R2E2: Low-Latency Path Tracing of Terabyte-Scale Scenes using

Thousands of Cloud CPUs

SADJAD FOULADI, Microsoft Research, USA and Stanford University, USA
BRENNAN SHACKLETT, FAIT POMS, ARJUN ARORA, ALEX OZDEMIR, DEEPTI RAGHAVAN, PAT
HANRAHAN, KAYVON FATAHALIAN, and KEITH WINSTEIN, Stanford University, USA

In this paper we explore the viability of path tracing massive scenes using a
“supercomputer” constructed on-the-fly from thousands of small, serverless
cloud computing nodes. We present R2E2 (Really Elastic Ray Engine) a scene
decomposition-based parallel renderer that rapidly acquires thousands of
cloud CPU cores, loads scene geometry from a pre-built scene BVH into
the aggregate memory of these nodes in parallel, and performs full path
traced global illumination using an inter-node messaging service designed
for communicating ray data. To balance ray tracing work across many nodes,
R2E2 adopts a service-oriented design that statically replicates geometry and
texture data from frequently traversed scene regions onto multiple nodes
based on estimates of load, and dynamically assigns ray tracing work to
lightly loaded nodes holding the required data. We port pbrt’s ray-scene
intersection components to the R2E2 architecture, and demonstrate that
scenes with up to a terabyte of geometry and texture data (where as little
as 1/250th of the scene can fit on any one node) can be path traced at
4K resolution, in tens of seconds using thousands of tiny serverless nodes
on the AWS Lambda platform.

CCS Concepts: « Computing methodologies — Ray tracing.
Additional Key Words and Phrases: ray tracing, lambda computing

ACM Reference Format:

Sadjad Fouladi, Brennan Shacklett, Fait Poms, Arjun Arora, Alex Ozdemir,
Deepti Raghavan, Pat Hanrahan, Kayvon Fatahalian, and Keith Winstein.
2022. R2E2: Low-Latency Path Tracing of Terabyte-Scale Scenes using Thou-
sands of Cloud CPUs. ACM Trans. Graph. 41, 4, Article 76 (July 2022), 12 pages.
https://doi.org/10.1145/3528223.3530171

1 INTRODUCTION

Cloud computing platforms provide users the ability to access thou-
sands of CPUs, featuring terabytes of aggregate memory and hun-
dreds of gigabytes of I/O bandwidth, on demand. For example, at the
time of this submission, running 1,000 virtual CPUs in the Amazon
cloud for one minute costs approximately $1.30 USD. (In aggregate
these CPUs feature 1.3 TB of RAM and up to 200 Gbit/s of band-
width to shared storage.) The abundance of on-demand computing
resources presents new opportunities to reduce the run time of
expensive graphics jobs and increase the productivity of content

Authors’ addresses: Sadjad Fouladi, sfouladi@microsoft.com, Microsoft Research,
USA, Stanford University, USA; Brennan Shacklett, bps@cs.stanford.edu; Fait Poms,
fpoms@cs.stanford.edu; Arjun Arora, aarora52@alumni.stanford.edu; Alex Ozdemir,
aozdemir@cs.stanford.edu; Deepti Raghavan, deeptir@cs.stanford.edu; Pat Hanrahan,
hanrahan@stanford.edu; Kayvon Fatahalian, kayvonf@stanford.edu; Keith Winstein,
keithw@cs.stanford.edu, Stanford University, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

0730-0301/2022/7-ART76

https://doi.org/10.1145/3528223.3530171

creation workflows. For example, an artist might benefit from ac-
cess to a supercomputer’s worth of computing resources for a few
minutes to quickly generate a preview of a complex scene, or a
scientist might want to quickly load and visualize the results of a
supercomputing-scale physics simulation. Motivated by these pos-
sibilities, we explore how elastic cloud computing resources can
accelerate one challenging rendering task: achieving low latency
path tracing of high-complexity scenes (e.g., scenes containing ter-
abytes of geometry and texture) that are too large to fit on most
individual render farm machines.

Today, high-performance path tracing is typically performed on
CPU or GPU servers that feature many cores connected to a large,
unified memory. When scenes exceed available memory size, path
tracing performance drops significantly due to frequent transfer of
scene geometry data from slower levels of the storage hierarchy. As
aresult, render farm machines are commonly packed with hundreds
of gigabytes of memory, and artists painstakingly modify scene
content to fit the memory footprint of these nodes.

In contrast, commercial cloud platforms are optimized to effi-
ciently meet rapidly changing demand from a large user base (e.g., all
AWS customers) that typically does not require the large, monolithic
servers typical of advanced rendering. As a result, cloud platforms
are most efficient when allocating their vast pool of resources in
smaller denominations. It is possible for a single user to acquire large
numbers of cloud computing resources in just a few seconds, pro-
vided the cloud provider can fulfill the request using many smaller
nodes, each with limited CPU count, DRAM capacity, and network-
ing bandwidth. Therefore, to achieve the goal of low latency job
completion using cloud resources, a path tracer must be designed
for massive scale out execution onto many distributed nodes that
each hold only a small fraction of the scene at a time.

In this paper we present R2E2 (Really Elastic Ray Engine), the first
system architected to perform low latency path tracing of terabyte-
scale scenes using serverless computing nodes in the cloud. R2E2 is
a scene decomposition-based parallel renderer that is designed to
leverage the unique strengths of elastic cloud platforms (availability
of many CPUs/memory in aggregate, and massively parallel access
to shared storage) and mitigate the cloud’s limitations (low per-
node memory capacity and high latency inter-node communication).
R2E2 rapidly acquires thousands of cloud CPU cores, loads scene
geometry (from a pre-built scene BVH) and texture data into the
aggregate memory of these nodes in parallel, and performs full path
traced global illumination using an inter-node messaging service
specifically designed for communicating ray data over commodity
interconnect links. To balance ray tracing work across many nodes,
R2E2 adopts a service-oriented design that replicates scene geometry
and textures from frequently traversed scene regions onto multiple

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

76:2 « Fouladi, et al.

nodes based on estimates of load, and dynamically assigns work to
lightly loaded nodes holding the required scene data.

We port the open source pbrt renderer [Pharr et al. 2016] to the
R2E2 architecture and demonstrate that terabyte-scale scenes can be
path traced at high resolution, in only tens of seconds, using thou-
sands of tiny serverless nodes on the AWS Lambda platform. R2E2
is open-source software. The source code and the artifacts needed
to reproduce the experiments are located at https://r2e2.dev.

2 RELATED WORK

Efficiently mapping ray tracing computations to large parallel ma-
chines is extensively studied in computer graphics. The fundamen-
tal challenge, identified by early attempts to design ray tracing
algorithms for early multiprocessors and supercomputers [Cleary
et al. 1986; Dippé and Swensen 1984; Kobayashi et al. 1988; Nemoto
and Omachi 1986; Priol and Bouatouch 1989; Salmon and Gold-
smith 1989; Scherson and Caspary 1988] (see survey by [Jansen and
Chalmers 1993]) and more recent attempts to distribute ray trac-
ing onto commodity clusters [Kato and Saito 2002; Navratil et al.
2014; Pharr et al. 1997; Reinhard et al. 1999; Son and Yoon 2017]
and modern multi-core CPUs/GPUs [Parker et al. 2010; Wald et al.
2014; Ylitie et al. 2017a], involves addressing the key conflicting
goals of (1) making use of work-efficient acceleration structures,
(2) ensuring good load balance of ray tracing work onto available
processors, and (3) maintaining high locality to reduce stalls due to
communication of scene or ray data.

The most common way to parallelize ray tracing is to use a screen
partitioning (a.k.a. ray partitioning) approach, where all ray tracing
work for a given screen region (or a given bundle of rays) is as-
signed to a processor. This approach is a natural extension of single
processor ray tracing that is trivial to load balance, but suffers from
the cost of communicating scene data when the scene working set
for a screen region cannot fit in fast memories. Techniques such
as lazy loading or lazy generation of scene geometry [Christensen
et al. 2003; Georgiev et al. 2018] reduce working set, and increas-
ing a machine’s DRAM increases the size of scenes that can be
stored in memory, however screen-partitioning schemes still per-
form poorly when renderers must trace incoherent rays through
very large scenes.

