
One Size Does Not Fit All: Security Hardening of MIPS
Embedded Systems via Static Binary Debloating for Shared

Libraries
Haotian Zhang

University of Texas at Arlington
Arlington, Texas, USA

Mengfei Ren
University of Texas at Arlington

Arlington, Texas, USA

Yu Lei
University of Texas at Arlington

Arlington, Texas, USA

Jiang Ming
University of Texas at Arlington

Arlington, Texas, USA

ABSTRACT

Embedded systems have become prominent targets for cyberattacks.
To exploit firmware’smemory corruption vulnerabilities, cybercrim-
inals harvest reusable code gadgets from the large shared library
codebase (e.g., uClibc). Unfortunately, unlike their desktop coun-
terparts, embedded systems lack essential computing resources
to enforce security hardening techniques. Recently, we have wit-
nessed a surge of software debloating as a new defense mechanism
against code-reuse attacks; it erases unused code to significantly
diminish the possibilities of constructing reusable gadgets. Because
of the single firmware image update style, static library debloating
shows promise to fortify embedded systems without compromising
performance and forward compatibility. However, static library
debloating on stripped binaries (e.g., firmware’s shared libraries) is
still an enormous challenge.

In this paper, we show that this challenge is not insurmountable
for MIPS firmware. We develop a novel system, named 𝜇Trimmer,
to identify and wipe out unused basic blocks from shared libraries’
binary code, without causing additional runtime overhead or mem-
ory consumption. We propose a new method to identify address-
taken blocks/functions, which further help us maintain an inter-
procedural control flow graph to conservatively include library
code that could be potentially used by firmware. By capturing ad-
dress access patterns for position-independent code, we circumvent
the challenge of determining code-pointer targets and safely elim-
inate unused code. We run 𝜇Trimmer to debloat shared libraries
for SPEC CPU2017 benchmarks, popular firmware applications
(e.g., Apache, BusyBox, and OpenSSL), and a real-world wireless
router firmware image. Our experiments show that not only does
𝜇Trimmer deliver functional programs, but also it can cut the ex-
posed code surface and eliminate various reusable code gadgets
remarkably. 𝜇Trimmer’s debloating capability can compete with
the static linking results.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507768

CCS CONCEPTS

· Security and privacy → Embedded systems security.

KEYWORDS

software debloating, static analysis, embedded systems

ACM Reference Format:

Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming. 2022. One Size Does
Not Fit All: Security Hardening of MIPS Embedded Systems via Static Binary
Debloating for Shared Libraries. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS ’22), February 28 śMarch 4, 2022, Lausanne, Switzerland.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3503222.3507768

1 INTRODUCTION

Over the past few years, the spotlight has been on the Internet
of Things (IoT) market due to the sheer amount being deployed
worldwide [46]. With the IoT boom taking place, cyberattacks on
embedded devices, which surged 300% in 2019 [57, 71], are now ac-
celerating at an unprecedented rate. The vulnerabilities in firmware,
a class of software that is written to an embedded device to control
user applications and various hardware functions, leave embedded
systems open to attacks [25, 27, 34]. Although memory corrup-
tion vulnerabilities [78] have been around for decades, they also
dominate the share of top-rated threats in embedded devices [28].
Besides, return-oriented programming (ROP) techniques enable
attackers to chain together short instruction sequences (i.e., code
gadgets) already present in the program’s memory to bypass the
executable-space protection [69].

Firmware developers rely on C and C++ shared libraries (e.g.,
uClibc [7]) for fast prototyping and development [85]. Due to the
łone-size-fits-allž design, although firmware typically requires a
small number of library functions, it has to load the entire library
code into memory at runtime. For example, libc code are only used
5% on average by a program [63]. Compared with the small code-
base of firmware, the large code space of shared libraries provides
enough reusable code gadgets to create Turing-complete malicious
programs [69]. Embedded devices are known to have limited hard-
ware resources in terms of CPU performance, storage capabilities,
and memory size. Besides, as firmware has to interact with a multi-
tude of low-level peripherals, a robust firmware dynamic execution
framework is still an open problem [17, 20, 22, 33, 87]. Therefore,

255

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-0844-3730
https://orcid.org/0000-0001-8548-3299
https://orcid.org/0000-0001-9682-0502
https://doi.org/10.1145/3503222.3507768
https://doi.org/10.1145/3503222.3507768

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

these limitations restrict the adoption of expensive ROP counter-
measures to secure embedded systems [2, 5].

Recently, software debloating emerges as a new security harden-
ing solution to reduce the attack surface by removing consumer-
unwanted features or unused code, generating a large body of
literature [3, 9, 13, 15, 21, 38, 39, 43, 48, 60ś63, 65, 67, 74, 84]. In par-
ticular, library debloating techniques [3, 60, 63] have demonstrated
their security impact by eliminating a large number of reusable
code gadgets from shared libraries. Furthermore, they can signifi-
cantly reduce the amount of code to be analyzed by other security
techniques, such as continuous code re-randomization [82] and
control-flow integrity schemes [16, 49].

Static library debloating reveals unique benefits to embedded
systems. First, it safeguards firmware without incurring additional
runtime overhead or memory footprint. Second, unlike PC software,
static library debloating does not compromise firmware forward
compatibility. Embedded devices typically have no interface for an
end-user to install new application packages; instead, the update
mechanism is the single firmware image update: users download a
new firmware image from the hardware manufacturer and re-flash
it to the device. As a result, the post-deployment library debloating
does not interfere with the new firmware image. However, existing
library debloating approaches rely on a number of assumptions that
are not met by embedded systems. Piece-wise [63] and BlankIt [60]
rely on application source code and runtime support (e.g., a custom
loader or Intel Pin), while Nibbler [3] leverages debug symbols to
identify and erase unreachable functions. In contrast, firmware’s
source code and unique build toolchains are typically missing, and
most firmware images are stripped from debug information to save

space [27].
In this paper, we move one step forward to explore the static

debloating of library binaries on MIPS architecture, which holds a
hefty share of the embedded market [8]. We admit that the static
analysis of stripped binaries suffers from several long-standing chal-
lenges [10, 47, 56, 68] in the general case, such as distinguishing code
from data and indirect control flow resolution. Our key observation
is that, compared with ARM, MIPS Application Binary Interface
(ABI) [79] makes static binary code analysis much easier, though
not enough to make detecting unused library code straightforward.
MIPS ABI specifies standard conventions in low-level machine
code, such as special purposes registers, stack frame organization,
function parameter passing, and position-independent code (PIC)
metadata. Mainstream compilers all follow MIPS ABI [36, 54].

We develop an input-profiling-agnostic, static debloating system
for MIPS stripped binaries, named 𝜇Trimmer, to eliminate unused
code present in shared libraries. Note that the effects of multi-
entry functions and tail call optimization [56] obscure function
boundaries, so our debloating granularity is basic blocks rather
than functions. Starting from the imported library functions by
firmware applications, we explore library interdependencies and
maintain an inter-procedural control flow graph (ICFG), which
over-approximates all basic blocks that could be potentially used.
Statically resolving accurate indirect control flow targets (e.g., calls
using pointers and C++ virtual function dispatch) is proven to be
an undecidable problem [51, 64]. We circumvent this challenge by
proposing a general method to significantly narrow down the pos-
sible address-taken blocks/functionsÐtheir addresses are very likely

to be referenced by indirect jump/call instructions. Our approach
covers all indirect jump/call cases, such as callback functions, jump
tables, C++ virtual function tables, and exceptions. After the ICFG
recovery, all basic blocks that are not present in this ICFG can be
safely debloated. At last, 𝜇Trimmer overwrites unused basic blocks
with trapping instructions [26] and delivers thinned libraries.

We build 𝜇Trimmer on top of angr [75] and evaluate the efficacy
of 𝜇Trimmer with a set of experiments. We run 𝜇Trimmer to de-
bloat supporting libraries for SPEC CPU2017 benchmarks, popular
firmware applications (e.g., Apache, BusyBox, OpenSSL, and Perl),
and a real-world wireless router firmware image. We demonstrate
that 𝜇Trimmer safely removes unused code by running the officially-
provided test suiteÐthe debloated program reveals the same results
as the original program’s executions. For SPEC CPU2017 Integer
suite, our security experiments show that 𝜇Trimmer can cut the ex-
posed code surface by 53.4% to 79.9% and eliminate various reusable
code gadgets by 56.2% to 78.9%. The dead code elimination caused
by static linking is taken by recent work [3, 63] as an upper bound
of library debloating; 𝜇Trimmer’s debloating capability competes
with the static linking results and outperforms piece-wise [63] and
Nibbler [3]. In a nutshell, this paper makes the following contribu-
tions:

• Unlike PCs and Servers who can afford a myriad of security
protections, embedded devices with limited computing re-
sources are sensitive to deploy advanced software hardening
techniques. Our research shows that static binary debloating
for shared libraries, which incurs zero runtime overhead, has
distinctive strengths to secure embedded systems.

• CFG construction is the cornerstone of static binary debloat-
ing; but without source code or debug symbols, it is known
to be a challenging problem. Our study shows that, by taking
advantage of MIPS ABI and PIC specifications, we can find
a practical solution to circumvent this challenge and safely
erase unused code.

• We evaluate 𝜇Trimmer’s correctness and security impact
with large benchmark programs and real-world embedded
system applications. 𝜇Trimmer’s debloating capability is on
a par with the static linking’s code downsizing results.

Open source. 𝜇Trimmer’s demo video is available at YouTube. We
have released 𝜇Trimmer’s source code and non-proprietary dataset
to facilitate reuse at Zenodo.

2 BACKGROUND & RELATEDWORK

In this section, we present the background information needed
to understand our work’s motivation and novelty. We summarize
the existing literature on software debloating. We focus on the
recent papers on library debloating because they are the works
most germane to our research. Then, we present MIPS’s advantage
for binary code analysis and the challenge (i.e., indirect control
flow) that we aim to overcome.

2.1 Code-Reuse Attacks on IoT Devices

The proliferation of the IoT market makes embedded devices a
lucrative target for cybercriminals. For example, critical security
vulnerabilities inWiFi routers and smart home devices allow remote
attackers to completely take over the device and enter the home

256

https://youtu.be/V3Kz32ps9Yg
https://zenodo.org/record/5746505#.YbapJ73MKUk

One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 1: Comparison of representative library debloating approaches.

Piece-wise [63] Nibbler [3] BlankIt [60] 𝜇Trimmer

No Source Code Needed X X

No Debug Symbols Needed X

No Sample Inputs Needed X X X

No Runtime Support Custom Loader X Intel Pin X

Architecture x86/x86-64 x86-64 x86/x86-64 MIPS/MIPS64
Debloating Granularity Function Function Function Basic Block
Load-time Slowdown ∼20X 0% ∼10X 0%
Runtime Slowdown 0% 0% ∼18% 0%
Code Reduction Amount Medium Medium Large Medium

network [19, 42, 58, 59, 72]. Among various attacks against the IoT
ecosystem, code-reuse attacks [69] can bypass executable-space
protection, leading to catastrophic consequences, such as remote
code execution. The potential potency of code-reuse attacks hinges
on the variety of code gadgets in the victim program’s executable
memory. As shared libraries are designed to contain the union of
API code required by all possible applications, their large codebase is
always the best place to harvest different reusable code gadgets [73].

