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A B S T R A C T   

Raman elastic geobarometry for mineral host-inclusion systems is used to determine the strains acting on an 
inclusion still entrapped in its host by measuring its Raman wavenumber shifts which are interpreted through the 
phonon-mode Grüneisen tensors of the inclusion phase. The calculated inclusion strains can then be used in an 
elastic model to calculate the pressure and temperature conditions of entrapment. This method is applied 
frequently to host inclusion systems where the host is almost elastically isotropic (e.g. garnet) and the inclusion is 
elastically anisotropic (e.g. quartz and zircon). In this case, when the entrapment occurs under hydrostatic 
conditions the host will impose isotropic strains on the inclusion which in turn will develop non-hydrostatic 
stress. In this scenario the symmetry of the inclusion mineral is preserved and the strains in the inclusion can 
be measured via Raman spectroscopy using the phonon-mode Grüneisen tensor approach. 

However, a more complex situation arises when the host-inclusion system is fully anisotropic, such as when a 
quartz inclusion is entrapped within a zircon host, because the symmetry of the inclusion can be broken due to 
the external anisotropic strain field imposed on the inclusion by the host, which in turn will modify the phonon 
modes. We therefore calculated the strain states of quartz inclusions entrapped in zircon hosts in multiple ori
entations and at various geologically relevant pressure and temperature conditions. We then performed ab initio 
Hartree-Fock/Density Functional Theory (HF/DFT) simulations on α-quartz in these strain states. These HF/DFT 
simulations show that the changes in the positions of the Raman modes produced by strains that are expected for 
symmetry broken quartz inclusions in zircon are generally similar to those that would be seen if the quartz 
inclusions remained truly trigonal in symmetry. Therefore, the use of the trigonal phonon-mode Grüneisen tensor 
to determine the inclusion strains does not lead to geologically significant errors in calculated quartz inclusion 
entrapment pressures in zircon.   

1. Introduction 

The study and measurement of elastic strains in mineral inclusions 
has undergone rapid development as a tool to determine the pressure 
and temperature conditions of inclusion entrapment, thereby providing 
constraints on the pressure-temperature (i.e. P-T) history of their host 
minerals and rocks. The strain and stress fields in a crystal are the result 
of both the surrounding environment (i.e. the hydrostatic or non- 

hydrostatic stress applied to it) and the elastic properties of the crystal 
itself. For example, when a crystal is immersed in a liquid medium it will 
be under hydrostatic pressure and the crystal (e.g. inclusion) will 
develop isotropic or anisotropic strains depending on its symmetry and 
its elastic properties (Fig. 1a). However, if the crystal (inclusion) is 
entrapped within another solid material (i.e. the host) it will be sub
jected to strains imposed upon it arising from the elastic properties of the 
host material and the external stress conditions. In our discussion we 
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will assume that the external stress on the host is homogenous and hy
drostatic. Under this assumption, we can consider four representative 
cases where the inclusion is spherical and embedded in an infinite host 
and therefore the stress state of the inclusion is homogeneous and results 
from the combination of the symmetries and properties of the host and 
inclusion crystals:  

(i) a completely isotropic (or almost isotropic) host-inclusion system 
such as chromite in diamond (Fig. 1b). In this case, the host 
mineral will impose an isotropic strain on the entrapped mineral 
inclusion which in turn will develop an isotropic stress field. It 
will therefore be under hydrostatic pressure and will remain 
cubic.  

(ii) an isotropic host and an anisotropic inclusion such as quartz in 
garnet (Fig. 1c). Also in this case the host imposes isotropic 
strains on the inclusion, but the inclusion being anisotropic will 
develop a non-hydrostatic stress field but will retain its 
symmetry.  

(iii) an anisotropic host and an isotropic inclusion such as spinel in 
olivine (Fig. 1d). The elastically anisotropic host will apply 
anisotropic strains to the elastically isotropic inclusion which will 
therefore develop a non-hydrostatic stress. The applied aniso
tropic strain lowers the symmetry of the inclusion.  

(iv) a completely anisotropic host-inclusion system such as quartz in 
zircon (Fig. 1e). In this last case we have the most complex sit
uation considered here: the host is anisotropic and therefore 
imposes anisotropic strains on the inclusion which, being aniso
tropic, develops a stress field that depends upon its orientation 
with respect to the host mineral and the contrast in their elastic 
properties. These anisotropic strains can lower the symmetry of 
the inclusion. 

In addition to these considerations, we note that if the external stress 
conditions are non-hydrostatic, the stress developed by the inclusion can 

be non-hydrostatic also when the host is elastically isotropic. More 
complex situations arise when the stress and the strain in the inclusion 
are inhomogeneous due to inhomogeneities in the external stress acting 
on the host or because of geometrical features (morphology of the in
clusion, its proximity to other inclusions, or to the external surface of the 
host, e.g. Mazzucchelli et al., 2018; Zhong et al., 2019). 

Mineral inclusions are common in metamorphic rocks and the 
determination of their apparent entrapment conditions using Raman 
elastic geobarometry can provide new P-T constraints to understand the 
metamorphic history of the rock and the geological processes involved 
(e.g. Alvaro et al., 2020; Rosenfeld and Chase, 1961). Raman elastic 
geobarometry relies on the joint application of the phonon-mode Grü
neisen tensor together with elastic geobarometry theory (e.g. Angel 
et al., 2019; Murri et al., 2018; Murri et al., 2019). The phonon-mode 
Grüneisen tensor is a well-established concept (Cantrell, 1980; Grü
neisen, 1926; Key, 1967) that relates the shifts of phonon frequencies of 
a crystal to the strains imposed on a crystal. Being a second-rank sym
metric property tensor (Ziman, 1960) that relates to the strain, the 
Grüneisen tensors are subject to the symmetry of the crystal, not to the 
symmetries of the individual phonon modes themselves (Angel et al., 
2019; Ziman, 1960). While the symmetry constraints on the Grüneisen 
tensors of all of the modes in a crystal are therefore the same, the values 
of their components differ and must be determined by experiment 
(Barron et al., 1982; Briggs and Ramdas, 1977; Cantrell, 1980; Key, 
1967) or DFT simulations. Once the values of the components for the 
Raman active modes have been determined in these ways, this allows us 
to determine the residual strain state on the inclusions by measuring 
their Raman wavenumber shifts (e.g. Angel et al., 2019; Murri et al., 
2019; Musiyachenko et al., 2021; Stangarone et al., 2019). The strain 
state of the inclusion can then be used to calculate the apparent 
entrapment conditions of the host-inclusion system. This method has 
been largely applied to zircon and quartz inclusions contained in garnet 
(e.g. Alvaro et al., 2020; Baldwin et al., 2021; Campomenosi et al., 2021; 
Cisneros et al., 2021; Gilio et al., 2021; Gonzalez et al., 2019; Harvey 

