Calculation (GC).
Forward (FW) stage aims to calculate the loss of network func-
tion f given an input training example x. For simplicity of discus-
sion, we assume processing a minibatch with the size of 1. In each
layer [, for one input training example, Gaussian random variables
€; are sampled S times to obtain S samples of weights wl1 ~ wf ,
denoted as process (D). These weights are convolved with their
corresponding input samples, i.e., Dl1 ~ Df , producing S samples
of the output, which are then treated as the input for the next layer.
For the first layer, all weight samples are convolved with the input

Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural Network Training via Memory-Friendly Pattern Retrieving

— Forward
— Backward

—, Gradient Calculation

[
w=pu+ s*a/

0P,./0w + 0P,/0w

@ wl= u+ exo

S
D] 52

for (s=0;s<S;s++)
for (m=0;m<M;m++)
for (n=0;n<N;n++)
for (r=0;r<R;r++)
for (c=0;c<C;c++)
for (i=0;i<K;i++)
for (j=0;j<K;j++)

// Sample dimension
// Output channel

// Input channel

// Output row-dim

// Qutput col-dim

// Kernel row-dim

// Kernel col-dim

MICRO 21, October 18-22, 2021, Virtual Event, Greece

O[s[m](r](c] += In[s][n][i+r][j+c]*
W(slm][n][i][j] /Forward&Backward
Ofs][m][n][r][c] += In[s][n][i+r][j+c]*

%NS
x =
— — BY——
Conv
Conv

(@)

//Gradient calculation

Ws][m][i](i]

Figure 1: (a) Computation flow of BNN training. (b) 7-dimension for-loop for the convolutional layer in BNN.

x. The outputs of the last layer are compared with the groundtruth
to obtain the loss (error).

Backward (BW) stage propagates the network errors from the
last layer to the first layer. In each layer [S samples of weight
matrices are reconstructed using the original Gaussian random
variables € and model parameters (y, o), denoted as process (2).
The reconstructed kernels are then rotated 180° and convolved
with the corresponding samples of errors to obtain the errors of
the previous layer, i.e., El1 ~ EIS .

Gradient Calculation (GC) stage updates the model parame-
ters p and o to minimize the training loss, which requires to cal-
culate the gradients of the model parameters, Ay and Ao. The
gradient of a sampled weight comes from prior Py, posterior Ps and
likelihood P(y|x, w(!). The gradient of likelihood is generated by
convolving the feature maps Dl1 ~ Df with the errors Ell+1 ~ Efﬂ.
This part is the same as the normal DNN training. For the gradients
of prior and posterior, they can be easily derived once the original
weights are reconstructed because the computation for both prior
and posterior requires no intermediate feature maps. Finally, the S
samples of the gradients are summed up and then multiplied with
a small coefficient to produce the weight updates Aw. Based on the
sampling rule w = y + € * o, Gaussian random variables € are used
to calculate the final updates Ao. This step corresponds to step 3.

Fig.1 (b) illustrates the detailed computation within a single
BNN’s convolutional layer. The key feature here is a sample dimen-
sion that adds on top of normal DNNs’ 6-dimension convolution.
Note that different samples execute independently without any
data exchange.

3 CHALLENGES OF BNN TRAINING

Traditional DNN training. DNN training has long been consid-
ered as a slow and energy harvesting task [16, 25, 52]. On the surface,
the massive energy consumption and high latency mainly come
from millions of Multiply-accumulate operations (MACs) and in-
tensive data movement between memory and processing elements
(PEs). As the unit energy cost (J/bit) of off-chip memory accesses
is orders of magnitude higher than that of MACs [11, 15, 30], data
movement usually poses greater challenges for energy-efficient
DNN training [56]. Moreover, the ongoing development of low-
precision training techniques [23, 27, 55] can potentially reduce the
unit energy cost of MACs, but this could also result in a proportion-
ally higher impact on the overall training’s energy efficiency from
the data movement.

. | [ZzData transfer —e—Energy consumption A Latency |
wv
e A
2 3 a)
> 30 ” [
- 25 2 ? 2
8 20 LA E ull¥ 1 1
= 15 % 1 RoR7
€ 10 RURY 1 1 sRIRY ’ ¥
£ A
S 5 At b A 1 Eﬁi:i f[ﬁf 't’:
Z o A b ke b o bd ke b be o kd kel B L - ke ke o b b
Qoo YN SO TN H0OYTN o ®OTN oo %N
P23 TRSNS vYESNS Te2dS TREINS
SAHETAD ASTTT SATAT SHSETAD SHAT AT
SHd b SHdd SHd b SHd A SHd A
MLP B-MLP LeNet B-LeNet AlexNet B-AlexNet VGG B-VGG ResNetB-ResNet

Figure 2: Comparison between five BNN models and their
corresponding baseline DNN models.

Current BNN training. Compared to the traditional DNN train-
ing, BNN training inefficiency is further exacerbated by the require-
ment of training for an ensemble of sampled DNN models, shown
in Fig. 1 (a). This is necessary because a sufficient number of train-
ing samples is essential for building a robust BNN model. But it
could also incur an explosive amount of data movement during the
training process.

To further quantify this, we investigate the impact of number of
samples on the overall BNN training efficiency. We implemented
five types of widely-adopted BNN models representing a broad
range of domains, as well as their corresponding DNN models.
Note that BNN models are typically built upon their matching DNN
models, e.g., Bayesian AlexNet or B-Alexnet is based on AlexNet.
For verification purposes, the training process is performed on a
general Diannao-like DNN accelerator equipped with output sta-
tionary dataflow [10]. Detailed experimental setup can be found in
Section 7.1. Three metrics are used for training evaluation, includ-
ing data transfer, overall energy consumption, and training latency.
The data transfer represents the amount of data that are read from
and written to the off-chip memory. Due to the architectural het-
erogeneity of the five BNN models, each result is normalized to its
corresponding baseline DNN model. Fig.2 shows that a BNN model
with only 8 samples would drastically increase the off-chip data
transfer by an average of 9.1x compared with its corresponding
DNN model. This number grows to 35.3% as the number of BNN
training samples scales up to 32. Specifically, for B-VGG model
with 16 samples (s=16), training each input example for one itera-
tion would require 22.6GB data transfer from/to off-chip memory,
which is 17.9% increment over the original VGG model. Since the
off-chip memory access is often considered a high-cost operation,
a large amount of data transfer during BNN training could produce
massive energy consumption and potentially lead to performance

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Weight (1, 0) ® Gaussian random variable ¢ 8 Input/Output |

@ 100.00%

Y 80.00%

i)

© 60.00%

[a)

« 40.00%

o

o 20.00%

B 0.00%

o N

Figure 3: The ratio breakdown of the total off-chip data
transfer across different BNN models.

degradation. For example, we observed that the overall energy con-
sumption and training latency on 32 samples incur an average of
33.2x and 31.8X increment over those on the baseline DNN models,
respectively.

Fig.3 shows the breakdown of the total off-chip data transfer
when the accelerator evaluates every input training example during
one training iteration. It can be observed that Gaussian random
variables e takes up the major portion of the total data transfer
(i.e., 71% on average). Meanwhile, the weight parameters (y, o)
and the input/output feature maps only contribute to 16% and 12%
on average, respectively. There are several reasons behind such
dominating presence of €. First, as a unique variable introduced by
BNN execution, € must be stored and reused in two different stages.
As shown in Fig.1 (a) D, during the forward stage, S samples of €
are generated from the local random number generators for each
pair of (g, o) to obtain S samples of weights. After that, es have to
be stored into the off-chip memory due to its large data volume
and reside there until the later weight reconstruction during the
backward stage (@) and the gradient of o computation during
the gradient calculation (GC) stage (). Note that recent memory-
centric approaches such as vDNN [45], Echo [65] and SuperNeurons
[54] reduce the memory accesses through smart recomputation in
backpropagation via selected small intermediate data from forward
propagation. However, since €s are a large amount of independent
random numbers that cannot be recomputed, these works cannot
help reduce intensive memory accesses in BNN training. Second,
the size of € is much larger than the weight parameters (y, o) and
the intermediate feature maps/errors. Since one pair of weight
parameters (4, o) requires S samples of € for weight sampling, the
total size of € can be S/2 times of the weight parameters. And for
the current BNN models, the size of weights (i.e., half of (y, 0)) is
still much larger than the size of feature maps. For instance, on
average the size of weights is 122X of the size of feature maps/errors
across five BNN models. Therefore, although input/output feature
maps also consist of S samples, the total transferred intermediate
data size is still much less than that from e.