As IoT devices have substantially less computation and storage
capability than conventional computers, developers are using a
small C standard library (e.g., uClibc) intended for Linux kernel-
based OS on embedded/mobile devices. The total size of uClibc is
only about 7% of glibc [31]. Even so, uClibc is still a fertile land
to search ROP gadgets [4, 86]. Our study shows that only 17.3%
of functions in uClibc are used by firmware on average. Bloated
shared library code provides adversaries a large code-reuse attack-
ing surface.

2.2 Software Debloating

As software is continuously becoming more sophisticated, software
debloating is an effective defense to minimize attacking surface.
A variety of schemes have been contrived to remove consumer-
unwanted features or unused code [3, 9, 13, 15, 21, 38, 39, 43, 48, 60ś
63, 65, 67, 74, 84]. The debloating targets range from program bina-
ries [38, 61, 67], Java applications [15, 48], Docker containers [65],
mobile/web applications [9, 13, 62], UEFI firmware [21], Bluetooth
stacks [84], and shared libraries [3, 60, 63]. Most existing works
assume the availability of source code, sample inputs as the usage
profile, or runtime support. For example, DECAF [21] attempts to
debloat a maximum set of UEFI firmwaremodules so that the OS can
still be successfully booted. It treats finding such a removable set as
an optimization problem and approximates the optimal solution via
iterative dynamic testing and metaheuristic search. Unfortunately,
these approaches are hardly employable to meet our requirement:
an input-profiling-agnostic, static binary debloating technique that

incurs no extra runtime overhead or storage costs.
Shared Library Debloating In the literature, several tech-

niques have been recently proposed to detect and remove unused
code from shared libraries [3, 60, 63]. We compare them with our
work in Table 1. It lists different assumptions (e.g., source code,

debug symbols, and sample inputs), debloating granularity, perfor-
mance penalty, and the amount of code reduction. Obviously, our
work has fewer assumptions. Below, we discuss their strengths and
limitations.

Piece-wise [63] This work first performs a large-scale study to
report that library code bloating is pervasive. 95% of glibc code is
never used on average. Given the source code of the application and
its dependent libraries, piece-wise contains two steps: 1) an LLVM
pass generates a full-program dependency graph; 2) a custom loader
dynamically loads the functions that are present in the dependency
graph. The first step adopts inter-procedural static value-flow anal-
ysis [77] to resolve indirect code pointer dependencies within a
library. The second step masks unused library functions when load-
ing the library, resulting in an extra load-time slowdown (∼20X).
In addition to the load-time slowdown, piece-wise works on each
application individually, and thus each application has to load its
own custom library code. When piece-wise is applied to multiple
applications, the union size of all debloated library versions will far
outstrip gains from piece-wise’s debloating.

Nibbler [3] This work aims to debloat non-stripped library bi-
naries and then create reduced versions. By removing unused code
from allowable control flows, Nibbler demonstrates the efficiency
boost of continuous code re-randomization [82] and control-flow
integrity defenses [16]. However, Nibbler still depends on a strong
assumption: library binary code is not stripped from debug sym-
bols. Nibbler takes advantage of these additional information to
identify function boundaries, construct library function call graphs,
and detect address-taken functions that could be targeted by indi-
rect calls. Unfortunately, all program binaries installed on Linux
are stripped of symbols by default. Even worse, to further reduce
firmware size, many developers take a more aggressive stripping
method to remove binary code’s section headers; this will frustrate
the tool objdump used by Nibbler.

BlankIt [60] At the other end of the spectrum, BlankIt only
loads the set of library functions needed at a given call site and
wipes out all remaining library functions. BlankIt’s just-in-time
loading strategy requires the application source code and sample
inputs to train a decision tree predictor, which predicts the chain of
library functions that are expected to occur at a given call site. This
predictor will guide BlankIt’s demand-driven loading at runtime.
Compared with static debloating approaches, BlankIt’s aggressive
style shows a very high percentage of code reduction, because

257

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

only a small portion of library functions are visible during any
given runtime window. However, the access to application source
code, the deployment environment of dynamic binary instrumenta-
tion, and the high runtime overhead make BlankIt impractical to
resource-limited embedded systems.

2.3 MIPS Architectural Support

As both ARM and MIPS dominate the share of embedded systems,
a natural question is whether 𝜇Trimmer can work on both archi-
tectures. Our work is built on top of two non-trivial pipelines:
disassembling binary code and extracting control flow graphs. Our
contribution lies in how to identify unused library code without re-
solving indirect control flow targets. However, the reliability of the
initial stage of the pipeline (i.e., code disassembly) actually affects
the reliability of the overall approach. The recent study on ARM
disassembly tools has demonstrated that two complex problems,
which are inline data in code sections and a mixture of ARM, 16-bit
Thumb-1, and 32-bit Thumb-2 instruction sets, bring serious chal-
lenges to disassembling stripped ARM binaries [47]. In contrast,
MIPS binaries do not have such complicated properties, making
reliably disassembling MIPS binaries a solved problem.

Furthermore, MIPS Application Binary Interface (ABI) [79] spec-
ifications provide handy hints to optimize the address-taken block-
s/functions detection. For example, a shared library is position-
independent code (PIC), in which most control flow targets are
accessed or calculated through the global offset table (GOT) [37].
MIPS ABI specifies two special-purposes registers: 1) $gp register
stores the GOT’s base address, and 2) $t9 register stores the callee
function’s address. Monitoring the access to these two registers
provides a short cut to explicitly identify the access patterns to the
GOT. In contrast, ARM binaries do not have such an advantageÐ
they can use any general-purpose register to calculate and store
the GOT indexing. The use of general-purpose registers for address
calculations requires us to perform an expensive dada flow analysis
(e.g., backward slicing) to achieve the same goal.

2.4 Indirect Control Flow

Library debloating requires precise detection of unused code and
not missing legitimate code dependencies. We need to keep not only
library call chains that are explicitly invoked by firmware but also
potential callback functions via pointers. AlthoughMIPS ABI makes
static binary code analysis much easier, constructing a complete
CFG is still the biggest obstacle. Failure to identify indirect control
flow targets is very likely to incorrectly exclude used code. Previous
works have adopted two techniques to mitigate this problem.

Value-set Analysis Balakrishnan and Reps proposed value-set
analysis (VSA) technique [10] to identify a tight over-approximation
of values in memory slots or registers. VSA is often used to un-
derstand the possible targets of an indirect control flow. Redini et
al. [67] augment VSA via a new abstract model: signedness-agnostic
strided interval. They also apply this new VSA algorithm to binary
code debloating, but they only evaluate two very tiny programs
with 555 LOC and 192 LOC. The value set obtained by VSA is over-
approximated, and its accuracy is subject to the lack of runtime
information and path explosion. Therefore, VSA results suffer from

a high false positive rate [53]. Our evaluation also demonstrates
that VSA is too imprecise for practical binary code debloating.

Address-taken Function Instead of statically resolving in-
direct control flow targets, a conservative approach is to detect
address-taken (AT) functions, whose addresses are referenced as
constants somewhere within a module (e.g., executable and shared
object). Therefore, they are possible targets of indirect jump/call
instructions. Control flow integrity [1] takes all relocation table
entries as AT functions. Unfortunately, as all library functions have
to be relocated due to PIC, this simple strategy will cause most
library code not to be debloated. Nibbler [3] improves the detect-
ion strategy by removing AT functions only invoked in unused
functions. However, Nibbler’s method suffers from two serious lim-
itations: 1) compiler optimization effects can result in arithmetic
calculations for function addresses, while Nibbler does not consider
such cases; 2) it also misses the complex AT functions caused by
C++ virtual functions and read-only global function pointers. As a
result, Nibbler may both miss some debloating opportunities and
incorrectly remove some used functions.

3 OVERVIEW

𝜇Trimmer is a sample-input-agnostic, static library debloating tech-
nique that works directly on MIPS binaries. The cornerstone of our
approach is to construct an inter-procedural control flow graph
(ICFG) for each library. Some edges in the ICFG could be missing
because we do not attempt to resolve indirect control flow targets.
Nevertheless, our address-taken blocks/functions detection ensures
that we can find all library basic blocks that could be used. Then,
we attach them into the ICFG; that means there are no missing
vertices in the ICFG, which is sufficient for the debloating purpose.

Key Insight As the global offset table (GOT) stores relocated
addresses, most of the code addressing in position-independent
code (PIC) has to rely on reading constant addresses from the GOT.
Library code is PIC as well. Therefore, the vast majority of indirect
control flows interact with the GOT: the target address is either
directly loaded from the GOT or calculated from a GOT entry. The
core of our address-taken blocks/functions detection is to analyze
the address loading patterns of the GOT and decide all legitimate
addresses that could be referenced. The only exception we observed
is using function pointers as read-only global variables; their relo-
cated addresses are stored in the ł.data.rel.rož section. We handle
this corner case with a special treatment.

Figure 1 illustrates the architecture of 𝜇Trimmer. 1 ∼ 4 repre-
sent the following four workflow steps.

1. Preprocess Given a firmware image, we adopt Binwalk [50]
to extract the filesystem from the firmware image so that we can
obtain application binaries and shared libraries.We also disassemble
binary code using the linear scan strategy [56] for the following
steps.

2. Library Dependency Graph Then, we collect the APIs re-
quired by firmware applications from different sources. As multiple
libraries also have inter-module dependencies, the required APIs
and the already-extracted libraries are composed to form a library
dependency graph. The topological sorting of this graph decides
the prioritization of Step 3.

258

One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Firmware Image

Preprocess

Application

Binaries

Shared

Libraries

DLL
DLL

DLL

Library

Dependency

Graph

uClibc

libcrypto

libssl ICFG

Construction

Basic Block

Erasure

Thinned Libraries

DLL
DLL

DLL

Erased Code

...

010100

100111

000000

BIN

010100

100111

000000

BIN

010100

100111

000000

BIN
APIs Required by

Firmware

 µTrimmer

1 2 3 4

Address-taken Blocks/

Function Detection

Address Loading

Classification

Context-sensitive

Symbolic Execution
Address-taken

Jump Tables;

C++ Vtables;

Exceptions;

...

Figure 1: The overview of the 𝜇Trimmer. The whole process consists of four steps.

3. ICFG Construction Given the APIs required by its prede-
cessors in the library dependency graph, we construct an ICFG for
each library. We categorize different indirect control flows (e.g.,
jump table and virtual table) according to how they load relocated
addresses from the GOT. We apply symbolic execution and capi-
talize on MIPS ABI and PIC features to determine address-taken
blocks/functions for each category. Our fine-grained method signif-
icantly narrows down the potential targets and covers all indirect
control flow cases, including complicated cases from C++ libraries
that cannot be handled by the existing work.