Fig. 1. Illustration of stress and strain states. (a) In a diamond-anvil cell a crystal is immersed in a fluid and is under hydrostatic pressure; (b) An isotropic inclusion in 
an isotropic host is subject to isotropic strains and it will develop hydrostatic pressure; (c) An anisotropic inclusion in a cubic garnet host is subject to isotropic strain 
and therefore is under non-hydrostatic stress; (d) An isotropic inclusion in An anisotropic host is subject to anisotropic strains and it will develop non-hydrostatic 
stresses; (e) An anisotropic inclusion in a zircon host is subject to anisotropic strains and therefore is under non-hydrostatic stress whose magnitude depends upon 
their relative crystallographic orientations.Cases (b-e) assume that the stress acting on the host is hydrostatic. 
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et al., 2020; Johnson et al., 2020; van Schrojenstein Lantman et al., 
2021; Zhong et al., 2019), in which the symmetry of the inclusion is 
preserved, since the strain applied to it is isotropic (see case ii above and 
Fig. 1c). Moreover, when an anisotropic inclusion is spherical and iso
lated within an isotropic host mineral, their relative crystallographic 
orientation (RCO) has a negligible effect on the calculation of the 
entrapment conditions (see Mazzucchelli et al., 2019). 

However, when we move to completely anisotropic host-inclusion 
systems (e.g. quartz in zircon) the situation is more complex (see case 
iv above and Fig. 1e). Even if the quartz crystal is entrapped in a zircon 
host at external hydrostatic conditions, when the external P and/or T are 
changed away from entrapment the strain field applied to the inclusion 
can become non-uniaxial and will depend on the relative orientation of 
the host and the inclusion. Therefore, the a and b axis of the quartz in
clusion may be deformed by different amounts, and the angles α, β, γ can 
change from those required by trigonal symmetry. Therefore we expect 
that the quartz inclusions in natural zircon crystals are, in general, not 
trigonal (Gonzalez et al., 2021). These deformations of the quartz unit 
cell that break the symmetry of the crystal can be described as ‘sym
metry-breaking strains’ (Carpenter et al., 1998; Salje et al., 1993). The 
effects of symmetry-breaking strains have been observed in cubic garnet 
hosts adjacent to inclusions as birefringence haloes (e.g. Campomenosi 
et al., 2020; Howell et al., 2010), however the effects of symmetry 
breaking on the strain state of the inclusion phase are poorly understood. 
In particular, when the quartz crystal is no longer trigonal, the key 
question is whether using the phonon-mode Grüneisen tensor of trigonal 
α-quartz (for example) to calculate the inclusion strains results in sig
nificant errors in the strains and mean stresses, and whether these errors 
lead to geologically significant errors in the calculation of inclusion 
entrapment conditions during metamorphism. 

To answer this question, we calculated the expected deformation of 
quartz inclusions entrapped in a zircon host in multiple RCOs and at 
various hydrostatic geologically relevant P-T conditions. We then per
formed ab initio Hartree-Fock/Density Functional Theory (HF/DFT) 
simulations on the deformed α-quartz to determine the Raman shifts for 
quartz inclusions entrapped at these conditions. This enabled us to 
determine (i) the error introduced by using the phonon-mode Grüneisen 
tensor of trigonal quartz, (ii) the inclusion stress states and (iii) the 
entrapment conditions of inclusions whose symmetry has been broken. 
Despite we specifically address the case of external hydrostatic condi
tions, our general conclusions regarding the Raman response to sym
metry breaking strains are not just limited to this case. Since the Raman 
response to the strain state of the inclusion does not depend on the 
specific conditions that have generated that strain, our analysis of 
Raman shifts still apply when the external stress is non-hydrostatic, or 
when the symmetry-breaking strains are induced by the geometrical 
features of the system (morphology of the inclusion, its proximity to 
other inclusions or to free surfaces). These results can also be applied to 
quartz inclusions with non-homogeneous strain states, provided that the 
gradients are small at the spatial resolution of the Raman analysis. 

2. Methods 

The strains developed in an inclusion depend on the elastic proper
ties of the host and inclusion minerals and the P-T conditions at 
entrapment. Strains of measured quartz inclusions are defined in terms 
of the fractional change in the unit-cell parameters of the quartz inclu
sion relative to a free crystal at ambient conditions (Nye, 1957). We use 
the Lagrangian infinitesimal definition of strains, with the convention 
that the Cartesian axes are aligned with the Z-axis parallel to the crys
tallographic c-axis, and the X-axis parallel to the crystallographic a-axis. 
Thus, for example, the strain ε33 = c/c0

− 1 is simply the fractional dif

ference in the c-lattice parameter of the strained inclusion from the 
lattice parameter c0 of a free quartz crystal at ambient conditions. If the 
quartz remains trigonal then the a and b unit-cell parameters remain 

equal, so ε11 = ε22 and the unit-cell angles remain fixed so that the three 
shear-strain components ε23, ε13, and ε12 remain zero. Symmetry 
breaking is represented by the violation of one or more of these con
straints on the strain components. 

The calculation of the final inclusion strains for each of our three 
entrapment conditions proceeded in several steps (Gonzalez et al., 
2021). First the changes in the unit-cell parameters of the zircon host 
crystal from entrapment conditions to ambient conditions were calcu
lated from the axial and volume EoS of zircon (Ehlers et al., 2022). From 
these changes the deformation tensor of the zircon was calculated, 
transformed according to the chosen RCO and applied to the quartz 
inclusion. In combination with the axial and volume EoS of quartz 
(Alvaro et al., 2020; Angel et al., 2017a), this gives the cell parameters 
and strains of the inclusion that result from confinement by the zircon 
host without considering the mutual elastic interaction of the two 
minerals (Angel et al., 2014b; Gonzalez et al., 2021). The second step of 
the calculation is required to bring the system to mechanical equilib
rium. The elastic relaxation is calculated as the change in strain (and 
stress) that leads to stress balance in the system assuming elastic 
behavior, and therefore it reduces the strains in the inclusion to those 
measured in the laboratory (Angel et al., 2014b) Therefore, the final 
strains of the inclusion are obtained after accounting for the mutual 
elastic relaxation of the host and inclusion, and they are calculated using 
the relaxation tensor which depends on the elastic properties of both 
minerals, their mutual orientation and the shape of the inclusion 
(Mazzucchelli et al., 2018; Mazzucchelli et al., 2019) We used the 
relaxation tensors calculated numerically using finite elements by 
Gonzalez et al. (2021) for our chosen RCOs to obtain the final relaxed 
strains and cell parameters of quartz inclusions apparently entrapped at 
eclogite and granulite conditions (Table 1a and 1b). 