In summary, the long reuse distance of a large amount of Gauss-
ian random variables € across different training stages is the key
problem that causes a huge amount of off-chip memory accesses
(the transferred amount of es grows linearly with the sample size).
This further leads to massive energy consumption and potential
performance degradation during BNN training. Besides the existing
DNN accelerator, such a challenge is also observed on conventional
CPU/GPU platforms as the cross-stage memory access of € is in-
evitable in the BNN training algorithm. Therefore, a special solution
is needed.

Qiyu Wan, et al.

4 KEY DESIGN INSIGHTS OF SHIFT-BNN

To overcome these challenges brought by the excessive data move-
ment for the Gaussian random variables es (or GRVs), we propose a
novel design that is able to eliminate all the memory accesses related
to € without training accuracy loss. We made a key observation that
the nature of software-level “forth-back” training procedure shares
similarity with the classic hardware-level reversed shifting of Linear
Feedback Shift Register (LFSR) which is used in BNNs to generate
the Gaussian random variables € [9]. Specifically, we can poten-
tially retrieve all the es locally during the Backward stage through
shifting the LFSRs backward, instead of storing them during the
Forward stage. In the following subsections, we will first introduce
the principles of LESR function, and then illustrate how to use LFSR
reversed shifting to retrieve Gaussian random variables es. Finally,
we showcase a detailed example to demonstrate the feasibility of
our strategy while also exposing some potential hardware-level
issues when directly applying it to BNN training.

4.1 Generating GRVs via LFSR Shifting

According to the Central Limit Theorem [8], a binomial distribution
B(n, p) can approximate a Gaussian distribution N(np, np(1 — p))
if n is large enough. Here n represents the total number of indepen-
dent trials and p denotes the possibility of success for each trial. For
instance, assume if there are n individual bits that have the equal
possibility of being 0 or 1, the total number of “1s" in these n bits
will follow the binomial distribution B(n, 0.5), and further approx-
imate the Gaussian distribution as N(0.5n, 0.25n) when n is large
enough. Based on this insight, previous efforts [3, 9, 14, 31] have
proposed efficient Gaussian Random Number Generator (GRNG)
by implementing an n-bit LFSR for uniformly distributed random
bits generation and an adder tree for counting the number of “1s".
The structure of an 8-bit Fibonacci LFSR is illustrated in Fig. 4(a).
In each cycle, values in the tap registers, i.e., R4, Rs, Rs and Rg, are
combined using three XOR gates and produce one bit to update the
value in the head register R; (highlighted in blue). Meanwhile, the
rest of the values shift to the neighbour register from left to right
and the value in the tail register Rg is dropped (highlighted in red).
Through this procedure, the LFSR creates a random bit sequence
named “pattern” upon every shifting. For each pattern, the number
of “1"s are counted by the adder tree to form a Gaussian random
variable (GRV).

4.2 Retrieving € via Pattern Reproduction

Assume we employ one LFSR to generate s for sampling all the
weights during BNN training. At the Forward stage, es are generated
sequentially to sample from the first weight of the first layer to the
last weight of the last layer, during which the LFSR continuously
shifts from its initial pattern #1 to the latest pattern #N. At the
Backward stage, we notice that the generated es are requested in a
reversed order, i.e., from the latest pattern #N to the initial pattern
#1 of the LFSR, due to the two key features of the training process.
At the layer-level, back-propagation executes from the last layer to
the first layer, thus the es generated in the last layer in the Forward
stage are needed first. At the kernel-level, constructing the kernels
that were rotated 180° during back-propagation is equivalent to
sampling the previous weights reversely (shown in Fig. 5 (a)). The

Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural Network Training via Memory-Friendly Pattern Retrieving

R, R, Ry R, Rs Rs R, Ry
V V V A4
"moJofoJof[1[t]1]1]

v v v v Ry R, Ry R R, time

#|[o] Jo[. TA [T+ [-T1] [o[-Jol-Jrl-Ta[Ti]|#
NSNS o SRR

#2| 1 [o] Jol T T1].] (Tl Jol . AT T]|#2
imefi Ran Roen RenRo R R RLR,

b

é%g % () time
#1|[oJoJofo [+]+]+] [ofofofofs[«T14]r]t#1
#2 |[[JoJoJoJol+[1]+] [t]ofoJoJofs]]1]|#2
#3 |[0]1JoJoJoJo[1]1] [oltfofoJofJo]1[1]|#3

#4 | [Tol1To[oolol1]

time 8

(©

Figure 4: (a) An 8-bit Fibonacci LFSR. (b) Illustration of repro-
ducing the previous patterns by shifting the LFSR reversely.
(c) Demonstration of shifting the 8-bit LFSR reversely to ob-
tain the previous patterns in 4 cycles. Note that #N refers to
the pattern number.

[1Tol1JoJoJoJo]1]|#4
A A A A

4 3 2

Filter 1

Kernel w Kernelw ! Filter 1 Filter 2
=y — I —
wa| Wy wai 180° | wg |
[sl =
Wyl Ws| We n \We . || | | |-

AT 14; 1 reorder| -
W7|Ws[Wo 3 Filter 3 Filter 4 —> Filter 2

! =]

start Sampling Sequence ¢pg :

[welwawa[ws[welws [Wa]ws] 2 2 |H
end start ' -

(a) (®

Figure 5: (a) Kernel rotation and its relation with reversed
sampling sequence. (b) Kernel reorganization.

aforementioned insights motivate us to reproduce the previous
LFSR patterns also in a reversed order so that all the previous es
can be retrieved locally by LFSRs instead of storing/fetching them
during Forward/Backward stage.

Key design insight. This comes from our finding that reproduc-

ing previous LFSR patterns can be simply accomplished by shifting
the current LFSR pattern in an opposite direction, combined with
three XOR operations on certain registers within an LFSR, as il-
lustrated in Fig. 4 (b). Assume a n-bit LFSR with taps t=(a,b,c,n) is
shifting right to generate the latest pattern #2 from its initial pattern
#1. The value in the head register R; of pattern #2 is generated by
XORing the tail tap R, with other taps R, Ry, R, in an order:

R, = ((Ry®R;) ®Ry) ® R, ()

where @ denotes XOR operation. Meanwhile, the value in the tail
register R, is dropped from the LFSR. In order to reproduce pattern
#1 from #2, the values in Ry, Rz...R,—1 of pattern #1 can be obtained
by left shifting pattern #2. Now the key question is how to reproduce
the value in R, of pattern #1 since it has been dropped previously.
Interestingly, for the XOR operation, one can prove that A = C @ B
if A® B = C. Thus we rewrite Eq.2 in a reversed order:

Rn = (R, ® Ra) ® Ry) @ R, (3)

MICRO 21, October 18-22, 2021, Virtual Event, Greece

OMe

Forward:
— I
: | O .
| I :
2]

3 6)
TLS 6
ayer | -1 D 4 Layer | Layer |+1

Status:. 1 2 3 4 5 6 7 8 13 14
LFSR1:| ® | @ |®|® ® | ® | @ |0 |- --- || e
LFSR2: | @ |® |6 | @ @ | @ |« |a |- | @
Backward: T p/e—— T

B @
@@
_ __Orge
| | ’—LL|®
Layer | +1 Layer | &—@ Layer | -1
I Eyer
®@ _\®@

@©)
Status: 14 13 8 7 6 5 4 3 2 1
LFSR1: @ @3 BB @ e @ 6@ @
LFSR 2:| @ @9 @ W @ W e e & @

'] Weight [[] Neuron []] Error (x) Kernel
[IVvalues computed at the same time

Figure 6: An example of directly applying LFSR reversion
strategy to BNN training.

where Rl1 is the head register of pattern #2, and Rg, Ry, R; in pat-
tern #1 are actually Rg41, Rpy1, Ret1 in pattern #2. Therefore, we
can simply set R1, Rgy1, Rpy1, Ret1 as tap registers of pattern #2 for
the retrieval of Ry, in pattern #1, as shown in the right part of Fig.
4(b). Furthermore, since the LFSR in pattern #2 shifts reversely,
the tail register R, of pattern #2 should be updated by XORing
R'l, Ra+1, Rpy1, Re+1 of pattern #2 orderly. In this fashion, this inter-
esting feature can always be leveraged to retrieve the value in R,
through Eq.3. As can be seen, pattern #1 is successfully retrieved
from pattern #2 via very simple logic operations. Fig. 4 (c) pro-
vides an example of reversing an 8-bit LESR to retrieve the previous
patterns.