4. Basic Block Erasure The basic blocks that are not included
in the ICFG can be safely removed. Our strategy is to simply over-
write these extra basic blocks using a single-byte illegal instruc-
tion ł0xFF.ž The benefit of doing so is that any attempt to run
the erased code will trigger an exception, and we are immedi-
ately aware of implementation errors. Recent binary rewriting
works [6, 30, 55, 80, 81, 83] offer an option to decrease the pro-
gram size as well by deleting unused binary code. Unfortunately,
they bear several limitations and trade-offs that can compromise
soundness, such as updating code/data references, ignoring com-
puted code pointers, requiring a custom loader to perform runtime
address resolution, and non-negligible runtime overhead. We leave
it as our future work.

𝜇Trimmer’s output is a set of new thinned libraries that can
be repackaged into the firmware image. In the following two sec-
tions, we present details of our library dependency graph and inter-
procedural control flow graph (ICFG) construction.

4 LIBRARY DEPENDENCY GRAPH

The starting point of 𝜇Trimmer’s debloating is to collect the library
functions needed by firmware applications. The required functions
mainly come from two sources. First, we analyze the application
binary’s import table to obtain imported APIs, which are explicitly
invoked by the application. Instead of visiting the import table, a
program may also manually load APIs via dlopen() and dlsym().
In all of our tested programs, we only find one such case for Apache,
in which the arguments of dlopen() and dlsym() are stored in a
configuration file. Therefore, we add the APIs defined in the con-
figuration file in the set of required APIs. Second, we also include
initialization and cleanup routines needed by shared libraries them-
selves (e.g., .init, .init_array, and .fini) [45]; these functions

libpcre libaprutil

libpcre import table (18):

strchr toupper

tolower malloc

free ...

libpcre import table (15):

strchr toupper

tolower malloc

free ...

APIs Required by

httpd

libapr libexpat

uClibc

(a) Library Dependency Graph

32.7% of

libpcre code

are debloated

(b) The Difference of Imported

APIs before/after Debloating

libpcre

libaprutil

libapr

libexpat
uClibc

(c) Library Debloating Prioritization

Figure 2: Library dependency graph of httpd (Apache).

are defined as arrays of function pointers, which are called by the
dynamic linker/loader.

As a library’s function may also call the APIs defined in other
libraries, given the APIs required by firmware, we need to keep all
functions invoked in the library call chain. Therefore, we build a
library dependency graph, and its topological ordering schedules
which library to be debloated earlier. The root of the library de-
pendency graph is the required APIs by firmware, and leaf node is
typically uClibc because other libraries all depend on C standard
library.

Figure 2(a) shows the library dependency graph of httpd (Apache).
We take libpcre as an example. Libpcre depends on uClibc, and the
import table of libpcre contains 18 APIs from uClibc. However, not
all of these 18 APIs should be kept. After we debloat libpcre library
based on the httpd’s imported APIs, only 15 uClibc’s APIs are still
used in the remaining code (Figure 2(b)). Libc’s strchr, toupper,
and tolower are only used by libpcre’s pcre_maketables func-
tion, but httpd does not call pcre_maketables. After debloating
a library, we collect its imported APIs that are still needed and
pass them to the successor nodes as the input of ICFG construction.

259

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

A GOT Entry

Intra-module loading

Inter-module loading

Exception handling (.gcc_except_table)

Virtual table as an API's parameter

*(GOT_ptr + Offset_const); e.g., calls using pointers

*[*(GOT_ptr + Offset1_const) + Offset2]; jump table

*[*(GOT_ptr + Offset1) + Offset2_const]; virtual function

Address Loading
Classification

1

2

3

Load from outside GOT Function pointers as read-only global variables

Func (a GOT entry); Func () is a linear function
Arithmetic
Calculation

4

6

5

Figure 3: Six address loading patterns according to how indirect control flow targets are loaded from memory.

---calling convention for qsort---
lw $a3, comparator($gp) # comparator
li $a2, 4 # size
move $a1, $a0 # num
move $a0, $v1 # base
lw $v0, qsort($gp)
move $t9, $v0
jalr $t9 # call qsort

MIPS Disassembly

void qsort (void* base, size_t num, size_t size, int
(*comparator)(const void*, const void*));

a

Figure 4: An example of callback function.

Figure 2(c) shows the prioritization of library debloating, which
follows the topological ordering of Figure 2(a).

5 ICFG CONSTRUCTION

At this point, we can use the library dependency graph extracted
from the previous step to prioritize the ICFG construction for each
library. The input to a library’s ICFG construction is the required
API list from this library’s predecessors. Starting from each required
API function’s entry point, we construct a control flow graph by
detecting basic blocks and connecting the edges between them. All
individual CFGs will be composed as a whole ICFG for this library.
Please note that we did not differentiate whether an edge is inter-
procedural or intra-procedural to determine function boundaries.
The reason is that certain compiler optimizations (e.g., multi-entry
functions, non-contiguous functions, and tail calls) [56] make tran-
sitions between functions implicit.

We mitigate the challenge of statically resolving indirect control
flow targets by detecting possible address-taken (AT) blocks/func-
tions. Therefore, the ICFG actually consists of multiple disconnected
subgraphs. Unfortunately, the previous works [1, 3] lack a com-
plete picture of AT function types, hindering their effectiveness.
We present a new, comprehensive taxonomy that covers all types
of indirect jumps/calls.

5.1 Address Loading Classification

In the PIC code, most indirect control flows have to load constant
values from the GOT to recalculate their addresses. Therefore, we
classify the address loading patterns according to how indirect
control flows interact with the GOT. In Figure 3, Type 1 ∼ Type
5 either directly load the target address from the GOT or calculate
it based on a GOT entry. Our classification significantly narrows the
hunting zone for possible AT blocks/functions in a binary file. Now
the problem boils down to identifying the GOT’s access patterns,
thereby producing more tight ICFGs. Besides, MIPS ABI also favors
our approach: intra-module access to the GOT has to visit a special-
purposes register $gp, which is always used for GOT entry lookup,
even if under different compiler optimizations.

Intra-module Loading Each module (executable or shared li-
brary) has its own GOT. When the address loading happens within
the same module, the most common access pattern is GOT-relative
addressing (Type 1 in Figure 3). Function calls using pointers (e.g.,
callback functions) also belong to this type. As shown in Figure 4,
when a variable is assigned as a function pointer, the compiler gen-
erates instructions to obtain its address via GOT-relative addressing
(a in Figure 4). Type 2 and Type 3 are corresponding to jump
tables and C++ virtual functions, respectively. Both of them occupy
a contiguous data area, and they have a similar łpointer to pointerž
access pattern. The difference is that the łOffset2ž in Type 2 is a
variable because it is decided by the switch-case input. In contrast,
the łOffset1ž in Type 3 is a variable because a different class has a
different virtual table, while a virtual function has a fixed offset in
the virtual table.

Inter-module Loading We find that the libraries written in
C++ (e.g., libstdc++) may have two complex cases, in which a mod-
ule’s GOT can be accessed by a different module’s instructions.
Figure 5 shows a simplified example of inter-module address load-
ing from libstdc++ library. The moduleA only loads a virtual table’s
address and passes it as an API’s argument (b in Figure 5), but the
moduleA has no instructions to load the virtual function address.
At runtime, the moduleB will load the virtual function’s address
from the moduleA’s virtual table, which is also within the scope of
moduleA’s GOT (c in Figure 5). Due to the lack of a global view,
the AT function detection in the moduleA does not know which
virtual functions are eventually used. We will take a conservative

260

One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

moduleB:
void bar(base& b)
{
 b.f();
}

---In moduleA----
lw $v0, off_410E40($gp) # load class d's vptr from the GOT
sw $v0, 0x28+var_10($fp)
addiu $v0, $fp, 0x28+var_10
move $a0, $v0 # the pointer to vptr as an argument
lw $v0, bar($gp) # load bar's address
move $t9, $v0
jalr $t9 # call bar(base &)
---In moduleB----
sw $a0, 0x20+arg_0($fp)
lw $v0, 0x20+arg_0($fp)
lw $v0, 0($v0) # obtain vtable address
lw $v0, 0($v0) # obtain virtuan f() address
lw $a0, 0x20+arg_0($fp)
move $t9, $v0 # $t9 stores the callee’s address
jalr $t9 # call f()

moduleA:
void foo(){
 derived d;
 bar(d);
}

C++ Source Code MIPS Disassembly

class base {
public:
 virtual void f()
 {...}
}

class derived:
public base {
public:
 void f()
 {...}
}

b

c

a

Figure 5: An example of inter-module address loading from libstdc++. We simplify the code snippet for the easy presentation

purpose. The moduleA only loads a virtual table’s address and passes it as an API’s argument. Only the moduleB loads the

virtual function’s address from the moduleA’s virtual table (within the scope of moduleA’s GOT).

Table 2: The distribution of address loading types (see Fig-

ure 3) in SPEC CPU2017’s shared libraries.

1 2 3 4 5 6

uClibc 84.1% 4.7% 0% 0% 10.5% 0.7%
libstdc++ 84.6% 1.6% 3.4% 8.6% 1.8% 0%
libgcc 79.1% 17.1% 0% 0% 3.8% 0%

solution to include all possible virtual functions. Another example
is C++ exception handling; the real exception handlers’ addresses
are loaded by a GCC library.

Arithmetic Calculation Compiler optimizations may perform
arithmetic on a GOT entry to compute the target address between
multiple instructions, hence data-flow analysis is required to detect
such a case.

Read-only Global Function Pointers The vast majority of
indirect control flow targets come from the GOT. The only coun-
terexample we observed is function pointers used as read-only
global variables. They are stored in the ł.data.rel.rož section and
initialized to a function’s address by the compiler. Our treatment
for this case is to label all relocated addresses in the ł.data.rel.rož
section as AT functions.

Distribution Table 2 shows the distribution of the six address
loading types in SPEC CPU2017’s shared libraries. Type 1 is the
most common type, but other types also occupy non-negligible
portions. Virtual function loading and inter-module loading only
happen in libstdc++, and only uClibc uses function pointers as read-
only global variables. The portion of used code targeted by each
address loading type is analogous to its distribution. Nibbler’s AT
detection [3] only covers Type 1 and Type 2 Ðmissing any type
could lead to incorrectly removing used code.

5.2 Detect AT Blocks/Functions via Symbolic
Execution

Our address loading classification guides us to detect address-taken
basic blocks and functions using symbolic execution. Given an ini-
tial CFG of a library’s function, our symbolic execution traverses
each CFG node to detect the GOT’s access patterns. As $t9 register
stores the callee function’s address, we also use this value to set
the initial state of symbolic execution. Any detected AT blocks/-
functions are added to our working list, and we perform symbolic
execution until no more CFG nodes are discovered. For the most
common GOT-relative addressing type (Type 1), as both $gp and
the offset are immediate values, our symbolic execution can easily
detect the AT blocks/functions loaded from the GOT. In the fol-
lowing subsections, we discuss how to detect AT blocks/functions
related to other address loading types.

