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ABSTRACT

Bayesian Neural Networks (BNNs) that possess a property of uncer-

tainty estimation have been increasingly adopted in a wide range

of safety-critical AI applications which demand reliable and robust

decision making, e.g., self-driving, rescue robots, medical image

diagnosis. The training procedure of a probabilistic BNN model

involves training an ensemble of sampled DNN models, which in-

duces orders of magnitude larger volume of data movement than

training a single DNN model. In this paper, we reveal that the root

cause for BNN training inefficiency originates from the massive

off-chip data transfer by Gaussian Random Variables (GRVs). To

tackle this challenge, we propose a novel design that eliminates all

the off-chip data transfer by GRVs through the reversed shifting

of Linear Feedback Shift Registers (LFSRs) without incurring any

training accuracy loss. To efficiently support our LFSR reversion

strategy at the hardware level, we explore the design space of the

current DNN accelerators and identify the optimal computation

mapping scheme to best accommodate our strategy. By leveraging

this finding, we design and prototype the first highly efficient BNN

training accelerator, named Shift-BNN, that is low-cost and scalable.

Extensive evaluation on five representative BNN models demon-

strates that Shift-BNN achieves an average of 4.9× (up to 10.8×)

boost in energy efficiency and 1.6× (up to 2.8×) speedup over the

baseline DNN training accelerator.

CCS CONCEPTS

• Computer systems organization → Neural networks; • Hard-

ware→ Hardware accelerators.
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number generation
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1 INTRODUCTION

Deep learning based AI technologies, such as deep convolutional

neural networks (DNNs), have recently achieved tremendous suc-

cess in numerous application domains, such as object detection,

image classification, etc [7, 12, 22, 47, 50]. However, DNN models

are known to be prone to over-fitting due to insufficient training

data in the real world, which can lead to wrong predictions when

the model is deployed in unfamiliar environments. With the increas-

ing adaptation of safety-critical AI applications (e.g., healthcare and

self-driving), wrong predictions can result in catastrophic incidents.

For example, several accidents have been recently reported regard-

ing poor safety-critical AI designs [40, 51], e.g., in 2020 an autopilot

car crashed into a white truck because the sensor failed to distin-

guish the truck from the bright sky [51]. Therefore, enhancing the

reliability and robustness of deep learning has become an urgent

demand from AI practitioners.

As one of the most popular probabilistic machine learning tools,

Bayesian Neural Networks (BNNs) have been increasingly em-

ployed in a wide range of real-world AI applications which re-

quire reliable and robust decision making such as self-driving,

rescue robots, disease diagnosis, scene understanding, and so on

[1, 32, 38, 57]. BNNs have also emerged as a promising solution

in today’s data center services for improving product experiences

(e.g., Instagram and Youtube), infrastructure, and aiding cutting-

edge research [20]. Different from the traditional DNNs which

require massive training data, BNN models can more easily learn

from small datasets and are more robust to over-fitting issues [6].

Furthermore, BNNs are capable of providing valuable uncertainty

information for users to better interpret the situation without mak-

ing over-confident decisions [2, 13, 24]. Generally, a BNN model

can be viewed as a probabilistic model where each model parameter,

i.e., weight, is a probability distribution. Training a BNN essentially

calculates the probability distribution of weights, which requires

integrating on infinite number of neural networks. This is often
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intractable. To tackle this, recent efforts [6, 26, 46] leverage Gauss-

ian distributions to approximate the target weight distributions via

weight sampling to identify the mean and standard deviation of

each weight.

Training DNN models on current hardware devices has long

been considered as a slow and energy-consuming task [16, 25, 52].

Compared with the traditional DNN training, BNN training inef-

ficiency is further exacerbated by the requirement of training an

ensemble of sampled DNN models to ensure robustness. In conse-

quence, we have observed that the total data movement during a

BNN training procedure can be orders of magnitude larger than

training one single DNN model. Moreover, as the existing DNN

training optimization techniques [45, 54, 60, 64, 65] are oblivious

to the unique sampling process of the probabilistic BNN models,

they lack the capabilities to efficiently and effectively deal with

the excessive data movement induced by the memory-intensive

BNN training, resulting in poor energy efficiency and long training

latency.

In this paper, we first conduct a comprehensive characterization

of the state-of-the-art BNN training on current DNN accelerators

and analyze its inefficiency. By carefully breaking down the mem-

ory activities in each BNN layer, we observe that the dominant

factor that induces BNN training inefficiency is the massive data

movement from Gaussian random variables (GRVs). These variables

are generated during forward propagation for weight sampling and

sent to off-chip memory for later reuse during backward propaga-

tion. They contribute the major portion of the total off-chip memory

accesses for BNN training (e.g., up to 71%). To tackle this challenge,

we propose a novel design that is capable of eliminating all the

off-chip memory accesses by GRVs without incurring any training

accuracy loss. Our design is based on a key observation that the

software-level “forth-back" training procedure shares great similar-

ity with the classic hardware-level reversed shifting of the Linear

Feedback Shift Registers (LFSRs) which are used in modern BNNs

to generate the GRVs [9]. By leveraging the reversible property of

LFSR, we build a highly efficient memory-friendly design based on

LFSR reversed shifting, which can accurately retrieve all the GRVs

(i.e., bit patterns generated in forward propagation) locally during

backpropagation without ever storing them during the forward

propagation. Furthermore, to investigate the compatibility of our

LFSR reversion strategy on real hardware, we qualitatively study

the design possibilities by directly integrating our strategy to the

existing DNN accelerators that adopt various computation mapping

schemes, and eventually identify the optimal mapping to support

our BNN training design. Based on this knowledge, we design and

prototype the first highly efficient hardware accelerator for BNN

training, named Shift-BNN, that takes advantage of drastically re-

duced data movement enabled by our LFSR reversion strategy. This

study makes the following contributions:

• We characterize modern BNN training on the state-of-the-art

DNN accelerators and reveal that the root cause for its train-

ing inefficiency originates from the massive data transfer

induced by GRVs;

• We propose a novel design that eliminates all the off-chip

data transfer related to GRVs through local LFSR reversed

shifting without affecting the training accuracy;

• We present the potential hardware-level challenges when di-

rectly applying our design to BNN training and significantly

mitigate these issues via a sophisticated and qualitative de-

sign space exploration;

• We design and prototype the first highly-efficient BNN train-

ing accelerator that is low-cost and scalable, well supported

by a hybrid dataflow;

• Extensive evaluation on five representative BNN models

demonstrates that Shift-BNN achieves an average of 4.9×

(up to 10.8×) improvement in energy efficiency and 1.6× (up

to 2.8×) speedup over the baseline accelerator. Shift-BNN

also scales well to larger BNN model sample sizes.

2 BACKGROUND

2.1 Training BNNs with Variational Inference

A Bayesian neural network (BNN) can be viewed as a probabilistic

model in which each model parameter,e.g., weight, is a probability

distribution. One of the most popular method for training BNN

models is known as Variational Inference [5, 29, 63] , which finds

a probability distribution 𝑞(w|𝜃 ) ∈ Q to approximate the target

weight distribution (Q is a common distribution family). Searching

for 𝑞(w|𝜃 ) is an optimization problem that aims to minimize the

loss function with respect to 𝜃 (Eq.1).

