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In this paper we explore the viability of path tracing massive scenes using a

“supercomputer” constructed on-the-�y from thousands of small, serverless

cloud computing nodes. We present R2E2 (Really Elastic Ray Engine) a scene

decomposition-based parallel renderer that rapidly acquires thousands of

cloud CPU cores, loads scene geometry from a pre-built scene BVH into

the aggregate memory of these nodes in parallel, and performs full path

traced global illumination using an inter-node messaging service designed

for communicating ray data. To balance ray tracing work across many nodes,

R2E2 adopts a service-oriented design that statically replicates geometry and

texture data from frequently traversed scene regions onto multiple nodes

based on estimates of load, and dynamically assigns ray tracing work to

lightly loaded nodes holding the required data. We port pbrt’s ray-scene

intersection components to the R2E2 architecture, and demonstrate that

scenes with up to a terabyte of geometry and texture data (where as little

as 1/250th of the scene can �t on any one node) can be path traced at

4K resolution, in tens of seconds using thousands of tiny serverless nodes

on the AWS Lambda platform.
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1 INTRODUCTION

Cloud computing platforms provide users the ability to access thou-

sands of CPUs, featuring terabytes of aggregate memory and hun-

dreds of gigabytes of I/O bandwidth, on demand. For example, at the

time of this submission, running 1,000 virtual CPUs in the Amazon

cloud for one minute costs approximately $1.30 USD. (In aggregate

these CPUs feature 1.3 TB of RAM and up to 200 Gbit/s of band-

width to shared storage.) The abundance of on-demand computing

resources presents new opportunities to reduce the run time of

expensive graphics jobs and increase the productivity of content
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creation work�ows. For example, an artist might bene�t from ac-

cess to a supercomputer’s worth of computing resources for a few

minutes to quickly generate a preview of a complex scene, or a

scientist might want to quickly load and visualize the results of a

supercomputing-scale physics simulation. Motivated by these pos-

sibilities, we explore how elastic cloud computing resources can

accelerate one challenging rendering task: achieving low latency

path tracing of high-complexity scenes (e.g., scenes containing ter-

abytes of geometry and texture) that are too large to �t on most

individual render farm machines.

Today, high-performance path tracing is typically performed on

CPU or GPU servers that feature many cores connected to a large,

uni�ed memory. When scenes exceed available memory size, path

tracing performance drops signi�cantly due to frequent transfer of

scene geometry data from slower levels of the storage hierarchy. As

a result, render farm machines are commonly packed with hundreds

of gigabytes of memory, and artists painstakingly modify scene

content to �t the memory footprint of these nodes.

In contrast, commercial cloud platforms are optimized to e�-

cientlymeet rapidly changing demand from a large user base (e.g., all

AWS customers) that typically does not require the large, monolithic

servers typical of advanced rendering. As a result, cloud platforms

are most e�cient when allocating their vast pool of resources in

smaller denominations. It is possible for a single user to acquire large

numbers of cloud computing resources in just a few seconds, pro-

vided the cloud provider can ful�ll the request using many smaller

nodes, each with limited CPU count, DRAM capacity, and network-

ing bandwidth. Therefore, to achieve the goal of low latency job

completion using cloud resources, a path tracer must be designed

for massive scale out execution onto many distributed nodes that

each hold only a small fraction of the scene at a time.

In this paper we present R2E2 (Really Elastic Ray Engine), the �rst

system architected to perform low latency path tracing of terabyte-

scale scenes using serverless computing nodes in the cloud. R2E2 is

a scene decomposition-based parallel renderer that is designed to

leverage the unique strengths of elastic cloud platforms (availability

of many CPUs/memory in aggregate, and massively parallel access

to shared storage) and mitigate the cloud’s limitations (low per-

node memory capacity and high latency inter-node communication).

R2E2 rapidly acquires thousands of cloud CPU cores, loads scene

geometry (from a pre-built scene BVH) and texture data into the

aggregate memory of these nodes in parallel, and performs full path

traced global illumination using an inter-node messaging service

speci�cally designed for communicating ray data over commodity

interconnect links. To balance ray tracing work across many nodes,

R2E2 adopts a service-oriented design that replicates scene geometry

and textures from frequently traversed scene regions onto multiple
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nodes based on estimates of load, and dynamically assigns work to

lightly loaded nodes holding the required scene data.