In contrast domain partitioning approaches partition scene geom-
etry into spatially adjacent regions (a cell in an octree, a treelet of a
BVH) and localize this scene data with a processor. During render-
ing, rays must be communicated to this processor when ray traversal
computations need access to this scene information. Domain par-
titioning allows large scenes to remain resident in the aggregate
memory of multiple machines, but presents the challenges of ensur-
ing load balance (many scene regions may not receive many rays)
and the costs of frequent ray communication.

To realize the benefits of both approaches, researchers have pro-
posed hybrid techniques that selectively adopt screen partitioning
or domain partitioning strategies for different parts of the ray trac-
ing workload [Reinhard et al. 1999]. For example, many out-of-core
rendering systems (both for single machines and distributed cluster
rendering setups) [Budge et al. 2009; Eisenacher et al. 2013; Navratil
et al. 2014; Pantaleoni et al. 2010; Pharr et al. 1997; Reinhard et al.

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

1999; Son and Yoon 2017], can be viewed as hybrid techniques
that group rays by the scene region they require, then dynamically
choose whether to trace those rays on a processor with the scene
region already loaded into memory (domain partitioning), load the
scene region onto the processor holding the rays (ray partition-
ing), or move both the rays and the required scene region to a new
unloaded processor.

In this paper we utilize a domain partitioning approach. Specifi-
cally, we demonstrate that when targeting low latency rendering of
massive scenes, the ability to rapidly acquire many nodes enables
fast (constant time) scene loading via wide parallel I/O and the abil-
ity to store a massive scene in the aggregate memory of these nodes.
The advantages of avoiding scene paging and the opportunity to
boot enough nodes to service highly loaded scene regions mitigates
common pitfalls of domain-partitioned rendering.

Scene compression and out-of-core rendering. Scene data compres-
sion techniques [Benthin et al. 2018; Mahovsky and Wyvill 2006;
Ylitie et al. 2017b] allow larger scenes fit in the memory of a single
machine. We aim to enable scalability to very large scenes, and view
data compression as a complementary technique to the scale-out dis-
tributed rendering architecture proposed in this paper. Large-scene
rendering is also the focus of out-of-core rendering methods [Burley
et al. 2018; Pantaleoni et al. 2010]. These methods employ locality op-
timizing techniques to reduce transfer of ray or scene geometry data
to and from storage. We employ similar techniques to effectively
utilize a large number of cloud nodes.

Supercomputing as a service. The high elasticity and fine-grained
billing of compute offerings such as AWS Lambda and Google Cloud
Run have made these platforms an interesting choice for applica-
tions that seek low-latency execution through massive scale-out.
In recent years researchers and practitioners have built many of
such systems: ExCamera [Fouladi et al. 2017] and Sprocket [Ao et al.
2018] for low-latency video processing, PyWren [Jonas et al. 2017]
for MapReduce-style data analytics, numpywren [Shankar et al. 2018]
for linear algebra, gg [Fouladi et al. 2019] for software compilation
and testing, and Cirrus [Carreira et al. 2019] for machine learning
workflows. Our work explores the suitability of these emerging
platforms for achieving low latency path tracing.

3 GOALS AND PRELIMINARIES
3.1 R2E2 Goals

Our goal is to render scenes containing hundreds of gigabytes to
terabytes of geometry and texture data in just a few minutes (e.g.,
complete a full scene render in the time to get a cup of coffee). We
focus on high-complexity scenes because they are costly to render
and do not fit in high-bandwidth local memories of most single-
machine CPU/GPU platforms. These scenes arise in settings such as
film production, scientific data visualization, and engineering (e.g.,
high-resolution CAD models, 3D scans of large environments).
We anticipate workflows where a user periodically wishes to
quickly render a large scene with path traced global illumination.
Since it would be inefficient (in terms of machine utilization or mon-
etary cost) to reserve high-end render farm machines for infrequent
tasks (if such machines are even available to the user), we focus on

R2E2: Low-Latency Path Tracing of Terabyte-Scale Scenes using Thousands of Cloud CPUs « 76:3

the “cold start” scenario where scene data is resident in networked
storage and no machines are allocated for the task. Therefore we
are interested in reducing the end-to-end time, including time to
acquire processing resources and load the scene from persistent
storage, of the path tracing computation.

In this paper, we limit our efforts to scaling ray traversal and
shading (including texturing) components of rendering. We treat
BVH construction and scene partitioning (§5.1) as preprocessing
steps that occur prior to R2E2 execution, and leave cloud-scale par-
allelization of these components to future work.

3.2 Designing for Cloud Platform Characteristics

To achieve low end-to-end render times, R2E2 must rapidly acquire
large amounts processing and networking resources at the time of
job creation. The result is an underlying distributed system with
significantly different characteristics than the high-end servers typ-
ically used to render complex scenes. These characteristics substan-
tially influenced the design of R2E2.

Many “small” nodes. Modern cloud platforms are capable of pro-
viding rapid access to computing resources, provided resources are
requested in small denominations. For example, we implement R2E2
on top of AWS Lambda nodes that feature only 3 vCPUs and 4 GB
of RAM. In benchmarks of the AWS Lambda platform, we were
able to acquire 2,500 nodes (7,500 total vCPUs) in approximately 10
seconds. In comparison AWS required 125 seconds to provide eight
large nodes featuring 128 vCPUs each (only 1,024 total vCPUs). As
a result, R2E2 adopts a domain decomposition based parallel
renderer design that assumes the worker nodes used for rendering
can only hold a small fraction of the entire scene.

Large aggregate memory capacity. Although individual worker
nodes have few resources, high overall node count results in ag-
gregate system memory that is significantly greater than the size
of the rendered scene. For example, the 2,500-node R2E2 configura-
tion features 10 TB of aggregate memory, several times more than
our largest test scene. R2E2 leverages the abundance of DRAM by
replicating geometry and texture data for frequently traversed
scene regions onto many nodes. The flexibility to provide more pro-
cessing resources for frequently traversed scene regions improves
workload balance, a common challenge in domain decomposition
based parallel rendering.

Large aggregate I/O throughput. Using many nodes also translates
into high aggregate I/O bandwidth. Each AWS Lambda worker can
retrieve data from Amazon’s storage service (S3) at 600 Mbit/sec,
which in a 2,500-worker configuration yields 1.5 Tbit/sec of aggre-
gate parallel I/O throughput. R2E2’s domain decomposition based
design exploits massively parallel scene loading to transfer
terabyte-scale scenes and materialize them into the aggregate mem-
ory of these nodes in seconds.

High communication latency. The ability to acquire large num-
bers of resources rapidly comes at the cost of reduced locality of
resources. Computing nodes may be distributed across a datacenter,
yielding inter-node communication latencies that are both large and
unpredictable. To achieve efficient ray communication in this setting,

Scene Data Decomposition

Geometry Treelets Texture Partitions

M, textures M; textures
EEEE BEE
M textures ﬁ ﬁ i)

Treelet Mat Partition 0
1

Treelet 0

Mat Partition 1

Env Partition 0 Env Partition 1

R2E2 Service Communication Graph

Camera

—> Ray —> Hit info
—> Ray to Env > Sample

EnvLightD

Fig. 1. Top: a BVH partitioned into three treelets. Leaf geometry references
material definitions M;_3 whose texture data fits into two texture partitions.
A large environment map is split between two additional texture partitions.
Bottom: The R2E2 service communication graph resulting from this scene
decomposition. In addition to camera ray generation (Camera) and render-
target sample accumulation (Accum) services, there is one Trace service
associated with each treelet and a Shade and EnvLight service associated
with each texture partition and environment map partition respectively.

R2E2 is architected to communicate scene geometry at large granu-
larity (100’s of MBs) and implements a customized ray messaging
queue service that batches rays to efficiently utilize communication
links.