4.3 Potential Issues of Directly Applying LFSR
Reversion to BNN Training

Fig. 6 depicts the details of applying our LESR reversion strategy
in a two-layer (convolution + fully-connected (FC)) BNN training.
For simplicity of discussion, we assume two LFSRs are deployed for
GRN generation. During forward stage, for the convolutional layer,
the LFSRs shift from status 1 to 6. Each status contains 9 sequential
patterns to generate GRVs for a 3 X 3 kernel (each pattern per
weight). For the FC layer, the LFSRs continue shifting from status 7
to 14. Each status contains 4 sequential patterns for a 1 X 4 weight
vector. During the Backward stage, by shifting the LFSRs reversely,
all the previous status are retrieved in a reversed sequence that
satisfies the weight fetching request by backpropagation. Note that
for convolutional layers, the flipped (180° rotated) kernels &) can be
constructed by the reversed order of () according to Fig. 5(a). And
for the FC layers, since the internal weight order of each weight
column (e.g.,1 X4 matrix) is not altered, the original weight matrices
can all be retrieved via LFSR reversion. However, as shown in Fig.5
(b), since the kernels are reorganized across the input channel (N)
dimension and output channel (M) dimension during the Backward

MICRO 21, October 18-22, 2021, Virtual Event, Greece

~,

N, . N
+—— Broadcast input I™ <—— Collect Output 0™ <+—— Cast weight (u™",g™"%) '\ i +— Cast inputs <— Collect Output O] Y,
Mo Mo

o e e e

,/

o e e o

Qiyu Wan, et al.
"""" ~ ,a’----------------------“\
\Y Legend
<+— Broadcast weight (i, 0%,) 1
M I GRNG ii R ’; kGRNG ! 1 GRNG
1
H | —
1
¥ I FFo
1
I 1
I Adder
EE i — Tree
1
H 1 Data
I
A H e swap
-- s\\
<«—— Broadcast input I, <«—— Collect Output O} “
<«—— Cast input I} <«—— Broadcast weight (u™,c™) !
B! B, 1GRNG |
| | :
T oo (OO e
. I N i
I] ST i
O oo OO
. I R -
! wlilgliNgh l
M N 3 P i
. ! A A H
0) /

Figure 7: (a)~(d): Basic MN-mapping, modified MN-mapping-v1, modified MN-mapping-v2 and GRNG of MN-mapping. (e)~(f):
Basic RC-mapping, and GRNG of RC-mapping. (g)~(i): Basic K-mapping, modified K-mapping-vl and GRNG of K-mapping,.
(j)~(1): Basic BM-mapping, modified BM-mapping-vl and GRNG of BM-mapping.

stage, the computation flow could become inconsistent with that
in the Forward stage. For example, at status 6 during the Forward
stage in Fig.6, the partial sums calculated by kernel (%) and @
are accumulated separately for the last two output channels (i.e.,
the blue blocks highlighted by red at layer /). When applying our
LFSR reversion, kernel @) and (@) will be constructed at status 6
during Backward stage. At this time, instead of being accumulated
separately, the partial sums calculated by kernel @) and () are
added together for one single output channel (i.e., the green block
highlighted by red at layer I — 1). Although our LFSR reversed
shifting can still retrieve all the €s, such computation inconsistency
between the Forward and Backward stages may pose significant
design inefficiency for training accelerator design. Furthermore,
this factor complicates the design choice selection due to the unclear
impact our LFSR reversion strategy may pose on accelerators that
adopt different computation mapping schemes. Thus, it is important
to first understand the accelerator design space for our shift-BNN.

5 DESIGN SPACE EXPLORATION

As discussed in Section 2.2 (also see Fig. 1 (b)), processing a typi-
cal DNN layer during any training stage can be decomposed into
a six-dimension for-loop execution. Instead of executing each di-
mension sequentially, the state-of-the-art DNN accelerators usually
select several dimensions and compute them simultaneously, during
which MACs along a certain dimension are mapped onto a group of
Processing Elements (PEs) that operate in parallel. Choosing differ-
ent mapping dimensions creates a significant divergence in design
efficiency. Generally, there have been three major types of compu-
tation mapping strategies for DNN inference: kernel (K-dimension)
mapping, e.g., systolic array [21], input channel and output channel

(MN-dimension) mapping, e.g., Diannao [10], NVDLA [41], and
output feature mapping (RC-dimension) mapping, e.g., Shidiannao
[19]. Since DNN training could also perform mini-batch processing,
a batch and output channel (BM-dimension) mapping method [60]
is also under consideration. To efficiently apply our design insights
into BNN training, we comprehensively study the impact of our
LFSR reversed shifting strategy on the four types of state-of-the-
art computation mappings to explore the design space for BNN
training accelerator. Specifically, we qualitatively discuss the design
possibility by using each mapping,and finally select the optimal
mapping to support our proposed Shift-BNN design. In the follow-
ing analysis, we apply superscript m and n to denote the index of
output and input channel, and subscript k, (r,c) and b to denote
the weight location inside a kernel, the neuron/error location on
an output feature map and the index of a training example in a
mini-batch, respectively.

MN-dimension mapping. Fig. 7 (a) illustrates a basic architec-

ture for MN-dimension mapping. The x-axis of the 2-D PE array
(we assume the size is 3 X 3 for simplicity) represents M-dimension
mapping and the y-axis represents N-dimension mapping. As BNN
training demands weight sampling, a GRNG is attached to each
PE to generate es for weight parameters (y, o), which will be the
common case among all four types of mapping methods. In each
cycle, an input neuron " from a certain input channel n broad-
casts horizontally to a row of PEs, where each PE calculates the
partial sums for a certain output channel m. These partial sums
are collected vertically by an adder tree (denoted by the yellow
bar) and summed up until a output neuron is generated. In this
scheme, a PE located at coordinate (m, n) will require a K XK kernel
from input channel n and output channel m to produce the partial
sum of an output neuron. Therefore, during FW, the LFSR in each

Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural Network Training via Memory-Friendly Pattern Retrieving

GRNG generates {€1, €, ..., €2 } sequentially to produce a sampled
kernel {w1, wa, ..., wg2}, as shown in Fig. 7 (d). With the proposed
LFSR reversion strategy, the flipped kernel can be reconstructed by
shifting the LFSR reversely during BW. However, also during this
stage, as the kernels are also reorganized in the MN-dimension, the
partial sums generated in PE rows should be summed up instead
of being accumulated separately (Sec.4.3). This results in the in-
consistent computation patterns between FW and BW. To address
this inconsistency in a uniform architecture design, one possible
solution is to swap the Gaussian random variables, i.e., €s, between
PE (m,n) and PE (n, m) and then load the corresponding weight
parameters and input neurons during the BW stage, as shown in
Fig. 7 (b). Nevertheless, such design requires extra interconnections
between PEs, leading to O(n?) wiring overhead for a n x n PE array,
which hinders design scalability. Moreover, there must be an equal
number of PEs in a row and a column due to the swapping mech-
anism, which further limits the design flexibility. Fig. 7 (c) shows
an alternative design that avoids the data communication between
PEs. In this design, during BW the partial sums generated by a PE
row are summed up to an output neuron with duplicated adder
trees. The partial sums generated by a PE column are accumulated
separately by directly sending each of them to the output buffer.
However, this method still requires an n-input adder tree for each
row of PEs, which incurs extra resource and energy overheads.
RC-dimension mapping. Fig. 7 (e) shows the basic output fea-