5.2.1 Jump Tables. Jump tables are an intra-procedural binary
structure to implement switch-case statements. Typically, we mark
all target addresses from the jump table as AT basic blocks. When
our symbolic execution recognizes the GOT’s access pattern like
Type 2 , in which łOffset2ž is a symbolic variable, we recover the
structure used for switch-case control transfer. We adopt a mature
jump table recovery method [23, 29, 52], which involves three steps:

(1) Identify the jump table’s indirect jump.
(2) Perform a backward slicing from the indirect jump to calcu-

late the base address and offset range of the jump table.
(3) Extract all target addresses from the table.

Note that due to certain compiler optimizations, the extracted target
address may not be a valid code address but a constant offset to the
GOT. The benefit of doing so is to reduce relocation entries and
load-time overhead. When we find such a case, we obtain the real
address-taken basic blocks by adding the $gp value to the jump
table entries.

5.2.2 Virtual Functions. In Figure 5, we have presented the chal-
lenge of inter-module address loading caused by using virtual table
pointer as an API’s argument. Due to the nature of runtime method

261

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

binding, even if a virtual function invocation happens within the
same module, statically resolving all required virtual functions is
still an undecidable problem.

In spite of this, a virtual table’s creation in PIC is traceable. Each
class maintains its own virtual table. When creating a class instance,
the program loads a virtual table pointer from the GOT and saves
it in the stack for future use. The type of virtual table pointer
loading is either GOT-relative addressing (e.g., a in Figure 5) or
via arithmetic calculation, and our symbolic execution can capture
both of them. Therefore, we take a conservative strategy to deal
with the undecidable virtual function addressing problem:

(1) We first find all possible virtual tables stored in a library’s
binary code.

(2) If a virtual table pointer is loaded from the GOT, we treat all
virtual functions from this virtual table as AT functions.

In particular, we utilize C++ ABI’s definition to identify virtual
tables and their scopes in the data section. C++ ABI defines two
mandatory fields at the entry of a virtual table: run-time type infor-
mation (RTTI) and OffsetToTop. RTTI field contains either zero or
a pointer to typeinfo; OffsetToTop field contains zero or a negative
offset to the primary virtual table. These two mandatory fields are
a good indicator to recognize potential virtual tables. After that,
our symbolic execution monitors whether a virtual table pointer
is loaded from the GOT; if yes, we will label all virtual functions
from this virtual table as address-taken functions.

5.2.3 Exception Handling. C++ exception breaks the normal con-
trol flow and then executes a pre-registered exception handler. C++
exception handling mechanism relies on both C++ and GCC li-
braries. The address loading type of the exception handler belongs
to inter-module loadingÐit is loaded from a GCC library. The excep-
tion handler information is stored in .gcc_except_table, .eh_frame,
and .eh_frame_hdr sections. For C++ binary code (e.g., libstdc++),
we parse the exception table and match the connection between
try-catch blocks. If our symbolic execution finds a basic block regis-
tered in the exception table is used, we will mark the corresponding
exception handler code as AT basic blocks.

Listing 1: Address loading via arithmetic calculation.

The binary code snippet is from uClibc function

łre_search_internal.ž

1 l a $v0 , l o c _ 1 0 00 0 ($gp)

2 / / l o ad r e l o c a t e d add r e s s o f " 0 x10000 " from GOT i n t o $v0

3 nop

4 add iu $v0 , (p o p _ f a i l _ s t a c k − 0 x10000)

5 / / (p o p _ f a i l _ s t a c k − 0 x10000) i s a compi l e r−gene r a t ed c on s t a n t

va l u e ; a f t e r the add ope r a t i on , $v0 s t o r e s the f u n c t i o n

add r e s s o f " p o p _ f a i l _ s t a c k . "

6 sw $v0 , 0 x1B8+var_8C ($sp)

7 / / save the f u n c t i o n add r e s s in the s t a c k f o r f u t u r e use

5.2.4 Arithmetic Calculation. In Table 2, 10.5% of uClibc’s control
flow target addresses are calculated from a GOT entry. Listing 1
shows such an example from uClibc. Instead of directly loading the
function address from the GOT, the program first loads the relocated
address of ł0x10000ž from the GOT. Then, this value is added to an
offset to get the relocated address of function łpop_fail_stack.ž Note
that the relocated address of łpop_fail_stackž does not exist any-
where in the binary code. Many control flow integrity methods [1]

Firmware Filesystem

2

QEMU-MIPS64 Processor

Linux Host Debugging Tools

1

./bin

./lib/libc.so.0
Testing Tools:
 shell, make, Perl,
 …

libc

./testlib/libc.so.0
libc

SPEC CPU2017,
Firmware Applications,
…

Thinned Library

3

Figure 6: Testing environment setup.

simply use all relocation table entries as possible indirect control
flow targets, and Nibbler [3] only scans load instructions without
performing data-flow analysis. Unfortunately, all of them will miss
AT functions like łpop_fail_stack.ž If our library debloating do not
consider this address loading type, four debloated benchmarks of
SPEC CPU2017 will crash at runtime. Our symbolic execution traces
the arithmetic calculation based on the loaded address from the
GOT. If the computation result is a valid code address, we will mark
this address as a potential reachable target.

6 EVALUATION

We developed 𝜇Trimmer on top of a binary code analysis platform,
angr [75]. We reuse angr’s disassembly and symbolic execution
engine and contribute 3K lines of new code to angr’s codebase. Our
experiments are performed on a machine with an Intel i9-7900x
processor (8-core3.30Ghz) and 16GBmemory, running Ubuntu 20.04
LTS.

We evaluate 𝜇Trimmer from four dimensions. First, we provide
code reduction metrics and demonstrate 𝜇Trimmer can deliver
functional thinned libraries. Second, we show that 𝜇Trimmer’s
code elimination is very close to the static linking result, which
is generally recognized as the optimal library code reduction rate.
The third experiment reports ROP gadget reduction results. At last,
we debloat a real-world wireless router firmware image to show
that 𝜇Trimmer can be applied on an entire embedded system.

Environment Setup As shown in Figure 6, we build our testing
environment using QEMU [12] to emulate a MIPS64 processor.
We set up two file system environments in the virtual machine: a
generic Linux filesystem and the firmware filesystem. Linux host
environment runs debugging tools and the package manager (1 in
Figure 6), which are necessary to efficiently develop 𝜇Trimmer. All

262

One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 3: The debloating results of SPEC CPU2017 Integer and firmware applications. The data in łLibrary Statisticsž mean

the number of libraries each program depends on, the total number of library functions, and the size of library binary code.

ł#Fullž and ł#Partialž present the number of functions are fully and partially removed, respectively. łPartial Sizež indicates

the removed code size from partially-removed functions. łSizež shows the code reduction size in total. All of the size data are

in KB. łTimež column lists 𝜇Trimmer’s running time (hours).

Library Statistics Code Reduction Metrics
Time (h)

#Lib. #Total Func. Size #Full #Partial Partial Size Size Ratio
SPEC CPU2017 Integer
502.gcc_r 1 1,903 519.4 1,488 11 0.3 393.1 75.7% 1.5
505.mcf_r 1 1,903 519.4 1,541 10 0.4 406.2 78.2% 1.2
520.omnetpp_r 3 7,152 1,278.4 4,476 18 0.5 682.7 53.4% 6.2
523.xalancbmk_r 3 7,152 1,278.4 4,599 16 0.3 719.8 56.3% 5.2
525.x264_r 1 1,903 519.4 1,500 10 0.4 390.7 75.2% 1.2
531.deepsjeng_r 3 7,152 1,278.4 4,727 15 0.4 751.7 58.8% 3.8
541.leela_r 3 7,152 1278.4 4,615 15 0.4 736.4 57.6% 5.4
557.xz_r 1 1,903 519.4 1,550 11 0.4 414.9 79.9% 1.1
Mean 2 4,527 898.9 3,062 13 0.4 561.9 66.9% 3.2
Firmware Applications
Apache 5 3,378 945.5 1,421 35 2.5 378.3 40.2% 2.5
BusyBox 1 1,903 519.4 1,092 17 0.8 262.0 50.5% 5.6
Perl 1 1,903 519.4 1,290 16 0.3 345.6 66.5% 2.1
OpenSSL 4 9,400 2,243.3 3,583 38 6.3 607.9 27.1% 5.4
nano 2 2,617 651.7 1,970 13 0.3 444.8 68.3% 1.9
unzip 1 1,903 519.4 1,512 13 0.4 405.1 78.0% 1.7
Mean 2.3 3,517 899.8 1,811 22 1.8 407.3 55.1% 3.2

of our experiments, including thinned libraries, run in the firmware
filesystem.

Running test suite for empirical correctness evaluation may re-
quire additional utility software. For example, running Apache test
cases requires shell, make, and Perl, but they also rely on some
libc code that is not used by Apache. Therefore, we have to sepa-
rate the library usage between testing tools (2 in Figure 6) and
target programs (3) by customizing target programs’ run-time
search path. We found that this intricacy was not addressed by the
previous work [3, 63].

Dataset Our test cases include three kinds: SPEC CPU2017 in-
teger benchmarks (four of them are written in C++); popular third-
party applications used in router firmware, including Apache, busy-
box, OpenSSL, Perl, nano, and unzip; a real-world wireless router
firmware image, which contains 75 applications and 25 shared li-
braries. We select SPEC benchmarks because they are often used as
complicated evaluation cases for binary code research in the past
decade. All target programs are compiled by the optimization level
-Os, which is the most common optimization option in embedded
systems. We fail to compile two SPEC benchmarks (perlbench and
exchange2) due to a known cross-compilation issue [76]. For our
router firmware image experiment, we did not have the option to
choose any compiler, so 𝜇Trimmer works on compiled library code
as-is.

6.1 Code Reduction and Correctness

Code Reduction Metrics Table 3 summarizes the code reduction
metrics achieved by 𝜇Trimmer on our dataset. The average shared

library code reduction ratio for SPEC CPU2017 and firmware appli-
cations is 66.9% and 55.1%, respectively. The peak value happens at
the data compression benchmark 557.xz_r, in which almost 80% of
library code is debloated. SPEC CPU2017 benchmarks depend on
three C/C++ libraries, and their per-library debloating results are
shown in Table 4.

We also report the number of functions and code size that are
partially removed. A non-negligible number of functions do not
distribute in a continuous code area. Instead, they may have multi-
ple chunks at different areas or even share some blocks with other
functions, such as fdopen, fopen, fopen64, and _authenticate in
uClibc. Table 3’s data justify our choice of basic blocks as debloat-
ing granularity. The last column shows 𝜇Trimmer’s end-to-end
running time, which varies from 1.1 hours to 6.2 hours. Symbolic
execution is a well-known performance bottleneck, and the total
running time is positively correlated with the number of libraries.