L(w, 𝜃 ) =
𝑆∑

𝑖=1

log𝑞 (w(i) |𝜃 ) − log𝑃 (w(i) ) − log𝑃 (y |x,w(i) ) (1)

In Eq.1,w(i) denotes the 𝑖th sample of weights drawn from the ap-

proximation distribution 𝑞(w|𝜃 ). Typically, 𝑞(w|𝜃 ) is assumed to be

a Gaussian distribution 𝑞(w| (𝜇, 𝜎)) where 𝜇 and 𝜎 are the mean and

standard deviation of the Gaussian distribution, respectively. Each

sample of weight w(i) can be obtained by using w(i) = 𝜇 + 𝜖 (i) ◦ 𝜎 ,

where 𝜖 (i) denotes the 𝑖th random variable drawn from unit Gauss-

ian distribution N(0, I) and ◦ represent point-wise multiplication.

log𝑞(w(i) |𝜃 ), log 𝑃 (w(i) ) and log 𝑃 (y|x,w(i) ) are defined as poste-

rior 𝑃𝑠 , prior 𝑃𝑟 and log-likelihood, respectively. In summary, the

model parameters 𝜇 and 𝜎 can be learned progressively by repeating

the following steps (details are shown in Fig.1 (a)):

1. Generate S 𝜖’s from N(0, I) for each weight;

2. Obtain S samples for each weight via w(i) = 𝜇 + 𝜖 (i) ◦ 𝜎 ;

3. Calculate the loss function L(w, 𝜃 ), where 𝜃 = (𝜇, 𝜎);
4. Calculate the gradients with respect to 𝜇 and 𝜎 ;
5. Update model parameters 𝜇 and 𝜎 .

2.2 Computation Flow of BNN Training

From an algorithmic perspective, Fig.1 (a) illustrates the compu-

tation flow of BNN training which consists of three main stages:

Forward (FW), Backward (BW) and Gradient Calculation (GC).

Forward (FW) stage aims to calculate the loss of network func-

tion f given an input training example x. For simplicity of discus-

sion, we assume processing a minibatch with the size of 1. In each

layer l, for one input training example, Gaussian random variables

𝜖𝑙 are sampled S times to obtain S samples of weights 𝑤1
𝑙
∼ 𝑤𝑆

𝑙
,

denoted as process 1©. These weights are convolved with their

corresponding input samples, i.e., 𝐷1
𝑙
∼ 𝐷𝑆

𝑙
, producing S samples

of the output, which are then treated as the input for the next layer.

For the first layer, all weight samples are convolved with the input
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(a) (b)( )
Figure 1: (a) Computation flow of BNN training. (b) 7-dimension for-loop for the convolutional layer in BNN.

x. The outputs of the last layer are compared with the groundtruth

to obtain the loss (error).

Backward (BW) stage propagates the network errors from the

last layer to the first layer. In each layer l, S samples of weight

matrices are reconstructed using the original Gaussian random

variables 𝜖 and model parameters (𝜇, 𝜎), denoted as process 2©.

The reconstructed kernels are then rotated 180◦ and convolved

with the corresponding samples of errors to obtain the errors of

the previous layer, i.e., 𝐸1
𝑙
∼ 𝐸𝑆

𝑙
.

Gradient Calculation (GC) stage updates the model parame-

ters 𝜇 and 𝜎 to minimize the training loss, which requires to cal-

culate the gradients of the model parameters, Δ𝜇 and Δ𝜎 . The
gradient of a sampled weight comes from prior 𝑃𝑟 , posterior 𝑃𝑠 and

likelihood 𝑃 (y|x,w(i) ). The gradient of likelihood is generated by

convolving the feature maps 𝐷1
𝑙
∼ 𝐷𝑆

𝑙
with the errors 𝐸1

𝑙+1
∼ 𝐸𝑆

𝑙+1
.

This part is the same as the normal DNN training. For the gradients

of prior and posterior, they can be easily derived once the original

weights are reconstructed because the computation for both prior

and posterior requires no intermediate feature maps. Finally, the S

samples of the gradients are summed up and then multiplied with

a small coefficient to produce the weight updates Δ𝑤 . Based on the

sampling rule𝑤 = 𝜇 + 𝜖 ∗ 𝜎 , Gaussian random variables 𝜖 are used

to calculate the final updates Δ𝜎 . This step corresponds to step 3©.

Fig.1 (b) illustrates the detailed computation within a single

BNN’s convolutional layer. The key feature here is a sample dimen-

sion that adds on top of normal DNNs’ 6-dimension convolution.

Note that different samples execute independently without any

data exchange.

3 CHALLENGES OF BNN TRAINING

Traditional DNN training. DNN training has long been consid-

ered as a slow and energy harvesting task [16, 25, 52]. On the surface,

the massive energy consumption and high latency mainly come

from millions of Multiply-accumulate operations (MACs) and in-

tensive data movement between memory and processing elements

(PEs). As the unit energy cost (J/bit) of off-chip memory accesses

is orders of magnitude higher than that of MACs [11, 15, 30], data

movement usually poses greater challenges for energy-efficient

DNN training [56]. Moreover, the ongoing development of low-

precision training techniques [23, 27, 55] can potentially reduce the

unit energy cost of MACs, but this could also result in a proportion-

ally higher impact on the overall training’s energy efficiency from

the data movement.

0
5

10
15
20
25
30
35
40
45

S=
1

S=
8

S=
16

S=
24

S=
32 S=

1
S=

8
S=

16
S=

24
S=

32 S=
1

S=
8

S=
16

S=
24

S=
32 S=

1
S=

8
S=

16
S=

24
S=

32 S=
1

S=
8

S=
16

S=
24

S=
32

MLP B-MLP LeNet B-LeNet AlexNet B-AlexNet VGG B-VGG ResNet B-ResNet
No

rm
al

ize
d 

Va
lu

es

Data transfer Energy consumption  Latency

Figure 2: Comparison between five BNN models and their

corresponding baseline DNN models.

Current BNN training.Compared to the traditional DNN train-

ing, BNN training inefficiency is further exacerbated by the require-

ment of training for an ensemble of sampled DNN models, shown

in Fig. 1 (a). This is necessary because a sufficient number of train-

ing samples is essential for building a robust BNN model. But it

could also incur an explosive amount of data movement during the

training process.

To further quantify this, we investigate the impact of number of

samples on the overall BNN training efficiency. We implemented

five types of widely-adopted BNN models representing a broad

range of domains, as well as their corresponding DNN models.

Note that BNN models are typically built upon their matching DNN

models, e.g., Bayesian AlexNet or B-Alexnet is based on AlexNet.

For verification purposes, the training process is performed on a

general Diannao-like DNN accelerator equipped with output sta-

tionary dataflow [10]. Detailed experimental setup can be found in

Section 7.1. Three metrics are used for training evaluation, includ-

ing data transfer, overall energy consumption, and training latency.

The data transfer represents the amount of data that are read from

and written to the off-chip memory. Due to the architectural het-

erogeneity of the five BNN models, each result is normalized to its

corresponding baseline DNN model. Fig.2 shows that a BNN model

with only 8 samples would drastically increase the off-chip data

transfer by an average of 9.1× compared with its corresponding

DNN model. This number grows to 35.3× as the number of BNN

training samples scales up to 32. Specifically, for B-VGG model

with 16 samples (s=16), training each input example for one itera-

tion would require 22.6GB data transfer from/to off-chip memory,

which is 17.9× increment over the original VGG model. Since the

off-chip memory access is often considered a high-cost operation,

a large amount of data transfer during BNN training could produce

massive energy consumption and potentially lead to performance
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Figure 3: The ratio breakdown of the total off-chip data

transfer across different BNN models.

degradation. For example, we observed that the overall energy con-

sumption and training latency on 32 samples incur an average of

33.2× and 31.8× increment over those on the baseline DNN models,

respectively.