ture map (RC) dimension mapping strategy, where neurons on a
R x C output feature map are mapped to a R X C 2-D PE array
and computed simultaneously. In each cycle, one weight from a
K x K kernel is broadcast to all PEs while a group of new input
neurons are fed to the rightmost (or bottom) PEs. The partial sums
stay in the PE and are accumulated to generate the output neu-
rons as the input neurons flow from right to left (or bottom to up)
through the PE array. Since the weight is fetched sequentially from
a K X K kernel, the GRNG also produces {€y, €2, ..., g2} during FW.
Thus, the flipped kernels can be reconstructed by shifting LFSR
reversely during BW. Furthermore, since RC-dimension mapping
is irrelevant with M- or N-dimension parallelism, it will not suffer
from the e swapping issue from MN-mapping. Nevertheless, kernel
reorganization still has a slight impact on RC-mapping. During
the FW stage, since the kernels are fetched along the N-dimension
first and then M-dimension, the partial sum of an output neuron is
accumulated inside the PE continuously until the output neuron is
generated. However, during the BW stage, the kernels are fetched
along the M-dimension first and then N-dimension; so the partial
sum of an output neuron is sent to the output buffer and waits to
be read and accumulated in the PE intermittently. Therefore, two
types of control modes are required in RC-mapping.
K-dimension mapping. Fig. 7 (g) shows the basic kernel (K)
dimension mapping method, where a K X K kernel is mapped to a
K x K 2-D PE array and stays until all the computation related to
that kernel is completed. In each cycle, an input neuron is broadcast
to all the PEs and multiplied with K X K weights inside a kernel.
The partial sums are propagated and accumulated through the PEs
to generate the output neurons. Under this scheme, during FW the
PE array requires the kernel from the next input channel when the

MICRO 21, October 18-22, 2021, Virtual Event, Greece

computation of the current kernel is finished. Hence, the GRNG gen-
erates es for weights along the N-dimension sequentially from the

m,2

first to the last input channel, i.e., {elzn’1 € ..., em’N}, as shown

in Fig. 7 (i). During BW, reverse shiftingkLFSR can retrieve the
original kernels from the last to the first input channel. However,
K-dimension mapping can not reorder the weights to construct the
flipped kernels required by the BW stage as the weights inside a ker-
nel are sampled simultaneously. In fact, due to the kernel flipping,
the € generated by a certain PE during FW is required by another
PE during BW. Fig. 7 (h) illustrates a solution for K-dimension
mapping: adding datapaths between PEs for e swapping. However,
similar to the MN-dimension-v1 (as shown in Fig.7 (b)), this design
causes O(n?) wiring overhead for a n x n PE array. Moreover, due
to the kernel reorganization, K-mapping also requires two types of
control modes for different accumulation manners.
BM-dimension mapping. Fig. 7 (j) illustrates the basic batch

and output channel (BM) dimension mapping strategy, where the
horizontally distributed PEs are processing different training exam-
ples and the vertically distributed PEs are calculating neurons in
different output channels separately. In each cycle, a pair of weight
parameters (", 0™) from a certain output channel m is broadcast
to an entire row of PEs while an input neuron I, from a certain
training example b is broadcast to an entire column. The output
neurons can be collected in each PE. As the weights inside a cer-
tain kernel are requested sequentially (shown in Fig. 7 (1)), LFSR
reversion can help reconstruct the flipped kernels. However, due to
the kernel reorganization, the reconstructed kernels in a column
of PEs should be used for N-dimension computation instead of
M-dimension computation. Specifically, at the BW stage, the partial
sums generated by PE columns should be summed up instead of
being accumulated separately. To address this issue, an additional
n-input adder tree is required for each PE column. Meanwhile,
different input neurons I l’: from input channel n are sent to each
PE column, resulting in two different input buffer designs (Fig. 7
(k)). Therefore, this architecture not only incurs large hardware
overhead but also leads to high design complexity.

In conclusion, the RC-dimension mapping strategy (Fig. 7 (e))
only incurs modest design overhead compared to the other three
mapping methods when applying our LFSR reversion strategy,
which makes it an ideal fundamental computation mapping for
designing our Shift-BNN architecture.

6 SHIFT-BNN ARCHITECTURE DESIGN

6.1 Architecture Overview

Figure 8 illustrates the overall architecture of our proposed Shift-
BNN training accelerator, which comprises of a 3D PE array dis-
tributed to 16 Sample Processing Units (SPUs), a weight parameter
buffer (WPB), and a central controller. Each SPU consists of an in-
put/output neuron buffer (NBin/NBout), 16 slices of GRNG and func-
tion units, a 4 X 4 PE tile, a 4 X4 array of shift units, and a crossbar.
Following the aforementioned LFSR reversion technique and the
computation mapping consideration, our accelerator presents the
following features: (1) a hybrid dataflow that adopts RC-dimension
on 2D PE tiles and sample-level parallelism across SPUs, both of
which exploit significant opportunities for data reuse; (2) an effi-
cient GRNG design which can generate Gaussian random variables

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Qiyu Wan, et al.

Inst. Controller "
Il =
1 | ~ Pig 5
: . >
[4 2
al | SPU g
= ‘ GRNG & Function units || I
i B broadcast ~
—_— PE Tile R 1 Aw Aw’
1 FEEEH N R_rb [N —
= = shift | |p b—_Bit update | —-| Updater Jed 8K
. L
8 - ~ 7
- iHEE e - ——
P S Array | 17T~ T =
< S e] 7] [(axa Wl Nin i shift | | Aw
[a) = 11 10 11 | [(4x4) ! “Tode ®
(o] 1 1
T HEREEH NE B
12 | [13 14| [L15 I cvP | | ‘EE‘ €
~
L] L) AN = g Nout Ao A
(a) ()

Figure 8: (a) Overview of our proposed Shift-BNN training accelerator. (b) The microarchitecture of GRNG and function units.

(c) PE implementation for RC-mapping computation flow.

es sequentially during FW stage and reproduce the previous es
reversely during BW stage; (3) function units design that satisfies
necessary mathematical operations, i.e., weight sampling, deriva-
tive calculation of prior and posterior, and weight updating during
the BNN training; (4) light implementation of RC-dimension map-
ping architecture by using a PE tile, an array of shift units and a
crossbar.

6.2 SPUs and Dataflow

Since the weight parameters (y,) are shared among sampled mod-
els, it is natural to process a batch of sampled models in parallel to
increase the data reuse of weight parameters. Our design leverages
such opportunities by allocating the workloads of training each
sampled model to an individual SPU, which operates independently
and in parallel with other SPUs. Each SPU is further equipped with
the RC-dimension mapping scheme that maximizes the data reuse
of input neurons on a 2D feature map. We describe the main features
of an SPU as follows.

PE tile, shift unit and crossbar. All convolution operations
are performed in the 2D PE tile during all three stages of BNN
training (i.e., FW, BW and GC). For simplicity of discussion, we use
the FW stage as an example to illustrate the datapath design and the
computation flow. Fig. 8 (a) shows the datapath for a convolutional
layer, in which a sampled weight from the GRNG & function units
is broadcast to all the PEs and multiplies with the input neuron,
which will shift to the left (or up) neighbour PE in the next cycle
(Fig.7(e)-(f)). To support this type of dataflow, a dedicated PE de-
sign is implemented upon a typical inference accelerator [19] that
adopts RC-dimension mapping, shown in Fig.8 (c). The right part
of the PE is a shift unit. It determines which input neuron (Nin)
should be received by the PE and which neuron that is stored in
Reg-H/Reg-V should be sent (Nout) to the other PEs. The selected
input neuron and the broadcast weight will then enter into the
computation unit, which is depicted at the left part of the PE and
performs basic MAC operations, ReLU functions and max pooling
operations to produce the output neurons. Importantly, due to the
kernel reorganization and € reproducing technique at the BW stage
(Sec.5), our PE design supports two types of accumulation modes.