We performed analyses for quartz inclusions entrapped in a non- 
metamict zircon host for two representative metamorphic entrapment 
conditions, one in the eclogite metamorphic facies and one in the 
granulite facies, and a third case of entrapment at the limit of the sta
bility field of quartz near the quartz-coesite phase boundary. Because the 
two minerals have anisotropic elastic properties, the strains developed 
in a quartz inclusion within zircon and thus, the amount of symmetry 
breaking in the quartz, also depend on the RCO of the two crystals 
(Gonzalez et al., 2021). If the RCO is such that the c-axes of zircon and 
quartz are aligned to one another, there are no symmetry-breaking 
strains in the quartz inclusion. We therefore selected RCOs from the 
calculations of (Gonzalez et al., 2021) that gave the greatest amount of 
symmetry breaking (see Table S1) reducing the symmetry of quartz from 
non-centrosymmetric trigonal to non-centrosymmetric triclinic (P3121 
or P3221 to P1). The first case corresponds to a quartz inclusion 
entrapped in the zircon host at eclogite facies conditions at 2.2 GPa and 
650 ◦C in the “stiff-RCO” with the quartz inclusion rotated −50.27◦

around the X-axis because this orientation produced the largest magni
tude symmetry-breaking strains. The second case corresponds to a 
quartz inclusion entrapped at the granulite facies at 0.6 GPa and 725 ◦C 
in the “soft-RCO” with a quartz inclusion rotated −54.09◦ around the X- 

Table 1a 
Symmetry-breaking strain tensor components (in Voigt notation) of the 
inclusions.   

quartz_eclogite quartz_granulite quartz_coesite 

ε1 −0.00636 0.00687 −0.00837 
ε2 −0.00788 0.00750 −0.01124 
ε3 −0.00601 0.00337 −0.00967 
ε4 0.00252 0.00048 0.0048 
ε5 0.00000 −0.00076 0.00000 
ε6 0.00000 0.00106 0.00000 

Cartesian axes for the tensors are aligned with the Z-axis parallel to the crys
tallographic c-axis, and the X-axis parallel to the crystallographic a-axis. Final 
relaxed strains for eclogite and granulite. Final unrelaxed strains for the coesite 
case. 
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axis, −54.40◦ around the Y-axis, and 29.40◦ around the Z-axis (see 
Gonzalez et al. (2021) for the conventions followed for rotations). In this 
orientation the magnitude of the symmetry-breaking strains is less, but 
the strains are more affected by mutual elastic relaxation (Gonzalez 
et al., 2021; Mazzucchelli et al., 2019). We also investigated the effect of 
symmetry breaking on a quartz inclusion in the stiff-RCO entrapped in a 
zircon host at 3 GPa and 927 ◦C near to the quartz-coesite phase 
boundary (Bose and Ganguly, 1995). This P-T condition provides a 
practical upper limit to quartz inclusion apparent entrapment and 
therefore represents the near-maximum effect of the entrapment P-T 
conditions on the symmetry breaking of the quartz inclusion. 

The relaxed inclusion pressures are 0.76 GPa and −0.65 GPa for the 
eclogite and granulite examples. For the coesite-boundary simulation, 
the relaxation was not calculated because we were interested in finding 
the greatest magnitude of symmetry-breaking strains and, for these 
entrapment conditions, the mutual elastic relaxation reduces the 
symmetry-breaking strains. The unrelaxed inclusion pressure for this 
case is calculated to be ca. 1.1 GPa. 

Raman spectra of these triclinic quartz inclusions were then calcu
lated with the same ab initio simulation methods described in Murri 
et al. (2018, 2019). In brief, the unit-cell parameters were fixed to the 
corresponding triclinic parameters calculated for the inclusions from the 
three different entrapment conditions (Table 1b), and the atomic posi
tions were optimized to minimize the total energy of the crystal. From 
the resulting atomic configuration, the frequencies of the phonons 
(normal mode vibrations) can be calculated, including the modes that 
give rise to peaks in measured Raman spectra. Ab initio hybrid HF/DFT 
simulations were performed with the CRYSTAL17 code (Dovesi et al., 
2018) by employing the same WC1LYP functional as in Murri et al. 
(2018, 2019). For the numerical integration of the DFT functionals, the 
XXLGRID grid was chosen; the effectiveness of such a grid is very high, 
as it can be estimated by the integration of the electron density of the 
unit cell, which provides 90.000005 electrons out of 90 for the reference 
volume at the static limit (no zero-point and thermal pressures due to 
vibrational effects, Prencipe et al., 2011); and at a pressure of 0 GPa. The 
localized contracted atomic basis sets used were the same as those 
employed by Murri et al. (2018, 2019) [i.e. Si 86-311G** (Pascale et al., 
2005) and 8-411G(2d) (Valenzano et al., 2006) for Si and O, 
respectively]. 

The unit-cell parameters were fixed at the chosen strain conditions 
and only the fractional coordinates were optimized at the WC1LYP level 
(at the static limit) by means of the keyword ATOMONLY (Civalleri 
et al., 2001; Dovesi et al., 2014) of the CRYSTAL17 code. Vibrational 
wavenumbers of all of the normal modes were calculated at the Г point 
within the limit of the harmonic approximation (see Murri et al., 2019 
for further details). The reference simulation of an unstrained trigonal 
quartz was performed with the same basis set and identical settings to 
provide the Raman spectrum to be used as the unstrained reference. 
Structural and vibrational data are reported in the deposited crystallo
graphic information files (cifs) that contain the results of all the simu
lations that we performed. 