Fig.3 shows the breakdown of the total off-chip data transfer

when the accelerator evaluates every input training example during

one training iteration. It can be observed that Gaussian random

variables 𝜖 takes up the major portion of the total data transfer

(i.e., 71% on average). Meanwhile, the weight parameters (𝜇, 𝜎)
and the input/output feature maps only contribute to 16% and 12%

on average, respectively. There are several reasons behind such

dominating presence of 𝜖 . First, as a unique variable introduced by

BNN execution, 𝜖 must be stored and reused in two different stages.

As shown in Fig.1 (a) 1©, during the forward stage, S samples of 𝜖
are generated from the local random number generators for each

pair of (𝜇, 𝜎) to obtain S samples of weights. After that, 𝜖s have to
be stored into the off-chip memory due to its large data volume

and reside there until the later weight reconstruction during the

backward stage ( 2©) and the gradient of 𝜎 computation during

the gradient calculation (GC) stage ( 3©). Note that recent memory-

centric approaches such as vDNN [45], Echo [65] and SuperNeurons

[54] reduce the memory accesses through smart recomputation in

backpropagation via selected small intermediate data from forward

propagation. However, since 𝜖s are a large amount of independent

random numbers that cannot be recomputed, these works cannot

help reduce intensive memory accesses in BNN training. Second,

the size of 𝜖 is much larger than the weight parameters (𝜇, 𝜎) and
the intermediate feature maps/errors. Since one pair of weight

parameters (𝜇, 𝜎) requires S samples of 𝜖 for weight sampling, the

total size of 𝜖 can be 𝑆/2 times of the weight parameters. And for

the current BNN models, the size of weights (i.e., half of (𝜇, 𝜎)) is
still much larger than the size of feature maps. For instance, on

average the size of weights is 122× of the size of feature maps/errors

across five BNN models. Therefore, although input/output feature

maps also consist of S samples, the total transferred intermediate

data size is still much less than that from 𝜖 .
In summary, the long reuse distance of a large amount of Gauss-

ian random variables 𝜖 across different training stages is the key

problem that causes a huge amount of off-chip memory accesses

(the transferred amount of 𝜖s grows linearly with the sample size).

This further leads to massive energy consumption and potential

performance degradation during BNN training. Besides the existing

DNN accelerator, such a challenge is also observed on conventional

CPU/GPU platforms as the cross-stage memory access of 𝜖 is in-
evitable in the BNN training algorithm. Therefore, a special solution

is needed.

4 KEY DESIGN INSIGHTS OF SHIFT-BNN

To overcome these challenges brought by the excessive data move-

ment for the Gaussian random variables 𝜖s (or GRVs), we propose a
novel design that is able to eliminate all the memory accesses related

to 𝜖 without training accuracy loss. We made a key observation that

the nature of software-level“forth-back" training procedure shares

similarity with the classic hardware-level reversed shifting of Linear

Feedback Shift Register (LFSR) which is used in BNNs to generate

the Gaussian random variables 𝜖 [9]. Specifically, we can poten-

tially retrieve all the 𝜖s locally during the Backward stage through

shifting the LFSRs backward, instead of storing them during the

Forward stage. In the following subsections, we will first introduce

the principles of LFSR function, and then illustrate how to use LFSR

reversed shifting to retrieve Gaussian random variables 𝜖s. Finally,
we showcase a detailed example to demonstrate the feasibility of

our strategy while also exposing some potential hardware-level

issues when directly applying it to BNN training.

4.1 Generating GRVs via LFSR Shifting

According to the Central Limit Theorem [8], a binomial distribution

B(𝑛, 𝑝) can approximate a Gaussian distribution N(𝑛𝑝, 𝑛𝑝 (1 − 𝑝))
if 𝑛 is large enough. Here 𝑛 represents the total number of indepen-

dent trials and p denotes the possibility of success for each trial. For

instance, assume if there are n individual bits that have the equal

possibility of being 0 or 1, the total number of “1s" in these n bits

will follow the binomial distribution B(𝑛, 0.5), and further approx-

imate the Gaussian distribution as N(0.5𝑛, 0.25𝑛) when n is large

enough. Based on this insight, previous efforts [3, 9, 14, 31] have

proposed efficient Gaussian Random Number Generator (GRNG)

by implementing an n-bit LFSR for uniformly distributed random

bits generation and an adder tree for counting the number of “1s".

The structure of an 8-bit Fibonacci LFSR is illustrated in Fig. 4(a).

In each cycle, values in the tap registers, i.e., 𝑅4, 𝑅5, 𝑅6 and 𝑅8, are
combined using three XOR gates and produce one bit to update the

value in the head register 𝑅1 (highlighted in blue). Meanwhile, the

rest of the values shift to the neighbour register from left to right

and the value in the tail register 𝑅8 is dropped (highlighted in red).

Through this procedure, the LFSR creates a random bit sequence

named “pattern" upon every shifting. For each pattern, the number

of “1"s are counted by the adder tree to form a Gaussian random

variable (GRV).

4.2 Retrieving 𝜖 via Pattern Reproduction

Assume we employ one LFSR to generate 𝜖s for sampling all the

weights during BNN training. At the Forward stage, 𝜖s are generated
sequentially to sample from the first weight of the first layer to the

last weight of the last layer, during which the LFSR continuously

shifts from its initial pattern #1 to the latest pattern #N. At the

Backward stage, we notice that the generated 𝜖s are requested in a

reversed order, i.e., from the latest pattern #N to the initial pattern

#1 of the LFSR, due to the two key features of the training process.

At the layer-level, back-propagation executes from the last layer to

the first layer, thus the 𝜖s generated in the last layer in the Forward

stage are needed first. At the kernel-level, constructing the kernels

that were rotated 180◦ during back-propagation is equivalent to

sampling the previous weights reversely (shown in Fig. 5 (a)). The
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Figure 5: (a) Kernel rotation and its relation with reversed

sampling sequence. (b) Kernel reorganization.

aforementioned insights motivate us to reproduce the previous

LFSR patterns also in a reversed order so that all the previous 𝜖s
can be retrieved locally by LFSRs instead of storing/fetching them

during Forward/Backward stage.

Key design insight. This comes from our finding that reproduc-

ing previous LFSR patterns can be simply accomplished by shifting

the current LFSR pattern in an opposite direction, combined with

three XOR operations on certain registers within an LFSR, as il-

lustrated in Fig. 4 (b). Assume a n-bit LFSR with taps t=(a,b,c,n) is

shifting right to generate the latest pattern #2 from its initial pattern

#1. The value in the head register 𝑅
′

1 of pattern #2 is generated by

XORing the tail tap 𝑅𝑛 with other taps 𝑅𝑐 , 𝑅𝑏 , 𝑅𝑎 in an order:

𝑅
′

1 = ((𝑅𝑛 ⊕ 𝑅𝑐 ) ⊕ 𝑅𝑏 ) ⊕ 𝑅𝑎 (2)

where ⊕ denotes XOR operation. Meanwhile, the value in the tail

register 𝑅𝑛 is dropped from the LFSR. In order to reproduce pattern

#1 from #2, the values in 𝑅1, 𝑅2 ...𝑅𝑛−1 of pattern #1 can be obtained

by left shifting pattern #2. Now the key question is how to reproduce

the value in 𝑅𝑛 of pattern #1 since it has been dropped previously.

