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ARTICLE INFO ABSTRACT

Keywords: Raman elastic geobarometry for mineral host-inclusion systems is used to determine the strains acting on an
Symmetry-breaking strains inclusion still entrapped in its host by measuring its Raman wavenumber shifts which are interpreted through the
Quartz

phonon-mode Griineisen tensors of the inclusion phase. The calculated inclusion strains can then be used in an
elastic model to calculate the pressure and temperature conditions of entrapment. This method is applied
frequently to host inclusion systems where the host is almost elastically isotropic (e.g. garnet) and the inclusion is
elastically anisotropic (e.g. quartz and zircon). In this case, when the entrapment occurs under hydrostatic
conditions the host will impose isotropic strains on the inclusion which in turn will develop non-hydrostatic
stress. In this scenario the symmetry of the inclusion mineral is preserved and the strains in the inclusion can
be measured via Raman spectroscopy using the phonon-mode Griineisen tensor approach.

However, a more complex situation arises when the host-inclusion system is fully anisotropic, such as when a
quartz inclusion is entrapped within a zircon host, because the symmetry of the inclusion can be broken due to
the external anisotropic strain field imposed on the inclusion by the host, which in turn will modify the phonon
modes. We therefore calculated the strain states of quartz inclusions entrapped in zircon hosts in multiple ori-
entations and at various geologically relevant pressure and temperature conditions. We then performed ab initio
Hartree-Fock/Density Functional Theory (HF/DFT) simulations on a-quartz in these strain states. These HF/DFT
simulations show that the changes in the positions of the Raman modes produced by strains that are expected for
symmetry broken quartz inclusions in zircon are generally similar to those that would be seen if the quartz
inclusions remained truly trigonal in symmetry. Therefore, the use of the trigonal phonon-mode Griineisen tensor
to determine the inclusion strains does not lead to geologically significant errors in calculated quartz inclusion
entrapment pressures in zircon.

Host-inclusion system
Ab initio HF/DFT
Raman elastic geobarometry

1. Introduction

The study and measurement of elastic strains in mineral inclusions
has undergone rapid development as a tool to determine the pressure
and temperature conditions of inclusion entrapment, thereby providing
constraints on the pressure-temperature (i.e. P-T) history of their host
minerals and rocks. The strain and stress fields in a crystal are the result
of both the surrounding environment (i.e. the hydrostatic or non-
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hydrostatic stress applied to it) and the elastic properties of the crystal
itself. For example, when a crystal is immersed in a liquid medium it will
be under hydrostatic pressure and the crystal (e.g. inclusion) will
develop isotropic or anisotropic strains depending on its symmetry and
its elastic properties (Fig. 1a). However, if the crystal (inclusion) is
entrapped within another solid material (i.e. the host) it will be sub-
jected to strains imposed upon it arising from the elastic properties of the
host material and the external stress conditions. In our discussion we
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will assume that the external stress on the host is homogenous and hy-
drostatic. Under this assumption, we can consider four representative
cases where the inclusion is spherical and embedded in an infinite host
and therefore the stress state of the inclusion is homogeneous and results
from the combination of the symmetries and properties of the host and
inclusion crystals:

(i) a completely isotropic (or almost isotropic) host-inclusion system
such as chromite in diamond (Fig. 1b). In this case, the host
mineral will impose an isotropic strain on the entrapped mineral
inclusion which in turn will develop an isotropic stress field. It
will therefore be under hydrostatic pressure and will remain
cubic.

(ii) an isotropic host and an anisotropic inclusion such as quartz in
garnet (Fig. 1c). Also in this case the host imposes isotropic
strains on the inclusion, but the inclusion being anisotropic will
develop a non-hydrostatic stress field but will retain its
symmetry.

(iii) an anisotropic host and an isotropic inclusion such as spinel in
olivine (Fig. 1d). The elastically anisotropic host will apply
anisotropic strains to the elastically isotropic inclusion which will
therefore develop a non-hydrostatic stress. The applied aniso-
tropic strain lowers the symmetry of the inclusion.

(iv) a completely anisotropic host-inclusion system such as quartz in
zircon (Fig. 1e). In this last case we have the most complex sit-
uation considered here: the host is anisotropic and therefore
imposes anisotropic strains on the inclusion which, being aniso-
tropic, develops a stress field that depends upon its orientation
with respect to the host mineral and the contrast in their elastic
properties. These anisotropic strains can lower the symmetry of
the inclusion.

In addition to these considerations, we note that if the external stress
conditions are non-hydrostatic, the stress developed by the inclusion can
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be non-hydrostatic also when the host is elastically isotropic. More
complex situations arise when the stress and the strain in the inclusion
are inhomogeneous due to inhomogeneities in the external stress acting
on the host or because of geometrical features (morphology of the in-
clusion, its proximity to other inclusions, or to the external surface of the
host, e.g. Mazzucchelli et al., 2018; Zhong et al., 2019).

