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ABSTRACT

In recent years, the ever-increasing impact of memory access bottle-

necks has brought forth a renewed interest in near-memory process-

ing (NMP) architectures. In this work, we propose and empirically

evaluate hybrid data structures, which are concurrent data struc-

tures custom-designed for these new NMP architectures.

We focus on cache-optimized data structures, such as skiplists

and B+ trees, that are often used as index structures in online trans-

action processing (OLTP) systems to enable fast key-based lookups.

These data structures are hierarchical, where lookups begin at a

small number of top-level nodes and diverge to many different

node paths as they move down the hierarchy, such that nodes

in higher levels benefit more from caching. Our proposed hybrid

data structures split traditional hierarchical data structures into a

host-managed portion consisting of higher-level nodes and an NMP-

managed portion consisting of the remaining lower-level nodes,

thus retaining and further enhancing the cache-conscious optimiza-

tions of their conventional implementations. Although the idea

might seem relatively simple, the splitting of the data structure

prompts new synchronization problems, and careful implementa-

tion is required to ensure high concurrency and correctness.

We provide implementations of a hybrid skiplist and a hybrid

B+ tree, and we empirically evaluate them on a cycle-accurate full-

system architecture simulator. Our results show that the hybrid

data structures have the potential to improve performance by more

than 2× compared to state-of-the-art concurrent data structures.

CCS CONCEPTS

· Theory of computation → Data structures design and analysis;

Concurrent algorithms; · Hardware→ Emerging architectures.
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1 INTRODUCTION

The memory wall [64], which refers to the increasing performance

gap between processor speeds and memory access speeds, has been

a well-known issue for nearly three decades. Moreover, its impact

has become more pronounced than ever in recent years with the

ever-increasing number of data-intensive applications. Designing

systems and hardware that alleviate the memory bottleneck has

since been a major concern, and this has sparked a renewed interest

in near-memory processing (NMP) architectures that move compu-

tation physically close to memory. While NMP architectures do not

cut down latencies inherent to DRAM, they reduce performance

degradation and energy consumption caused by data movement on

long and narrow off-chip interconnects.

In this work, we propose and empirically evaluate hybrid data

structures, which are concurrent data structures custom-designed

for new NMP architectures. We specifically focus on data struc-

tures that have already been heavily optimized to exploit on-chip

cache locality of conventional systems, which have benefited little

from prior NMP-based flat-combining implementations [16, 44].

However, our proposed hybrid data structures utilize the NMP ar-

chitecture more effectively in order to retain and further enhance

the data structures’ cache-locality benefits, thereby providing sig-

nificant performance gains.

Existing cache-optimized concurrent data structures have been

particularly important for in-memory online transaction processing

(OLTP) systems. Workloads on OLTP systems are typified by high

volumes of short-lived queries on relatively few data items; in order

to process such queries at scale and with minimal delay, OLTP sys-

tems employ cache-optimized concurrent data structures as index

structures that enable key-based lookups on stored data. However,

microarchitectural analyses of in-memory OLTP workloads have

shown that they are still plagued by memory stalls: long-latency

last-level cache misses due to random data accesses can account for

more than half of the execution time in otherwise highly optimized

OLTP systems [59, 60]. Despite their cache-conscious optimizations,
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structure’s topology. Essentially, we divide each data structure into

a host-managed portion consisting of the higher levels of the data

structure and an NMP-managed portion consisting of the lower

levels. The host-NMP split point (i.e., the level at which to divide the

data structure) is chosen such that the entire host-managed portion

can fit within the last-level cache of the CPU, effectively łpinningž

higher-level nodes to the on-chip cache without any hardware mod-

ifications. The remaining lower levels are placed in NMP-capable

memory accessed only by NMP cores, thus preventing infrequently

accessed nodes from polluting the host cache.

Although a seemingly simple idea, rigorous technical detail at

the algorithmic level is required to ensure high concurrency and cor-

rectness in these hybrid data structures. Conventional concurrent

data structures assume that operations are applied on a single coher-

ent structure, but a hybrid data structure is divided into two parts,

each accessed and managed by different sets of threads (i.e., host

cores vs. NMP cores). Both parts must therefore be kept coherent

throughout the entire operation, prompting new synchronization

problems. Careful coordination among the host threads, among the

NMP cores, and between host and NMP cores is essential. Moreover,

while skiplists and B+ trees have similar hierarchical topologies, the

two data structures by design have different correctness conditions

for concurrent modifications, so each of the hybrid algorithms must

be designed accordingly.