Interestingly, for the XOR operation, one can prove that 𝐴 = 𝐶 ⊕ 𝐵
if 𝐴 ⊕ 𝐵 = 𝐶 . Thus we rewrite Eq.2 in a reversed order:

𝑅𝑛 = ((𝑅
′

1 ⊕ 𝑅𝑎) ⊕ 𝑅𝑏 ) ⊕ 𝑅𝑐 (3)

Figure 6: An example of directly applying LFSR reversion

strategy to BNN training.

where 𝑅
′

1 is the head register of pattern #2, and 𝑅𝑎, 𝑅𝑏 , 𝑅𝑐 in pat-

tern #1 are actually 𝑅𝑎+1, 𝑅𝑏+1, 𝑅𝑐+1 in pattern #2. Therefore, we

can simply set 𝑅1, 𝑅𝑎+1, 𝑅𝑏+1, 𝑅𝑐+1 as tap registers of pattern #2 for

the retrieval of 𝑅𝑛 in pattern #1, as shown in the right part of Fig.

4(b). Furthermore, since the LFSR in pattern #2 shifts reversely,

the tail register 𝑅𝑛 of pattern #2 should be updated by XORing

𝑅
′

1, 𝑅𝑎+1, 𝑅𝑏+1, 𝑅𝑐+1 of pattern #2 orderly. In this fashion, this inter-

esting feature can always be leveraged to retrieve the value in 𝑅𝑛
through Eq.3. As can be seen, pattern #1 is successfully retrieved

from pattern #2 via very simple logic operations. Fig. 4 (c) pro-

vides an example of reversing an 8-bit LFSR to retrieve the previous

patterns.

4.3 Potential Issues of Directly Applying LFSR
Reversion to BNN Training

Fig. 6 depicts the details of applying our LFSR reversion strategy

in a two-layer (convolution + fully-connected (FC)) BNN training.

For simplicity of discussion, we assume two LFSRs are deployed for

GRN generation. During forward stage, for the convolutional layer,

the LFSRs shift from status 1 to 6. Each status contains 9 sequential

patterns to generate GRVs for a 3 × 3 kernel (each pattern per

weight). For the FC layer, the LFSRs continue shifting from status 7

to 14. Each status contains 4 sequential patterns for a 1 × 4 weight

vector. During the Backward stage, by shifting the LFSRs reversely,

all the previous status are retrieved in a reversed sequence that

satisfies the weight fetching request by backpropagation. Note that

for convolutional layers, the flipped (180◦ rotated) kernels 𝑥′© can be

constructed by the reversed order of 𝑥© according to Fig. 5(a). And

for the FC layers, since the internal weight order of each weight

column (e.g.,1×4 matrix) is not altered, the original weight matrices

can all be retrieved via LFSR reversion. However, as shown in Fig.5

(b), since the kernels are reorganized across the input channel (N)

dimension and output channel (M) dimension during the Backward
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stage, the computation flow could become inconsistent with that

in the Forward stage. For example, at status 6 during the Forward

stage in Fig.6, the partial sums calculated by kernel 9© and 12©
are accumulated separately for the last two output channels (i.e.,

the blue blocks highlighted by red at layer 𝑙). When applying our

LFSR reversion, kernel 9
′© and 12

′© will be constructed at status 6

during Backward stage. At this time, instead of being accumulated

separately, the partial sums calculated by kernel 9
′© and 12

′© are

added together for one single output channel (i.e., the green block

highlighted by red at layer 𝑙 − 1). Although our LFSR reversed

shifting can still retrieve all the 𝜖s, such computation inconsistency

between the Forward and Backward stages may pose significant

design inefficiency for training accelerator design. Furthermore,

this factor complicates the design choice selection due to the unclear

impact our LFSR reversion strategy may pose on accelerators that

adopt different computationmapping schemes. Thus, it is important

to first understand the accelerator design space for our shift-BNN.

5 DESIGN SPACE EXPLORATION

As discussed in Section 2.2 (also see Fig. 1 (b)), processing a typi-

cal DNN layer during any training stage can be decomposed into

a six-dimension for-loop execution. Instead of executing each di-

mension sequentially, the state-of-the-art DNN accelerators usually

select several dimensions and compute them simultaneously, during

which MACs along a certain dimension are mapped onto a group of

Processing Elements (PEs) that operate in parallel. Choosing differ-

ent mapping dimensions creates a significant divergence in design

efficiency. Generally, there have been three major types of compu-

tation mapping strategies for DNN inference: kernel (K-dimension)

mapping, e.g., systolic array [21], input channel and output channel

(MN-dimension) mapping, e.g., Diannao [10], NVDLA [41], and

output feature mapping (RC-dimension) mapping, e.g., Shidiannao

[19]. Since DNN training could also perform mini-batch processing,

a batch and output channel (BM-dimension) mapping method [60]

is also under consideration. To efficiently apply our design insights

into BNN training, we comprehensively study the impact of our

LFSR reversed shifting strategy on the four types of state-of-the-

art computation mappings to explore the design space for BNN

training accelerator. Specifically, we qualitatively discuss the design

possibility by using each mapping,and finally select the optimal

mapping to support our proposed Shift-BNN design. In the follow-

ing analysis, we apply superscript𝑚 and 𝑛 to denote the index of

output and input channel, and subscript 𝑘 , (𝑟, 𝑐) and 𝑏 to denote

the weight location inside a kernel, the neuron/error location on

an output feature map and the index of a training example in a

mini-batch, respectively.

MN-dimension mapping. Fig. 7 (a) illustrates a basic architec-

ture for MN-dimension mapping. The x-axis of the 2-D PE array

(we assume the size is 3 × 3 for simplicity) represents M-dimension

mapping and the y-axis represents N-dimension mapping. As BNN

training demands weight sampling, a GRNG is attached to each

PE to generate 𝜖s for weight parameters (𝜇, 𝜎), which will be the

common case among all four types of mapping methods. In each

cycle, an input neuron 𝐼𝑛 from a certain input channel 𝑛 broad-

casts horizontally to a row of PEs, where each PE calculates the

partial sums for a certain output channel 𝑚. These partial sums

are collected vertically by an adder tree (denoted by the yellow

bar) and summed up until a output neuron is generated. In this

scheme, a PE located at coordinate (𝑚,𝑛) will require a𝐾×𝐾 kernel

from input channel 𝑛 and output channel𝑚 to produce the partial

sum of an output neuron. Therefore, during FW, the LFSR in each
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GRNG generates {𝜖1, 𝜖2, ..., 𝜖𝐾2 } sequentially to produce a sampled

kernel {𝑤1,𝑤2, ...,𝑤𝐾2 }, as shown in Fig. 7 (d). With the proposed

LFSR reversion strategy, the flipped kernel can be reconstructed by

shifting the LFSR reversely during BW. However, also during this

stage, as the kernels are also reorganized in the MN-dimension, the

partial sums generated in PE rows should be summed up instead

of being accumulated separately (Sec.4.3). This results in the in-

consistent computation patterns between FW and BW. To address

this inconsistency in a uniform architecture design, one possible

solution is to swap the Gaussian random variables, i.e., 𝜖s, between
PE (𝑚,𝑛) and PE (𝑛,𝑚) and then load the corresponding weight

parameters and input neurons during the BW stage, as shown in

Fig. 7 (b). Nevertheless, such design requires extra interconnections

between PEs, leading to O(𝑛2) wiring overhead for a 𝑛×𝑛 PE array,

which hinders design scalability. Moreover, there must be an equal

number of PEs in a row and a column due to the swapping mech-

anism, which further limits the design flexibility. Fig. 7 (c) shows

an alternative design that avoids the data communication between

PEs. In this design, during BW the partial sums generated by a PE

row are summed up to an output neuron with duplicated adder

trees. The partial sums generated by a PE column are accumulated

separately by directly sending each of them to the output buffer.