3. Results 

3.1. Structure 

The strains imposed on the quartz inclusions by their host zircon 
crystals reduce the symmetry of the quartz to triclinic (see Table 1b). 
This symmetry breaking means that the positions of the 3 Si atoms and 
the 6 O atoms within the unit-cell of quartz are no longer related by 
symmetry and are independent of one another. As a consequence, there 
are three symmetrically independent SiO4 tetrahedra within the primi
tive unit-cell, which can have bond lengths, bond angles, and mutual 
orientations that differ from one another. It is these differences that give 
rise to additional Raman peaks arising from a splitting or change in the 
activity of parent trigonal phonon modes. Indeed, the HF/DFT simula
tions show that structurally-equivalent O-Si-O bond angles within the 
SiO4 tetrahedra differ by up to 0.5o between the tetrahedra in each 
structure. The range of Si-O-Si bond angles between the tetrahedra is 
0.2–0.3o and the differences between equivalent Si-O bond lengths in 
the tetrahedra in each structure range up to 0.005 Å. The internal O-Si-O 
angles of the tetrahedra also differ by up to 0.5o from the values found in 
the hydrostatic simulations at the same pressure (Murri et al., 2019) and 
the Si-O-Si angles are increased by 0.2o-0.3o. Despite these internal 
differences in bond angles, the volumes of the SiO4 tetrahedra are the 
same as those of trigonal quartz. This shows that symmetry breaking is 
mostly accommodated structurally by small shears and tilts of the SiO4 
tetrahedra. These structural changes are similar to those that occur in 
the trigonal structure of quartz under shear strains that do not break the 
symmetry (Murri et al., 2019), but with the difference that the shears 
and tilts are not the same for every tetrahedron within the symmetry- 
broken structures. 

3.2. Raman modes 

Results of the HF/DFT simulations show that symmetry breaking 
induces small changes in the structure of quartz which also correspond 
to small changes in the observed Raman spectra. This allows us to 
compare directly the corresponding ‘parent’ modes of the trigonal 
quartz structure with those calculated from the symmetry-broken quartz 
structures. This reveals several slight differences between the corre
sponding Raman spectra. First, the reduction in symmetry of the struc
ture means that the symmetries of the modes themselves change. 
Trigonal quartz has A1, A2 and E modes, of which only the A1 and E 
modes are Raman active, while A2 are infrared active. In triclinic sym
metry all of the modes become A modes and all are both Raman and 
infrared active (Aroyo et al., 2011). However, the HF/DFT simulations 
show that for this degree of symmetry breaking and structural distortion, 
the Raman inactive A2 modes of the trigonal structure do not develop 
any significant Raman activity in the triclinic structure and their 
calculated intensities all remain less than 10−5 of the most intense 
Raman mode. Therefore, the symmetry breaking does not result in any 
additional detectable Raman peaks stemming from the apparent A2 
modes under conventional experimental conditions (Fig. 2). 

The Raman-active A1 modes in trigonal quartz are non-polar, but 
when the symmetry is reduced to triclinic they transform into polar 
modes of A symmetry. Polar optical modes show the so-called LO-TO 
splitting, that is, they have longitudinal optical (LO) and transverse 
optical (TO) components that appear at different wavenumbers with a 
difference ΔωLO-TO = ωLO - ωTO. For such modes, not only the intensities 
but also the positions of the corresponding Raman peaks depend on the 
scattering geometry, namely the orientation of the net crystal polari
zation with respect to the polarization of the incident light. In a random 
orientation, the two components will mix into quasi phonons and may 
produce two Raman peaks with a wavenumber difference ΔωLO-TO 
depending on the angle of inclination between the net polarization and 
the incident-light polarization. However, for the triclinic A modes 
coming from trigonal A1 modes the maximum ΔωLO-TO is less than 0.06 

Table 1b 
Unit-cell parameters used in the HF/DFT simulations.   

quartz_ref quartz_eclogite quartz_granulite quartz_coesite 

a (Å) 4.92825 4.89696 4.96211 4.88699 
b (Å) 4.92825 4.8912 4.96207 4.87629 
c (Å) 5.42395 5.39136 5.44223 5.37152 
V (Å3) 114.086 111.789 116.1178 110.773 
α (◦) 90 89.874 89.955 89.761 
β (◦) 90 90 90.043 90 
γ (◦) 120 120.039 119.94 120.073 

The resulting crystallographic structures for all the three cases have triclinic 
symmetry as indicated by a ∕= b and the deviation of the unit-cell angles from 90o 

and 120o. 
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cm−1 and therefore it will not result in any detectable change of Raman 
signal as a function of the crystal orientation. In trigonal quartz the E 
modes already exhibit LO-TO splitting, whose magnitude depends on the 
phonon polarity and can be of up to 174 cm−1 (for the mode near 1060 
cm−1, see Table S2). The symmetry breaking from trigonal to triclinic 
means that effectively each E mode evolves into two A modes in triclinic 
and both of these A modes themselves exhibit LO-TO splitting; thus each 
E mode of the trigonal Raman spectra will now appear as a doublet, 
whose components may shift with the orientation of the crystal due to 

their LO-TO splitting. However, for the natural inclusion cases (i.e. 
eclogite and granulite cases) the split between all pairs of A modes 
coming from each E parent mode is less than 0.88 cm−1, while for the 
coesite boundary case the maximum splitting is 1.82 cm−1 for the first 
pair of A modes (see Table 2). Such peak splitting is in general detectable 
with high-resolution Raman spectrometers, but most of the 
commercially-available spectrometers have an instrumental resolution 
of ~2 cm−1. In this case the peak splitting would likely not be resolvable 
but may produce detectable peak broadening if the split phonon modes 
have similar intensities. Similarly, peak-shape asymmetry could be 
observed if one of the split phonon modes is more intense than the other. 
Splitting of the order of 5–6 cm−1 can be achieved only when the 
symmetry-breaking component of the strains approaches 0.01 in 
magnitude, as shown in the example in Fig. 2, labelled ‘large strains’. 
The LO-TO splitting of individual triclinic A modes arising from trigonal 
E modes is about the same in magnitude as their parent modes in 
trigonal (see Table S2) even for the coesite case. Thus, examination of 
the LO-TO splitting does not indicate whether or not symmetry-breaking 
strains are present in the inclusion. Moreover, the detection of the LO- 
TO splitting requires the appropriate orientation of the crystal with 
respect to the scattering geometry (Shapiro and Axe, 1972). In partic
ular, the crystal must be oriented in different directions in order to see 
both of the components. This procedure is easily performed with free 
crystals, but when dealing with host inclusion systems it becomes 
challenging because of the limited accessible orientations of the inclu
sion imposed by it being buried in its' host, together with possible 
symmetry and polarization mixing (e.g. Shapiro and Axe, 1972), and 
peak overlaps due to the presence of the host mineral (Fig. S1). 