For concurrency in the NMP-managed portion, we build upon

prior work that applies flat-combining [28] to NMP-based data

structures [16, 44]. We first elaborate on the implementation of

NMP-managed portions of the hybrid data structures (§3.2). The

following subsections then provide details on the hybrid skiplist

and hybrid B+ tree designs (§3.3 and §3.4, respectively). Lastly, §3.5

describes an optimization that further improves the performance

of hybrid data structures.

3.2 NMP-Managed Portion

Conventional flat-combining data structures have a single desig-

nated combiner thread that actually applies operations to the data

structure. Each concurrent thread simply posts its operation re-

quest to an assigned slot in the publication list, which the combiner

thread iterates through to check for unserved operation requests. In

NMP-based flat-combining data structures, each NMP core becomes

the combiner thread for the portion of the data structure stored

in its coupled NMP partition. We assume that each NMP core is

equipped with a small scratchpad memory, and a portion of it is

memory-mapped into the host address space so that the space can

be used as the publication list.1

In order to offload a data structure operation to theNMP-managed

portion, the host thread writes the following items to its assigned

slot in the target NMP core’s publication list:
(1) lookup key (4 bytes)

(2) associated value (for update/insert operations; 4 bytes)

(3) pointer to the node from which the NMP core should begin

its traversal (referred to as begin-NMP-traversal node; 4 bytes)

(4) operation type (read, update, insert, remove, or other opera-

tions for maintenance and debugging; 3 bits)

(5) flag indicating that the slot contains a valid operation (1 bit)

1Note that our evaluation framework (elaborated in §4) accurately models latencies
caused by memory-mapped I/O.

After offloading an operation, the host thread polls on the flag

to check the status of the operation.

In previous NMP-based data structures [16, 44], begin-NMP-

traversal node (3) was unnecessary because the NMP core traversed

the entire data structure, such that all traversals began at a fixed

sentinel node within the NMP partition. On the other hand, host-

side traversals become shortcuts into NMP-managed lower levels

in our approach, so NMP-side traversals can begin at any node

referenced from the bottommost host-managed level.

However, because the NMP core processes operations in its pub-

lication list one at a time, the begin-NMP-traversal node of an

operation may end up being modified by a concurrent operation

that gets processed earlier in the NMP core. This is a new synchro-

nization problem that affects correctness in hybrid data structures,

and therefore the hybrid skiplist and the hybrid B+ tree provide

tailored mechanisms for the NMP core to detect such issues, in

which case the NMP core aborts the operation and notifies the host

thread to retry the operation accordingly.

When the NMP core finishes processing an offloaded operation,

it writes the following to the publication list before clearing the

valid flag:

(1) retry flag if the NMP-side operation requires a retry (1 bit)

(2) return value indicating success/failure (1 bit)

(3) associated value (for read operations; 4 bytes)

(4) pointer address to node created in the NMP partition during

an insert operation (if applicable; 4 bytes)

In addition to flat-combining, which handles the correct appli-

cation of concurrent operations to the NMP-managed portion of a

hybrid data structure, the NMP-managed portion is divided across

multiple NMP partitions to increase parallelism. Because each NMP

partition is an isolated portion of memory accessed and modified ex-

clusively by its coupled NMP core, operations to different partitions

can run in parallel without data races or coherence issues.

3.3 Hybrid Skiplist

The skiplist is an ordered, pointer-chasing data structure with mul-

tiple levels of pointers at each node. Each node is assigned a height,

and a node holds next-node pointers to the succeeding node at each

level up to its height. The height is taken from a particular distribu-

tion such that all nodes are linked together at level 0 (bottommost

level), but each node at level 𝑖 is only half as likely to appear at

level 𝑖 +1. The skiplist is usually configured with log2 𝑁 total levels,

where 𝑁 is the number of key-value pairs at initialization.

A lookup on the skiplist is a top-down search through the levels.

The lookup initially traverses through next-node pointers at the

topmost level, but once it reaches a node with a key larger than the

lookup key, it backtracks to the previous node on the same level

and continues the traversal at the level immediately below. This

process is repeated until the lookup key is found. The particular

distribution of node heights allows for a logarithmic time execution,

similar to a balanced binary search tree.

The cumulative size of the top 𝑥 levels of a skiplist can be es-

timated as 2𝑥sizeof(Node). In the hybrid skiplist (Figure 2), the

number of levels to be placed in the host-managed portion is chosen

such that this is approximately equal to the last-level cache size.