4 SYSTEM OVERVIEW

In this section, we provide an overview of R2E2’s design. R2E2
maps path tracing to massively parallel cloud infrastructure using
a domain partitioning approach that divides the scene’s BVH and
leaf geometry into treelets [Aila and Karras 2010] and scene texture
data into texture partitions. Both treelets and texture partitions are
sized to fit within the small memory footprint of worker nodes.

R2E2 is organized as a collection of asynchronous services that
communicate via queues. These services generate camera rays (the
Camera service), trace rays through a specified treelet ¢ (the Trace;
services), perform BRDF evaluation or environment map sampling
using textures in partition p (the Shadep and EnvLight;, services),
and accumulate ray radiance contributions into the frame buffer
(the Accum service). Figure 1 depicts a scene partitioned into three
treelets and four texture partitions (two for surface material textures
and two for the environment map), along with the corresponding
R2E2 service graph. There is one Trace service for each treelet and
one Shade (or EnvLight) service for each texture partition.

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

76:4 « Fouladi, et al.

Given scene treelets and texture partitions, R2E2’s services coop-
erate to perform standard fire-and-forget path tracing. The Camera
service generates rays, then communicates them to the root treelet’s
tracing service (Traceyp). These rays may traverse to other treelets
(requiring transfer to the corresponding tracing service), or hit ge-
ometry in the current treelet. After a hit, the ray is routed to the
shading service containing the texture partition relevant to the hit
point. Shading generates one bounce ray to continue the path and
one shadow ray carrying the shading result of the current bounce.
These new rays are communicated to Traceg to begin traversal. Ray-
scene misses that require environment map sampling are sent to
the appropriate EnvLight. Radiance along unoccluded shadow rays
and the results of environment map sampling are sent to Accum,
which accumulates samples into the render target.

Following the fire-and-forget strategy, R2E2 services are stateless
with respect to rays or samples they process. For example, Trace; ser-
vices do not internally track a ray’s path through the BVH; instead,
the tracing services exchange not only ray origin and direction but
all other information necessary to finish tracing the ray through
the BVH (traversal stack, etc).

4.1 System Operation

To achieve high performance, R2E2 parallelizes its path tracing ser-
vices using a heterogeneous collection of cloud storage and process-
ing resources provides by the Amazon Web Services (AWS) platform.
Figure 2 illustrates the major components of the R2E2 architecture.

Worker nodes. Upon receiving a scene rendering request, R2E2 im-
mediately boots N worker nodes. Our implementation uses server-
less functions on the AWS Lambda platform as workers (3 vCPUs
per worker) because thousands of these workers can be provided by
AWS Lambda in seconds. (We demonstrate up to N = 2500 in our
experiments.) At the beginning of the ray tracing computation, R2E2
allocates worker nodes to the various Tracey, Shadep, and EnvLi ghtp
services according to estimates of the amount of work the service
must perform during the rendering job (see §5.3). Services allocated
more workers can achieve higher processing throughput to match
the expected demand. For a scaled-down example, in Figure 2, rays
sent to the Trace service are processed by one of five workers.
Services estimated to have little work will be assigned only one
worker.

Scene store. R2E2 stores treelet and texture partition data gener-
ated during scene pre-processing as read-only blobs in the AWS S3
object store. Once a worker node is assigned to a service, it imme-
diately initiates requests to S3 to transfer the associated treelet (or
texture partition) data into its local memory. Loading takes place in
parallel across all worker nodes. Since each worker only requires a
small amount of data from S3 (~1 GB), the cost of loading scene data
into the memory of all workers is independent of total scene size, and
typically completes in seconds.

Orchestrator. Once workers have loaded their required data, the
Camera service begins generating camera rays. R2E2 executes Cam-
era on worker nodes allocated to Tracey, so generated rays can be
processed locally using the already resident root treelet. Path tracing
proceeds in parallel, with workers tracing rays for the appropriate

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

Trace; service and enqueuing partially traced rays or shade requests
for other services. The entire computation is managed by a single
orchestrator node, which tracks when phases of the computation
complete (e.g., scene load) and assigns work residing in service input
queues to workers allocated to each service.

Service Queue Store. Once path tracing begins, nearly all com-
munication in R2E2 involves transferring ray (or ray hit) data to
the Trace; and Shadey, services. R2E2 implements ray communica-
tion using a set of AWS EC2 machines that manage a distributed
input queue for each service. These dedicated queues allow efficient
asynchronous transfers and buffering of ray data (§5.4).

Image Tile Store. R2E2 implements the Accum service by accu-
mulating all radiance samples into render target tiles stored in S3.
Accum workers hold tiles of the render target in memory, and peri-
odically write partially completed tiles to S3 to enable incremental
preview of rendering results.

5 SYSTEM IMPLEMENTATION

Efficiently tracing divergent path-traced global illumination rays
through large scenes distributed across many worker nodes required
addressing several key challenges.

Locality preserving scene partitioning. Because of the high cost
of communication between distributed nodes, to achieve high ray
tracing performance, treelet-to-treelet ray transfers during traversal
must be infrequent. In section 5.1 we describe how we reduce ray
communication events by adapting BVH partitioning algorithms
designed to enhance GPU cache locality to the cloud setting.

Ensuring good workload balance. A critical aspect to obtaining
high performance from the R2E2 architecture is generating a good al-
location of worker nodes to services. A poor allocation will not only
leave many worker nodes idle (wasting compute capability), but un-
derprovision performance-critical services (creating a performance
bottleneck). In Section 5.3, we describe how we use upfront profiling
of the path tracing computation to derive allocation estimates that
improve workload balance and performance.

Efficient ray communication. In addition to communicating ray
data less often, R2E2 must transmit fine granularity ray data ef-
ficiently over commodity networking links. We find off-the-shelf
cloud messaging services such as Amazon’s Simple Queuing Ser-
vice [Amazon Web Services 2021] deliver insufficient throughput
and too high of latency for this workload, and design a custom
messaging service for ray communication (§5.4).

5.1 Treelet Partitioning

To minimize communication during path tracing, R2E2 partitions
the scene into disjoint subtrees called treelets that maximize ray—
geometry locality: i.e., minimize the number of treelets (and there-
fore the number of transfers between Trace; services) that a random
ray must visit. This goal is analogous to the problem of optimizing
BVH partitioning for GPU cache locality, and R2E2 adapts the treelet
construction algorithm of [Aila and Karras 2010] for the needs of
our distributed path tracing workload. We enhance the partition-
ing heuristic to account for the communication costs of geometry

R2E2: Low-Latency Path Tracing of Terabyte-Scale Scenes using Thousands of Cloud CPUs « 76:5

N\ (N\
Scene Store Image Tile Store Service Queue Store
Treelets Texture Partitions Trace; queues Trace; queues Trace; queues i
‘L.' (memcaﬂhed 0) (memcaﬂhed 1) (memcaﬂhed 2) z;t:th;xﬁi
... |EHER bl 0 1 - T-1 - T [
l] =] - = = — = | for Shade, and
1 - = == = | EnvLight,
Treelet Tr%elet Tex]'vl'fex EnvTex EnvTex EEme == — = | services
0 -1 0 -1 0 1 Render =
Read-only storage of precomputed target tiles AWS EC2 instances
BVH treelets and texture partitions (S3 object store) L (53 object store)) (running memcached: stores enqueued ray bags)
-
' A N\
Traceo / Camera Tracer-1 Shadep—1 EnvLighto EnvLight; Work
: N Scheduler
(][0 P e |
i O‘§Oé§b i o@%é& | B W E ﬁ AWS EC2
in rays in rays in rays in rays in rays in rays in rays in hits in hits in rays in rays in rays instance:
outrays || outrays | | outrays | [outrays || out rays gutrays | | out rays gutrays | | out rays out samples out samples outsamples Assbigns work
;iiiii; = E= =) = =) (= 5 ags to
Eow wy w2 P Wy2 Waa | workers

. J U

AWS Lambda instances
(hold specified treelet data in memory & consume, process, and generate ray bags)

Fig. 2. The R2E2 system architecture configured with T scene treelets, M material texture partitions, 2 environment texture partitions, N worker nodes, and 3
memcached servers for the service queue store. R2E2 allocates services worker nodes according to estimates of how much work they will perform during a

path tracing computation. Here, the heavily traversed root treelet (Tracey) is assigned five workers.