In principle the intensities of the modes, both in parallel polarized 
‘HH’ and cross polarized ‘VH’ spectra (see Campomenosi et al., 2020), 
can be analysed in order to detect symmetry-breaking strains. However, 
under realistic conditions, the ab initio simulations do not show any 
particular trend that could be indicative of symmetry-breaking strains. 
In detail, the two A modes derived from the trigonal E modes have a 
similar pattern of intensities to their parent modes in trigonal quartz 
with the A intensities being half of the E modes for both HH and VH 
configurations. A modes from A1 have similar intensity components (in 
terms of absolute values), while as mentioned above, A modes coming 
from A2 are Raman active but with intensities close to zero (see 

Fig. 2. Comparison of the calculated Raman spectra of inclusions labelled by 
entrapment conditions with the reference spectra of an unstrained quartz 
crystal (bottom) and an extreme non-realistic case of large symmetry-breaking 
strains (top). The symmetry labels for the modes (E and A1) refer to trigonal 
reference quartz. All Raman spectra were simulated with a FWHM (Full Width 
at Half Maximum) of 5 cm−1 and with a Lorentzian line shape. This FWHM is 
that measured for the band near to 128 cm−1 in natural quartz at ambient 
conditions by using a Raman spectrometer with a resolution of 2 cm−1 (Morana 
et al., 2020). 

Table 2 
Wavenumbers (cm−1) of Raman and IR active-modes from the HF/DFT simulations at the static limit.  

Mode symm_trigonal quartz_ref Mode symm_triclinic quartz_eclogite quartz_granulite quartz_coesite 

TO (cm−1) TO (cm−1) 

E(R, IR) 133.13 A(R, IR) 136.77 128.99 137.92   
A(R, IR) 137.59 129.13 139.74 

A1(R) 212.72 A(R, IR) 229.50 196.32 236.47 
E(R, IR) 266.43 A(R, IR) 269.82 263.31 271.36   

A(R, IR) 270.21 263.53 271.91 
A1(R) 348.42 A(R, IR) 348.03 349.82 348.10 
A2 (IR) 353.81 A(R, IR) 351.37 357.03 350.29 
E(R, IR) 392.73 A(R, IR) 393.33 391.42 393.50   

A(R, IR) 393.37 392.08 393.62 
E(R, IR) 447.81 A(R, IR) 452.86 442.65 454.91   

A(R, IR) 453.31 443.37 455.67 
A1(R) 469.62 A(R, IR) 476.77 463.92 480.39 
A2 (IR) 503.39 A(R, IR) 511.28 495.18 514.61 
E(R, IR) 695.30 A(R, IR) 701.16 689.10 703.54   

A(R, IR) 701.76 689.64 704.66 
A2 (IR) 774.55 A(R, IR) 776.85 772.72 778.37 
E(R, IR) 797.68 A(R, IR) 804.63 792.08 808.04   

A(R, IR) 804.89 792.67 808.35 
E(R, IR) 1060.35 A(R, IR) 1061.96 1059.03 1062.79   

A(R, IR) 1062.41 1059.28 1063.56 
A2 (IR) 1068.49 A(R, IR) 1071.75 1065.05 1072.96 
A1(R) 1077.31 A(R, IR) 1079.93 1075.99 1081.30 
E(R, IR) 1159.50 A(R, IR) 1157.38 1160.68 1156.25   

A(R, IR) 1158.26 1161.10 1157.83 

R: Raman-active, IR: infrared-active; phonons that are IR active carry polarity and therefore exhibit LO and TO components. 
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deposited cif file). Therefore, when the splitting of the two A modes 
coming from an E mode is not sufficient to individually resolve them, the 
intensity contributions of the A modes will sum up giving rise to a single 
peak as shown in Fig. 2 for the eclogite, granulite and coesite cases. 

As a consequence, for geologically relevant inclusion entrapment 
conditions, the Raman spectrum of a quartz inclusion in zircon host is 
expected to show similar features to that of a free quartz crystal. The 
major exception is that the Raman peak positions from the quartz in
clusions will differ based on the entrapment conditions (i.e. the 
magnitude of the inclusion pressure) and the applied strain from the 
zircon host. If the quartz inclusion is, however, subjected to large de
grees of symmetry breaking, we then may observe broadening or 
asymmetry of Raman peaks, or even splitting of the trigonal E modes if 
the instrumental resolution of the available spectrometer is sufficient. 
The question then is whether these differences between the Raman 
spectra of triclinic quartz inclusions and trigonal quartz are large enough 
to induce significant errors into the calculations of inclusion stress states 
and thus inferred entrapment conditions. 

4. Implications for Raman piezo-barometry 

4.1. Inclusion remnant pressures and hydrostatic pressure calibrations 

Hydrostatic pressure calibrations of Raman wavenumber shifts as a 
function of pressure (e.g. Morana et al., 2020; Schmidt and Ziemann, 
2000) are frequently used to estimate the remnant pressures of quartz 
inclusions for the application of elastic geothermobarometry. The 
problems with this approach, generally in the context of a quartz in
clusion in a garnet host, have previously been explained in detail (e.g. 
Angel et al., 2019; Gilio et al., 2021; Gonzalez et al., 2019; Murri et al., 
2018), but have not been evaluated for quartz inclusions contained in 
elastically anisotropic host minerals such as zircon. 

Here we can test the use of hydrostatic pressure calibrations by using 
them to infer from the Raman shifts calculated in our DFT simulations 
the residual pressures in the inclusions. For these tests we used the 
quartz hydrostatic calibration equations of Schmidt and Ziemann (2000) 
for the 206 and 464 cm−1 bands, Thomas and Spear (2018) for the 128 
cm−1 band, and Morana et al. (2020) for the 128, 206, 265, 464, 696, 
809, 1080, and 1161 cm−1 bands (Table S3). In general, the resulting 
“pressures” indicated by each individual mode are significantly different 
from one another (Fig. 3, Table S3) and there is a large variation in the 
discrepancy between the hydrostatic calibration results and the true 
mean stress of the symmetry-broken inclusion. The biggest discrepancy 
is for the 1080 cm−1 which can yield inclusion pressures more than 1 
GPa different from the true pressure (Fig. 3). Therefore, the apparent 
entrapment conditions obtained by measuring single modes and using 
the hydrostatic calibrations are dependent on the Raman band selected 
for interpretation. Though the data in Fig. 3 appear to suggest that the 
464 cm−1 band would provide a reasonable Pinc estimate, we emphasize 
that this approach is still inherently incorrect because it is not consistent 
with the other Raman band “pressures” or within the uncertainties of the 
δPinc = 0 line. Furthermore, unlike the quartz-in-garnet system which is 
not affected by the RCO, the deviatoric stresses on a quartz inclusion in a 
zircon are dependent on the orientation, implying that the discrepancy 
between the hydrostatic calibrations and true inclusion pressure cannot 
be predicted in a straightforward manner. Based on the facts that indi
vidual Raman bands yield different “pressures” and that the discrep
ancies as a function of orientation cannot be simply predicted, we 
conclude that the hydrostatic calibrations of wavenumber shifts with 
pressure should not be applied to the quartz-in-zircon elastic system to 
estimate the residual inclusion pressure. As shown in Table S3, this 
practice will yield over- or underestimated inclusion pressures and 
entrapment conditions, and lead to incorrect geological interpretations. 