The host-managed portion of the hybrid skiplist is implemented

according to the state-of-the-art lock-free skiplist [23, 29]. Nodes in
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1 // host -managed portion:

2 struct InnerNode {

3 volatile int seqnum;

4 int level;

5 int slotuse; // # of slots in use

6 int dividing_keys[SLOTMAX ];

7 Node *children[SLOTMAX +1]; };

8 //NMP -managed portion:

9 struct InnerNode {

10 int parent_seqnum; //for synchronization at host -NMP boundary

11 int level;

12 short lock; // 1 if locked , 0 otherwise

13 short slotuse;

14 int dividing_keys[SLOTMAX ];

15 Node *children[SLOTMAX +1]; };

16 // LeafNodes have the same structure , except they hold data

17 // keys and values , instead of dividing keys and child ptrs.

Listing 3: Hybrid B+ tree node definitions.

in the meanwhile (if the data has changed, the operation can abort

and restart). Because atomic operations on the sequence locks are

issued only for writes, synchronization traffic is reduced compared

to read-write locks. We also use the sequence numbers as version

numbers for synchronization across the host-NMP boundary.

Listing 3 specifically shows how nodes are defined in our hybrid

B+ tree implementation. Each node in the host-managed portion

has a sequence number associated with it (line 3). However, because

the NMP-managed portion is accessed by a single NMP core only,

the sequence lock is unnecessary. Each node in the NMP-managed

portion instead has a simple lock (line 12). It also keeps track of its

parent node’s latest sequence number (line 10), which is used to

manage synchronization issues at the begin-NMP-traversal node.

To explain how these synchronization mechanisms are used

to ensure correctness, we describe the insert algorithm of the

hybrid B+ tree. The pseudocode in Listing 4 shows the host-side

of the algorithm. As the host thread traverses down the tree, it

records all nodes on the traversal path and their sequence numbers

at the time of access (lines 6-7, 12-14). If a destination child node

is being modified at the time of access, the traversal first waits

for the write on the child to complete (lines 12-14). Afterwards,

if the current node has remained unchanged, the traversal moves

down the tree (lines 16-18); otherwise, the traversal moves back

up the tree to the lowest ancestor node that has not been modified

during the operation’s execution (iterations of lines 19-22). Upon

reaching the last host-side level of the B+ tree, the host thread

offloads the insert operation to an appropriate NMP core (line

24). The appropriate NMP-side child node reference held in the last

host-side node becomes the begin-NMP-traversal node.

Listing 5 shows pseudocode for the NMP-side insert algorithm.

Lines 3-8 deal with synchronization at the host-NMP boundary,

but we first describe the insertion process assuming that the begin-

NMP-traversal node has not been split by a concurrent operation.

In lines 9-11, the NMP core traverses down the tree, recording

all nodes along the traversal path. Upon reaching the bottom, the

NMP core traverses back up the path to lock each node that will

be affected by the insert, starting from the leaf node (lines 13-19).

Whether a node will be split is determined by the number of slots in

use: if a node is currently full, the insertion will split the node, and

in turn its parent node will be affected and must be locked as well.

This is iteratively applied until a non-splitting node is reached. If all

affected nodes are contained within the NMP-managed portion, the

insertion takes place immediately, following the single-threaded

B+ tree insert algorithm, and the path is unlocked (lines 25-29).

1 Node* path[TREE_HEIGHT ]; int local_seqnum[TREE_HEIGHT ];

2 Node* curr , child = NULL; int curr_level = 0;

3 bool retry_from_root = true;

4 while (retry_from_root) {

5 curr = root; curr_level = curr ->level;

6 local_seqnum[curr_level] = curr ->seqnum;

7 path[curr_level] = curr;

8 if (local_seqnum[curr_level] % 2 != 0) continue;

9 while (curr_level < TREE_HEIGHT) {

10 child = find_child(curr , key);

11 if (curr_level > LAST_HOST_LEVEL) {

12 do {

13 local_seqnum[curr_level -1] = child ->seqnum;

14 } while (local_seqnum[curr_level -1] % 2 != 0);

15 path[curr_level -1] = child;

16 if (curr ->seqnum == local_seqnum[curr_level ]) {

17 curr_level --;

18 curr = child;

19 } else {

20 // curr has been modified , move back up the path

21 curr_level ++;