(1) During the FW stage, since the kernels are fetched along the N-
dimension first and then M-dimension, the partial sum is repeatedly
fetched back to the PE, depicted by the green arrow in Fig. 8 (c). (2)
During BW stage, the kernels are fetched along the M-dimension
first and then N-dimension, thus the partial sum (named psum in
the figure) is fetched from NBout and then gets accumulated in
the PE intermittently, depicted by the orange arrow in Fig. 8 (c).
Our PE design switches between these two accumulation modes
for FW and BW stages. Furthermore, to satisfy the complex data
requests from the PE tile, a crossbar is inserted between WPB, NBin,
NBout and PE tile to select the appropriate data read from the buffer.
Additionally, instead of using a column buffer in [19], we employ
a light-weight 4 X 4 shift units array which stores the candidate
input neurons that the PE tile will need in the next four cycles. The
array is organized in the same way as the PE tile spatially and each
shift unit is actually the same as the right part of the PE for simple
data shifting operations.

Efficient GRNG design. A SPU contains 4 X 4 GRNGs, which
corresponds to the 4 x 4 PE tile. For a convolutional layer, since one
weight is shared by every PE, only one GRNG needs to be enabled to
generate one € at a time. While for a FC layer, PEs require different
sampled weights from the GRNG & function units thus all GRNGs
are enabled to provide es to sample weights for their corresponding
PE. Fig. 8 (b) left illustrates the microarchitecture of a single GRNG
which consists of a 256-bit LFSR and an € generator. The GRNG fea-
tures two properties. Firstly, it possesses three operating modes. (1)
The forward mode for FW stage, during which the LFSR shifts from
left to right. Each register (except Ry) of LFSR receives the values
from the left neighbour register (named R;) while R; gets updated
by the orange taps. (2) The backward mode for BW stage, during
which the GRNG switches to the reverse mode and shifts from right
to left. Each register (except Ry,) of LFSR receives the values from
the right neighbour register (named R,) while R, gets updated by
the blue taps. (3) The idle mode, during which registers in the LFSR
receive their own values and will not be updated. Secondly, since
counting the number of “1s" (or the sum) of a LFSR pattern with an
adder tree may cause large overhead [9], the proposed € generator
uses a more efficient way to generate es based on the LFSR patterns.

Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural Network Training via Memory-Friendly Pattern Retrieving

Specifically, we store the sum of the bits in the LFSR’s initial seed in
aregister and track the difference between the old value (b) and the
updated value (b') at Ry or R, depending on the operating mode.
The difference, i.e., bit update, will be added to the initial sum to
form the current sum of LFSR which are then used to update the
register of the initial sum.

Function units. The function units consist of a sampler, a de-
rivative processing unit (DPU), and a weight parameter updater.
As a whole, the function units receive the (g, o) and € from the
crossbar and the GRNG respectively, and accomplish two tasks:
weight sampling and final gradient calculation of the weight pa-
rameters. During both FW and BW stages, the weight sampling is
performed in a sampler that applies the weight parameters (y, o)
to the Gaussian random number € using a multiplier and an adder.
The produced weight is sent to the PE tile and the DPU. During the
BW stage, the DPU and the updater are both activated. The DPU
uses the received reconstructed weight to calculate the derivatives
of the sum of the prior and posterior with respect to the weight,
Awy,. By decomposing the prior and posterior terms into a log form,
Aw,, can be approximated as U—“;. Since o¢ is a constant value of

prior distribution and is usuall}f chosen as 0.5, we thus calculate
the Awy, by left shifting w 2 bits. The Aw,, is then added to the
gradient of likelihood computed in the GC stage to obtain the final
gradient Aw'. Lastly, in order to update the weight parameters, the
updater calculates the gradients of (4, o) using Aw’ and €, which
corresponds to the process 3) in Fig.1 (a). The produced (Ay, Ac)
will be further averaged across different SPUs and then used to
update the weight parameters.

Buffer design. To support the dataflow of RC-mapping in an
SPU, we follow a similar design principle in [19] to organize the
data in the neuron buffer,i.e., NBin/NBout. NBin/NBout comprises
multiple banks. Each bank provides the neurons requested by a PE
row through the crossbar. For the weight parameter buffer (or WPB),
we split it into two sub-buffers that store y and o separately. Each
sub-buffer is also designed to consist of multiple banks and each en-
try of the bank stores the weights for a PE row. For a convolutional
layer, one weight parameter is selected by the crossbar at each cycle
while for an FC layer the entire entry read from the bank is sent to a
PE row. Note that although the convolution operands (e.g., weight,
neuron, error, and gradient) vary across the three BNN training
stages, our uniform design of data organization in WPB, NBin and
NBout is beneficial for the buffer function swapping. For example,
during the BW stage, the error feature maps of layer [+ 1 stored
in NBout can serve as the weights for the gradient calculation of
layer I by temporarily treating the NBout as WPB.

7 EVALUATION

7.1 Experimental Methodology

BNN models and training datasets. We evaluate Shift-BNN by
training on five representative BNN models. Among them, B-MLP
[9] (fully-connected BNN with 3 hidden layer) is trained with
MNIST [18]. B-LeNet (built on LeNet[37]) is trained with CIFAR-10
[34]. These two networks are mostly adopted to handle small but
safety-critical tasks. B-AlexNet (built on AlexNet[35]), B-VGG (built
on VGG16 [48]) and B-ResNet (built on ResNet-18 [28]) are trained

MICRO 21, October 18-22, 2021, Virtual Event, Greece

with ImageNet datasets [17], which are used to deal with more
complex tasks in the unfamiliar environments. For generality, the
BNN models are trained with various number of samples, e.g., 8,
16, 32, 64, and 128 (if needed) samples.

Comparison cases. To demonstrate the effectiveness of Shift-
BNN, we compare it with three training accelerators: Firstly, since
Shift-BNN adopts RC-mapping as the fundamental design strategy,
we compare it with the RC-accelerator that adopts RC-mapping
strategy but without LFSR reversion technique. Secondly, since
MN-mapping is commonly used in existing DNN training accel-
erators [39, 64], we employ an MN-accelerator that adopts MN-
mapping strategy without LFSR reversion technique as the baseline
accelerator for generality, which is also used for our preliminary
investigation in Sec.3. Thirdly, to verify the analysis about design
alternatives (see Sec.5), we further test the effectiveness of our LFSR
reversion strategy on MN-accelerator by comparing with an MN-
Shift-accelerator that adopts both MN-mapping strategy and LFSR
reversion technique. To overcome the challenges caused by our
LFSR reversion to the MN-mapping scheme, we follow the design
principle in Fig. 7 (c). For fair comparison, all accelerators employ
16 4 X 4 PE tile and are allocated with on-chip buffer of the same
size. The 16 PE tiles process 16 sampled models simultaneously
for the same extent of weight parameter reuse. We evaluate the
energy efficiency (performance/power) of Shift-BNN and compare
with the modern GPU, i.e., Nvidia Telsa P100. We use Pytorch [43]
to implement and train the BNNs from scratch, and the training
hyperparameters (e.g., batch size, epochs. etc) are kept the same as
in other comparison cases. The execution latency and energy con-
sumption are extracted from the GPU runtime information obtained
by Nvidia Profiler [42].

Experimental Setup. All accelerator designs are implemented
in Verilog RTL and synthesized on a Xilinx Virtex-7 VC709 FPGA
evaluation board. For off-chip memory access, the accelerators com-
municate with two sets of DDR3 DRAM that provide sufficient data
transfer rate to the PE tiles via a Memory Interface Generator [58].
The execution time results are obtained from the post-synthesis
design and the energy consumption is further evaluated with Xilinx
Power Estimator (XPE) [59]. The data precision for all architectures
is set to 16-bit and the operating frequency is set as 200MHz.