4.2. Residual inclusion strains, stress, and pressure: The phonon-mode 
Grüneisen tensor approach 

The strains of quartz inclusions are calculated from the measured 
Raman wavenumber shifts using the trigonal phonon-mode Grüneisen 
tensor (Angel et al., 2019; Barron et al., 1982; Cantrell, 1980; Murri 
et al., 2018; Murri et al., 2019; Ziman, 1960): 

−Δωm

ωm
0

= 2γm
1 ε1 + γm

3 ε3 (1)  

in which Δωm is the difference between the wavenumber of the Raman 
mode in the inclusion from ω0

m the wavenumber of the same mode of a 
free quartz crystal at ambient conditions. The γm

1 and γm
3 are components 

of the Grüneisen tensor (in Voigt notation, see S⋅I and Angel et al. (2019) 
for further details) of phonon mode m. This approach implicitly assumes 
that the tensor components γm

1 and γm
2 are equal and that the tensor 

components γm
4 = γm

5 = γm
6 = 0 because of the trigonal symmetry of 

quartz. When the symmetry of quartz is broken, these restrictions on the 
tensor components are removed, Eq. 1 is no longer valid and we have to 
consider the general formulation for the triclinic case (Angel et al., 
2019): 

−Δωm

ωm
0

= γm
1 ε1 + γm

2 ε2 + γm
3 ε3 + γm

4 ε4 + γm
5 ε5 + γm

6 ε6 (2) 

However, the values of these tensor components for quartz with 
triclinic symmetry are not available and their calculation would require 
extensive HF/DFT simulations. Furthermore, as we have shown, when 
an inclusion is measured by Raman spectroscopy it is difficult to 
determine from inspection of the spectra (Fig. 2) whether or not its 
symmetry remained trigonal or has been broken by elastic interaction 
with the host. Therefore, it is useful to evaluate the error introduced into 
estimated entrapment conditions by ignoring the effects of symmetry 

Fig. 3. Inclusion pressures in symmetry-broken inclusions determined from the 
hydrostatic calibrations of the shifts of individual Raman lines plotted as the 
difference from the true mean stress in the inclusion (ΔPinc). a) Plot of the Pinc 
discrepancies from all of the calibrated Raman modes available. The dashed 
outline box indicates the area plotted in (b). b) Pinc discrepancy for the 
frequently used 464 cm−1 band of quartz. Error bars were determined assuming 
a 0.3 cm−1 uncertainty on the Raman band position which is consistent with 
typical laboratory Raman spectrometers (Bonazzi et al., 2019; Gonzalez et al., 
2019). Open symbols are the granulite case, closed symbols the eclogite case. 
Hydrostatic calibrations of individual lines are indicated by symbol color, black 
for Morana et al. (2020), red for Schmidt and Ziemann (2000), and blue for 
Thomas and Spear (2018). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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breaking. For these tests we used the Raman peak positions calculated 
from HF/DFT simulations in conjunction with the trigonal Grüneisen 
tensor of quartz at 0 K to recalculate the inclusion strains, stresses, and 
entrapment conditions (values of the Grüneisen tensor components are 
reported in Table S4). The values obtained can be then compared against 
the real values which account for the effects of symmetry breaking 
(Table 1a). 

For all three cases the strains were calculated from the Raman 
wavenumber shifts of three sets of Raman modes: i) all modes, ii) 133, 
212, 469 cm−1 (HF/DFT values which correspond to the following 
experimental values: 128, 206 and 464 cm−1) and iii): 133, 469, 695 
cm−1 (which correspond to the experimental values: 128, 464, 697 
cm−1). For each set of Raman modes, the strains were calculated by 
means of the trigonal phonon-mode Grüneisen tensor of quartz using the 
stRAinMAN software (Angel et al., 2019). Then, the strains were used 
with the rescaled (Mazzucchelli et al., 2021) elastic moduli at 1 bar of 
Lakshtanov et al. (2007) to determine the inclusion mean stress (i.e. Pinc) 
at room temperature (25 ◦C; Bonazzi et al., 2019). The strains obtained 
using the trigonal phonon-mode Grüneisen tensor and the correspond
ing inclusion mean stresses are reported in Table 3. 

Application of the trigonal phonon-mode Grüneisen tensor assumes 
that the inclusion symmetry is not broken and therefore the constraints 
of the trigonal symmetry are valid. Therefore, only the strains that 
conform to trigonal symmetry are obtained, with ε1 = ε2 ∕= ε3. These 
values are different from the real strains (Table 1b) where ε1 ∕= ε2 and the 
components ε4,ε5,ε6 are non-zero. This assumption affects the deter
mined inclusion stresses and average pressures (Pthermo for the unrelaxed 
strains, Pinc for the relaxed strains) causing slight differences between 
the symmetry broken and trigonal Grüneisen cases (see Table 3). 
Furthermore, the strains determined from these calculations vary 
slightly depending on the subset of Raman modes that is used, because 
the different Raman modes have different sensitivities to each strain 
component as they have different values for the components of their 
phonon-mode Grüneisen tensors. This can also be seen in the slopes of 
the isoshift lines when plotted against the strains (see Murri et al., 2018). 