Empirical Correctness Testing We validate target programs
and their debloated versions using officially-provided test suite,
and then we compare their execution results to evaluate whether
𝜇Trimmer correctly removes only unused code. For SPEC CPU2017,
we use the ref workload as input, which represents robust correct-
ness testing. The test suite of Apache is collected from the official
Apache HTTP Test project [35]. We collect test cases for the remain-
ing programs from their official repositories. All debloated versions
pass the correctness testing, and no illegal instruction exception is
triggered at runtime.

Value-set Analysis Instead of running our AT blocks/func-
tions detection method, we also tested Redini et al.’s new VSA
algorithm [67] to resolve possible targets of an indirect control flow.

263

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

Table 4: Per-library code reduction ratio of SPEC CPU 2017 integer benchmarks. łN/Až means this library is not used. łTimež

column lists 𝜇Trimmer’s running time for each library.

uClibc libstdc++ libgcc
Overall

Ratio Time Ratio Time Ratio Time
502.gcc_r 75.7% 1.5 h N/A N/A N/A N/A 75.7%
505.mcf_r 78.2% 1.2 h N/A N/A N/A N/A 78.2%
520.omnetpp_r 64.9% 1.8 h 41.4% 4.4 h 72.7% 38 s 53.4%
523.xalancbmk_r 69.5% 0.7 h 42.9% 4.5 h 76.2% 34 s 56.3%
525.x264_r 75.2% 1.2 h N/A N/A N/A N/A 75.2%
531.deepsjeng_r 72.6% 1.1 h 45.2% 2.7 h 76.4% 39 s 58.8%
541.leela_r 74.0% 1.0 h 41.9% 4.4 h 76.2% 36 s 57.6%
557.xz_r 79.9% 1.1 h N/A N/A N/A N/A 79.9%
Mean 73.8% 1.2 h 42.9% 4.0 h 75.4% 36.8 s 66.9%

Table 5: Per-library debloating capability comparison with

static linking for Apache web server. All łSizež data repre-

sent the remaining binary code size in KB.

Library
Dynamic 𝜇Trimmer Static

Size Size %Redu. Size %Redu.
uclibc 519.4 176.8 66.0% 163.2 68.6%
libpcre 80.4 54.1 32.7% 53.9 32.91%
libaprutil 115.0 114.3 0.57% 112.4 2.2%
libapr 131.5 130.3 0.9% 125.3 4.8%
libexpat 99.2 91.7 7.6% 91.4 7.9%
total 945.5 567.2 40.0% 546.2 42.2%

However, the experiment resul on SPEC CPU2017 is dissatisfactory.
Each benchmark has multiple undecidable control flows that have
no constraints to limit their targets. If we do not consider such
unsolvable control flows, the debloated libraries will incorrectly
exclude used code, and none of them can pass our correctness
testing.

6.2 𝜇Trimmer vs. Static Linking

The effect of static linking represents an upper bound for dead code
elimination. However, static linking does not allowmemory sharing
across processes and may lead to a significantly larger disk foot-
print, and thus it has been discouraged by many OSs. For example,
Solaris removed all static versions of libc in 2004 [32], and Red Hat
Enterprise Linux 8 does not support static linking anymore [66]. We
compare 𝜇Trimmer with static linking to highlight our debloating
capability.

As the Apache web server relies on amaximum number of shared
libraries in our dataset, we select it for comparison. Table 5 shows
the per-library debloating results. The second column shows the
binary code size of the original shared libraries. The third column
lists the binary code size of the thinned shared libraries. The fifth
column shows the binary code size after static linking. Note that
the Apache web server heavily uses two shared libraries (libapr and
libaprutil), thus both 𝜇Trimmer and static linking can only remove
a small portion of code from them. Overall, static linking removes

Table 6: The reduction ratio of three common gadget types:

syscall, stack pointer update (SPU) and jump-oriented pro-

gramming (JOP).

Program %Code Redu. Total Syscall SPU JOP
SPEC CPU2017 Integer
gcc_r (75.8%) 76.0% 79.2% 75.4% 75.5%
mcf_r (78.2%) 78.3% 81.8% 77.7% 77.8%
omnetpp_r (53.4%) 56.2% 77.2% 53.7% 55.4%
xalancbmk_r (56.3%) 58.6% 78.1% 55.6% 57.8%
x264_r (75.2%) 76.4% 81.5% 76.3% 75.8%
deepsjeng_r (58.8%) 60.9% 79.0% 58.4% 60.2%
leela_r (57.6%) 58.2% 79.1% 55.5% 57.4%
xz_r (79.9%) 78.9% 81.9% 78.4% 78.5%
Mean (66.9%) 67.9% 79.7% 66.4% 68.5%
Firmware Applications
Apache (40.2%) 32.1% 60.1% 35.3% 30.6%
BusyBox (50.5%) 51.5% 62.7% 54.6% 50.0%
Perl (66.5%) 67.0% 68.5% 67.2% 66.8%
OpenSSL (27.1%) 25.3% 71.1% 28.0% 24.5%
nano (68.3%) 63.8% 77.9% 66.6% 62.6%
unzip (78.0%) 76.0% 79.4% 76.9% 75.5%
Mean (55.1%) 52.6% 69.9% 54.8% 51.7%

42.2% of library binary code, while 𝜇Trimmer’s code reduction is
very close to static linking’s result by a small gap of 2.2%. Upon
further investigation, we find that the gap of 2.2% is caused by
our conservative strategy on handling read-only global function
pointers (Type 6 in Figure 3), while static linking can correctly
remove functions in the ł.data.rel.rož section.

Directly comparing related library debloating work [3, 60, 63] is
infeasible because of their specific assumptions (e.g., source code
and runtime support) and different platform requirements. Fortu-
nately, both piece-wise [63] and Nibbler [3] also compare their
debloating results with static linking. We measure the difference
value of code reduction ratio with static linking as an indirect eval-
uation. Piece-wise removes 3.9% less code than static linking, and
this difference value for Nibbler is 10%. Compared with piece-wise
and Nibbler, 𝜇Trimmer has fewer assumptions but still outperforms
them.

264

One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 7: The shared libraries’ debloating results for TP-Link Archer A10(V1) firmware. The data in łLibrary Statisticsž mean

the number of user-applications requiring this library, the number of other libraries requiring this library, the total number

of library functions, and the size of this library binary. ł#Fullž and ł#Partialž represent the number of functions are fully and

partially removed, respectively. łPartial Sizež indicates the removed code size from partially-removed functions. łSizež shows

the code reduction size in total. All of the size data are in KB. łTimež column lists 𝜇Trimmer’s running time for each library.

Library
Library Statistics Code Reduction Metrics

Time
#Bin. #Lib. #Total Func. Size #Full #Partial Partial Size Size Ratio

libcurl.so.4.3.0 2 0 458 225.78 142 1 1.3 77.02 34.1% 9.8 h
libcmm.so 24 0 1,545 653.73 197 17 7.0 78.00 11.9% 32.5 m
libixml.so 1 0 185 71.48 82 0 0 27.36 38.3% 30 s
libupnp.so 1 0 367 227.08 86 7 1.7 55.21 24.3% 9.6 m
libcutil.so 14 1 84 38.91 31 4 0.0 16.53 42.5% 12 s
libthreadutil.so 1 0 83 33.36 58 0 0 27.19 81.5% 2 s
libos.so 22 2 47 8.73 7 0 0 0.91 10.4% 4 s
libiw.so.29 4 0 62 22.91 7 0 0 3.76 16.4% 27 s
libcJSON.so 5 1 66 15.73 20 0 0 2.88 18.3% 33 s
libssl.so.1.0.0 4 1 709 276.36 158 3 0.8 35.06 12.7% 24.3 m
libcrypto.so.1.0.0 4 2 4,563 1,085.77 1,525 31 3.1 215.49 19.8% 3.1 h
librt-0.9.33.2.so 7 1 20 2.03 18 0 0 1.69 83.3% <1 s
libutil-0.9.33.2.so 1 0 6 1.58 5 0 0 1.22 77.2% <1 s
libstdc++.so 2 0 2,641 468.13 1,246 2 0.2 182.52 39.0% 5.9 h
libdl-0.9.33.2.so 5 2 10 4.94 2 0 0 0.52 10.5% 4 s
libxml.so 0 1 28 9.53 9 0 0 3.79 39.8% 6 s
libgcc_s.so.1 1 0 1,325 117.88 1,233 1 0.2 82.95 70.4% 1.0 m
libnsl-0.9.33.2.so 1 0 1 0.01 1 0 0 0.01 100.0% <1 s
liblzo2.so.2.0.0 1 0 151 111.34 117 0 0 73.29 65.8% 1.0 m
libcrypt-0.9.33.2.so 3 0 14 7.08 0 1 0.02 0.02 0.3% 8 s
libz.so.1.2.6 0 0 113 65.16 113 0 0 65.16 100.0% <1 s
libresolv-0.9.33.2.so 0 3 1 0.01 1 0 0 0.01 100.0% <1 s
libm-0.9.33.2.so 9 2 166 80.70 127 1 1.5 52.03 64.5% 1.1 m
libpthread-0.9.33.2.so 13 4 214 33.53 77 0 0 8.88 26.5% 1.3 m
libuClibc-0.9.33.2.so 75 23 1,490 315.89 601 8 1.2 115.19 36.5% 1.6 h
Overall 14,349 3,877.65 5,863 75 17.0 1,126.67 29.1% 21.7 h

6.3 Gadget Reduction

We use ROPgadget [70] to measure three common gadget types:
syscall [73], stack pointer update (SPU) [40], and jump-oriented
programming (JOP) [14]. Note that MIPS does not contain return
instructions and instructions like łcall *(memory),ž thus conven-
tional gadget types, such as ret-based gadgets [73] and call-oriented
programming (COP) gadgets [18], are not available in MIPS. As
shown in Table 6, 𝜇Trimmer seems to be very effective in removing
the syscall gadget class, whose reduction ratio is much higher than
the respective code reduction. We find that most erased syscall
instructions come from unused functions in uClibc. The reduction
data for SPU and JOP types are analogous to our achieved code re-
duction. This experiment indicates that 𝜇Trimmer can prohibitively
increase adversaries’ costs on launching code-reuse attacks.

6.4 Firmware Image Debloating

Piece-wise [63] is designed to debloat each application individually,
while 𝜇Trimmer can be applied on an entire system. We conduct a
separate experiment with a real-world embedded device: a wireless
router Archer A10 from TP-Link.

This router’s firmware image contains 25 shared libraries and
75 applications. The top four libraries in code size are libcrypto,

libcmm, libstdc++, and uClibc. The shared libraries libnsl.so and
libresolv.so from uClibc are only stubs, containing only one łre-
turnž instruction. That is why their executable code size is only
0.01 KB. None of libraries are dynamically loaded via dlopen() in
this firmware image. Given the whole firmware image as input,
𝜇Trimmer automatically delivers a set of new thinned libraries that
can work with all firmware applications. Table 7 summarizes the
per-library code reduction achieved by 𝜇Trimmer and its running
time.