However, this method still requires an 𝑛-input adder tree for each
row of PEs, which incurs extra resource and energy overheads.

RC-dimension mapping. Fig. 7 (e) shows the basic output fea-

ture map (RC) dimension mapping strategy, where neurons on a

𝑅 × 𝐶 output feature map are mapped to a 𝑅 × 𝐶 2-D PE array

and computed simultaneously. In each cycle, one weight from a

𝐾 × 𝐾 kernel is broadcast to all PEs while a group of new input

neurons are fed to the rightmost (or bottom) PEs. The partial sums

stay in the PE and are accumulated to generate the output neu-

rons as the input neurons flow from right to left (or bottom to up)

through the PE array. Since the weight is fetched sequentially from

a 𝐾 ×𝐾 kernel, the GRNG also produces {𝜖1, 𝜖2, ..., 𝜖𝐾2 } during FW.

Thus, the flipped kernels can be reconstructed by shifting LFSR

reversely during BW. Furthermore, since RC-dimension mapping

is irrelevant with M- or N-dimension parallelism, it will not suffer

from the 𝜖 swapping issue from MN-mapping. Nevertheless, kernel

reorganization still has a slight impact on RC-mapping. During

the FW stage, since the kernels are fetched along the N-dimension

first and then M-dimension, the partial sum of an output neuron is

accumulated inside the PE continuously until the output neuron is

generated. However, during the BW stage, the kernels are fetched

along the M-dimension first and then N-dimension; so the partial

sum of an output neuron is sent to the output buffer and waits to

be read and accumulated in the PE intermittently. Therefore, two

types of control modes are required in RC-mapping.

K-dimension mapping. Fig. 7 (g) shows the basic kernel (K)

dimension mapping method, where a 𝐾 × 𝐾 kernel is mapped to a

𝐾 × 𝐾 2-D PE array and stays until all the computation related to

that kernel is completed. In each cycle, an input neuron is broadcast

to all the PEs and multiplied with 𝐾 × 𝐾 weights inside a kernel.

The partial sums are propagated and accumulated through the PEs

to generate the output neurons. Under this scheme, during FW the

PE array requires the kernel from the next input channel when the

computation of the current kernel is finished. Hence, the GRNG gen-

erates 𝜖s for weights along the N-dimension sequentially from the

first to the last input channel, i.e., {𝜖𝑚,1
𝑘

, 𝜖𝑚,2
𝑘

, ..., 𝜖𝑚,𝑁
𝑘

}, as shown

in Fig. 7 (i). During BW, reverse shifting LFSR can retrieve the

original kernels from the last to the first input channel. However,

K-dimension mapping can not reorder the weights to construct the

flipped kernels required by the BW stage as the weights inside a ker-

nel are sampled simultaneously. In fact, due to the kernel flipping,

the 𝜖 generated by a certain PE during FW is required by another

PE during BW. Fig. 7 (h) illustrates a solution for K-dimension

mapping: adding datapaths between PEs for 𝜖 swapping. However,

similar to the MN-dimension-v1 (as shown in Fig.7 (b)), this design

causes O(𝑛2) wiring overhead for a 𝑛 × 𝑛 PE array. Moreover, due

to the kernel reorganization, K-mapping also requires two types of

control modes for different accumulation manners.

BM-dimension mapping. Fig. 7 (j) illustrates the basic batch

and output channel (BM) dimension mapping strategy, where the

horizontally distributed PEs are processing different training exam-

ples and the vertically distributed PEs are calculating neurons in

different output channels separately. In each cycle, a pair of weight

parameters (𝜇𝑚, 𝜎𝑚) from a certain output channel𝑚 is broadcast

to an entire row of PEs while an input neuron 𝐼𝑏 from a certain

training example 𝑏 is broadcast to an entire column. The output

neurons can be collected in each PE. As the weights inside a cer-

tain kernel are requested sequentially (shown in Fig. 7 (l)), LFSR

reversion can help reconstruct the flipped kernels. However, due to

the kernel reorganization, the reconstructed kernels in a column

of PEs should be used for N-dimension computation instead of

M-dimension computation. Specifically, at the BW stage, the partial

sums generated by PE columns should be summed up instead of

being accumulated separately. To address this issue, an additional

n-input adder tree is required for each PE column. Meanwhile,

different input neurons 𝐼𝑛
𝑏
from input channel 𝑛 are sent to each

PE column, resulting in two different input buffer designs (Fig. 7

(k)). Therefore, this architecture not only incurs large hardware

overhead but also leads to high design complexity.

In conclusion, the RC-dimension mapping strategy (Fig. 7 (e))

only incurs modest design overhead compared to the other three

mapping methods when applying our LFSR reversion strategy,

which makes it an ideal fundamental computation mapping for

designing our Shift-BNN architecture.

6 SHIFT-BNN ARCHITECTURE DESIGN

6.1 Architecture Overview

Figure 8 illustrates the overall architecture of our proposed Shift-

BNN training accelerator, which comprises of a 3D PE array dis-

tributed to 16 Sample Processing Units (SPUs), a weight parameter

buffer (WPB), and a central controller. Each SPU consists of an in-

put/output neuron buffer (NBin/NBout), 16 slices of GRNG and func-

tion units, a 4 × 4 PE tile, a 4 ×4 array of shift units, and a crossbar.

Following the aforementioned LFSR reversion technique and the

computation mapping consideration, our accelerator presents the

following features: (1) a hybrid dataflow that adopts RC-dimension

on 2D PE tiles and sample-level parallelism across SPUs, both of

which exploit significant opportunities for data reuse; (2) an effi-

cient GRNG design which can generate Gaussian random variables
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𝜖s sequentially during FW stage and reproduce the previous 𝜖s
reversely during BW stage; (3) function units design that satisfies

necessary mathematical operations, i.e., weight sampling, deriva-

tive calculation of prior and posterior, and weight updating during

the BNN training; (4) light implementation of RC-dimension map-

ping architecture by using a PE tile, an array of shift units and a

crossbar.

6.2 SPUs and Dataflow

Since the weight parameters (𝜇, 𝜎) are shared among sampled mod-

els, it is natural to process a batch of sampled models in parallel to

increase the data reuse of weight parameters. Our design leverages

such opportunities by allocating the workloads of training each

sampled model to an individual SPU, which operates independently

and in parallel with other SPUs. Each SPU is further equipped with

the RC-dimension mapping scheme that maximizes the data reuse

of input neurons on a 2D feature map.We describe themain features

of an SPU as follows.