We port the open source pbrt renderer [Pharr et al. 2016] to the

R2E2 architecture and demonstrate that terabyte-scale scenes can be

path traced at high resolution, in only tens of seconds, using thou-

sands of tiny serverless nodes on the AWS Lambda platform. R2E2

is open-source software. The source code and the artifacts needed

to reproduce the experiments are located at https://r2e2.dev.

2 RELATED WORK

E�ciently mapping ray tracing computations to large parallel ma-

chines is extensively studied in computer graphics. The fundamen-

tal challenge, identi�ed by early attempts to design ray tracing

algorithms for early multiprocessors and supercomputers [Cleary

et al. 1986; Dippé and Swensen 1984; Kobayashi et al. 1988; Nemoto

and Omachi 1986; Priol and Bouatouch 1989; Salmon and Gold-

smith 1989; Scherson and Caspary 1988] (see survey by [Jansen and

Chalmers 1993]) and more recent attempts to distribute ray trac-

ing onto commodity clusters [Kato and Saito 2002; Navrátil et al.

2014; Pharr et al. 1997; Reinhard et al. 1999; Son and Yoon 2017]

and modern multi-core CPUs/GPUs [Parker et al. 2010; Wald et al.

2014; Ylitie et al. 2017a], involves addressing the key con�icting

goals of (1) making use of work-e�cient acceleration structures,

(2) ensuring good load balance of ray tracing work onto available

processors, and (3) maintaining high locality to reduce stalls due to

communication of scene or ray data.

The most common way to parallelize ray tracing is to use a screen

partitioning (a.k.a. ray partitioning) approach, where all ray tracing

work for a given screen region (or a given bundle of rays) is as-

signed to a processor. This approach is a natural extension of single

processor ray tracing that is trivial to load balance, but su�ers from

the cost of communicating scene data when the scene working set

for a screen region cannot �t in fast memories. Techniques such

as lazy loading or lazy generation of scene geometry [Christensen

et al. 2003; Georgiev et al. 2018] reduce working set, and increas-

ing a machine’s DRAM increases the size of scenes that can be

stored in memory, however screen-partitioning schemes still per-

form poorly when renderers must trace incoherent rays through

very large scenes.

In contrast domain partitioning approaches partition scene geom-

etry into spatially adjacent regions (a cell in an octree, a treelet of a

BVH) and localize this scene data with a processor. During render-

ing, rays must be communicated to this processor when ray traversal

computations need access to this scene information. Domain par-

titioning allows large scenes to remain resident in the aggregate

memory of multiple machines, but presents the challenges of ensur-

ing load balance (many scene regions may not receive many rays)

and the costs of frequent ray communication.

To realize the bene�ts of both approaches, researchers have pro-

posed hybrid techniques that selectively adopt screen partitioning

or domain partitioning strategies for di�erent parts of the ray trac-

ing workload [Reinhard et al. 1999]. For example, many out-of-core

rendering systems (both for single machines and distributed cluster

rendering setups) [Budge et al. 2009; Eisenacher et al. 2013; Navrátil

et al. 2014; Pantaleoni et al. 2010; Pharr et al. 1997; Reinhard et al.

1999; Son and Yoon 2017], can be viewed as hybrid techniques

that group rays by the scene region they require, then dynamically

choose whether to trace those rays on a processor with the scene

region already loaded into memory (domain partitioning), load the

scene region onto the processor holding the rays (ray partition-

ing), or move both the rays and the required scene region to a new

unloaded processor.

In this paper we utilize a domain partitioning approach. Speci�-

cally, we demonstrate that when targeting low latency rendering of

massive scenes, the ability to rapidly acquire many nodes enables

fast (constant time) scene loading via wide parallel I/O and the abil-

ity to store a massive scene in the aggregate memory of these nodes.

The advantages of avoiding scene paging and the opportunity to

boot enough nodes to service highly loaded scene regions mitigates

common pitfalls of domain-partitioned rendering.

Scene compression and out-of-core rendering. Scene data compres-

sion techniques [Benthin et al. 2018; Mahovsky and Wyvill 2006;

Ylitie et al. 2017b] allow larger scenes �t in the memory of a single

machine. We aim to enable scalability to very large scenes, and view

data compression as a complementary technique to the scale-out dis-

tributed rendering architecture proposed in this paper. Large-scene

rendering is also the focus of out-of-core rendering methods [Burley

et al. 2018; Pantaleoni et al. 2010]. These methods employ locality op-

timizing techniques to reduce transfer of ray or scene geometry data

to and from storage. We employ similar techniques to e�ectively

utilize a large number of cloud nodes.