Mineral inclusions are common in metamorphic rocks and the
determination of their apparent entrapment conditions using Raman
elastic geobarometry can provide new P-T constraints to understand the
metamorphic history of the rock and the geological processes involved
(e.g. Alvaro et al., 2020; Rosenfeld and Chase, 1961). Raman elastic
geobarometry relies on the joint application of the phonon-mode Grii-
neisen tensor together with elastic geobarometry theory (e.g. Angel
et al., 2019; Murri et al., 2018; Murri et al., 2019). The phonon-mode
Griineisen tensor is a well-established concept (Cantrell, 1980; Grii-
neisen, 1926; Key, 1967) that relates the shifts of phonon frequencies of
a crystal to the strains imposed on a crystal. Being a second-rank sym-
metric property tensor (Ziman, 1960) that relates to the strain, the
Griineisen tensors are subject to the symmetry of the crystal, not to the
symmetries of the individual phonon modes themselves (Angel et al.,
2019; Ziman, 1960). While the symmetry constraints on the Griineisen
tensors of all of the modes in a crystal are therefore the same, the values
of their components differ and must be determined by experiment
(Barron et al., 1982; Briggs and Ramdas, 1977; Cantrell, 1980; Key,
1967) or DFT simulations. Once the values of the components for the
Raman active modes have been determined in these ways, this allows us
to determine the residual strain state on the inclusions by measuring
their Raman wavenumber shifts (e.g. Angel et al., 2019; Murri et al.,
2019; Musiyachenko et al., 2021; Stangarone et al., 2019). The strain
state of the inclusion can then be used to calculate the apparent
entrapment conditions of the host-inclusion system. This method has
been largely applied to zircon and quartz inclusions contained in garnet
(e.g. Alvaro et al., 2020; Baldwin et al., 2021; Campomenosi et al., 2021;
Cisneros et al., 2021; Gilio et al., 2021; Gonzalez et al., 2019; Harvey
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Fig. 1. Illustration of stress and strain states. (a) In a diamond-anvil cell a crystal is immersed in a fluid and is under hydrostatic pressure; (b) An isotropic inclusion in
an isotropic host is subject to isotropic strains and it will develop hydrostatic pressure; (c) An anisotropic inclusion in a cubic garnet host is subject to isotropic strain
and therefore is under non-hydrostatic stress; (d) An isotropic inclusion in An anisotropic host is subject to anisotropic strains and it will develop non-hydrostatic
stresses; (e) An anisotropic inclusion in a zircon host is subject to anisotropic strains and therefore is under non-hydrostatic stress whose magnitude depends upon
their relative crystallographic orientations.Cases (b-e) assume that the stress acting on the host is hydrostatic.
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et al., 2020; Johnson et al., 2020; van Schrojenstein Lantman et al.,
2021; Zhong et al., 2019), in which the symmetry of the inclusion is
preserved, since the strain applied to it is isotropic (see case ii above and
Fig. 1c). Moreover, when an anisotropic inclusion is spherical and iso-
lated within an isotropic host mineral, their relative crystallographic
orientation (RCO) has a negligible effect on the calculation of the
entrapment conditions (see Mazzucchelli et al., 2019).

However, when we move to completely anisotropic host-inclusion
systems (e.g. quartz in zircon) the situation is more complex (see case
iv above and Fig. 1e). Even if the quartz crystal is entrapped in a zircon
host at external hydrostatic conditions, when the external P and/or T are
changed away from entrapment the strain field applied to the inclusion
can become non-uniaxial and will depend on the relative orientation of
the host and the inclusion. Therefore, the a and b axis of the quartz in-
clusion may be deformed by different amounts, and the angles «, f, y can
change from those required by trigonal symmetry. Therefore we expect
that the quartz inclusions in natural zircon crystals are, in general, not
trigonal (Gonzalez et al., 2021). These deformations of the quartz unit
cell that break the symmetry of the crystal can be described as ‘sym-
metry-breaking strains’ (Carpenter et al., 1998; Salje et al., 1993). The
effects of symmetry-breaking strains have been observed in cubic garnet
hosts adjacent to inclusions as birefringence haloes (e.g. Campomenosi
et al.,, 2020; Howell et al., 2010), however the effects of symmetry
breaking on the strain state of the inclusion phase are poorly understood.
In particular, when the quartz crystal is no longer trigonal, the key
question is whether using the phonon-mode Griineisen tensor of trigonal
a-quartz (for example) to calculate the inclusion strains results in sig-
nificant errors in the strains and mean stresses, and whether these errors
lead to geologically significant errors in the calculation of inclusion
entrapment conditions during metamorphism.