𝜇Trimmer first collects the APIs required by 75 firmware appli-
cations and generates a library dependency graph. Then, it starts
symbolic execution on each library’s binary code according to the
topological sorting of the library dependency graph. The time data
in Table 7 represent the processing time for each library, including
the time taken to identify unused code. Without the debug sym-
bol information, function recognition in stripped binary code is
still an open question [56]. We use IDA Pro’s function recovery
heuristics [44] to report the number of functions that are fully and
partially removed. Next, we report some interesting observations
from our experiment.

Two applications are C++ programs, and the others are C pro-
grams. C++ programs depend on the bulky libstdc++ library, which
is also the only library written in C++. Table 7’s Column 2 and

265

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

Column 3 reflect which libraries are commonly depended. Almost
all applications and libraries require uClibc. Even so, we can still
remove 36.5% of uClibc’s executable code. Code bloat is not equally
distributed in libraries. In the worst case (libz.so), we found that it
was never used by any firmware application so that 𝜇Trimmer can
remove the entire library. A potential configuration error during
the compilation of cURL includes libz.so by mistake. In the best case
(libcrypto.so), we only removed 0.3% of its code size, indicating
most of APIs from libcrypto.so are used.

Four sophisticated libraries (libcurl, libcrypto, libstdc++, and
uClibc) occupy 94% of 𝜇Trimmer’s running time, because their bi-
nary code contains a large number of conditional branches. The
overall running time of 𝜇Trimmer is 21.7 hours. Considering 𝜇Trimmer
is an automated tool without affecting runtime performance, the
overhead is acceptable. After 𝜇Trimmer’s debloating, we repack-
age the debloated filesystem back into the firmware image and
flash it into a router. We deployed this debloated router device in
a university laboratory, and it has run smoothly since September
2020.

7 DISCUSSION AND FUTUREWORK

Library debloating for embedded systems shows promise, but 𝜇Trimmer
is still in its infancy. This section discusses 𝜇Trimmer’s limitations
and its applicability to other platforms

Static Analysis Limitations Our approach bears similar lim-
itations with static analysis in general. For example, the challenge of
disassembling strippedARMbinaries [47] severely limits 𝜇Trimmer’s
adoption in the ARM platform. When a virtual table pointer is
loaded from the GOT, we conservatively include all virtual func-
tions from this virtual table. Besides, the various obfuscation tech-
niques [11, 24] will undoubtedly deter extracting an accurate con-
trol flow graph from binary code. However, the firmware running
on resource-constrained embedded devices is rarely obfuscated,
because code obfuscation can result in a non-negligible perfor-
mance drop. For manually loaded APIs via dlopen() and dlsym(),
now we can handle them when these two API arguments can be
statically decided (e.g., they are hard-coded in binaries). However,
the arguments of dlopen() and dlsym() can also be dynamically
generated, and 𝜇Trimmer cannot guarantee the safety of library de-
bloating in this case. Piece-wise [63] and Nibbler [3] share the same
limitation. One possible mitigation is profiling firmware applica-
tions with common workloads to reveal the dynamically generated
arguments of dlopen/dlsym.

Applicability to Other Architectures Binary disassembly
concerns aside, our proposed technique is a general approach to
identify reachable code for position-independent code by moni-
toring GOT’s access patterns rather than statically solving each
indirect control flow. We want to clarify that our approach is not
tied to a specific ABI. Utilizing MIPS ABI provides hints to explicitly
identify the access operations to the GOT and thus optimizes the
address-taken blocks/functions detection, but the overall methodol-
ogy to detect unused library code also applies to other architectures,
including ARM, X86, and RISC-V. For example, X86 may use a stub
call to get the current function address instead of $t9 register in
MIPS, and we can handle it with small engineering efforts.

No Soundness Guarantee We empirically learned the address
loading patterns for indirect control flows, and they are general
to the PIC of other ISAs. We did not claim the soundness of our
approach because in the binary code analysis domain, theoretical
guarantees can be weakened by the toolchain. For example, the
underlying binary code symbolic execution is heuristics-based and
not sound. We empirically evaluated the correctness by running the
officially-provided test suite, which is common for most software
debloating papers.

Security Evaluation Metrics Debloating techniques using
ROP reduction as security metrics has caused controversy, because
only removing unwanted features or unused code cannot prevent
code-reuse attacks entirely. Skilled adversaries can still search avail-
able ROP gadgets from the remaining codebase, albeit in a more lim-
ited form. As 𝜇Trimmer achieves the goal of removing code involved
in allowable control flows with zero runtime performance penalty,
a possible enhancement is to combine 𝜇Trimmer with continu-
ous code re-randomization and control-flow integrity techniques;
Nibbler [3] has demonstrated such a combination is a promising
direction.

Delete Unused Code Embedded devices have limited computa-
tion resources, and firmware images form a closed software world.
These characteristics make static debloating particularly attrac-
tive. Currently, we rewrite unused code with illegal instructions to
help us quickly locate any implementation errors. Our correctness
testing has demonstrated 𝜇Trimmer’s result is reliable. Deleting
unused code from library binaries also benefits embedded systems,
because less shared library code size means better instruction cache
performance and faster loading time. One of the key challenges
in binary rewriting is to update code pointers and data references,
which requires resolving indirect control flow targets accurately.
This undecidable problem is also what we try to circumvent in
our paper. Currently, no tools can guarantee a successful binary
rewriting in practice [6, 30, 55, 80, 81, 83]. Therefore, our future
work is to explore binary rewriting to achieve the goal of code size
reduction.

8 CONCLUSION

Static binary debloating for shared libraries is a promising but also
challenging research task; it can significantly reduce the code-reuse
attacking surface without incurring extra performance or storage
costs. In this paper, we demonstrate that static library debloating is
not an insurmountable obstacle on MIPS architecture. The potential
customers of our proposed solution are individuals and companies
who want to secure embedded systems via automated binary hard-
ening [41].

ACKNOWLEDGMENTS

We sincerely thank ASPLOS 2022 anonymous reviewers for their
insightful comments and Dr. Santosh Nagarakatte for helping us
improve the paper throughout the shepherding process. This work
was supported by the National Science Foundation (NSF) grants
(CNS-1850434 and CNS-2128703) and Cisco Research Grant (łRFP-
21-07ž).

266

One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

A ARTIFACT APPENDIX

A.1 Artifact Check-List (Meta-Information)
• Program: A SPEC CPU 2017 benchmark suite (version 1.0.2) is

needed for this Artifact Evaluation (compilation script is included).
Other testing programs (busybox, nano, apache, etc) used in our
experiments are included.

• Compilation: A MIPS compiler is needed.A MIPS uclibc gcc 6.3.0
toolchain is included.

• Transformations: Binary lifting to IR with angr.
• Run-time environment: The artifact is an ovf format virtual ma-

chine, exported from VMware workstation 14 Pro. Inside the image
is a Ubuntu 16.04 with root access to both terminal and GUI. Python
3.6 is also required.

• Hardware:A x86-64 machine with at least 16GBmemory for virtual
machine execution.

• Execution: 𝜇Trimmer itself processes a library at a time. For each
shared library used by a program, it may cost 15 minutes to 4 hours
for execution. Note: each program may contain multiple libraries.

• Metrics:We use code reduction size and ratio of each library as our
debloating efficiency. We further report how many functions are
full or partial removed as informational data.

• Output: The output consists of a debloated library and a summary
text file (which is a copy of the console output). The code reduction
size and the ratio is in the output text file. We also report how many
functions are fully or partially debloated, which are collected with
IDA Pro and provided Python scripts.

• Experiments: For each experiment, we have provided related scripts
and manual steps.

• How much disk space required (approximately)?: 80GB.
• Howmuch time is needed to prepareworkflow (approximately)?:

4 hours.
• Howmuch time is needed to complete experiments (approx-

imately)?: A couple of days to run all the experiments.
• Archived (provide DOI)?: 10.5281/zenodo.5746505

A.2 Description

A.2.1 How to access. Download the VM image from the zenodo at
https://zenodo.org/record/5746505 and use the following credential
information to login.

VM i n f o :

D e f a u l t hardware s e t t i n g :

Memory : 16GB

P ro c e s s o r : 8

System : ubuntu − 1 6 . 0 4 . 5

Username : uTrimmer

Pw : mu . tr immer

QEMU: Debian

Username : r oo t

Pw : mu . tr immer

A.2.2 Software dependencies. Running 𝜇Trimmer itself does not
need additional software. However, to evaluate the result, IDA Pro
7.1, QEMU 5.1, binwalk 2.2 is required. We do not include IDA Pro
in the VM image due to it is a commercial software. But we include
the output of testcases from IDA Pro, in case someone needs to

evaluate the result without IDA Pro. QEMU and binwalk are already
installed in the VM image.

A.2.3 Data sets. SPEC CPU 2017 (v1.0.2) and Apache, busybox,
prel, openssl, nano, unzip are used for evaluation. We do not include
SPEC CPU 2017 in the VM image due to it is a commercial software.
But the compilation toolchain and compilation configuration file
are provided. Alternatively, pre-compiled Apache, busybox, prel,
openssl, nano, unzip binaries are provided in the VM image.

A.3 Installation

We provide a VM image which contains all the necessary packages
in zenodo, it is recommand to directly using that image. The VM
includes three files, Ubuntu 16.04.05.mf, Ubuntun 16.04.05.ovf, and
Ubuntu 16.04.05.vmdk.

To start with a fresh Ubuntu 16.04, first install python 3.6 and
basic packages and create a virtual environment.

Download the source.zip from zenodo, extract and execute in-
stall.sh after previous setup.

A.4 Evaluation and Expected Results

A.4.1 SPEC CPU2017 Setup. Since SPEC CPU 2017 is a commer-
cial software, we do not install it in the VM image. Instead, we
provide the following instruction for user to compile SPEC if it is
available. The SPEC CPU 2017 should be compiled with a MIPS
compile toolchain that is provided at ’~/toolchaincxx’, and a sample
configuration file that is named as cpu2017_linux_mips.cfg.

After extract the SPEC CPU 2017, copy the configuration file
into SPEC CPU folder and compile. After the compilation, copy the
generated binary into ~/uTrimmer_test/data/cpu2017 folder and
rename it to the specific name instructed by the README file inside
the folder.

A.4.2 Reproducing Result in Table 3. Table 3 summarizes the code
reduction metrics achieved by 𝜇Trimmer. The "Table3::Library
Statistic" column is some statistic description of input, which is
manually collected for each library with readelf and IDA. The "Ta-
ble3::Code Reduction Metrics" column is 𝜇Trimmer debloating re-
sults.