Supercomputing as a service. The high elasticity and �ne-grained

billing of compute o�erings such as AWS Lambda and Google Cloud

Run have made these platforms an interesting choice for applica-

tions that seek low-latency execution through massive scale-out.

In recent years researchers and practitioners have built many of

such systems: ExCamera [Fouladi et al. 2017] and Sprocket [Ao et al.

2018] for low-latency video processing, PyWren [Jonas et al. 2017]

for MapReduce-style data analytics, numpywren [Shankar et al. 2018]

for linear algebra, gg [Fouladi et al. 2019] for software compilation

and testing, and Cirrus [Carreira et al. 2019] for machine learning

work�ows. Our work explores the suitability of these emerging

platforms for achieving low latency path tracing.

3 GOALS AND PRELIMINARIES

3.1 R2E2 Goals

Our goal is to render scenes containing hundreds of gigabytes to

terabytes of geometry and texture data in just a few minutes (e.g.,

complete a full scene render in the time to get a cup of co�ee). We

focus on high-complexity scenes because they are costly to render

and do not �t in high-bandwidth local memories of most single-

machine CPU/GPU platforms. These scenes arise in settings such as

�lm production, scienti�c data visualization, and engineering (e.g.,

high-resolution CAD models, 3D scans of large environments).

We anticipate work�ows where a user periodically wishes to

quickly render a large scene with path traced global illumination.

Since it would be ine�cient (in terms of machine utilization or mon-

etary cost) to reserve high-end render farm machines for infrequent

tasks (if such machines are even available to the user), we focus on
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the “cold start” scenario where scene data is resident in networked

storage and no machines are allocated for the task. Therefore we

are interested in reducing the end-to-end time, including time to

acquire processing resources and load the scene from persistent

storage, of the path tracing computation.

In this paper, we limit our e�orts to scaling ray traversal and

shading (including texturing) components of rendering. We treat

BVH construction and scene partitioning (§5.1) as preprocessing

steps that occur prior to R2E2 execution, and leave cloud-scale par-

allelization of these components to future work.

3.2 Designing for Cloud Platform Characteristics

To achieve low end-to-end render times, R2E2 must rapidly acquire

large amounts processing and networking resources at the time of

job creation. The result is an underlying distributed system with

signi�cantly di�erent characteristics than the high-end servers typ-

ically used to render complex scenes. These characteristics substan-

tially in�uenced the design of R2E2.

Many “small” nodes. Modern cloud platforms are capable of pro-

viding rapid access to computing resources, provided resources are

requested in small denominations. For example, we implement R2E2

on top of AWS Lambda nodes that feature only 3 vCPUs and 4GB

of RAM. In benchmarks of the AWS Lambda platform, we were

able to acquire 2,500 nodes (7,500 total vCPUs) in approximately 10

seconds. In comparison AWS required 125 seconds to provide eight

large nodes featuring 128 vCPUs each (only 1,024 total vCPUs). As

a result, R2E2 adopts a domain decomposition based parallel

renderer design that assumes the worker nodes used for rendering

can only hold a small fraction of the entire scene.

Large aggregate memory capacity. Although individual worker

nodes have few resources, high overall node count results in ag-

gregate system memory that is signi�cantly greater than the size

of the rendered scene. For example, the 2,500-node R2E2 con�gura-

tion features 10 TB of aggregate memory, several times more than

our largest test scene. R2E2 leverages the abundance of DRAM by

replicating geometry and texture data for frequently traversed

scene regions onto many nodes. The �exibility to provide more pro-

cessing resources for frequently traversed scene regions improves

workload balance, a common challenge in domain decomposition

based parallel rendering.

Large aggregate I/O throughput. Using many nodes also translates

into high aggregate I/O bandwidth. Each AWS Lambda worker can

retrieve data from Amazon’s storage service (S3) at 600 Mbit/sec,

which in a 2,500-worker con�guration yields 1.5 Tbit/sec of aggre-

gate parallel I/O throughput. R2E2’s domain decomposition based

design exploits massively parallel scene loading to transfer

terabyte-scale scenes and materialize them into the aggregate mem-

ory of these nodes in seconds.