As a consequence of these variations in sensitivity the resulting in
clusion pressures (i.e. Pinc and Pthermo) for the three different sets of 
Raman modes (i.e. all modes; 128, 206, 464 cm−1 and 128, 464, 695 
cm−1) using the trigonal phonon-mode Grüneisen approach differ 
slightly (Table 3) but are always less than the real pressure values by 
<0.1 GPa. However, in practice it is not feasible to use all of the quartz 
Raman bands to calculate the inclusion strain because there are peak 
overlaps from the host mineral (see Fig. S1). The problem is even worse 
when the host mineral has a high absorbance, such as zircon, which 
produces an intense Raman signal that masks the signal from the un
derlying quartz inclusion. In previous studies of quartz inclusions 
(typically contained in garnet), the 128, 206, and 464 cm−1 bands are 
generally used for the determination of residual strain (e.g. Bonazzi 
et al., 2019). When using this phonon-mode combination, we obtain 
inclusion pressure values of 0.736 GPa, −0.751 GPa, and 1.025 GPa, 
compared to the real Pinc and Pthermo (quartz-coesite case) calculated 
from the symmetry-breaking strains of 0.757 GPa, -0.648 GPa and 1.102 
GPa for the eclogite, granulite and quartz-coesite cases, respectively. But 
on the basis of experimental experience with quartz in zircon host- 
inclusion systems, this band combination is often not usable because 
of the interfering peak overlaps on the 206 cm−1 band (see Fig. S1). 
Therefore, a more realistic phonon-mode combination for the determi
nation of inclusion strains is the 128, 464, and 695 cm−1 bands, where 
there is generally less interference from the zircon host, so hereafter only 
this case from the trigonal approach will be discussed. When this 
phonon-mode combination is used for the calculation of the inclusion 
pressures, we obtain values of 0.727 GPa, −0.659 GPa, and 1.057 GPa, 
which yields errors of 0.03, 0.01, and 0.05 GPa with respect to the real 
inclusion pressures (Table 3). These results suggest that application of 
the trigonal quartz phonon-mode Grüneisen tensor to calculate the re
sidual pressure from a Raman measurement of a slightly symmetry- 
broken inclusion will result in generally small errors that would typi
cally fall within the uncertainty of the Raman measurements. However, 
in order to determine whether these errors in the inclusion pressures 
lead to geologically significant errors in the calculation of inclusion 

Table 3 
Strains, Pinc and Ptrap determinations.   

Trigonal approach_1 (All_modes) Trigonal approach_2 (128,206,464) Trigonal approach_3 (128,464,695)  

ECL GRAN COE ECL GRAN COE ECL GRAN COE  

P = 2.2GPa 
T = 650 ◦C 

P = 0.6 GPa 
T = 725 ◦C 

P = 3 GPa 
T = 927 ◦C 

P = 2.2GPa 
T = 650 ◦C 

P = 0.6 GPa 
T = 725 ◦C 

P = 3 GPa 
T = 927 ◦C 

P = 2.2GPa 
T = 650 ◦C 

P = 0.6 GPa 
T = 725 ◦C 

P = 3 GPa 
T = 927 ◦C 

ε1 −0.00677 0.00820 −0.00917 −0.00697 0.01011 −0.00814 −0.00660 0.00698 −0.00914 
ε2 −0.00677 0.00820 −0.00917 −0.00697 0.01011 −0.00814 −0.00660 0.00698 −0.00914 
ε3 −0.00608 0.00309 −0.00943 −0.00578 0.00101 −0.01060 −0.00616 0.00395 −0.00972 
Pinc 0.736 −0.707 – 0.736 −0.751 – 0.727 −0.659 – 
Pthermo 0.973 −0.876 1.048 0.973 −0.920 1.025 0.960 −0.819 1.057 
Ptrap_ iso trig 2.135 0.575 2.803 2.135 0.572 2.774 2.118 0.585 2.815 
Ptrap_aniso trig 2.192 0.592 2.951 2.196 0.503 2.906 2.176 0.602 2.966    

Symm break Approach Symm break Approach Symm break Approach 

ε1 −0.00636 0.00687 −0.00837 −0.00636 0.00687 −0.00837 −0.00636 0.00687 −0.00837 
ε2 −0.00788 0.00750 −0.01124 −0.00788 0.00750 −0.01124 −0.00788 0.00750 −0.01124 
ε3 −0.00601 0.00337 −0.00967 −0.00601 0.00337 −0.00967 −0.00601 0.00337 −0.00967 
ε4 0.00252 0.00048 0.0048 0.00252 0.00048 0.0048 0.00252 0.00048 0.0048 
ε5 0.00000 −0.00076 0 0.00000 −0.00076 0 0.00000 −0.00076 0 
ε6 0.00000 0.00106 0 0.00000 0.00106 0 0.00000 0.00106 0 
Pinc 0.757 −0.648 – 0.757 −0.648 – 0.757 −0.648 – 
Pthermo 1.001 −0.806 1.102 1.001 −0.806 1.102 1.001 −0.806 1.102 
Ptrap_ iso sb 2.171 0.588 2.873 2.171 0.588 2.873 2.171 0.588 2.873 
Ptrap_aniso sb 2.200 0.600 3.000 2.200 0.600 3.000 2.200 0.600 3.000 
Pinc_sb- Pinc trig 0.021 0.059  0.020 0.103  0.030 0.011  
Pthermo sb- Pthermo trig 0.028 0.070 0.055 0.028 0.114 0.077 0.041 0.013 0.045 
Ptrap_ iso sb - Ptrap_ iso trig 0.036 0.013 0.070 0.036 0.016 0.099 0.053 0.003 0.058 
Ptrap_aniso sb- Ptrap_ iso trig 0.065 0.025 0.197 0.065 0.028 0.226 0.082 0.015 0.185 
Ptrap_aniso sb - Ptrap_aniso trig 0.008 0.008 0.049 0.004 0.097 0.094 0.024 −0.002 0.034 

N⋅B: All pressure values are in GPa. 
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entrapment conditions, the entrapment pressures have been calculated 
and discussed in the framework of both isotropic and anisotropic 
models. 

4.3. Recalculation of apparent entrapment pressures: isotropic model 

The same volume EoS for quartz (Angel et al., 2017a) and zircon 
(Ehlers et al., 2022) used for the original calculation of inclusion strains 
have been used for the calculation of isotropic entrapment isomekes by 
means of the EosFit7-Pinc software (Angel et al., 2017b). The entrap
ment isomeke is a path in P-T space where the fractional volume changes 
of both the host and the inclusion phases remain equal to one another 
but non-zero (e.g. Adams et al., 1975; Rosenfeld and Chase, 1961).When 
the Pinc from the fully symmetry-broken strains is used in the isotropic 
model, the entrapment pressures are 2.171 GPa for the eclogite facies, 
0.588 GPa for the granulite facies, and 2.873 GPa for the coesite-quartz 
case. The discrepancies, with respect to the preset entrapment condi
tions (see Table 3), occur because of the assumed isotropic behavior 
during the back calculation of the entrapment conditions and are in 
agreement with similar tests performed by Gonzalez et al. (2021). If 
instead we take the Pinc that is calculated from the strains using the 
trigonal quartz Grüneisen tensor, we obtain Ptrap estimates that even 
further underestimate the original entrapment conditions. For the Pinc 
values calculated using the 128, 464 and 695 cm−1 modes, we obtain 
Ptrap values of 2.118 GPa for the eclogite facies, 0.585 GPa for the 
granulite facies, and 2.815 GPa for the coesite-quartz boundary and this 
gives discrepancies of 0.082 GPa, 0.015 GPa, and 0.185 GPa with respect 
to the preset entrapment conditions. These discrepancies represent the 
errors introduced by assuming that (i) the inclusion is trigonal with no 
symmetry breaking when the strain is obtained from Raman measure
ments, and (ii) the host and inclusion are completely isotropic for the 
calculation of the entrapment conditions. These results imply that more 