22 curr = path[curr_level ]; }

23 } else { // reached last host -side level

24 SEND_NMP_INSERT_OP (); // according to Section 3.2

25 if (GET_NMP_RETRY_FLAG ()) break; // retry from root

26 if (GET_NMP_LOCK_PATH ()) { // lock nodes on path

27 locked_all = false;

28 for (i = LAST_HOST_LEVEL; i < TREE_HEIGHT; i++) {

29 if (!CAS(path[i]->seqnum , local_seqnum[i],

local_seqnum[i]+1)) {

30 // failed to lock node at level i:

31 // unlock locked nodes on path (code omitted)

32 SEND_NMP_UNLOCK_PATH_OP ();

33 break; } // retry insert from root

34 if (path[i]->slotuse < INNER_SLOTMAX) {

35 locked_all = true; break; } }

36 if (locked_all) {

37 SEND_NMP_RESUME_INSERT_OP ();

38 retry_from_root = false;

39 // RESUME_INSERT is guaranteed to succeed.

40 // From here , complete host -side insertion process

41 // following the single -threaded insert algorithm ,

42 // unlock all nodes on path and return (code omitted)

43 }

44 } else { // of if GET_NMP_LOCK_PATH

45 retry_from_root = false;

46 // insert completed within NMP partition. return.

47 } break; } } }

Listing 4: Hybrid B+ tree host-side insert operation.

1 Node *path[TOP_NMP_LEVEL +1];

2 Node *curr = publist[i]. nmp_ptr;

3 if (curr ->parent_seqnum > publist[i]. parent_seqnum) {

4 // curr node has been split by concurrent op.

5 // set RETRY flag and move on to next op. (code omitted)

6 } else if (curr ->parent_seqnum < publist[i]. parent_seqnum) {

7 // parent had been split by insertion in sibling node

8 curr ->parent_seqnum = publist[i]. parent_seqnum; }

9 while (curr ->level > 0) {

10 path[curr ->level] = curr;

11 curr = find_child(curr , publist[i].key); }

12 path [0] = curr;

13 locked_all = false;

14 for (i = 0; i < TOP_NMP_LEVEL; i++) {

15 if (path[i]->lock == 0) {

16 path[i]->lock = 1;

17 if (path[i]->slotuse < SLOTMAX) {

18 locked_all = true;

19 break; }

20 } else {

21 // path[i] has already been locked by a concurrent insert.

22 // unlock nodes on path locked by this operation ,

23 // set RETRY flag , and move on to next op (code omitted)

24 } }

25 if (locked_all) {

26 // 1. follow single -threaded insert algorithm to complete

27 // the insertion , 2. unlock locked nodes , and 3. increment

28 // the parent_seqnum of begin -NMP -traversal node and its

29 // split -off sibling. (code omitted)

30 } else {

31 // set LOCK_PATH flag and move on to next op (code omitted)

32 }

Listing 5: Hybrid B+ tree NMP-side insert operation.
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are likely to be accessed from the on-chip cache. Figure 9 shows

that this is indeed true: with the host-only B+ tree, the number of

memory reads per operation decreases with increasing insertion

ratios. The 50-25-25 fully uniform workload eliminates the cache

locality benefits, and in this case, host-only’s operation throughput

decreases by 6% compared to the read-only workload. In fact, this

workload causes hybrid-blocking to have a relative advantage (6%

higher throughput) over host-only.

Lastly, we note that regardless of the workload, hybrid-

nonblocking4 yields approximately 50% higher throughput

thanhost-only. More specifically, the improvements in throughput

range from 46%, with the 50-25-25 workload where hybrid is least

advantageous, to 60%, with the 50-25-25 fully uniform workload

where hybrid is most advantageous.

6 RELATED WORK

Data structures with NMP. Liu et al. [44] proposed NMP-based

concurrent data structure algorithms, which Choe et al. [16] exten-

sively evaluated using a full-system architecture simulator. Other

prior work [32, 34, 45, 56] designed near-memory hardware accel-

erators for pointer-chasing data structures. However, none of these

works considered the on-chip cache locality of the data structures,

since pointer chasing occurs in the near-memory compute units.

Kang et al. [38] presented an NMP-based skiplist that provides

better load-balancing among NMP modules. Their algorithm also

divided the skiplist into upper-level and lower-level nodes, but the

upper-level nodes were replicated in each NMP partition, unlike

our work in which they are placed in the on-chip cache.