High communication latency. The ability to acquire large num-

bers of resources rapidly comes at the cost of reduced locality of

resources. Computing nodes may be distributed across a datacenter,

yielding inter-node communication latencies that are both large and

unpredictable. To achieve e�cient ray communication in this setting,

Treelet 0
(root)

Treelet
1 Treelet 2

Sample
Hit info

Geometry Treelets

R2E2 Service Communication Graph

Texture Partitions

Mat Partition 0 Mat Partition 1

M1 textures

M1

M2

M1 M3

M2 textures

M3 textures

Env Partition 0

Ray
Ray to Env

Scene Data Decomposition

Env Partition 1

Camera

Trace
0

Trace
1

Shade
0

Shade
1

Trace
2

Accum

EnvLight
1

EnvLight
0

Fig. 1. Top: a BVH partitioned into three treelets. Leaf geometry references

material definitions"1−3 whose texture data fits into two texture partitions.

A large environment map is split between two additional texture partitions.

Bo�om: The R2E2 service communication graph resulting from this scene

decomposition. In addition to camera ray generation (Camera) and render-

target sample accumulation (Accum) services, there is one Trace service

associated with each treelet and a Shade and EnvLight service associated

with each texture partition and environment map partition respectively.

R2E2 is architected to communicate scene geometry at large granu-

larity (100’s of MBs) and implements a customized ray messaging

queue service that batches rays to e�ciently utilize communication

links.

4 SYSTEM OVERVIEW

In this section, we provide an overview of R2E2’s design. R2E2

maps path tracing to massively parallel cloud infrastructure using

a domain partitioning approach that divides the scene’s BVH and

leaf geometry into treelets [Aila and Karras 2010] and scene texture

data into texture partitions. Both treelets and texture partitions are

sized to �t within the small memory footprint of worker nodes.

R2E2 is organized as a collection of asynchronous services that

communicate via queues. These services generate camera rays (the

Camera service), trace rays through a speci�ed treelet C (the Tracet
services), perform BRDF evaluation or environment map sampling

using textures in partition ? (the Shadep and EnvLightp services),

and accumulate ray radiance contributions into the frame bu�er

(the Accum service). Figure 1 depicts a scene partitioned into three

treelets and four texture partitions (two for surface material textures

and two for the environment map), along with the corresponding

R2E2 service graph. There is one Trace service for each treelet and

one Shade (or EnvLight) service for each texture partition.
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Given scene treelets and texture partitions, R2E2’s services coop-

erate to perform standard �re-and-forget path tracing. The Camera

service generates rays, then communicates them to the root treelet’s

tracing service (Trace0). These rays may traverse to other treelets

(requiring transfer to the corresponding tracing service), or hit ge-

ometry in the current treelet. After a hit, the ray is routed to the

shading service containing the texture partition relevant to the hit

point. Shading generates one bounce ray to continue the path and

one shadow ray carrying the shading result of the current bounce.

These new rays are communicated to Trace0 to begin traversal. Ray-

scene misses that require environment map sampling are sent to

the appropriate EnvLight. Radiance along unoccluded shadow rays

and the results of environment map sampling are sent to Accum,

which accumulates samples into the render target.

Following the �re-and-forget strategy, R2E2 services are stateless

with respect to rays or samples they process. For example, Tracet ser-

vices do not internally track a ray’s path through the BVH; instead,

the tracing services exchange not only ray origin and direction but

all other information necessary to �nish tracing the ray through

the BVH (traversal stack, etc).

4.1 System Operation

To achieve high performance, R2E2 parallelizes its path tracing ser-

vices using a heterogeneous collection of cloud storage and process-

ing resources provides by the AmazonWeb Services (AWS) platform.

Figure 2 illustrates the major components of the R2E2 architecture.

Worker nodes. Upon receiving a scene rendering request, R2E2 im-

mediately boots # worker nodes. Our implementation uses server-

less functions on the AWS Lambda platform as workers (3 vCPUs

per worker) because thousands of these workers can be provided by

AWS Lambda in seconds. (We demonstrate up to # = 2500 in our

experiments.) At the beginning of the ray tracing computation, R2E2

allocates worker nodes to the various Tracet, Shadep, and EnvLightp
services according to estimates of the amount of work the service

must perform during the rendering job (see §5.3). Services allocated

more workers can achieve higher processing throughput to match

the expected demand. For a scaled-down example, in Figure 2, rays

sent to the Trace0 service are processed by one of �ve workers.