To answer this question, we calculated the expected deformation of
quartz inclusions entrapped in a zircon host in multiple RCOs and at
various hydrostatic geologically relevant P-T conditions. We then per-
formed ab initio Hartree-Fock/Density Functional Theory (HF/DFT)
simulations on the deformed a-quartz to determine the Raman shifts for
quartz inclusions entrapped at these conditions. This enabled us to
determine (i) the error introduced by using the phonon-mode Griineisen
tensor of trigonal quartz, (ii) the inclusion stress states and (iii) the
entrapment conditions of inclusions whose symmetry has been broken.
Despite we specifically address the case of external hydrostatic condi-
tions, our general conclusions regarding the Raman response to sym-
metry breaking strains are not just limited to this case. Since the Raman
response to the strain state of the inclusion does not depend on the
specific conditions that have generated that strain, our analysis of
Raman shifts still apply when the external stress is non-hydrostatic, or
when the symmetry-breaking strains are induced by the geometrical
features of the system (morphology of the inclusion, its proximity to
other inclusions or to free surfaces). These results can also be applied to
quartz inclusions with non-homogeneous strain states, provided that the
gradients are small at the spatial resolution of the Raman analysis.

2. Methods

The strains developed in an inclusion depend on the elastic proper-
ties of the host and inclusion minerals and the P-T conditions at
entrapment. Strains of measured quartz inclusions are defined in terms
of the fractional change in the unit-cell parameters of the quartz inclu-
sion relative to a free crystal at ambient conditions (Nye, 1957). We use
the Lagrangian infinitesimal definition of strains, with the convention
that the Cartesian axes are aligned with the Z-axis parallel to the crys-
tallographic c-axis, and the X-axis parallel to the crystallographic a-axis.
Thus, for example, the strain e33 = %o~ 1 is simply the fractional dif-

ference in the c-lattice parameter of the strained inclusion from the
lattice parameter cq of a free quartz crystal at ambient conditions. If the
quartz remains trigonal then the a and b unit-cell parameters remain
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equal, so €11 = €9 and the unit-cell angles remain fixed so that the three
shear-strain components €33, €13, and €;2 remain zero. Symmetry
breaking is represented by the violation of one or more of these con-
straints on the strain components.

The calculation of the final inclusion strains for each of our three
entrapment conditions proceeded in several steps (Gonzalez et al.,
2021). First the changes in the unit-cell parameters of the zircon host
crystal from entrapment conditions to ambient conditions were calcu-
lated from the axial and volume EoS of zircon (Ehlers et al., 2022). From
these changes the deformation tensor of the zircon was calculated,
transformed according to the chosen RCO and applied to the quartz
inclusion. In combination with the axial and volume EoS of quartz
(Alvaro et al., 2020; Angel et al., 2017a), this gives the cell parameters
and strains of the inclusion that result from confinement by the zircon
host without considering the mutual elastic interaction of the two
minerals (Angel et al., 2014b; Gonzalez et al., 2021). The second step of
the calculation is required to bring the system to mechanical equilib-
rium. The elastic relaxation is calculated as the change in strain (and
stress) that leads to stress balance in the system assuming elastic
behavior, and therefore it reduces the strains in the inclusion to those
measured in the laboratory (Angel et al., 2014b) Therefore, the final
strains of the inclusion are obtained after accounting for the mutual
elastic relaxation of the host and inclusion, and they are calculated using
the relaxation tensor which depends on the elastic properties of both
minerals, their mutual orientation and the shape of the inclusion
(Mazzucchelli et al., 2018; Mazzucchelli et al., 2019) We used the
relaxation tensors calculated numerically using finite elements by
Gonzalez et al. (2021) for our chosen RCOs to obtain the final relaxed
strains and cell parameters of quartz inclusions apparently entrapped at
eclogite and granulite conditions (Table 1a and 1b).

We performed analyses for quartz inclusions entrapped in a non-
metamict zircon host for two representative metamorphic entrapment
conditions, one in the eclogite metamorphic facies and one in the
granulite facies, and a third case of entrapment at the limit of the sta-
bility field of quartz near the quartz-coesite phase boundary. Because the
two minerals have anisotropic elastic properties, the strains developed
in a quartz inclusion within zircon and thus, the amount of symmetry
breaking in the quartz, also depend on the RCO of the two crystals
(Gonzalez et al., 2021). If the RCO is such that the c-axes of zircon and
quartz are aligned to one another, there are no symmetry-breaking
strains in the quartz inclusion. We therefore selected RCOs from the
calculations of (Gonzalez et al., 2021) that gave the greatest amount of
symmetry breaking (see Table S1) reducing the symmetry of quartz from
non-centrosymmetric trigonal to non-centrosymmetric triclinic (P3121
or P3521 to P1). The first case corresponds to a quartz inclusion
entrapped in the zircon host at eclogite facies conditions at 2.2 GPa and
650 °C in the “stiff-RCO” with the quartz inclusion rotated —50.27°
around the X-axis because this orientation produced the largest magni-
tude symmetry-breaking strains. The second case corresponds to a
quartz inclusion entrapped at the granulite facies at 0.6 GPa and 725 °C
in the “soft-RCO” with a quartz inclusion rotated —54.09° around the X-