Step 1: For each program of SPEC and firmware applications, we
create a separate Python script to execute it with 𝜇Trimmer, such
as 502.py and apache.py. To get the the value in "Table 3::Code Re-
duction Metrics::Size" and "Table 3::Code Reduction Metrics::Ratio",
user needs to execute the scripts that are saved in folder ~/uTrim-
mer_test/final_tests/.

After the execution, a summary of output is saved in ~/uTrim-
mer_test/output (*.result) and the debloated shared library is also
located in the same folder. Open the *.result with text editor. There
are three key values at the end of the file.

For a program has multiple library dependencies, you need man-
ually sum up each library result with the following formula.

𝑅𝑎𝑡𝑖𝑜 = 𝑠𝑢𝑚_𝑑𝑒𝑙𝑒𝑡𝑒𝑑_𝑠𝑖𝑧𝑒/𝑠𝑢𝑚_.𝑡𝑒𝑥𝑡_𝑠𝑖𝑧𝑒

The results of "Code Reduction Metrics::#Full", "Code Reduction
Metrics::#Partial" and "Code Reduction Metrics::Partial Size" are
manually collected with IDA Pro for each program under test.

267

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

Step 2: *If IDA Pro is not available, please skip this step, we
already provide a list of result files from IDA Pro in ~/uTrim-
mer_test/output/func/.

When IDA Pro is available, user needs to manually disassemble
the original shared library of each program in IDA Pro. Original
shared libraries are located in ~/uTrimmer_test/data/libs. After the
disassemble finished, run our IDA scripts by choosing in IDA "File"
- "Script file ..." select ~/uTrimmer_test/ida_func.py. A function list
will be saved as a txt file with the library’s name under the folder
~/uTrimmer_test/output/func after executing the script file.

Step 3: To compare the 𝜇Trimmer result file with IDA function
result, edit ’~/uTrimmer_test/compare_ida_func.py’, and modify
the first ’progname’ varible with the name of the test script that
are saved in folder ~/uTrimmer_test/final_tests/, then run the com-
pare_ida_func.py script.

At the end of the console output, the following result is displayed,

• fullremoved num: corresponds to "Table 3::Code Reduc-
tion Metrics::#Full"

• partial num: corresponds to "Table 3::Code Reduction Met-
rics::#Partial"

• partial_size: corresponds to "Table 3::Code Reduction Met-
rics::PartialSize"

Step 4(Optional): To verify the correctness of debloating results,
we prepared a MIPS image and QEMU for firmware emulation. To
evaluate the correctness in QEMU, user needs to copy both the
test program and debloated library to QEMU environment. Then
switch to the testing environment by using chroot in QEMU. The
test program should execute successfully in QEMU after debloating
by our framework 𝜇Trimmer.

Additionally, all programs under test are compiled with option
’-Wl,-rpath=/testlib’. The test program will load the shared library
at /testlib first rather than the original library. To verify this library
dependency, run readelf with the test program in Ubuntu. The
output should shows that variable "Library rpath" points to "/testlib".

A.4.3 Reproducing Result in Table 5. We compared 𝜇Trimmer’s
debloating result with the static linker with garbage collection
enabled on Apache web server. The result is shown in Table 5. To
get the debloating result from 𝜇Trimmer, run httpd_static.py script
like in Section A.4.2.

The .text size of output represents the value in "Table 5::Dynamic"
column of the dynamic library.

The values in "Table 5::𝜇Trimmer::%Redu." are the same as "Ta-
ble 3::Code Reduction Metrics::Ratio". However, the value in "Ta-
ble 5::𝜇Trimmer::Size" is the remaining Size rather than the remov-
ing Size shown in Table 3, which is calculated by the following
formula,

𝑆𝑖𝑧𝑒 = .𝑡𝑒𝑥𝑡_𝑠𝑖𝑧𝑒 − 𝑑𝑒𝑙𝑒𝑡𝑒𝑑_𝑠𝑖𝑧𝑒

"Table 5::Static" column presents the static linker preserved code
size during linking process. Run parse_httpd_static.py script to get
the "Table 5::Static" result. The output displays the size preserved
by static linker, which corresponds to "Table 5::Static::Size".

The reduction result of static linker is manually calculated by
the following formula,

𝑆𝑡𝑎𝑡𝑖𝑐 :: %𝑅𝑒𝑑𝑢. = 1 − (𝐷𝑦𝑛. :: 𝑆𝑖𝑧𝑒 − 𝑆𝑡𝑎𝑡𝑖𝑐 :: 𝑆𝑖𝑧𝑒)/(𝐷𝑦𝑛. :: 𝑆𝑖𝑧𝑒)

A.4.4 Reproducing Result in Table 6. We measured three common
ROP gadget types with 𝜇Trimmer on SPEC CPU2017 and firmware
applications, which is shown in Table 6. Once the debloating process
is done, which is performed in Section A.4.2, run ROP_calc.py script.

The code reduction ratio result of each program under test is
collected from Table 3. The console output of ROP_calc.py should
show the gadget reduction ratio of each type in Table 6. The execu-
tion result should show that 𝜇Trimmer is effective in removing the
syscall gadget class, whose reduction ratio is much higher than the
respective code reduction.

A.4.5 Reproducing Result in Table 7. We conduct an experiment on
𝜇Trimmerwith a real-world embedded device’s firmware, which is a
wireless router Archer A10 V1_190305 from TP-Link. The firmware
version is v1 and can be downloaded at TP-Link’s official website
at https://www.tp-link.com/us/support/download/archer-a10/v1/
#Firmware. We already provide the extracted libraries from the
firmware which locates in ~/uTrimmer_test/data/TPlink_a10/lib.
To extract the firmware, run binwalk by replacing the binary file
with the download firmware,

The library statistic are manually collected with IDA Pro, which
are saved in ~/uTrimmer_test/data/TPlink_a10.

To calculate the code reduction size and ratio of each library, run
tplink_a10.py script. The output is saved in ~/uTrimmer_test/output,
similar with Section A.4.2. The number of functions of fully or
partially removed in each library is collected with IDA Pro by per-
forming the same steps shown in Section A.4.2.

A.5 Experiment Customization

Using the provided toolchain, one can compile other programs
and libraries for testing. Toolchain is located at ’~/toolchaincxx’, it
support both C/C++ programs.

After the compilation is done, the shared libraries should be put
into the ’~/uTrimmer_test/data/libs’ folder. Then rewrite a testing
script inside the ’~/uTrimmer_test/final_test’ folder, replacing the
program name and path, and the shared library names.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-Flow

Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security 13, 1, Article 4 (November 2009), 40 pages.

[2] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. 2019. Challenges in
Designing Exploit Mitigations for Deeply Embedded Systems. In Proceedings of
the 4th IEEE European Symposium on Security and Privacy (EuroS&P’19).

[3] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In Proceed-
ings of the 35th Annual Computer Security Applications Conference (ACSAC’19).

[4] Onur ALANBEL. 2015. Developing MIPS Exploits to Hack Routers. BGA Infor-
mation Security Whitepaper.

[5] Naif Saleh Almakhdhub, Abraham A. Clements, Saurabh Bagchi, and Mathias
Payer. 2020. 𝜇RAI: Securing Embedded Systems with Return Address Integrity.
In Proceedings of the 2020 Network and Distributed System Security Symposium
(NDSS’20).

[6] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou,
Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,
Herbert Bos, and Michael Franz. 2020. BinRec: Dynamic Binary Lifting and Re-
compilation. In Proceedings of the 15th European Conference on Computer Systems
(EuroSys’20).

268

https://www.tp-link.com/us/support/download/archer-a10/v1/#Firmware
https://www.tp-link.com/us/support/download/archer-a10/v1/#Firmware

One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

[7] Erik Andersen. [online]. uClibc is a small C standard library intended for Linux
kernel-based OS on embedded systems and mobile devices. https://www.uclibc.
org/.

[8] AspenCore. 2019. 2019 Embedded Markets Study. http://tiny.cc/a4mwtz.
[9] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More:

Quantifying the Security Benefits of Debloating Web Applications. In Proceedings
of the 28th USENIX Security Symposium (USENIX Security’19).

[10] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You See is Not
What You eXecute. ACM Transactions on Programming Languages and Systems
(TOPLAS) 32, 6 (Aug. 2010).

[11] Sebastian Banescu and Alexander Pretschner. 2018. Chapter Five - A Tutorial on
Software Obfuscation. Elsevier.

[12] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the 2005 USENIX Annual Technical Conference (ATC’05).

[13] Ketan Bhardwaj, Matt Saunders, Nikita Juneja, and Ada Gavrilovska. 2019. Serv-
ing Mobile Apps: A Slice at a Time. In Proceedings of the 14th European Conference
on Computer Systems (EuroSys’19).

[14] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
Oriented Programming: A New Class of Code-Reuse Attack. In Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security
(ASIACCS’11).

[15] Bobby Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, andMiryung Kim.
2020. JShrink: In-Depth Investigation into Debloating Modern Java Applications.
In Proceedings of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE’20).

[16] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity: Precision, Security,
and Performance. Comput. Surveys 50, 1, Article 16 (April 2017), 33 pages.

[17] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. 2020. Device-agnostic Firmware
Execution is Possible: A Concolic Execution Approach for Peripheral Emulation.
In Proceedings of the 36th Annual Computer Security Applications Conference
(ACSAC’20).

[18] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In Proceedings of the 23th USENIX Conference on Security
Symposium (USENIX Security’14).

[19] Tim Carrington. 2018. Remote Code Execution (CVE-2018-5767) Walkthrough
on Tenda AC15 Router. https://fidusinfosec.com/remote-code-execution-cve-
2018-5767/.

[20] Daming Dominic Chen, Manuel Egele, Maverick Woo, and David Brumley. 2016.
Towards Automated Dynamic Analysis for Linux-based Embedded Firmware. In
Proceedings of the 23rd Annual Network andDistributed System Security Symposium
(NDSS’16).

[21] Jake Christensen, Ionut Mugurel Anghel, Rob Taglang, Mihai Chiroiu, and Radu
Sion. 2020. DECAF: Automatic, Adaptive De-bloating and Hardening of COTS
Firmware. In Proceedings of the 29th USENIX Security Symposium (USENIX Secu-
rity’20).

[22] Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.
2020. HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation.
In Proceedings of the 29th USENIX Security Symposium (USENIX Security’20).

[23] Lucian Cojocar, Taddeus Kroes, and Herbert Bos. 2017. JTR: A Binary Solution
for Switch-Case Recovery. In Proceedings of the 2017 International Symposium on
Engineering Secure Software and Systems.

[24] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Addison-Wesley
Professional, Chapter 4.4, 258ś276.

[25] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.
A Large-Scale Analysis of the Security of Embedded Firmwares. In Proceedings of
the 23rd USENIX Conference on Security Symposium (USENIX Security’14).

[26] Stephen Crane, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. Booby
Trapping Software. In Proceedings of the 2013 New Security Paradigms Workshop
(NSPW’13).

[27] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise Static Detect-
ion of Common Vulnerabilities in Firmware. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’18).