Services estimated to have little work will be assigned only one

worker.

Scene store. R2E2 stores treelet and texture partition data gener-

ated during scene pre-processing as read-only blobs in the AWS S3

object store. Once a worker node is assigned to a service, it imme-

diately initiates requests to S3 to transfer the associated treelet (or

texture partition) data into its local memory. Loading takes place in

parallel across all worker nodes. Since each worker only requires a

small amount of data from S3 (~1GB), the cost of loading scene data

into the memory of all workers is independent of total scene size, and

typically completes in seconds.

Orchestrator. Once workers have loaded their required data, the

Camera service begins generating camera rays. R2E2 executes Cam-

era on worker nodes allocated to Trace0, so generated rays can be

processed locally using the already resident root treelet. Path tracing

proceeds in parallel, with workers tracing rays for the appropriate

Tracet service and enqueuing partially traced rays or shade requests

for other services. The entire computation is managed by a single

orchestrator node, which tracks when phases of the computation

complete (e.g., scene load) and assigns work residing in service input

queues to workers allocated to each service.

Service Queue Store. Once path tracing begins, nearly all com-

munication in R2E2 involves transferring ray (or ray hit) data to

the Tracet and Shadep services. R2E2 implements ray communica-

tion using a set of AWS EC2 machines that manage a distributed

input queue for each service. These dedicated queues allow e�cient

asynchronous transfers and bu�ering of ray data (§5.4).

Image Tile Store. R2E2 implements the Accum service by accu-

mulating all radiance samples into render target tiles stored in S3.

Accum workers hold tiles of the render target in memory, and peri-

odically write partially completed tiles to S3 to enable incremental

preview of rendering results.

5 SYSTEM IMPLEMENTATION

E�ciently tracing divergent path-traced global illumination rays

through large scenes distributed across many worker nodes required

addressing several key challenges.

Locality preserving scene partitioning. Because of the high cost

of communication between distributed nodes, to achieve high ray

tracing performance, treelet-to-treelet ray transfers during traversal

must be infrequent. In section 5.1 we describe how we reduce ray

communication events by adapting BVH partitioning algorithms

designed to enhance GPU cache locality to the cloud setting.

Ensuring good workload balance. A critical aspect to obtaining

high performance from the R2E2 architecture is generating a good al-

location of worker nodes to services. A poor allocation will not only

leave many worker nodes idle (wasting compute capability), but un-

derprovision performance-critical services (creating a performance

bottleneck). In Section 5.3, we describe how we use upfront pro�ling

of the path tracing computation to derive allocation estimates that

improve workload balance and performance.

E�cient ray communication. In addition to communicating ray

data less often, R2E2 must transmit �ne granularity ray data ef-

�ciently over commodity networking links. We �nd o�-the-shelf

cloud messaging services such as Amazon’s Simple Queuing Ser-

vice [Amazon Web Services 2021] deliver insu�cient throughput

and too high of latency for this workload, and design a custom

messaging service for ray communication (§5.4).

5.1 Treelet Partitioning

To minimize communication during path tracing, R2E2 partitions

the scene into disjoint subtrees called treelets that maximize ray–

geometry locality: i.e., minimize the number of treelets (and there-

fore the number of transfers between Tracet services) that a random

ray must visit. This goal is analogous to the problem of optimizing

BVH partitioning for GPU cache locality, and R2E2 adapts the treelet

construction algorithm of [Aila and Karras 2010] for the needs of

our distributed path tracing workload. We enhance the partition-

ing heuristic to account for the communication costs of geometry
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described above. In a latency-prioritized setting, the bene�ts of

using large treelets to reduce inter-node transfers, and “pre-loading”

scene data e�ciently en masse at the start of computation outweigh

the costs of imperfect worker allocation.

5.4 Inter-Service Message�eues

R2E2’s communication mechanisms must realize high link utiliza-

tion when the worker is heavily loaded (since most Tracet workers

are bandwidth bound). Importantly, inter-service communication

should have low latency, since the completion time of long ray paths

(and therefore the completion time of rendering) is determined by

the product of communication latency and the number of inter-

service transfers on a ray path. For simplicity, in this section we

describe the implementation of communication of ray data between

Tracet services. R2E2 uses the same queuing system communicate

hits and samples to the shading and environment light sampling

services.