Graph processing applications with NMP [3, 20, 48, 71, 72] may

seem similar to data structures in their pointer-chasing aspect. How-

ever, they are fundamentally different applications with different

data traversal patterns and data partitioning strategies; thus, the

optimizations are not transferable.

Locality-aware NMP work offloading. Some works suggested

locality-aware offloading of NMP operations at instruction granular-

ity, either through programmer input and runtime detection [4] or

compile-time techniques [27]. Tsai et al. [61] dynamically mapped

threads to host processors or NMP cores based on per-thread cache

miss rates and cache resource contention. Livia [46] goes a step

further and schedules tasks (defined by a programming model) to

compute units placed throughout the entire memory hierarchy,

including at each cache level. Kandemir et al. [37] also presented

compiler-based techniques to optimally co-locate data and compu-

tation throughout the memory hierarchy.

Other works [33, 51] focused on GPU-based NMP architectures

and devised techniques to divide data and work between main GPU

cores and near-memory GPU cores. To the best of our knowledge,

our work is the first to take an algorithm-based approach with

data structures to provide locality- and architecture-aware data

placement and work division with NMP.

Latency-aware data structures. Other data structure designs

have also treated particular levels of hierarchical data structures

differently to improve performance. NUMASK [21] constructed

different index layers (upper levels) for each NUMA zone, which al-

lowed index traversals to access NUMA-local data only. DLTree [17]

exploited the fact that higher levels of a tree change much less fre-

quently than lower levels to compact the upper levels together for

better cache locality. FPTree [50] is a persistent B+ tree that persists

only the bottommost level containing the actual data in non-volatile

memory and maintains the upper levels in faster DRAM. To the best

of our knowledge, our work is the first to exploit the data structure

hierarchy in the context of NMP architectures.

There are also many other cache-conscious data structure de-

signs (e.g., [8, 12, 42, 47, 55, 62]), but these mostly attempt to reduce

cache invalidation traffic or improve data layout for better spatial

locality. Our work focuses on adapting hierarchical data structures

to NMP architectures in a way that enhances their cache locality.

Some recent concurrent data structure designs leveraged syn-

chronization techniques similar to the ones used for our NMP-

hybrid data structures. Node Replication for NUMA-aware data

structures [13] used flat-combining to batch operations and reduce

synchronization overhead across NUMA nodes. MEDS [63] sepa-

rated data into elastic partitions based on ranges of keys, and the

data structure maintained separate layers to navigate operations to

partitions and synchronize operations within each partition.

7 CONCLUSION & FUTUREWORK

This paper proposed a new, hybrid approach to using NMP archi-

tectures to improve the performance of cache-conscious concurrent

data structures. Specifically, we focused on hierarchical data struc-

tures where cache locality is high when traversing higher-level

nodes but deteriorates as traversals descend into lower levels. Our

hybrid data structures place higher-level nodes in the host’s on-chip

cache and lower-level nodes in NMP-capablememory, rendering the

cache more effective. NMP calls can also be non-blocking in hybrid

data structures, enabling even greater concurrency. Our empirical

evaluation showed that hybrid skiplists and hybrid B+ trees can

yield significant performance gains compared to state-of-the-art

implementations on conventional architectures.

An important next step is to implement and evaluate the pro-

posed hybrid data structures on real NMP hardware. Although

not yet commercialized as an off-the-shelf product, UPMEM has

recently made its NMP-capable memory device [22] available to

interested users [25, 26]. Another potential avenue for future work

involves extending hybrid data structures to work with more so-

phisticated NMP architectures, such as when host and NMP cores

share the memory space. Moreover, since hybrid data structures

focus on reducing cache miss latencies rather than exploiting high

internal memory bandwidth offered by certain NMP-enabling tech-

nologies, our algorithmic optimizations inspired by NMP can also

be complemented with non-NMP accelerators that support generic

data structures (e.g., QEI [68]).

Lastly, one noteworthy limitation of our current approach arises

with highly skewed workloads. In such cases, frequently accessed

nodes of traditional data structures are likely to remain in the

on-chip cache, resulting in better performance than our hybrid

versions that always force lower-level nodes to remain in NMP-

managed memory. One possible solution is to enhance hybrid data

structures with self-adjusting algorithms (e.g., biased skiplists [7],

splay-lists [5], CBTree [1]) to dynamically push frequently accessed

nodes to the host-managed region. Nonetheless, our work has laid

the foundations for many promising opportunities for future work,

andwe look forward to seeing follow-upworks that further enhance

the effectiveness of NMP-hybrid data structures.
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