PE tile, shift unit and crossbar. All convolution operations

are performed in the 2D PE tile during all three stages of BNN

training (i.e., FW, BW and GC). For simplicity of discussion, we use

the FW stage as an example to illustrate the datapath design and the

computation flow. Fig. 8 (a) shows the datapath for a convolutional

layer, in which a sampled weight from the GRNG & function units

is broadcast to all the PEs and multiplies with the input neuron,

which will shift to the left (or up) neighbour PE in the next cycle

(Fig.7(e)-(f)). To support this type of dataflow, a dedicated PE de-

sign is implemented upon a typical inference accelerator [19] that

adopts RC-dimension mapping, shown in Fig.8 (c). The right part

of the PE is a shift unit. It determines which input neuron (Nin)

should be received by the PE and which neuron that is stored in

Reg-H/Reg-V should be sent (Nout) to the other PEs. The selected

input neuron and the broadcast weight will then enter into the

computation unit, which is depicted at the left part of the PE and

performs basic MAC operations, ReLU functions and max pooling

operations to produce the output neurons. Importantly, due to the

kernel reorganization and 𝜖 reproducing technique at the BW stage

(Sec.5), our PE design supports two types of accumulation modes.

(1) During the FW stage, since the kernels are fetched along the N-

dimension first and then M-dimension, the partial sum is repeatedly

fetched back to the PE, depicted by the green arrow in Fig. 8 (c). (2)

During BW stage, the kernels are fetched along the M-dimension

first and then N-dimension, thus the partial sum (named psum in

the figure) is fetched from NBout and then gets accumulated in

the PE intermittently, depicted by the orange arrow in Fig. 8 (c).

Our PE design switches between these two accumulation modes

for FW and BW stages. Furthermore, to satisfy the complex data

requests from the PE tile, a crossbar is inserted betweenWPB, NBin,

NBout and PE tile to select the appropriate data read from the buffer.

Additionally, instead of using a column buffer in [19], we employ

a light-weight 4 × 4 shift units array which stores the candidate

input neurons that the PE tile will need in the next four cycles. The

array is organized in the same way as the PE tile spatially and each

shift unit is actually the same as the right part of the PE for simple

data shifting operations.

Efficient GRNG design. A SPU contains 4 × 4 GRNGs, which

corresponds to the 4× 4 PE tile. For a convolutional layer, since one

weight is shared by every PE, only one GRNG needs to be enabled to

generate one 𝜖 at a time. While for a FC layer, PEs require different

sampled weights from the GRNG & function units thus all GRNGs

are enabled to provide 𝜖s to sample weights for their corresponding

PE. Fig. 8 (b) left illustrates the microarchitecture of a single GRNG

which consists of a 256-bit LFSR and an 𝜖 generator. The GRNG fea-

tures two properties. Firstly, it possesses three operating modes. (1)

The forward mode for FW stage, during which the LFSR shifts from

left to right. Each register (except 𝑅1) of LFSR receives the values

from the left neighbour register (named 𝑅𝑙 ) while 𝑅1 gets updated
by the orange taps. (2) The backward mode for BW stage, during

which the GRNG switches to the reverse mode and shifts from right

to left. Each register (except 𝑅𝑛) of LFSR receives the values from

the right neighbour register (named 𝑅𝑟 ) while 𝑅𝑛 gets updated by

the blue taps. (3) The idle mode, during which registers in the LFSR

receive their own values and will not be updated. Secondly, since

counting the number of “1s" (or the sum) of a LFSR pattern with an

adder tree may cause large overhead [9], the proposed 𝜖 generator
uses a more efficient way to generate 𝜖s based on the LFSR patterns.
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Specifically, we store the sum of the bits in the LFSR’s initial seed in

a register and track the difference between the old value (𝑏) and the

updated value (𝑏
′
) at 𝑅1 or 𝑅𝑛 depending on the operating mode.

The difference, i.e., bit update, will be added to the initial sum to

form the current sum of LFSR which are then used to update the

register of the initial sum.

Function units. The function units consist of a sampler, a de-

rivative processing unit (DPU), and a weight parameter updater.

As a whole, the function units receive the (𝜇, 𝜎) and 𝜖 from the

crossbar and the GRNG respectively, and accomplish two tasks:

weight sampling and final gradient calculation of the weight pa-

rameters. During both FW and BW stages, the weight sampling is

performed in a sampler that applies the weight parameters (𝜇, 𝜎)
to the Gaussian random number 𝜖 using a multiplier and an adder.

The produced weight is sent to the PE tile and the DPU. During the

BW stage, the DPU and the updater are both activated. The DPU

uses the received reconstructed weight to calculate the derivatives

of the sum of the prior and posterior with respect to the weight,

Δ𝑤𝑝 . By decomposing the prior and posterior terms into a log form,

Δ𝑤𝑝 can be approximated as 𝑤
𝜎2
𝑐
. Since 𝜎𝑐 is a constant value of

prior distribution and is usually chosen as 0.5, we thus calculate

the Δ𝑤𝑝 by left shifting 𝑤 2 bits. The Δ𝑤𝑝 is then added to the

gradient of likelihood computed in the GC stage to obtain the final

gradient Δ𝑤
′
. Lastly, in order to update the weight parameters, the

updater calculates the gradients of (𝜇, 𝜎) using Δ𝑤
′
and 𝜖 , which

corresponds to the process 3© in Fig.1 (a). The produced (Δ𝜇,Δ𝜎)
will be further averaged across different SPUs and then used to

update the weight parameters.

Buffer design. To support the dataflow of RC-mapping in an

SPU, we follow a similar design principle in [19] to organize the

data in the neuron buffer,i.e., NBin/NBout. NBin/NBout comprises

multiple banks. Each bank provides the neurons requested by a PE

row through the crossbar. For the weight parameter buffer (orWPB),

we split it into two sub-buffers that store 𝜇 and 𝜎 separately. Each

sub-buffer is also designed to consist of multiple banks and each en-

try of the bank stores the weights for a PE row. For a convolutional

layer, one weight parameter is selected by the crossbar at each cycle

while for an FC layer the entire entry read from the bank is sent to a

PE row. Note that although the convolution operands (e.g., weight,

neuron, error, and gradient) vary across the three BNN training

stages, our uniform design of data organization in WPB, NBin and

NBout is beneficial for the buffer function swapping. For example,

during the BW stage, the error feature maps of layer 𝑙 + 1 stored

in NBout can serve as the weights for the gradient calculation of

layer 𝑙 by temporarily treating the NBout as WPB.

7 EVALUATION

7.1 Experimental Methodology

BNN models and training datasets.We evaluate Shift-BNN by

training on five representative BNN models. Among them, B-MLP

[9] (fully-connected BNN with 3 hidden layer) is trained with

MNIST [18]. B-LeNet (built on LeNet[37]) is trained with CIFAR-10

[34]. These two networks are mostly adopted to handle small but

safety-critical tasks. B-AlexNet (built on AlexNet[35]), B-VGG (built

on VGG16 [48]) and B-ResNet (built on ResNet-18 [28]) are trained

with ImageNet datasets [17], which are used to deal with more

complex tasks in the unfamiliar environments. For generality, the

BNN models are trained with various number of samples, e.g., 8,

16, 32, 64, and 128 (if needed) samples.