As illustrated in Figure 2 R2E2 implements a queuing service

(Service Queue Store) that is based on communicating ray data2

from workers to and from a small number of proxy servers that

bu�er enqueued ray state until it can be processed by a worker. This

centralized solution avoids the complexity of point-to-point com-

munication between thousands of workers while still maintaining

higher throughput and lower latency communication than general-

purpose queuing services o�ered by cloud providers [Amazon Web

Services 2021].

The state of a single ray (~1 KB or less) is too small for e�cient

transmission between cloud nodes. Therefore, to achieve e�cient

data transfer, workers communicate with the service queue store

at the granularity of large batches of rays, which we call ray bags.

After a Tracet worker traces a ray through its local treelet, it sorts

the ray into local bu�ers based on the required destination service.

When the worker accumulates a large batch of rays for the same

target Tracet service, it compresses the bag then sends it via a single

message to the ray store. Empirical tests show that 1MB transfers

are needed to sustain maximum communication throughput be-

tween nodes, so our implementation sends ray bags when their

pre-compression size reaches 1MB. We observe that for the scenes

used for evaluation in Section 6, ray bag compression reduces band-

width requirements by a factor of 2.4. Bag assembly, compression,

and transmission occur asynchronously with ray tracing (one thread

on the worker is used for communication tasks).

Workers also receive rays to process from the service queue store

at the granularity of bags. The R2E2 orchestrator tracks the number

of bags enqueued for each service, as well as the number of bags

currently assigned to that service’s workers. As rendering proceeds,

the orchestrator assigns ray bags enqueued for a service to the least

loaded worker allocated to that service.

The service queue store is implemented by a collection of nodes

running the memcached in-memory key-value store [Fitzpatrick

2004] (rays bags are objects inserted and removed from memcached).

These nodes are con�gured with higher memory capacity (5.25GB)

2R2E2 service input queues may store ray state, hit state, or sample information de-
pending on the service involved, but we refer only to ray state to simplify exposition.

Table 1. Scene statistics for Moana-XL and Terrace scenes. Both scenes are

sized to require approximately 1 TB of memory.

Moana-XL Terrace

Triangles 2,465,363,112 2,455,042,403

BVH Nodes 4,238,464,161 2,963,036,146

Size on disk
177GB (geometry)
178GB (texture)

99GB (geometry)
138GB (texture)

Size in memory 1.1 TB 0.9 TB

Lights 353 1

Instancing Yes No

Treelet count 940 684

Avg. treelet size 0.4 GB ± 0.2 0.3 GB ± 0.2

than workers to provide adequate storage for in-memory ray bu�er-

ing. We �nd that a ratio of one ray store server for every 10 R2E2

worker nodes is su�cient to maintain high communication band-

width across the system.

6 EVALUATION

We evaluate R2E2 in terms of its wall-clock performance (we seek

low latency job completion) and its scalability to large scenes and

many worker nodes. We demonstrate that R2E2 is capable of ren-

dering terabyte-scale scenes signi�cantly faster (up to 8.6×) than

a high-end shared memory server (§6.2). We also show that R2E2

scales to increasingly large scenes simply by adding more workers

to the system (§6.3, §6.4).

6.1 Experimental Setup

Scenes. We created scenes with increasing complexity by dupli-

cating the island geometry and textures from the Moana Island

Scene [Walt Disney Animation Studios 2018]. We created scenes

with one (Moana-XS), two (Moana-S), four (Moana-M), six (Moana-

L), and eight (Moana-XL) copies of the island geometry positioned

on a 4×2 grid. Each duplicated copy of the island has its own unique

set of instances and associated geometry so that within each island,

instancing is still present.Moana-XL’s geometry and texture data

occupies approximately 1 TB when materialized in memory. Moana

rendering uses the scene’s original BXDFs and textures (including

the environment light), but does not include volumetric e�ects.

We also evaluate on Terrace, a high-resolution terrain populated

with detailed objects. Terrace is also sized to require approximately

1 TB of memory. Both scenes are divided into treelets and texture

partitions that each occupy at most ~2GB of memory, less than the

total DRAM available on each worker node to ensure adequate space

is available for ray-state storage and other runtime state. Table 1

provides statistics for both scenes.