Ty Ty Ty
Ty T2 Ty

) Fo o |

(b) large instanced BVH

(a) small instanced BVH
(kept in own treelet)

(copied into referencing treelets)

Fig. 3. (a) To avoid inter-service ray transfers R2E2 duplicates instance
geometry (grey nodes) into referencing treelets when instances are small
and the cost of this duplication is low. (b) Instanced objects that have large
amounts of geometry are kept in their own treelets since duplication is
costly and the communication cost of ray transfer is amortized over a large
amount of traversal work in the instance.

instancing (extensively used in real-world production scenes) and
scale-up target treelet size from a few KB (targeting GPU L1 caches)
to ~1 GB to fill the memory of cloud workers.

Prior to treelet construction, R2E2 performs a standard acceler-
ation structure build that accounts for instanced geometry: first,
R2E2 constructs a distinct BVH for each instance-able object in the
scene. Next it constructs a “top-level” BVH for the overall scene that
references the object’s BVH for each object instance. In a shared-
memory renderer, this standard setup reduces footprint by sharing
geometry and BVH structures across all instances of an object. How-
ever, naively applying the treelet partitioning algorithm of [Aila and
Karras 2010] to each of these BVHs (both top level and instance
BVHs) will result in substantial inter-treelet communication when
scenes contain many instances of low triangle-count objects (e.g.,
blades of grass).

If instance geometry is always placed in its own treelet, checking
a ray against the instance’s geometry requires two ray transfers:
a first transfer from the worker holding the treelet in the scene’s
BVH to the worker that holds the treelet containing the instance’s
geometry, and a reverse transfer so the ray can continue traversal
in the scene. This double transfer is repeated for each instance of the
object, forcing the same ray to visit workers holding the instance’s
geometry multiple times. For small objects, the cost of these ray
transfers outweighs the footprint reduction benefits of sharing ge-
ometry across instances. Figure 3(a) provides an example where a
region of the BVH contains three instances of an object, so a ray
will be transferred from treelet T1 to instanced object’s treelet (T3)
three times.

To mitigate this issue, R2E2 duplicates the geometry of small ob-
jects into any treelet that instances those objects. (In Figure 3(a) T3
is copied into both treelets that reference it.) This increases total
scene memory footprint, as a given object may be included in mul-
tiple treelets!; however, this duplication removes two ray transfers
every time the instance appears in the scene. R2E2 can access a
large amount of total memory across many cloud workers, so the
performance benefit from a reduction in ray transfers outweighs the
data loading and memory footprint costs of duplicating instanced
geometry across workers. We find that using a heuristic that elects
to duplicate objects less than half the maximum treelet size worked
well. Figure 3(b) shows an example where an instance featuring large
amounts of geometry is not duplicated into referencing treelets.

The greedy BVH partitioning strategy of [Aila and Karras 2010]
aims to construct treelets that yield high ray locality: these are
treelets that approach the maximum treelet footprint, and have large
surface area. However, geometry that cannot be fit in these desirable
treelets ends up in a large number of low-surface area, low memory

Note that within a treelet, a small object may still be instanced multiple times; the
only duplication of geometry is between treelets, not within them.

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

76:6 « Fouladi, et al.

0.11 Target Allocation ==

940 Worker Allocation
1K Worker Allocation —
2K Worker Allocation —

Fraction of Total Workers

940

Treelet

Fig. 4. The fraction of workers R2E2 assigned to each service is proportional
to the service’s estimated load. Red line: target allocation for Trace; services,
as determined by estimates of load from a low-resolution render of a 940
treelet scene (treelets sorted by most-to-least load). Green lines: actual
allocations for R2E2 configurations using increasing numbers of workers.
At low worker counts, many lightly used services (right side of graph) are
over provisioned as they must have at least one worker to execute. This
results in under provisioning of highly used services (left side of graph).
Configurations with more workers more closely approximate the target
allocation.

footprint treelets. To generate scene partitions that “fill up” worker
node memories, R2E2 groups these small disjoint treelets together
into new treelets that approach the maximum size. This makes
efficient use of available worker node memory and also improves
network utilization since grouping small, rarely visited, treelets
together increases the number of rays sent to workers holding these
parts of the scene. Elsewhere in the paper we use the term “treelets”
to refer to chunks of geometry that may include many disjoint parts
of the BVH.

5.2 Texture Partitioning

In contrast to geometry partitioning, constructing texture partitions
in R2E2 is simple. Our current implementation uses textures in
the Ptex texture format [Burley and Lacewell 2008], which divides
surface texture data into into small per-face textures. R2E2 forms
texture partitions by adding individual Ptex texture images from a
single Ptex file (from a single object) into a texture partition until
the partition fills. Packing also includes face texture images adjacent
to the chosen images. When forming partitions, R2E2 iterates over
an object’s faces in a BFS order to maintain surface locality of the
Ptex face texture images residing in the same R2E2 partition. After
inserting all face texture images for an object, R2E2 selects the next
scene object and continues to add Ptex face images until the current
partition fills.

While our current implementation is based on Ptex, the R2E2
architecture only requires that the texture data assigned to a single
service fits in the memory of a worker. Any texture representation
capable of partitioning texture data into worker-sized chunks could
be used with R2E2 (e.g., UDIM).

5.3 Allocating Workers to Services

R2E2’s path tracing performance depends heavily on provisioning
services with enough workers so that the service’s execution can

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

keep up with the rate of arriving requests. For example, the scene’s
root treelet service must process orders of magnitude more rays
than treelets containing rarely traversed geometry. R2E2 adopts
a static worker allocation policy where each service’s allocation
is determined prior to the start of path tracing and not changed
for the duration of the computation. Initial experiments showed
that estimating load using heuristics such as treelet surface area
poorly approximate actual load, so R2E2 employs an up-front scene
profiling step to gather statistics about workload distribution.

R2E2’s profiling phase performs a low resolution, low path depth
rendering of the full scene using one worker per service (Our imple-
mentation renders a 960x540 image with 1 spp and maximum path
depth of 5.) Profiling records the total number of rays processed by
each service as well as the average computation time for processing
requests.

Whether execution is compute-limited or bandwidth-limited varies
on a per-service basis (treelets requiring more traversal steps are
more likely to be compute bound), so we estimate the time each ser-
vice s spends doing work during the profiling run (W) as the maxi-
mum of the average time spent per-request performing computation
(Ws,comp) and communicating data to the queue store (Ws,comm):

W;s = num requests processed by s X max(Ts comps Ts,comm)
where T comm is estimated as:
Ts comm = sizeof (input data + output data) / link bandwidth

R2E2 allocates workers to treelet services proportionally to Ws.
However, each service must be allocated at least one worker (oth-
erwise the service could not execute). One result of requiring all
parts of the scene to be memory resident is that rarely used services
(e.g., rarely traversed treelets) are over-provisioned, even if they are
allocated only one worker. As scene sizes grow in relation to the
total number of worker nodes, a greater fraction of the workers are
used to hold rarely visited treelets, preventing critical treelets from
receiving sufficient processing resources. R2E2’s ability to correctly
provision services grows with the number of workers because the
additional workers are allocated to heavily used services in need
of greater throughput. Figure 4 illustrates this behavior for a scene
containing 940 treelets, many of which need less than one worker
of processing throughput. As the number of workers is increased,
R2E2’s allocation (green lines) begins to more closely approximate
the target allocation (red line).