Comparison cases. To demonstrate the effectiveness of Shift-

BNN, we compare it with three training accelerators: Firstly, since

Shift-BNN adopts RC-mapping as the fundamental design strategy,

we compare it with the RC-accelerator that adopts RC-mapping

strategy but without LFSR reversion technique. Secondly, since

MN-mapping is commonly used in existing DNN training accel-

erators [39, 64], we employ an MN-accelerator that adopts MN-

mapping strategy without LFSR reversion technique as the baseline

accelerator for generality, which is also used for our preliminary

investigation in Sec.3. Thirdly, to verify the analysis about design

alternatives (see Sec.5), we further test the effectiveness of our LFSR

reversion strategy on MN-accelerator by comparing with an MN-

Shift-accelerator that adopts both MN-mapping strategy and LFSR

reversion technique. To overcome the challenges caused by our

LFSR reversion to the MN-mapping scheme, we follow the design

principle in Fig. 7 (c). For fair comparison, all accelerators employ

16 4 × 4 PE tile and are allocated with on-chip buffer of the same

size. The 16 PE tiles process 16 sampled models simultaneously

for the same extent of weight parameter reuse. We evaluate the

energy efficiency (performance/power) of Shift-BNN and compare

with the modern GPU, i.e., Nvidia Telsa P100. We use Pytorch [43]

to implement and train the BNNs from scratch, and the training

hyperparameters (e.g., batch size, epochs. etc) are kept the same as

in other comparison cases. The execution latency and energy con-

sumption are extracted from the GPU runtime information obtained

by Nvidia Profiler [42].

Experimental Setup. All accelerator designs are implemented

in Verilog RTL and synthesized on a Xilinx Virtex-7 VC709 FPGA

evaluation board. For off-chip memory access, the accelerators com-

municate with two sets of DDR3 DRAM that provide sufficient data

transfer rate to the PE tiles via a Memory Interface Generator [58].

The execution time results are obtained from the post-synthesis

design and the energy consumption is further evaluated with Xilinx

Power Estimator (XPE) [59]. The data precision for all architectures

is set to 16-bit and the operating frequency is set as 200MHz.

Training quality. Figure 9 compares the training curve of B-

LeNet when using the vanilla BNN training algorithm on Pytorch

(baseline) and Shift-BNN. The training hyperparameters and data

type are kept the same in baseline and Shift-BNN. It can be seen

that Shift-BNN does not affect the overall training iterations to

convergence and the final accuracy. Similar behavior is observed

on the other networks. This is because our LFSR reversion strategy

fundamentally does not modify the training algorithm and simply

manages to accurately retrieve all the 𝜖s during the entire training

process. Hence, we only evaluate and validate the training qual-

ity results on Shift-BNN when using different bit length. Table 1

shows how different bit lengths affect the validation accuracy of

five BNN models. The accuracy results are obtained after the same

training epochs for a certain network. As can be seen, training

with 16-bit precision only brings an average 0.31% accuracy drop

compared with single-precision training. This negligible loss may

be due to the error tolerance nature of the sampling process during

BNN training. While Shift-BNN can employ 32-bit floating point
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Figure 9: Validation accuracy and training loss over training

time for Shift-BNN and vanilla BNN training algorithm on

B-LeNet trained with CIFAR-10.

0
0.2
0.4
0.6
0.8

1

No
rm

. E
ne

rg
y 

Co
ns

um
pt

io
n MN-Acc. MNShift-Acc. RC-Acc. Shift-BNN

Figure 10: Energy consumption comparison between Shift-

BNN and other designs.
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Figure 11: The speedup of Shift-BNN compared with other

accelerators.

arithmetic to achieve lossless training, the lower precision train-

ing is more attractive as lower precision computation potentially

consumes much less energy.

Table 1: Data type vs validation accuracy.

Network B-MLP B-LeNet B-AlexNet B-VGG B-ResNet

Dataset MNIST CIFAR-10 ImageNet ImageNet ImageNet

Val-acc(8b) 95.67% 62.80% NaN1 45.50% NaN

Val-acc(16b) 98.05% 65.62% 59.95% 67.52% 68.12%

Val-acc(32b) 98.11% 65.81% 60.10% 67.76% 69.03%

1The network hardly converges due to the low precision 8-bit BNN training.

7.2 Evaluation Results

Effectiveness on energy and performance. Fig. 10 illustrates the

energy consumption of Shift-BNN compared against other acceler-

ators. As it shows, the Shift-BNN accelerator achieves an averagely

62% (up to 76%), 70% (up to 82%), and 39% (up to 44%) energy con-

sumption reduction compared with RC-accelerator (RC-Acc), MN-

accelerator (MN-Acc), and MN-Shift-accelerator (MNShift-Acc), re-

spectively. The outstanding energy reduction of Shift-BNN is from

the elimination of 𝜖’s DRAM accesses by using our LFSR reversion

strategy. The MNShift-Acc reduces the energy consumption by 53%
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Figure 12: Energy efficiency comparison between Shift-BNN

and other designs.

averagely compared with MN-Acc which is less than that of Shift-

BNN over RC-Acc (i.e., 62% reduction). This implies that our LFSR

reversion technique is also effective on MN-accelerator but reaps

less energy saving than applying on RC-accelerator. As discussed

in Section 6, this is caused by the large design overhead, e.g., dupli-

cated adder trees, etc, when applying LFSR reversion strategy to

MN-mapping scheme. We further observe that Shift-BNN achieves

68% and 70% energy consumption reduction over RC-Acc when

evaluating on B-MLP and B-LeNet models, respectively. These num-

ber are larger than that of other BNN models. This is because 𝜖
takes a larger portion in the total off-chip data transfer, and off-chip

memory access consumes a larger portion of total training energy

consumption for B-MLP and B-LeNet.

Since Shift-BNN mainly targets on reducing the data transfer

during training, it is interesting to see if the data transfer reduction

can be converted to performance improvement. Fig. 11 shows the

speedup of Shift-BNN over other accelerators. From the figure, we

observe that Shift-BNN accelerator achieves an average 1.6× (up to

2.8×) speedup over RC-Acc. We found that the reduced execution

time mainly comes from the removal of all memory accesses of 𝜖 in
FC layers. As we know, the memory access of 𝜖 and the computation

in a certain layer can be done in parallel by using double-buffering.

Thus, in the computation-dominated convolutional layers, remov-

ing the memory access of 𝜖 may not reduce the latency. However, in

the parameter-dominated FC layers, the memory access (including

storing in FW and fetching in BW) time of S samples of 𝜖 signifi-
cantly exceeds the computation time since the number of MACs in

FC layers are much smaller than that of convolutional layers. For

example, the memory access time of 𝜖 is 8 × over computation time

in the 1st layer of B-MLP-8. Accordingly, there is an obvious vari-

ance in the performance improvement across different BNNmodels.

For instance, for the fully-connected B-MLP models, the Shift-BNN

gains the maximum 2.6× speedup on average, while for the convo-

lution dominated B-VGG and B-ResNet models, Shift-BNN achieves

an averagely 1.18× performance improvement.