In our experiments all images are rendered at 4K resolution (3840×

2160) and with a maximum path depth of �ve. To account for view

dependence in results, we render theMoana and Terrace scenes from

four and two viewpoints respectively (Figure 5) and report average

performance from these timings. A full breakdown of these results

by the viewpoint can be found in the supplementary materials.
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Moana-XL V1 Moana-XL V2

Moana-XL V3 Moana-XL V4

Terrace V1

Terrace V2

Fig. 5. Example viewpoints used to render Moana and Terrace scenes in our experiments.

R2E2 con�guration. We evaluate R2E2 running on AWS Lambda

workers equipped with three virtual CPUs (vCPUs), 4GB of RAM,

and up to 600Mbit/s networking [Fouladi et al. 2019; Wawrzoniak

et al. 2021]. We con�gure R2E2 to use one memcached node (for ray

queueing) for every 10 workers. These nodes are Amazon Elastic

Compute Cloud (EC2) c5n.large instances with 2 vCPUs, 5.25GB

of RAM, and up to 25Gbit/s networking.

A �eet of 250 memcached servers can be started in 30 sec on Ama-

zon EC2. We did not include this boot time in our measurements,

because the servers could be booted in parallel with the execution of

the upfront pro�ling (our current implementation does not feature

this optimization). However, the cost of running the �eet during the

rendering job is included in all R2E2 cost estimates.

pbrt-treelet baseline. We benchmark R2E2’s performance against

a version of pbrt that requires the entire scene to be materialized in

memory during ray tracing, but is modi�ed to use the same treelet

structures as those used by R2E2 (pbrt-treelet). This modi�ca-

tion reduces pbrt’s traversal performance, but was necessary to

allow pbrt to handle terabyte-sized BVHs. We run pbrt-treelet

on an EC2 x1.32xlarge instance with 128 virtual CPUs, 1.9 TB of

RAM and a 25Gbit/s network link. We view this con�guration as

representative of a large server in a production render farm. Typical

time to provision and boot the machine from EC2 is ~70 seconds;

however, we do not include this launch time in our results, yield-

ing a best-case execution for this baseline. pbrt-treelet stores

scene geometry on remote storage (S3), and transfers it over the net-

work, and materializes it in memory before path tracing starts. We

parallelize deserialization and object materialization to maximize

pbrt-treelet’s scene loading performance.

6.2 End-to-End Performance

Figure 6 compares the end-to-end performance of R2E2 and pbrt-

treelet renders of the Moana-XL and Terrace scenes. R2E2 is con-

�gured to use 2,500 Lambda workers (a total of 7,500 vCPUs and

10 TB of RAM), accompanied by 250 memcached servers for ray

communication. In this con�guration, R2E2 is 3.5–7.8× faster than

pbrt-treelet’s single-machine in-memory path tracer. We aver-

age rendering performance over the views shown in Figure 5. The

results include the upfront pro�ling time.

A signi�cant factor in the performance speedup of R2E2 comes

from the speed of loading the scene: time to transfer data over the

network, deserialize the data, and (in the case of geometry) con-

struct a traceable BVH in memory. By using the aggregate network

throughput and compute of thousands of workers that each load and

materialize a small subset of the scene, R2E2 �nishes scene trans-

fer 4.9× (Moana-XL) and 2.9× (Terrace) faster than pbrt-treelet.

R2E2 achieves an average aggregate bandwidth usage of ~150Gbit/s

(up to 1.2 Tbit/s peak) during the initial scene load, compared to the

25Gbit/s available to pbrt-treelet’s single machine.

Massive parallelism also results in R2E2 outperforming pbrt-

treelet by 5.7–9.8× (Moana) and 5.1–6.8× (Terrace) in just the path

tracing portion of the computation. While R2E2’s ray throughput

is higher in aggregate than pbrt-treelet, R2E2’s ray throughput

per-vCPU is lower than pbrt-treelet’s due to the costs of inter-

node communication and workload imbalance across large numbers

of workers. Recall that after scene deserialization, pbrt-treelet

requires no further network I/O as it can access the entire scene in

uni�ed shared memory, reducing the performance cost of tracing

each ray.

In all rendering con�gurations except Terrace 64 spp, R2E2 com-

pletes the entire path tracing job before pbrt-treelet begins tracing
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