Dynamic allocation alternatives. An alternative to static worker
allocation is to dynamically adjust a service’s worker allocation
mid-render-job according to load. The challenge of dynamically
allocating workers to services is that it incurs the cost of loading
new data (treelets or textures). Reloading a service’s required input
data not only occupies node bandwidth (preventing ray processing
during this time), but there is a substantial latency before the load
is complete (~15 sec for the 1 GB treelets). Given our low latency
goals, there is little time to adjust treelet allocation during the path
tracing computation. Decreasing treelet size to gain more flexibility
for reallocation increases ray tracing time since smaller treelets
increase the number of high-latency treelet-to-treelet ray transfers.
In our experiments we were unable to design a dynamic allocation
policy that yielded lower job completion times than the static policy

R2E2: Low-Latency Path Tracing of Terabyte-Scale Scenes using Thousands of Cloud CPUs « 76:7

described above. In a latency-prioritized setting, the benefits of
using large treelets to reduce inter-node transfers, and “pre-loading”
scene data efficiently en masse at the start of computation outweigh
the costs of imperfect worker allocation.

5.4 Inter-Service Message Queues

R2E2’s communication mechanisms must realize high link utiliza-
tion when the worker is heavily loaded (since most Trace; workers
are bandwidth bound). Importantly, inter-service communication
should have low latency, since the completion time of long ray paths
(and therefore the completion time of rendering) is determined by
the product of communication latency and the number of inter-
service transfers on a ray path. For simplicity, in this section we
describe the implementation of communication of ray data between
Trace; services. R2E2 uses the same queuing system communicate
hits and samples to the shading and environment light sampling
services.

As illustrated in Figure 2 R2E2 implements a queuing service
(Service Queue Store) that is based on communicating ray data?
from workers to and from a small number of proxy servers that
buffer enqueued ray state until it can be processed by a worker. This
centralized solution avoids the complexity of point-to-point com-
munication between thousands of workers while still maintaining
higher throughput and lower latency communication than general-
purpose queuing services offered by cloud providers [Amazon Web
Services 2021].

The state of a single ray (~1 KB or less) is too small for efficient
transmission between cloud nodes. Therefore, to achieve efficient
data transfer, workers communicate with the service queue store
at the granularity of large batches of rays, which we call ray bags.
After a Trace; worker traces a ray through its local treelet, it sorts
the ray into local buffers based on the required destination service.
When the worker accumulates a large batch of rays for the same
target Trace; service, it compresses the bag then sends it via a single
message to the ray store. Empirical tests show that 1 MB transfers
are needed to sustain maximum communication throughput be-
tween nodes, so our implementation sends ray bags when their
pre-compression size reaches 1 MB. We observe that for the scenes
used for evaluation in Section 6, ray bag compression reduces band-
width requirements by a factor of 2.4. Bag assembly, compression,
and transmission occur asynchronously with ray tracing (one thread
on the worker is used for communication tasks).

Workers also receive rays to process from the service queue store
at the granularity of bags. The R2E2 orchestrator tracks the number
of bags enqueued for each service, as well as the number of bags
currently assigned to that service’s workers. As rendering proceeds,
the orchestrator assigns ray bags enqueued for a service to the least
loaded worker allocated to that service.

The service queue store is implemented by a collection of nodes
running the memcached in-memory key-value store [Fitzpatrick
2004] (rays bags are objects inserted and removed from memcached).
These nodes are configured with higher memory capacity (5.25 GB)

2R2E2 service input queues may store ray state, hit state, or sample information de-
pending on the service involved, but we refer only to ray state to simplify exposition.

Table 1. Scene statistics for Moana-XL and Terrace scenes. Both scenes are
sized to require approximately 1 TB of memory.

Moana-XL Terrace

Triangles 2,465,363,112 2,455,042,403
BVH Nodes 4,238,464,161 2,963,036,146

177 GB (geometry) 99 GB (geometry)

Size on disk 178 GB (texture) 138 GB (texture)

Size in memory 1.1TB 0.9TB
Lights 353 1
Instancing Yes No
Treelet count 940 684

Avg. treelet size 0.4 GB + 0.2 0.3GB +0.2

than workers to provide adequate storage for in-memory ray buffer-
ing. We find that a ratio of one ray store server for every 10 R2E2
worker nodes is sufficient to maintain high communication band-
width across the system.

6 EVALUATION

We evaluate R2E2 in terms of its wall-clock performance (we seek
low latency job completion) and its scalability to large scenes and
many worker nodes. We demonstrate that R2E2 is capable of ren-
dering terabyte-scale scenes significantly faster (up to 8.6x) than
a high-end shared memory server (§6.2). We also show that R2E2
scales to increasingly large scenes simply by adding more workers
to the system (§6.3, §6.4).

6.1 Experimental Setup

Scenes. We created scenes with increasing complexity by dupli-
cating the island geometry and textures from the Moana Island
Scene [Walt Disney Animation Studios 2018]. We created scenes
with one (Moana-XS), two (Moana-S), four (Moana-M), six (Moana-
L), and eight (Moana-XL) copies of the island geometry positioned
on a 4x2 grid. Each duplicated copy of the island has its own unique
set of instances and associated geometry so that within each island,
instancing is still present. Moana-XL’s geometry and texture data
occupies approximately 1 TB when materialized in memory. Moana
rendering uses the scene’s original BXDFs and textures (including
the environment light), but does not include volumetric effects.

We also evaluate on Terrace, a high-resolution terrain populated
with detailed objects. Terrace is also sized to require approximately
1TB of memory. Both scenes are divided into treelets and texture
partitions that each occupy at most ~2 GB of memory, less than the
total DRAM available on each worker node to ensure adequate space
is available for ray-state storage and other runtime state. Table 1
provides statistics for both scenes.

In our experiments all images are rendered at 4K resolution (3840%
2160) and with a maximum path depth of five. To account for view
dependence in results, we render the Moana and Terrace scenes from
four and two viewpoints respectively (Figure 5) and report average
performance from these timings. A full breakdown of these results
by the viewpoint can be found in the supplementary materials.

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

76:8 « Fouladi, et al.

Moana-XL V1

Moana-XL V2

Moana-XL V4

Terrace V1

Terrace V2

Fig. 5. Example viewpoints used to render Moana and Terrace scenes in our experiments.

R2E2 configuration. We evaluate R2E2 running on AWS Lambda
workers equipped with three virtual CPUs (vCPUs), 4 GB of RAM,
and up to 600 Mbit/s networking [Fouladi et al. 2019; Wawrzoniak
et al. 2021]. We configure R2E2 to use one memcached node (for ray
queueing) for every 10 workers. These nodes are Amazon Elastic
Compute Cloud (EC2) c5n. large instances with 2 vCPUs, 5.25 GB
of RAM, and up to 25 Gbit/s networking.

A fleet of 250 memcached servers can be started in 30 sec on Ama-
zon EC2. We did not include this boot time in our measurements,
because the servers could be booted in parallel with the execution of
the upfront profiling (our current implementation does not feature
this optimization). However, the cost of running the fleet during the
rendering job is included in all R2E2 cost estimates.

pbrt-treelet baseline. We benchmark R2E2’s performance against
a version of pbrt that requires the entire scene to be materialized in
memory during ray tracing, but is modified to use the same treelet
structures as those used by R2E2 (pbrt-treelet). This modifica-
tion reduces pbrt’s traversal performance, but was necessary to
allow pbrt to handle terabyte-sized BVHs. We run pbrt-treelet
on an EC2 x1.32x1large instance with 128 virtual CPUs, 1.9 TB of
RAM and a 25 Gbit/s network link. We view this configuration as
representative of a large server in a production render farm. Typical
time to provision and boot the machine from EC2 is ~70 seconds;
however, we do not include this launch time in our results, yield-
ing a best-case execution for this baseline. pbrt-treelet stores
scene geometry on remote storage (S3), and transfers it over the net-
work, and materializes it in memory before path tracing starts. We
parallelize deserialization and object materialization to maximize
pbrt-treelet’s scene loading performance.