Fig. 12 shows the energy efficiency of Shift-BNN accelerator

compared with other designs. The energy efficiency is defined

as throughput per watt (GOPS/Watt). It is shown that Shift-BNN

boosts the energy efficiency by 4.9× (up to 10.8×), 10.3× (up to

26.1×) and 2.5× (up to 4.6×) averagely compared with RC-Acc, MN-

Acc and MNShift-Acc, respectively. The highest energy efficiency

achieved by Shift-BNN is observed on B-MLP-32 model, which

enjoys significant reductions on both energy consumption and

latency. Furthermore, Shift-BNN also yields averagely 4.7× energy

efficiency compared with Telsa P100. We observe that the GPU

outperforms the baseline when training deeper BNNs with larger
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Figure 13: The energy reduction of Shift-BNN (MNShift-Acc) over RC-Acc (MN-Acc) and energy efficiency of Shift-BNN and

MNShift-Acc when training with different sample size.

0
0.2
0.4
0.6
0.8
1

0
1
2
3
4
5
6
7

M
N RC

M
NS

hi
ft

Sh
ift

-B
NN M

N RC
M

NS
hi

ft
Sh

ift
-B

NN M
N RC

M
NS

hi
ft

Sh
ift

-B
NN M

N RC
M

NS
hi

ft
Sh

ift
-B

NN M
N RC

M
NS

hi
ft

Sh
ift

-B
NN

B-MLP-16 B-LeNet-16 B-AlexNet-16 B-VGG-16 B-ResNet-16

M
em

or
y 

Fo
ot

pr
in

t

No
rm

. #
DR

AM
 A

cc
es

se
s

Input/Output Gaussian variable ε 
Weight (μ, σ) DRAM accesses

Figure 14: The effectiveness of our LFSR reversion strategy

on reducing DRAM accesses and memory footprint.

sample size because of its highly parallel computing and sufficient

memory bandwidth. However, it is still beaten by the variants of

Shift-BNN that are equippedwith our techniques, e.g., evenMNShift

outperforms GPU by 1.9× energy efficiency. This is because the off-

chip memory access of a large amount of GRVs can not be avoided

when training BNNs on GPUs either.

Reduction of DRAM accesses and memory footprint.

Fig. 14 shows the number of DRAM accesses and memory footprint

breakdown of four accelerators when training on BNN models with

16 samples. For the DRAM accesses, we observe that the MN-Acc

and RC-Acc always require much more DRAM accesses than Shift-

BNN and MNShift-Acc in different BNN models. For example, the

number of DRAM accesses in MN-Acc (RC-Acc) are 5.7× (5.8×)

larger than that in MNShift-Acc (Shift-BNN) in the 𝜖-dominated

B-LeNet-16 model. Even in the wider and deeper models (e.g., B-

VGG-16 and B-ResNet-16) where the weight parameters and inter-

mediate feature maps occupy a considerate portion of total data

transfer, Shift-BNN still gains averagely 2.6× reduction on DRAM

accesses. The significant reduction of DRAM access is the major

source of Shift-BNN’s high energy efficiency. As various lower-

precision training techniques [4, 23, 62], e.g., 8-bit integer training,

have been proposed recently, the cost of MACs could become much

less. Thus the memory saving techniques of Shift-BNN could have

more benefits once these techniques are extended to BNN models.

Furthermore, as the figure shows, both Shift-BNN and MNShift-Acc

reduce averagely 76.1%memory footprint during training compared

with accelerators without LFSR reversion technique. From the fig-

ure, we can observe that the memory footprint taken by Gaussian

variable 𝜖 is completely eliminated by MNShift-Acc and Shift-BNN.

Scalability to larger sample size. In some high-risk applica-

tions, one may need a more robust BNN model to make decisions,

thus requires training BNNs with a larger sample size to strictly

approximate the loss function in Eq.1. We evaluate three BNN

models including B-MLP, B-LeNet and B-VGG by training them

with different number of samples and report the corresponding en-

ergy consumption reduction and energy efficiency under different

hardware designs. As can be seen, for all three models, the energy

reduction achieved by both MNShift-Acc and Shift-BNN increases

as the sample size becomes larger. For example, the energy savings

increase from 55.5% to 78.8% as the sample size grows from 4 to

128 in B-LeNet. The outstanding scalability of our LFSR reversion

technique is because of the increasing ratio of 𝜖 in the total off-chip

memory accesses when we use more samples. We observe the simi-

lar increase in energy efficiency for MNShift-Acc and Shift-BNN as

the training sample increases. Lastly, compared with MNShift-Acc,

Shift-BNN achieves higher energy efficiency with various sample

sizes.
Table 2: Resource usage of Shift-BNN components.

Resource PE Shift Function GRNGs NBin
tile array units /NBout

LUT 966 222 785 2277 0

FF 469 464 399 4224 0

DSP 16 0 32 0 0

BRAM 0 0 0 0 48

Pavg (W) 0.076 0.016 0.008 0.005 0.112

Resource usage and power. Table 2 lists the resource usage

and average power of different hardware modules in one SPU. As

can be seen, the shift units array and function units consume less

LUT and FF resources compared with the PE tile. Although the

function units requires more DSPs to implement function units

due to the sampling, derivative calculation and updating processes,

their average power dissipation is much smaller than that of PEs

since only 1 of 16 function units is activated during convolutional

layers. The similar effect can be observed on GRNGs whose average

power is only 0.005W, albeit occupying more LUT and FF resources

than others.

8 RELATEDWORKS

Accelerators for BNNs. There is an increasing demand for design-

ing specific BNN accelerators recently. VIBNN [9] optimizes the

hardware design of GRNGs and proposes an FPGA-based implemen-

tation for BNN inference. FastBCNN [53] targets on accelerating

the BNN inference via neuron skipping technique. [61] proposes a

BNN inference accelerator by leveraging post-CMOS technology.

Different from the above efforts, our work proposes a highly ef-

ficient BNN accelerator that focuses on optimizing the training

procedure.
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DNN training optimization has been extensively studied [39,

44, 49, 60, 64]. For example, eager pruning [64] and Procrustes [60]

exploit the weight sparsity during the training stage by leveraging

aggressive pruning algorithms and develop customized hardware

to improve the performance. Procrustes also employs LFSR-based

GRNGs but in purpose of enabling weight initialization and decay.

Since our work reveals the key challenge in BNN training and

mainly focuses the reducing the data transfer of 𝜖 which is irrelevant
to sparsity, the above works are orthogonal to ours.

Reducing DRAM energy consumption Many works focus

on addressing costly DRAM accesses during the DNN inference

or training process. EDEN [33] leverages approximating DRAM

technique to reduce the energy and latency while strictly meets

the target accuracy. Shapeshifter [36] explores the opportunities

in shortening the transferred data width during DNN inference.

These works are orthogonal to ours since we explore the unique fea-

ture of BNN training and eliminate intensive data transfer without

accuracy loss from a different perspective.

9 CONCLUSION

In this paper, we reveal that the massive data movement of GRVs

is the key bottleneck that induces the BNN training inefficiency.

We propose an innovative method that eliminates all the off-chip

memory accesses related to the GRVs without affecting the train-

ing accuracy. We further explore the hardware design space and

propose a low-cost and scalable BNN accelerator to conduct highly

efficient BNN training. Our experimental results show that our

design achieves averagely 4.9× (up to 10.8×) boost in energy effi-

ciency and 1.6× (up to 2.8×) speedup compared with the baseline

accelerator.
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