Training quality. Figure 9 compares the training curve of B-
LeNet when using the vanilla BNN training algorithm on Pytorch
(baseline) and Shift-BNN. The training hyperparameters and data
type are kept the same in baseline and Shift-BNN. It can be seen
that Shift-BNN does not affect the overall training iterations to
convergence and the final accuracy. Similar behavior is observed
on the other networks. This is because our LFSR reversion strategy
fundamentally does not modify the training algorithm and simply
manages to accurately retrieve all the es during the entire training
process. Hence, we only evaluate and validate the training qual-
ity results on Shift-BNN when using different bit length. Table 1
shows how different bit lengths affect the validation accuracy of
five BNN models. The accuracy results are obtained after the same
training epochs for a certain network. As can be seen, training
with 16-bit precision only brings an average 0.31% accuracy drop
compared with single-precision training. This negligible loss may
be due to the error tolerance nature of the sampling process during
BNN training. While Shift-BNN can employ 32-bit floating point

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Training loss(Shift-BNN)
Validation accuracy(Shift-BNN)

——Training loss(baseline)
—— Validation accuracy(baseline)

8.00 70.00%
o AN o >
7.00 AR APN DAL Aprroe 65.00% Q
\ o
2 600 |/ 60.00% =
=} Y S
- 500 | 55.00% &
¥ \ c
g 400 [Ay 50.00% &
‘T 3.00 W) 45.00% ©
= 2.00 \/V\'V\/‘ AN AP 40.00% =
- \/V\ WAy A A JJ‘L_ ; °
1.00 35.00%
0.00 30.00%
1 10 19 28 37 46 55 64 73 82 91 100
epoch

Figure 9: Validation accuracy and training loss over training
time for Shift-BNN and vanilla BNN training algorithm on
B-LeNet trained with CIFAR-10.

S [mMNAcc. OMNShift-Acc. BRCAcc. MShift-BNN

g 1

S o8

g 0.6

O o4

& 02

Q

& 3 ° 5

: > R NS > RS

§¢8Q e‘ze‘z‘ N \\‘90“0 %eé”é

g9 N & ei\e% %ﬁz\;\@i\&e T Q’i%§
o &

Figure 10: Energy consumption comparison between Shift-
BNN and other designs.

O MNShift-Acc. B RC-Acc. @ Shift-BNN ‘

ﬂﬂﬂ (i i

& o e &
Q’,\\ 4(7 40 z‘:é

[mMN-Acc.
o
p=}
g 1.5
2
e 0.5
0
q)’\/

& &
Figure 11: The speedup of Shift-BNN compared with other
accelerators.

arithmetic to achieve lossless training, the lower precision train-
ing is more attractive as lower precision computation potentially
consumes much less energy.

Table 1: Data type vs validation accuracy.

Network B-MLP | B-LeNet | B-AlexNet B-VGG B-ResNet

Dataset MNIST | CIFAR-10 ImageNet ImageNet | ImageNet
Val-acc(8b) 95.67% 62.80% NaNT 45.50% NaN
Val-acc(16b) 98.05% 65.62% 59.95% 67.52% 68.12%
Val-acc(32b) 98.11% 65.81% 60.10% 67.76% 69.03%

I The network hardly converges due to the low precision 8-bit BNN training.

7.2 Evaluation Results

Effectiveness on energy and performance. Fig. 10 illustrates the
energy consumption of Shift-BNN compared against other acceler-
ators. As it shows, the Shift-BNN accelerator achieves an averagely
62% (up to 76%), 70% (up to 82%), and 39% (up to 44%) energy con-
sumption reduction compared with RC-accelerator (RC-Acc), MN-
accelerator (MN-Acc), and MN-Shift-accelerator (MNShift-Acc), re-
spectively. The outstanding energy reduction of Shift-BNN is from
the elimination of €’s DRAM accesses by using our LFSR reversion
strategy. The MNShift-Acc reduces the energy consumption by 53%

Qiyu Wan, et al.

\ BMN-Acc. O MNShift-Acc. BRC-Acc. @ Shift-BNN IGPU‘

ﬂﬂ JJJ Aﬂﬂ Ak kil

Figure 12: Energy efficiency comparison between Shift-BNN
and other designs.

2o
ISIRN]

Norm. energy efficiency
o N B O

averagely compared with MN-Acc which is less than that of Shift-
BNN over RC-Acc (i.e., 62% reduction). This implies that our LFSR
reversion technique is also effective on MN-accelerator but reaps
less energy saving than applying on RC-accelerator. As discussed
in Section 6, this is caused by the large design overhead, e.g., dupli-
cated adder trees, etc, when applying LFSR reversion strategy to
MN-mapping scheme. We further observe that Shift-BNN achieves
68% and 70% energy consumption reduction over RC-Acc when
evaluating on B-MLP and B-LeNet models, respectively. These num-
ber are larger than that of other BNN models. This is because €
takes a larger portion in the total off-chip data transfer, and off-chip
memory access consumes a larger portion of total training energy
consumption for B-MLP and B-LeNet.

Since Shift-BNN mainly targets on reducing the data transfer
during training, it is interesting to see if the data transfer reduction
can be converted to performance improvement. Fig. 11 shows the
speedup of Shift-BNN over other accelerators. From the figure, we
observe that Shift-BNN accelerator achieves an average 1.6X (up to
2.8X) speedup over RC-Acc. We found that the reduced execution
time mainly comes from the removal of all memory accesses of € in
FC layers. As we know, the memory access of € and the computation
in a certain layer can be done in parallel by using double-buffering.
Thus, in the computation-dominated convolutional layers, remov-
ing the memory access of € may not reduce the latency. However, in
the parameter-dominated FC layers, the memory access (including
storing in FW and fetching in BW) time of S samples of € signifi-
cantly exceeds the computation time since the number of MACs in
FC layers are much smaller than that of convolutional layers. For
example, the memory access time of € is 8 X over computation time
in the 1st layer of B-MLP-8. Accordingly, there is an obvious vari-
ance in the performance improvement across different BNN models.
For instance, for the fully-connected B-MLP models, the Shift-BNN
gains the maximum 2.6X speedup on average, while for the convo-
lution dominated B-VGG and B-ResNet models, Shift-BNN achieves
an averagely 1.18x performance improvement.

Fig. 12 shows the energy efficiency of Shift-BNN accelerator
compared with other designs. The energy efficiency is defined
as throughput per watt (GOPS/Watt). It is shown that Shift-BNN
boosts the energy efficiency by 4.9% (up to 10.8x), 10.3x (up to
26.1x) and 2.5X (up to 4.6x) averagely compared with RC-Acc, MN-
Acc and MNShift-Acc, respectively. The highest energy efficiency
achieved by Shift-BNN is observed on B-MLP-32 model, which
enjoys significant reductions on both energy consumption and
latency. Furthermore, Shift-BNN also yields averagely 4.7x energy
efficiency compared with Telsa P100. We observe that the GPU
outperforms the baseline when training deeper BNNs with larger

Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural Network Training via Memory-Friendly Pattern Retrieving

MICRO 21, October 18-22, 2021, Virtual Event, Greece

=o=—Energy reduction(MNShift over MN) =z=Energy reduction (ShiftBNN over RC) =o=Energy efficiency(MNShift) A~ Energy efficiency(ShiftBNN) ‘

100.00% 18 100.00% A 16 70.00% 6
c 16 > < 14 > £ 60.00% >
O 80.00% & 1 2 S 80.00% S o 0 5 g
b= S B 2§ B s0.00% 5
3] A Q2 O o G 50.00% A]
3 60.00% S 3 6000% A 005 3 ‘S
5 60.00% 0wE © & T 40.00% =
1S s o 2 A 8 @ ¢ 3%
> 40.00% > > 40.00% A 6 > > 30.00% >
& 6 b0 B0 A B B PR
o S o 4 & @ 2000% 5
c 20.00% 4 ¢ £ 2000% e < , &
w 2 W 2 W W 10.00% i

0.00% 0 0.00% 0 0.00% o
s=4 s=8 s=16 s=32 s=64 s=128 s=4 s=8 s=16 s=32 s=64 s=128 s=4 s=8 s=16 s=32 s=64 s=128

number of samples

(a) B-MLP

number of samples

(b) B-LeNet

number of samples

(¢) B-VGG

Figure 13: The energy reduction of Shift-BNN (MNShift-Acc) over RC-Acc (MN-Acc) and energy efficiency of Shift-BNN and

MNShift-Acc when training with different sample size.