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

6.2 End-to-End Performance

Figure 6 compares the end-to-end performance of R2E2 and pbrt-
treelet renders of the Moana-XL and Terrace scenes. R2E2 is con-
figured to use 2,500 Lambda workers (a total of 7,500 vCPUs and
10 TB of RAM), accompanied by 250 memcached servers for ray
communication. In this configuration, R2E2 is 3.5-7.8x% faster than
pbrt-treelet’s single-machine in-memory path tracer. We aver-
age rendering performance over the views shown in Figure 5. The
results include the upfront profiling time.

A significant factor in the performance speedup of R2E2 comes
from the speed of loading the scene: time to transfer data over the
network, deserialize the data, and (in the case of geometry) con-
struct a traceable BVH in memory. By using the aggregate network
throughput and compute of thousands of workers that each load and
materialize a small subset of the scene, R2E2 finishes scene trans-
fer 4.9x (Moana-XL) and 2.9x (Terrace) faster than pbrt-treelet.
R2E2 achieves an average aggregate bandwidth usage of ~150 Gbit/s
(up to 1.2 Thit/s peak) during the initial scene load, compared to the
25 Gbit/s available to pbrt-treelet’s single machine.

Massive parallelism also results in R2E2 outperforming pbrt-
treelet by 5.7-9.8%x (Moana) and 5.1-6.8x (Terrace) in just the path
tracing portion of the computation. While R2E2’s ray throughput
is higher in aggregate than pbrt-treelet, R2E2’s ray throughput
per-vCPU is lower than pbrt-treelet’s due to the costs of inter-
node communication and workload imbalance across large numbers
of workers. Recall that after scene deserialization, pbrt-treelet
requires no further network I/O as it can access the entire scene in
unified shared memory, reducing the performance cost of tracing
each ray.

In all rendering configurations except Terrace 64 spp, R2E2 com-
pletes the entire path tracing job before pbrt-treelet begins tracing

R2E2: Low-Latency Path Tracing of Terabyte-Scale Scenes using Thousands of Cloud CPUs « 76:9

oo

Terrace
>

f=al w
o] = N

_
(=)}

Moana-XL
w
N

R2E2
(2500%3 vCPUs)

I Scene Transfer from S3
I Scene Deserialization

Path Tracing

pbrt-treelet
(128 vCPUs SMP)

I Scene Transfer from S3
I Scene Deserialization

Path Tracing

[=2}
5
o- |l|

20 25 30 35

Time (min)

Fig. 6. By parallelizing scene transfer and computation onto 2,500 AWS Lambda workers (7,500 total vCPUs), R2E2 reduces the end-to-end time to load and
path trace terabyte-scale Moana-XL and Terrace scenes by 3.8-8.6x compared pbrt-treelet running on a high-end 128 vCPU server with 1.9 TB of memory.
R2E2’s massive parallelism results in faster path tracing performance and also high throughput transfer and deserialization of scene data into the 10 TB
aggregate memory of worker nodes. R2E2 is able to complete a 32 spp Moana-XL rendering job (including time to acquire and boot worker nodes) in 146
seconds, barely more than the time it takes the single 128 vCPU server to transfer scene data from shared storage. The time for the upfront profiling stage is
included in the results. A breakdown of the results by the viewpoints can be found in the supplementary materials.

Table 2. R2E2 reduces job completion time compared to pbrt-treelet, but
uses 2,500 worker nodes (nearly 60x more vCPUs) to do so. However, cost
increases are only 4.8-8.1X since pbrt-treelet must use more expensive
computing resources with access to large shared memories. Results include
the upfront profiling stage.

Moana-XL Terrace

SPP 8 16 32 64 8 16 32 64

pbrt-treelet $1.81 $2.68 $4.35 $7.56 $1.32 $1.86 $2.95 $5.02
R2E2 $11.52 $14.82 $20.92 $36.77 $9.77 $14.99 $20.39 $34.32

CostRatio 6.4x 55x 4.8x 4.9x 74X 81X 69X 6.8
Speedup 53X 65X 8.0x 8.6X 3.8X 40X 51X 58X

a single ray (pbrt-treelet is still loading and deserializing scene
data). This implies that an alternative strategy of accelerating pbrt-
treelet by parallelizing it across multiple large 128-vCPU machines
using image-decomposition rendering would not outperform R2E2
on these jobs, regardless of the number of machines used. (Recall
that in an image decomposition renderer, all machines must load the
scene.) Also, it can be slower to acquire large numbers of terabyte-
memory-scale SMT machines as they are less readily available from
cloud providers.

6.2.1 Monetary Cost. Beyond the raw speedup achieved by R2E2,
another important aspect to the practicality of the system is the
cost effectiveness of leveraging 7,500 vCPUs through AWS Lambda
compared to pbrt-treelet’s 128-vCPU machine. Despite using
nearly 60X more compute resources during the path tracing part of
the computation, R2E2 incurs only a 4.8-8.1X increase in monetary

cost (Table 2). This is because the Lambda vCPUs run for shorter time
(the R2E2 computation finishes faster than that of pbrt-treelet
and only a small number of Lambda workers run during the initial
profiling phase) and cost 32% less than vCPUs on the EC2 instance.
While on-demand Lambda workers are generally rented at a price
premium due to their fast startup times, the vCPUs of the EC2
instance are even more expensive due to the large 2 TB unified
memory system on the machine. Further efficiency optimizations,
such as sizing AWS Lambda workers on a per service basis (using the
smallest worker type that can fit a service’s input data in memory),
or using bulk-launch APIs to rapidly launch small memory footprint
traditional VMs (as opposed to higher priced Lambda workers) could
notably reduce the cost of rendering using R2E2.

6.3 Scalability with Scene Size

A major goal of R2E2 is to render scenes with arbitrary complexity,
so we study the scalability of R2E2 across varying scene sizes. Specif-
ically, using the same 2,500-worker configuration from Section 6.2,
we evaluate R2E2 on Moana-XS (~125 GB in-memory), Moana-S
(~250 GB), Moana-M (~500 GB), Moana-L (~750 GB) and Moana-XL
(~1,000 GB). All scenes are rendered from view V2.

Overall, end-to-end speedup over pbrt-treelet increases as
scene size increases (Figure 7a), demonstrating the benefits of the
R2E2 architecture for larger, terabyte-scale scenes. Speedup also
increases with sample count, since the availability of more rendering
work facilitates more efficient parallelization (more work per worker
yields better workload balance and larger ray bags during transfers).

Figure 7(b,d) clearly demonstrate how scene loading speedup
increases with scene size. By design, the time for R2E2 to load scene

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

76:10 « Fouladi, et al.

(b) Scene Transfer +

(a) End-to-End Deserialization Only

81 438 432 57
16 -8 64 SPP

Speedup
A
Speedup
N w

"3 s00 70 1000 "3 500 70 1000
(XS) () (M) L (XL) (X8) () (M) L (XL)
Scene Size (GB) Scene Size (GB)

(d) Scene Transfer +

(c) Path Tracing Only Deserialization Only

107 43 432 57 -@ pbrt-treelet
16 @ 64 SPP o] R2E2
8 —_
o =
> E 34
el ~
g 6 ©
& £ 27
4 =
1
22— . - . 00— . . -
125250 500 750 1000 125250 500 750 1000
X)) M L) (X X)) ™M L X

Scene Size (GB) Scene Size (GB)

Fig. 7. (a) R2E2’s end-to-end speedup over pbrt-treelet increases with
scene size (all results are from Moana view V1). (b,d) Unlike pbrt-treelet,
R2E2’s scene load time is independent of scene size, so loading speedup
increases linearly with scene size. (c) R2E2 achieves higher ray tracing per-
formance than pbrt-treelet in all configurations, with speedup increasing
at higher sample counts. All R2E2 results use 2,500 workers.

geometry is independent of the total scene size. Each worker al-
ways loads a single treelet or geometry partition. Conversely, pbrt-
treelet’s single machine must transfer and deserialize an increas-
ingly large amount of geometry as the scene grows. Therefore, as
the scene size increases, pbrt-treelet’s transfer and deserializa-
tion time increases linearly, while R2E2’s remains constant. Linear
speedup with scene size would continue for even larger scenes
than Moana-XL, provided R2E2 utilized more workers to maintain
enough aggregate memory to store the entire scene.