[28] CVE Details. [online]. Security Vulnerabilities (Memory Corruption). https:
//www.cvedetails.com/vulnerability-list/opmemc-1/memory-corruption.html.

[29] Alessandro Di Federico and Giovanni Agosta. 2016. A Jump-Target Identification
Method forMulti-Architecture Static Binary Translation. In Proceedings of the 2016
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems.

[30] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary Rewrit-
ing without Control Flow Recovery. In Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(PLDI’20).

[31] Eta Labs. [online]. Comparison of C/POSIX Standard Library Implementations
for Linux. http://www.etalabs.net/compare_libcs.html.

[32] Rod Evans. 2004. Static Linking - where did it go? https://blogs.oracle.com/
solaris/post/static-linking-where-did-it-go.

[33] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security’20).

[34] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS’16).

[35] The Apache Software Foundation. 2018. Apache HTTP Test Project. https:
//httpd.apache.org/test/.

[36] GCC Manual. [online]. MIPS Options. https://gcc.gnu.org/onlinedocs/gcc/MIPS-
Options.html.

[37] GCC Manual. [online]. Options for Code Generation Conventions. https://gcc.
gnu.org/onlinedocs/gcc/Code-Gen-Options.html.

[38] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trimming.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS’19).

[39] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security’20).

[40] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out Of Control: Overcoming Control-Flow Integrity. In Proceedings of the 2014
IEEE Symposium on Security and Privacy.

[41] GrammaTech. 2017. Office of Naval Research awards GrammaTech $9M for
Cyber-Hardening Security Research. https://news.grammatech.com/onr-awards-
grammatech-9m-for-cyber-hardening-research.

[42] Aaron Guzman and Aditya Gupta. 2017. IoT Penetration Testing Cookbook: Identify
Vulnerabilities and Secure Your Smart Devices. Packt Publishing.

[43] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS’18).

[44] Hex-Rays. 2021. The IDA Pro Disassembler and Debugger. https://www.hexrays.
com/products/ida/.

[45] Patrick Horgan. [online]. Linux Program Start UpÐHow the heck do we get to
main()? http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.
html.

[46] Fortune Business Insights. 2019. Internet of Things (IoT) Market Analysis. http:
//tiny.cc/lsj1tz.

[47] Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren. 2020.
An Empirical Study on ARM Disassembly Tools. In Proceedings of the 29th Inter-
national Symposium on Software Testing and Analysis (ISSTA’20).

[48] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization and
Bloatware Mitigation Based on Static Analysis. In Proceedings of the 40th IEEE
Annual Computer Software and Applications Conference (COMPSAC’16).

[49] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI’14).

[50] ReFirm Labs. [online]. Binwalk: Firmware Analysis Tool. https://github.com/
ReFirmLabs/binwalk.

[51] William Landi. 1992. Undecidability of Static Analysis. ACM Letters on Program-
ming Languages and Systems 1, 4 (Dec. 1992), 323ś337.

[52] William Landi. 2001. Recovery of Jump Table Case Statements from Binary Code.
Science of Computer Programming 40 (February 2001).

[53] Jian Lin, Liehui Jiang, Yisen Wang, and Weiyu Dong. 2019. A Value Set Analysis
Refinement Approach Based onConditionalMerging and Lazy Constraint Solving.
IEEE Access 7 (2019).

[54] LLVM Project. [online]. Architecture & Platform Information for Compiler
Writers. https://llvm.org/docs/CompilerWriterInfo.html.

[55] Xiaozhu Meng and Weijie Liu. 2021. Incremental CFG Patching for Binary
Rewriting. In Proceedings of the 26th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’21).

[56] Xiaozhu Meng and Barton P. Miller. 2016. Binary Code is Not Easy. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA’16).

[57] Melissa Michael. 2019. Attack Landscape H1 2019: IoT, SMB traffic abound.
http://tiny.cc/jsj1tz.

[58] Gianluca Pacchiella. 2020. CVE-2020-8423: Exploiting the TP-LINK TL-WR841N
V10 Router. https://ktln2.org/2020/03/29/exploiting-mips-router/.

[59] Alejandro Parodi. 2018. Exploiting Routers: Just Another TP-Link 0-Day. https:
//www.secsignal.org/en/news/exploiting-routers-just-another-tp-link-0day/.

[60] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. 2020. BlankIt
Library Debloating: Getting What You Want Instead of Cutting What You Don’t.
In Proceedings of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI’20).

[61] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. RAZOR: A Framework for Post-Deployment Software
Debloating. In Proceedings of the 28th USENIX Security Symposium (USENIX
Security’19).

269

https://www.uclibc.org/
https://www.uclibc.org/
http://tiny.cc/a4mwtz
https://fidusinfosec.com/remote-code-execution-cve-2018-5767/
https://fidusinfosec.com/remote-code-execution-cve-2018-5767/
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-corruption.html
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-corruption.html
http://www.etalabs.net/compare_libcs.html
https://blogs.oracle.com/solaris/post/static-linking-where-did-it-go
https://blogs.oracle.com/solaris/post/static-linking-where-did-it-go
https://httpd.apache.org/test/
https://httpd.apache.org/test/
https://gcc.gnu.org/onlinedocs/gcc/MIPS-Options.html
https://gcc.gnu.org/onlinedocs/gcc/MIPS-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
https://news.grammatech.com/onr-awards-grammatech-9m-for-cyber-hardening-research
https://news.grammatech.com/onr-awards-grammatech-9m-for-cyber-hardening-research
https://www.hexrays.com/products/ida/
https://www.hexrays.com/products/ida/
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://tiny.cc/lsj1tz
http://tiny.cc/lsj1tz
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://llvm.org/docs/CompilerWriterInfo.html
http://tiny.cc/jsj1tz
https://ktln2.org/2020/03/29/exploiting-mips-router/
https://www.secsignal.org/en/news/exploiting-routers-just-another-tp-link-0day/
https://www.secsignal.org/en/news/exploiting-routers-just-another-tp-link-0day/

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming

[62] Chenxiong Qian, HyungJoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.
2020. Slimium: Debloating the Chromium Browser with Feature Subsetting.
In Proceedings of the 27th ACM Conference on Computer and Communications
Security (CCS’20).

[63] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In Proceedings of the 27th USENIX Security
Symposium (USENIX Security’18).

[64] G. Ramalingam. 1994. The Undecidability of Aliasing. ACM Transactions on
Programming Languages and Systems 16, 5 (Sept. 1994), 1467ś1471.

[65] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: Automatically Debloating Containers. In Proceedings
of the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17).

[66] Red Hat Customer Portal. 2019. Static Linking Not Supported in Red Hat Enter-
prise Linux 8. https://access.redhat.com/articles/rhel8-abi-compatibility.

[67] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,
and Christopher Kruegel. 2019. BinTrimmer: Towards Static Binary Debloat-
ing Through Abstract Interpretation. In Proceedings of the 16th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’19).

[68] Xiaolei Ren, Michael Ho, Jiang Ming, Yue Lei, and Li Li. 2021. Unleashing the
Hidden Power of Compiler Optimization on Binary CodeDifference: An Empirical
Study. In Proceedings of the 42nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’21).

[69] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
Oriented Programming: Systems, Languages, and Applications. ACMTransactions
on Information and System Security 15, 1 (March 2012).

[70] Jonathan Salwan. 2011. ROPgadget - Gadgets finder and auto-roper. http://shell-
storm.org/project/ROPgadget.

[71] Jason Sattler. 2020. Attack Landscape H2 2019: An Unprecedented Year for Cyber
Attacks. http://tiny.cc/esj1tz.

[72] Tara Seals. 2021. Critical Cisco Bug in VPN Routers Allows Remote Takeover.
https://threatpost.com/critical-cisco-bug-vpn-routers/168449/.

[73] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86). In Proceedings of the 14th ACM
conference on Computer and Communications Security (CCS’07).

[74] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.
TRIMMER: Application Specialization for Code Debloating. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE’18).

[75] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P’16).

[76] Standard Performance Evaluation Corporation. 2017. Building the SPEC CPU2017
Toolset. https://www.spec.org/cpu2017/Docs/tools-build.html.

[77] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction.

[78] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War
in Memory. In Proceedings of the 34th IEEE Symposium on Security and Privacy
(S&P’13).

[79] The Santa Cruz Operation. 1996. System V Application Binary Interface MIPS
RISC Processor Supplement, 3rd Edition. https://refspecs.linuxfoundation.org/
elf/mipsabi.pdf.

[80] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ram-
blr: Making Reassembly Great Again. In Proceedings of the 24th Annual Network
and Distributed System Security Symposium (NDSS’17).

[81] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling.
In Proceedings of the 24th USENIX Security Symposium (USENIX Security’15).

[82] David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization. In Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI’16).

[83] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. 2020.
Egalito: Layout-Agnostic Binary Recompilation. In Proceedings of the 25th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’20).

[84] JianliangWu, RuoyuWu Daniele Antonioli, Mathias Payer, Nils Ole Tippenhauer,
Dongyan Xu, Dave (Jing) Tian, and Antonio Bianchi. 2021. LIGHTBLUE: Auto-
matic Profile-Aware Debloating of Bluetooth Stacks. In Proceedings of the 30th
USENIX Security Symposium (USENIX Security’21).

[85] Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum. 2008.
Building Embedded Linux Systems: Concepts, Techniques, Tricks, and Traps (second
ed.). O’Reilly Media.

[86] Lyon Yang. 2015. Exploiting Buffer Overflows on MIPS Architectures. Hack In
The Box Security Conference 2015 Whitepaper.

[87] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. 2014.
Avatar: A Framework to Support Dynamic Security Analysis of Embedded Sys-
tems’ Firmwares. In Proceedings of the 2014 Network and Distributed System
Security Symposium (NDSS’14).

270

https://access.redhat.com/articles/rhel8-abi-compatibility
http://shell-storm.org/project/ROPgadget
http://shell-storm.org/project/ROPgadget
http://tiny.cc/esj1tz
https://threatpost.com/critical-cisco-bug-vpn-routers/168449/
https://www.spec.org/cpu2017/Docs/tools-build.html
https://refspecs.linuxfoundation.org/elf/mipsabi.pdf
https://refspecs.linuxfoundation.org/elf/mipsabi.pdf

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Code-reuse Attacks on IoT Devices
	2.2 Software Debloating
	2.3 MIPS Architectural Support
	2.4 Indirect Control Flow

	3 Overview
	4 Library Dependency Graph
	5 ICFG Construction
	5.1 Address Loading Classification
	5.2 Detect AT Blocks/Functions via Symbolic Execution

	6 Evaluation
	6.1 Code Reduction and Correctness
	6.2 Trimmer vs. Static Linking
	6.3 Gadget Reduction
	6.4 Firmware Image Debloating

	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Artifact check-list (meta-information)
	A.2 Description
	A.3 Installation
	A.4 Evaluation and expected results
	A.5 Experiment customization

	References