significant errors result from the application of fully isotropic calcula
tions to anisotropic host-inclusion systems (see Table 3). Furthermore, 
the magnitudes of these errors are dependent on the entrapment con
ditions and RCO. 

4.4. Recalculation of apparent entrapment conditions: anisotropic model 

In the anisotropic elastic model, the inverse relaxation tensor was 
calculated for a given orientation (Table S1) and applied to the trigonal 
symmetry relaxed strains to determine the unrelaxed strain tensor 
(Mazzucchelli et al., 2019). The unrelaxed strain tensor was then used in 
EoSFit7c (Angel et al., 2014a) to calculate the axial isomekes (i.e. curves 
in P-T space along the crystallographic directions where no strain gra
dients are developed) of the quartz inclusion using the method of Alvaro 
et al. (2020) but extended to lower symmetry host-inclusion systems. 
This calculation provides the axial isomekes of the quartz inclusion for 
the directions of quartz parallel to the three crystallographic axes of the 
zircon host. The entrapment conditions are interpreted as the intersec
tion point of the axial isomekes. As expected, this was verified for each of 
the three entrapment conditions when the full symmetry broken strain 
tensor was input to calculate the axial isomekes, meaning that our cal
culations are internally consistent (see Fig. 4). On the other hand, when 
the strains from the trigonal quartz Grüneisen tensors are used, the three 
axial isomekes do not intersect at a single P-T point. This happens 
because application of the trigonal Grüneisen tensor yields incorrect 
inclusion strains that conform to the trigonal symmetry but are not to 
the actual triclinic strains. This result implies that unique entrapment 
conditions cannot be calculated from symmetry-broken inclusions un
less the full symmetry-broken strain tensor is known. Despite this, the 
results in Fig. 4 show that the average of the three axial isomekes still 
nearly intersects the original entrapment conditions. Indeed, from the 
trigonal Grüneisen tensor strains using the 128, 464, and 695 cm−1 

Fig. 4. Axial and volume isomekes calculated for the various sets of entrapment conditions and selected quartz phonon-mode combinations. Figures a-c show the 
results from the true symmetry-broken strains. Figures d-f show the results from the trigonal strains calculated using the trigonal Grüneisen phonon-mode tensor for 
the 128, 464 and 695 cm−1 modes. The cross in each panel represents the entrapment conditions used for the simulation. Axial isomekes are drawn for the directions 
of the a,b, and c-axes of the zircon host and their corresponding directions in the quartz inclusion, and their average (black solid line) is labelled ‘avg’. 
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bands, the calculated entrapment conditions are 2.176 GPa, 0.602 GPa, 
and 2.966 GPa, giving discrepancies on Ptrap of 0.024 GPa, −0.002 GPa, 
and 0.034 GPa (Table 3). These discrepancies demonstrate that the error 
in the individual axial isomekes and their failure to intersect at one 
unique PT point results solely from the use of the trigonal quartz phonon 
mode Grüneisen tensor because all other parts of the calculations are 
equivalent. 

These results suggest that we can still use the trigonal quartz phonon- 
mode Grüneisen tensor to calculate the entrapment conditions using the 
anisotropic elastic model. However, in this case an external constraint 
on either pressure or temperature is still required to determine the 
unique entrapment conditions. It is important to note that despite the 
requirement of an external constraint, this approach yields a smaller 
error than the use of an isotropic elastic model. Because these errors are 
relatively small and substantially less than those produced by the errors 
on measured Raman peak positions, we conclude that the trigonal quartz 
phonon mode Grüneisen tensor can be used to calculate the strains from 
slightly symmetry broken quartz inclusions contained in zircon hosts 
without introducing major uncertainties in the inferred entrapment 
pressures. 

5. Conclusions 

We have reported the first study on symmetry breaking strains in 
quartz by HF/DFT. Ab initio simulations allowed us to avoid the diffi
culties that would arise if we tried to apply deviatoric stress to quartz 
experimentally and measure the Raman modes (e.g. Briggs and Ramdas, 
1977). These HF/DFT simulations have shown that the changes in the 
positions of the Raman modes for strains that are expected for real 
quartz inclusions in zircon are similar to those that would be seen if the 
quartz inclusions remained truly trigonal in symmetry. But, because the 
Raman bands of the inclusions do not shift as they would under hy
drostatic pressure, the use of the positions of single bands and a hy
drostatic calibration leads to incorrect pressure estimates for 
entrapment of quartz inclusions in zircon. 

Very large symmetry-breaking strains can generate a broadening or 
even a splitting of the Raman modes (see Fig. 2) coming from the parent 
E modes, and therefore particular attention should be paid to these 
modes when studying quartz in zircon host-inclusion systems. If no 
broadening or splitting of the Raman modes is observed, our results 
show that, even when the inclusion is subjected to symmetry-breaking 
strains, the measured Raman modes of quartz can be used to calculate 
the average inclusion pressures with small errors. 

These inclusion pressures yield entrapment isomekes with the 
isotropic model that pass within 0.185 GPa of the true entrapment 
pressures. The inclusion strains calculated via the trigonal phonon-mode 
Grüneisen tensors are not correct, as would be expected, so the axial 
isomekes calculated from them often do not intersect as would be 
required to define the P and T of entrapment (Alvaro et al., 2020). 
However, the average of the axial isomeke pressures result in better 
estimates, within 0.034 GPa of the true entrapment pressures. Therefore, 
the use of the trigonal phonon-mode Grüneisen tensor to interpret 
Raman spectra of quartz inclusions in zircon does not introduce 
geologically significant errors in calculated entrapment pressures within 
the stability field of α-quartz provided the anisotropic analysis is 
followed. 
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