6.4 Scalability with Increasing Worker Nodes

Figure 8 shows that the speedup achieved by R2E2 scales well with
increasing number of workers, particularly for larger scenes. By
design, adding more workers does not reduce the scene load time
(Figure 8(b)), because each worker always loads a constant amount
of data (one treelet). Therefore increasing speedup is the result of
using additional workers to accelerate the path tracing component
of the workload (Figure 8(c)). For path tracing, all scenes show
nearly linear, or in the case of Moana-XL, super-linear speedup
as the number of workers increases. Super linear scaling occurs
because as the number of workers grows, R2E2’s worker allocation
to Trace; services more closely approximates the target allocation
determined by the profiling phase (Figure 4). Additional workers not
only add new compute and bandwidth to the system, but can also

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

(b) Scene Transfer +

(a) End-to-End Deserialization Only (c) Path Tracing Only

6 6 9
*——eo—o
E3
o 4 4 6
b ———
L%- 2 2 3
h—h—h—hk—A
15K 3K 45K 6K 7.5K 15K 3K 45K 6K 7.5K 15K 3K 45K 6K 7.5K
vCPUs vCPUs vCPUs
4 Moana-XS 4 Moana-M “® Moana-XL

Fig. 8. R2E2 scales to thousands of workers. (Lines for different scenes start
at different points on the X axis because scene size dictates the minimum
number of workers needed to hold the entire scene.) (a) R2E2 speedup over
pbrt-treelet increases with worker count, since the ray tracing portion of
the computation is accelerated by additional workers. (b) Additional workers
do not reduce scene loading times since each worker loads approximately
the same amount of scene data independent of worker count. (c) Additional
workers provide R2E2 more flexibility to balance ray tracing work across
workers, resulting in superlinear scaling for the larger Moana-XL scene. All
results are rendered at 32 spp from view V2.

reduce inefficiencies that arise due to insufficient worker capacity
to process heavily loaded Trace; services.

6.5 Runtime Breakdown

Figure 9 shows a detailed breakdown of R2E2’s behavior over a
64 spp render of Moana-XL (view V3). The breakdown shows both
network bandwidth consumed per second (blue line) as well as the
rate of path completion (paths/sec, red line) over the duration of the
computation (in aggregate, across all workers). The computation
begins using 940 Lambda workers to complete the profiling render in
30 seconds. Only a small number of rays are traced during this stage,
so profiling time is dominated by time to transfer and deserialize
the scene. After profiling completes, R2E2 launches 2,500 Lambda
workers for the full render, network utilization quickly reaches a
peak of over 1.2 Tbit/s as these workers transfer treelet data from
S3. Once path tracing begins, network utilization reaches a steady
state of 350 Gbit/s for the next 50 seconds while rays are traced.
Path tracing reaches a peak rate of 9 million paths completed per
second.

7 DISCUSSION

Our work demonstrates that it is possible to construct a “super-
computer on the fly” from many small elastic cloud nodes, and use
these resources to reduce end-to-end job latency when path tracing
terabyte-scale scenes. Further work should continue to explore how
additional components of high-quality rendering systems, such as
BVH and treelet construction, can be mapped onto widely available,
parallel cloud platforms.

R2E2 is a proof of concept for how a fine-grained communication-
heavy, data-locality-sensitive workload can be mapped onto cloud
platforms intended for applications featuring many lightweight,
independent tasks. While we are aware of ways that further per-
formance engineering could improve R2E2 to realize significantly
more efficient use of today’s AWS Lambda platform (increasing
performance per unit cost), we are most interested in using our
experiences to influence the design of future elastic cloud platforms

R2E2: Low-Latency Path Tracing of Terabyte-Scale Scenes using Thousands of Cloud CPUs « 76:11

| Profiling }
1500 4 ! | ! i
FoM
— . ! Data Transferred —
[%) © 1 .
iy | 1% i i Paths Finished —
g 10004 S o0 ! Scene Transfer & Deserialize °
he] ° = oy rem <
o c 3] & | | | | 7]
5 & s 8 g | P k=
2 g = £ g | P : i
< 5 | N 2 : | |3 2
£ 5004 Z % 2 ER - =
., o0 & | o L

s = £ 2 =1 NG E oM<
g B g £ ‘ i
< e T = = R ® | o
o) c = S © N 1oy)

< o= 9 =5 | @ ‘?‘ =

N N D | l l\\/\l v

0 T r o = r - T r T - - T — - 0
0 30 60 90 120 150

Time (s)

Fig. 9. Detailed view of R2E2 behavior during a 64 spp rendering of Moana-XL (view V3). The total render time, including the initial profiling render, is
142 seconds. The lines show network bandwidth utilized (blue line) and paths completed (red line) in aggregate across all 2,500 Lambda workers. In this
computation, R2E2 realizes a peak network bandwidth of nearly 1500 Gbit/s and a peak path completion rate of 9 million paths per second.

to better meet the needs of large-scale graphics computations. For
example, the ability to inform the cloud platform of an application’s
locality needs, or introspect cloud-provided resources to under-
stand the topology of allocated nodes might allow more efficient
scheduling of path-tracing-like applications. In general, we view
our experiments with AWS Lambda today as performing a similar
role as early GPGPU work that made unexpected use of the OpenGL
graphics pipeline, and established the requirements for later GPU
compute mode execution.

Finally, we hope R2E2 encourages others in the graphics com-
munity to consider how building graphics applications for massive
scale out execution on elastic platforms might enable new interac-
tive (or low latency) visual computing experiences or new content
creation workflows that are simply not possible on the highest end
single-machine CPU and GPU platforms today.

ACKNOWLEDGMENTS

We thank the ACM SIGGRAPH reviewers for their helpful comments
and suggestions. We are grateful to Matt Pharr, Solomon Boulos,
Feng Xie, and Marc Brooker for conversations and feedback. This
work was supported in part by NSF grants 2045714, 2039070, 2028733,
and 1763256, DARPA contract HR001120C0107, a Sloan Research
Fellowship, and by Google, Huawei, VMware, Dropbox, Amazon,
and Meta Platforms.

REFERENCES

Timo Aila and Tero Karras. 2010. Architecture considerations for tracing incoherent
rays. In Proceedings of the Conference on High Performance Graphics. 113-122.

Amazon Web Services. 2021. Simple Queue Service (SQS). https://aws.amazon.com/sqs/.

Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter. 2018. Sprocket: A
serverless video processing framework. In Proceedings of the ACM Symposium on
Cloud Computing. 263-274.

Carsten Benthin, Ingo Wald, Sven Woop, and Attila T. Afra. 2018. Compressed-
Leaf Bounding Volume Hierarchies. In Proceedings of the Conference on High-
Performance Graphics (Vancouver, British Columbia, Canada) (HPG ’18). Associ-
ation for Computing Machinery, New York, NY, USA, Article 6, 4 pages. https:
//doi.org/10.1145/3231578.3231581

Brian Budge, Tony Bernardin, Jeft A. Stuart, Shubhabrata Sengupta, Kenneth I. Joy,
and John D. Owens. 2009. Out-of-core Data Management for Path Tracing on

Hybrid Resources. Computer Graphics Forum (2009). https://doi.org/10.1111/§.1467-
8659.2009.01378.x

Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel, Patrick
Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. 2018. The Design and Evolution
of Disney’s Hyperion Renderer. ACM Trans. Graph. 37, 3, Article 33 (jul 2018),
22 pages. https://doi.org/10.1145/3182159

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-Face Texture Mapping for Production
Rendering. In Proceedings of the Nineteenth Eurographics Conference on Rendering
(Sarajevo, Bosnia and Herzegovina) (EGSR °08). Eurographics Association, Goslar,
DEU, 1155-1164. https://doi.org/10.1111/j.1467-8659.2008.01253.x

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz. 2019.
Cirrus: A serverless framework for end-to-end ml workflows. In Proceedings of the
ACM Symposium on Cloud Computing. 13-24.