B [nput/Output R Gaussian variable €

4] Weight (y, o) <+ DRAM accesses -
27 1 £
S 6 08 &
Q5 5
< 4 0.6 &
S 3 04 ‘-
< 2 = . = 0.2 z
o 1 ol o S > EnN 025
g 0 o €
zo& =z Zo £z ZzZ 0O &z Z0O&z ZzZ O & =z [
. g« e & g & g £]

E =2%zg 3252 32%gz =%z =2"gz =2

5 Z & Z & zZ & zZ & zZ &

> = = == == == ==

wv wv wv %) wv

B-MLP-16 B-LeNet-16 B-AlexNet-16 B-VGG-16 B-ResNet-16

Figure 14: The effectiveness of our LFSR reversion strategy
on reducing DRAM accesses and memory footprint.

sample size because of its highly parallel computing and sufficient
memory bandwidth. However, it is still beaten by the variants of
Shift-BNN that are equipped with our techniques, e.g., even MNShift
outperforms GPU by 1.9% energy efficiency. This is because the off-
chip memory access of a large amount of GRVs can not be avoided
when training BNNs on GPUs either.

Reduction of DRAM accesses and memory footprint.
Fig. 14 shows the number of DRAM accesses and memory footprint
breakdown of four accelerators when training on BNN models with
16 samples. For the DRAM accesses, we observe that the MN-Acc
and RC-Acc always require much more DRAM accesses than Shift-
BNN and MNShift-Acc in different BNN models. For example, the
number of DRAM accesses in MN-Acc (RC-Acc) are 5.7X (5.8X)
larger than that in MNShift-Acc (Shift-BNN) in the e-dominated
B-LeNet-16 model. Even in the wider and deeper models (e.g., B-
VGG-16 and B-ResNet-16) where the weight parameters and inter-
mediate feature maps occupy a considerate portion of total data
transfer, Shift-BNN still gains averagely 2.6X reduction on DRAM
accesses. The significant reduction of DRAM access is the major
source of Shift-BNN’s high energy efficiency. As various lower-
precision training techniques [4, 23, 62], e.g., 8-bit integer training,
have been proposed recently, the cost of MACs could become much
less. Thus the memory saving techniques of Shift-BNN could have
more benefits once these techniques are extended to BNN models.
Furthermore, as the figure shows, both Shift-BNN and MNShift-Acc
reduce averagely 76.1% memory footprint during training compared
with accelerators without LFSR reversion technique. From the fig-
ure, we can observe that the memory footprint taken by Gaussian
variable € is completely eliminated by MNShift-Acc and Shift-BNN.

Scalability to larger sample size. In some high-risk applica-

tions, one may need a more robust BNN model to make decisions,
thus requires training BNNs with a larger sample size to strictly

approximate the loss function in Eq.1. We evaluate three BNN
models including B-MLP, B-LeNet and B-VGG by training them
with different number of samples and report the corresponding en-
ergy consumption reduction and energy efficiency under different
hardware designs. As can be seen, for all three models, the energy
reduction achieved by both MNShift-Acc and Shift-BNN increases
as the sample size becomes larger. For example, the energy savings
increase from 55.5% to 78.8% as the sample size grows from 4 to
128 in B-LeNet. The outstanding scalability of our LFSR reversion
technique is because of the increasing ratio of € in the total off-chip
memory accesses when we use more samples. We observe the simi-
lar increase in energy efficiency for MNShift-Acc and Shift-BNN as
the training sample increases. Lastly, compared with MNShift-Acc,
Shift-BNN achieves higher energy efficiency with various sample

sizes.,
Table 2: Resource usage of Shift-BNN components.

Resource PE Shift Function | GRNGs NBin
’ tile array ‘ units ‘ /NBout ‘
LUT 966 222 785 22717 0
FF 469 464 399 4224 0
DSP 16 0 32 0 0
BRAM 0 0 0 0 48
Pavg (W) 0.076 0.016 0.008 0.005 0.112

Resource usage and power. Table 2 lists the resource usage

and average power of different hardware modules in one SPU. As
can be seen, the shift units array and function units consume less
LUT and FF resources compared with the PE tile. Although the
function units requires more DSPs to implement function units
due to the sampling, derivative calculation and updating processes,
their average power dissipation is much smaller than that of PEs
since only 1 of 16 function units is activated during convolutional
layers. The similar effect can be observed on GRNGs whose average
power is only 0.005W, albeit occupying more LUT and FF resources
than others.

8 RELATED WORKS

Accelerators for BNNs. There is an increasing demand for design-
ing specific BNN accelerators recently. VIBNN [9] optimizes the
hardware design of GRNGs and proposes an FPGA-based implemen-
tation for BNN inference. FastBCNN [53] targets on accelerating
the BNN inference via neuron skipping technique. [61] proposes a
BNN inference accelerator by leveraging post-CMOS technology.
Different from the above efforts, our work proposes a highly ef-
ficient BNN accelerator that focuses on optimizing the training
procedure.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

DNN training optimization has been extensively studied [39,
44, 49, 60, 64]. For example, eager pruning [64] and Procrustes [60]
exploit the weight sparsity during the training stage by leveraging
aggressive pruning algorithms and develop customized hardware
to improve the performance. Procrustes also employs LFSR-based
GRNGs but in purpose of enabling weight initialization and decay.
Since our work reveals the key challenge in BNN training and
mainly focuses the reducing the data transfer of € which is irrelevant
to sparsity, the above works are orthogonal to ours.

Reducing DRAM energy consumption Many works focus
on addressing costly DRAM accesses during the DNN inference
or training process. EDEN [33] leverages approximating DRAM
technique to reduce the energy and latency while strictly meets
the target accuracy. Shapeshifter [36] explores the opportunities
in shortening the transferred data width during DNN inference.
These works are orthogonal to ours since we explore the unique fea-
ture of BNN training and eliminate intensive data transfer without
accuracy loss from a different perspective.

9 CONCLUSION

In this paper, we reveal that the massive data movement of GRVs
is the key bottleneck that induces the BNN training inefficiency.
We propose an innovative method that eliminates all the off-chip
memory accesses related to the GRVs without affecting the train-
ing accuracy. We further explore the hardware design space and
propose a low-cost and scalable BNN accelerator to conduct highly
efficient BNN training. Our experimental results show that our
design achieves averagely 4.9 (up to 10.8X) boost in energy effi-
ciency and 1.6X (up to 2.8X) speedup compared with the baseline
accelerator.

ACKNOWLEDGMENTS

This research is partially supported by NSF grants CCF-2130688,
CCF-1900904, CNS-2107057, University of Sydney faculty startup
funding, and Australia Research Council (ARC) Discovery Project
DP210101984.

REFERENCES

[1] Alexander Amini, Ava Soleimany, Sertac Karaman, and Daniela Rus. 2018. Spatial
uncertainty sampling for end-to-end control. arXiv preprint arXiv:1805.04829
(2018).

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. 2016. Concrete problems in Al safety. arXiv preprint arXiv:1606.06565
(2016).

[3] R Andraka and R Phelps. 1998. An FPGA based processor yields a real time high
fidelity radar environment simulator. In Military and Aerospace Applications of
Programmable Devices and Technologies Conference. 220-224.

[4] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. 2018. Scalable methods
for 8-bit training of neural networks. arXiv preprint arXiv:1805.11046 (2018).

[5] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational inference:
A review for statisticians. Journal of the American statistical Association 112, 518
(2017), 859-877.

[6] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015.
Weight uncertainty in neural network. In International Conference on Machine
Learning. PMLR, 1613-1622.

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[8] Gunnar A Brosamler. 1988. An almost everywhere central limit theorem. In Math-
ematical Proceedings of the Cambridge Philosophical Society, Vol. 104. Cambridge
University Press, 561-574.

—_

9]

[10

[11

[12

(13]

[14]

[15]

[16

=
)

(18

[19

[20

[21

~
oS

[23

[24

[25

[26

[27

[28

[29

[30]

[31

[32

[33

Qiyu Wan, et al.

Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud
Pedram, and Yanzhi Wang. 2018. Vibnn: Hardware acceleration of bayesian
neural networks. ACM SIGPLAN Notices 53, 2 (2018), 476-488.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture
News 42, 1 (2014), 269-284.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367-379.

Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. 2015. P-cnn: Pose-based cnn
features for action recognition. In Proceedings of the IEEE international conference
on computer vision. 3218-3226.

Sai Hung Cheung, Todd A Oliver, Ernesto E Prudencio, Serge Prudhomme, and
Robert D Moser. 2011. Bayesian uncertainty analysis with applications to turbu-
lence modeling. Reliability Engineering & System Safety 96, 9 (2011), 1137-1149.
C Condo and WJ Gross. 2015. Pseudo-random Gaussian distribution through
optimised LFSR permutations. Electronics Letters 51, 25 (2015), 2098-2100.

Bill Dally. 2011. Power, programmability, and granularity: The challenges of
exascale computing. In 2011 IEEE International Test Conference. IEEE Computer
Society, 12-12.

Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidy-
nathan, Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey.
2016. Distributed deep learning using synchronous stochastic gradient descent.
arXiv preprint arXiv:1602.06709 (2016).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248-255.

Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine 29, 6 (2012),
141-142.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting vision
processing closer to the sensor. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. 92—104.

Facebook. 2021. Baysian Optimization Research. Retrieved June 8,
2021 from https://research.fb.com/programs/research-awards/proposals/sample-
efficient- sequential-bayesian-decision-making-rfp/

Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. 2009. Cnp: An
fpga-based processor for convolutional networks. In 2009 International Conference
on Field Programmable Logic and Applications. IEEE, 32-37.

Ammarah Farooq, SyedMuhammad Anwar, Muhammad Awais, and Saad Rehman.
2017. A deep CNN based multi-class classification of Alzheimer’s disease using
MRL In 2017 IEEE International Conference on Imaging systems and techniques
(IST). IEEE, 1-6.

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakrish-
nan, Zhangyang Wang, and Yingyan Lin. 2020. Fractrain: Fractionally squeezing
bit savings both temporally and spatially for efficient dnn training. arXiv preprint
arXivi2012.13113 (2020).

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. PMLR, 1050-1059.

Abhinav Goel, Caleb Tung, Yung-Hsiang Lu, and George K Thiruvathukal. 2020.
A survey of methods for low-power deep learning and computer vision. In 2020
IEEE 6th World Forum on Internet of Things (WF-IoT). IEEE, 1-6.

Alex Graves. 2011. Practical variational inference for neural networks. In Ad-
vances in neural information processing systems. Citeseer, 2348-2356.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learning with limited numerical precision. In International conference
on machine learning. PMLR, 1737-1746.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Sto-
chastic variational inference. Journal of Machine Learning Research 14, 5 (2013).
Mark Horowitz. 2014. 1.1 computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). IEEE, 10-14.

Minsu Kang. 2010. FPGA implementation of Gaussian-distributed pseudo-random
number generator. In 6th International Conference on Digital Content, Multimedia
Technology and its Applications. IEEE, 11-13.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. 2015. Bayesian segnet:
Model uncertainty in deep convolutional encoder-decoder architectures for scene
understanding. arXiv preprint arXiv:1511.02680 (2015).

Skanda Koppula, Lois Orosa, A Giray Yaglkei, Roknoddin Azizi, Taha Shahroodi,
Konstantinos Kanellopoulos, and Onur Mutlu. 2019. EDEN: enabling energy-
efficient, high-performance deep neural network inference using approximate
DRAM. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on

Shift-BNN: Highly-Efficient Probabilistic Bayesian Neural Network Training via Memory-Friendly Pattern Retrieving

[34]

[35

[36]

[37]

[38

[39]

[40]

[41

[42

[43]

[44]

[45]

[46]

[47]
[48]

[49

[50]

[51

[52

[53]

[54]

[57]

[58

Microarchitecture. 166-181.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097-1105.

Alberto Delmas Lascorz, Sayeh Sharify, Isak Edo, Dylan Malone Stuart, Omar Mo-
hamed Awad, Patrick Judd, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Zissis
Poulos, et al. 2019. Shapeshifter: Enabling fine-grain data width adaptation in
deep learning. In Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture. 28~41.

Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http:
//yann.lecun.com/exdb/lenet.

Christian Leibig, Vaneeda Allken, Murat Seckin Ayhan, Philipp Berens, and
Siegfried Wahl. 2017. Leveraging uncertainty information from deep neural
networks for disease detection. Scientific reports 7, 1 (2017), 1-14.

Mostafa Mahmoud, Isak Edo, Ali Hadi Zadeh, Omar Mohamed Awad, Gennady
Pekhimenko, Jorge Albericio, and Andreas Moshovos. 2020. Tensordash: Ex-
ploiting sparsity to accelerate deep neural network training. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 781-795.
NHTSA. 2017. Tesla Crash Preliminary Evaluation Report. Technical Report. U.S.
Department of Transportation, National Highway Traffic Safety Administration.
Nvidia. 2021. Nvidia Deep Learning Accelerator. Retrieved June 8, 2021 from
http://nvdla.org/

Nvidia. 2021. Nvidia Visual Profiler. Retrieved June 8, 2021 from https://docs.
nvidia.com/cuda/profiler-users-guide/index.html

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma: A sparse
and irregular gemm accelerator with flexible interconnects for dnn training. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 58-70.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W
Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1-13.

Kumar Shridhar, Felix Laumann, and Marcus Liwicki. 2019. A comprehensive
guide to bayesian convolutional neural network with variational inference. arXiv
preprint arXiv:1901.02731 (2019).

Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-
works for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014).
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
2019. Hypar: Towards hybrid parallelism for deep learning accelerator array. In
2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 56-68.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. 2013. Deep neural
networks for object detection. (2013).

Tesla. 2020. Tesla car crash report 2020. Retrieved June 8, 2021
from https://arstechnica.com/cars/2019/05/feds-autopilot-was-active-during-
deadly-march-tesla-crash/

Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,
Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat
Kaul, Pradeep Dubey, et al. 2017. Scaledeep: A scalable compute architecture
for learning and evaluating deep networks. In Proceedings of the 44th Annual
International Symposium on Computer Architecture. 13-26.

Qiyu Wan and Xin Fu. 2020. Fast-BCNN: Massive Neuron Skipping in Bayesian
Convolutional Neural Networks. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 229-240.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU memory man-
agement for training deep neural networks. In Proceedings of the 23rd ACM
SIGPLAN symposium on principles and practice of parallel programming. 41-53.
Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash
Gopalakrishnan. 2018. Training deep neural networks with 8-bit floating point
numbers. arXiv preprint arXiv:1812.08011 (2018).

Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, and
Zhangyang Wang. 2019. E2-train: Training state-of-the-art cnns with over 80%
energy savings. arXiv preprint arXiv:1910.13349 (2019).

Markus Wulfmeier. 2018. On machine learning and structure for mobile robots.
arXiv preprint arXiv:1806.06003 (2018).

Xilinx. 2019. Xilinx Memory Interface Generator. Retrieved June 8, 2021 from
https://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf

(59

[60

[61

[62

[63

(64

(65

]

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Xilinx. 2020. Xilinx Power Estimator. ~ Retrieved June 8, 2021 from https:
//www.xilinx.com/products/technology/power/xpe.html

Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub, Guy Lemieux,
and Mieszko Lis. 2020. Procrustes: a dataflow and accelerator for sparse deep
neural network training. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 711-724.

Kezhou Yang, Akul Malhotra, Sen Lu, and Abhronil Sengupta. 2020. All-spin
Bayesian neural networks. IEEE Transactions on Electron Devices 67, 3 (2020),
1340-1347.

Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guogqi Li. 2020.
Training high-performance and large-scale deep neural networks with full 8-bit
integers. Neural Networks 125 (2020), 70-82.

Cheng Zhang, Judith Biitepage, Hedvig Kjellstrom, and Stephan Mandt. 2018.
Advances in variational inference. IEEE transactions on pattern analysis and
machine intelligence 41, 8 (2018), 2008-2026.

Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. 2019. Eager pruning:
algorithm and architecture support for fast training of deep neural networks. In
2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 292-303.

Bojian Zheng, Nandita Vijaykumar, and Gennady Pekhimenko. 2020. Echo:
Compiler-based GPU memory footprint reduction for LSTM RNN training. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 1089-1102.