Per H. Christensen, David M. Laur, Julia Fong, Wayne L. Wooten, and Dana Batali.
2003. Ray Differentials and Multiresolution Geometry Caching for Distribution
Ray Tracing in Complex Scenes. Computer Graphics Forum 22, 3 (2003), 543-552.
https://doi.org/10.1111/1467-8659.t01-1-00702

J G Cleary, BM Wyvill, G M Birtwistle, and R Vatti. 1986. Multiprocessor Ray Tracing.
Comput. Graph. Forum 5, 1 (March 1986), 3-12. https://doi.org/10.1111/j.1467-
8659.1986.tb00263.x

Mark Dippé and John Swensen. 1984. An Adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis. SIGGRAPH Comput. Graph. 18, 3 (Jan.
1984), 149-158. https://doi.org/10.1145/964965.808592

Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley. 2013. Sorted
Deferred Shading for Production Path Tracing. In Proceedings of the Eurographics
Symposium on Rendering (Zaragoza, Spain) (EGSR ’13). Eurographics Association,
Goslar, DEU, 125-132. https://doi.org/10.1111/cgf.12158

Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux J. 2004, 124 (Aug.
2004), 5.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From laptop to lambda: Out-
sourcing everyday jobs to thousands of transient functional containers. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). 475-488.

Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubrama-
niam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. 2017. Encoding, fast and slow: Low-latency video processing using thou-
sands of tiny threads. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 363-376.

Iliyan Georgiev, Thiago Ize, Mike Farnsworth, Ramén Montoya-Vozmediano, Alan
King, Brecht Van Lommel, Angel Jimenez, Oscar Anson, Shinji Ogaki, Eric Johnston,
Adrien Herubel, Declan Russell, Frédéric Servant, and Marcos Fajardo. 2018. Arnold:
A Brute-Force Production Path Tracer. ACM Trans. Graph. 37, 3, Article 32 (aug
2018), 12 pages. https://doi.org/10.1145/3182160

FW Jansen and A.G Chalmers. 1993. Realism in real time?. In 4th Eurographics Workshop
on Rendering. 27 - 46.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017.
Occupy the cloud: Distributed computing for the 99%. In Proceedings of the 2017
Symposium on Cloud Computing. 445-451.

Toshi Kato and Jun Saito. 2002. "Kilauea" - Parallel Global Illumination Renderer. In
Eurographics Workshop on Parallel Graphics and Visualization, D. Bartz, X. Pueyo,

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

76:12 « Fouladi, et al.

and E. Reinhard (Eds.). The Eurographics Association. https://doi.org/10.2312/
EGPGV/EGPGV02/007-016

Hiroaki Kobayashi, Satoshi Nishimura, Hideyuki Kubota, Tadao Nakamura, and Yoshi-
haru Shigei. 1988. Load balancing strategies for a parallel ray-tracing system based
on constant subdivision. The Visual Computer 4 (07 1988), 197-209.

J. Mahovsky and B. Wyvill. 2006. Memory-Conserving Bounding Volume Hierarchies
with Coherent Raytracing. Computer Graphics Forum (2006). https://doi.org/10.
1111/j.1467-8659.2006.00933.x

P. A. Navratil, H. Childs, D. S. Fussell, and C. Lin. 2014. Exploring the Spectrum of
Dynamic Scheduling Algorithms for Scalable Distributed-MemoryRay Tracing. IEEE
Transactions on Visualization and Computer Graphics 20, 6 (2014), 893-906.

K. Nemoto and T. Omachi. 1986. An Adaptive Subdivision by Sliding Boundary Surfaces
for Fast Ray Tracing. In Proceedings of Graphics Interface and Vision Interface 86
(Vancouver, British Columbia, Canada) (GI "86). Canadian Man-Computer Communi-
cations Society, Toronto, Ontario, Canada, 43-48. http://graphicsinterface.org/wp-
content/uploads/gi1986-9.pdf

Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. 2010. PantaRay: Fast
Ray-Traced Occlusion Caching of Massive Scenes. ACM Trans. Graph. 29, 4, Article
37 (July 2010), 10 pages. https://doi.org/10.1145/1778765.1778774

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM Trans.
Graph. 29, 4, Article 66 (jul 2010), 13 pages. https://doi.org/10.1145/1778765.1778803

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann.

Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. 1997. Rendering com-
plex scenes with memory-coherent ray tracing. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques. 101-108.

Thierry Priol and Kadi Bouatouch. 1989. Static load balancing for a parallel ray tracing
on a MIMD hypercube. The Visual Computer 5 (1989), 109-119.

Erik Reinhard, Alan Chalmers, and Frederik W. Jansen. 1999. Hybrid Scheduling
for Parallel Rendering Using Coherent Ray Tasks. In Proceedings of the 1999 IEEE

ACM Trans. Graph., Vol. 41, No. 4, Article 76. Publication date: July 2022.

Symposium on Parallel Visualization and Graphics (San Francisco, California, USA)
(PVGS °99). IEEE Computer Society, USA, 21-28. https://doi.org/10.1145/328712.
319333

J. Salmon and J. Goldsmith. 1989. A Hypercube Ray-Tracer. In Proceedings of the
Third Conference on Hypercube Concurrent Computers and Applications - Volume
2 (Pasadena, California, USA) (C3P). Association for Computing Machinery, New
York, NY, USA, 1194-1206. https://doi.org/10.1145/63047.63073

Isaac D. Scherson and Elisha Caspary. 1988. Multiprocessing for ray tracing: a hierar-
chical self-balancing approach. The Visual Computer 4 (1988), 188-196.

Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman, Ion Stoica,
Benjamin Recht, and Jonathan Ragan-Kelley. 2018. numpywren: Serverless linear
algebra. arXiv preprint arXiv:1810.09679 (2018).

Myungbae Son and Sung-Eui Yoon. 2017. Timeline Scheduling for Out-of-Core Ray
Batching. In Proceedings of High Performance Graphics (Los Angeles, California)
(HPG ’17). Association for Computing Machinery, New York, NY, USA, Article 11,
10 pages. https://doi.org/10.1145/3105762.3105784

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst. 2014.
Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM Trans. Graph. 33,
4, Article 143 (jul 2014), 8 pages. https://doi.org/10.1145/2601097.2601199

Walt Disney Animation Studios. 2018. Moana Island Scene (v1.1). https://www.
disneyanimation.com/resources/moana-island-scene/.

Mike Wawrzoniak, Ingo Miiller, Rodrigo Fraga Barcelos Paulus Bruno, and Gustavo
Alonso. 2021. Boxer: Data Analytics on Network-enabled Serverless Platforms. In
11th Annual Conference on Innovative Data Systems Research (CIDR’21).

Henri Ylitie, Tero Karras, and Samuli Laine. 2017a. Efficient Incoherent Ray Traversal
on GPUs through Compressed Wide BVHs. In Proceedings of High Performance
Graphics (Los Angeles, California) (HPG ’17). Association for Computing Machinery,
New York, NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3105762.3105773

Henri Ylitie, Tero Karras, and Samuli Laine. 2017b. Efficient Incoherent Ray Traversal
on GPUs through Compressed Wide BVHs. In Proceedings of High Performance
Graphics (Los Angeles, California) (HPG ’17). Association for Computing Machinery,
New York, NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3105762.3105773

	Abstract
	1 Introduction
	2 Related Work
	3 Goals and Preliminaries
	3.1 R2E2 Goals
	3.2 Designing for Cloud Platform Characteristics

	4 System Overview
	4.1 System Operation

	5 System Implementation
	5.1 Treelet Partitioning
	5.2 Texture Partitioning
	5.3 Allocating Workers to Services
	5.4 Inter-Service Message Queues

	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-End Performance
	6.3 Scalability with Scene Size
	6.4 Scalability with Increasing Worker Nodes
	6.5 Runtime Breakdown

	7 Discussion
	Acknowledgments
	References