Table 1a
Symmetry-breaking strain tensor components (in Voigt notation) of the
inclusions.

quartz_eclogite quartz_granulite quartz_coesite
€ —0.00636 0.00687 —0.00837
€2 —0.00788 0.00750 —0.01124
€3 —0.00601 0.00337 —0.00967
€4 0.00252 0.00048 0.0048
€5 0.00000 —0.00076 0.00000
€6 0.00000 0.00106 0.00000

Cartesian axes for the tensors are aligned with the Z-axis parallel to the crys-
tallographic c-axis, and the X-axis parallel to the crystallographic a-axis. Final
relaxed strains for eclogite and granulite. Final unrelaxed strains for the coesite
case.
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Table 1b
Unit-cell parameters used in the HF/DFT simulations.

quartz ref quartz_eclogite quartz granulite quartz_coesite

a () 4.92825 4.89696 4.96211 4.88699

b (A) 4.92825 4.8912 4.96207 4.87629
c(A) 5.42395 5.39136 5.44223 5.37152

vV (A% 114.086 111.789 116.1178 110.773

o (°) 90 89.874 89.955 89.761

B 90 90 90.043 90

Y 120 120.039 119.94 120.073

The resulting crystallographic structures for all the three cases have triclinic
symmetry as indicated by a # b and the deviation of the unit-cell angles from 90°
and 120°.

axis, —54.40° around the Y-axis, and 29.40° around the Z-axis (see
Gonzalez et al. (2021) for the conventions followed for rotations). In this
orientation the magnitude of the symmetry-breaking strains is less, but
the strains are more affected by mutual elastic relaxation (Gonzalez
etal., 2021; Mazzucchelli et al., 2019). We also investigated the effect of
symmetry breaking on a quartz inclusion in the stiff-RCO entrapped in a
zircon host at 3 GPa and 927 °C near to the quartz-coesite phase
boundary (Bose and Ganguly, 1995). This P-T condition provides a
practical upper limit to quartz inclusion apparent entrapment and
therefore represents the near-maximum effect of the entrapment P-T
conditions on the symmetry breaking of the quartz inclusion.

The relaxed inclusion pressures are 0.76 GPa and —0.65 GPa for the
eclogite and granulite examples. For the coesite-boundary simulation,
the relaxation was not calculated because we were interested in finding
the greatest magnitude of symmetry-breaking strains and, for these
entrapment conditions, the mutual elastic relaxation reduces the
symmetry-breaking strains. The unrelaxed inclusion pressure for this
case is calculated to be ca. 1.1 GPa.

Raman spectra of these triclinic quartz inclusions were then calcu-
lated with the same ab initio simulation methods described in Murri
et al. (2018, 2019). In brief, the unit-cell parameters were fixed to the
corresponding triclinic parameters calculated for the inclusions from the
three different entrapment conditions (Table 1b), and the atomic posi-
tions were optimized to minimize the total energy of the crystal. From
the resulting atomic configuration, the frequencies of the phonons
(normal mode vibrations) can be calculated, including the modes that
give rise to peaks in measured Raman spectra. Ab initio hybrid HF/DFT
simulations were performed with the CRYSTAL17 code (Dovesi et al.,
2018) by employing the same WCILYP functional as in Murri et al.
(2018, 2019). For the numerical integration of the DFT functionals, the
XXLGRID grid was chosen; the effectiveness of such a grid is very high,
as it can be estimated by the integration of the electron density of the
unit cell, which provides 90.000005 electrons out of 90 for the reference
volume at the static limit (no zero-point and thermal pressures due to
vibrational effects, Prencipe et al., 2011); and at a pressure of 0 GPa. The
localized contracted atomic basis sets used were the same as those
employed by Murri et al. (2018, 2019) [i.e. Si 86-311G** (Pascale et al.,
2005) and 8-411G(2d) (Valenzano et al.,, 2006) for Si and O,
respectively].

The unit-cell parameters were fixed at the chosen strain conditions
and only the fractional coordinates were optimized at the WCILYP level
(at the static limit) by means of the keyword ATOMONLY (Civalleri
et al., 2001; Dovesi et al., 2014) of the CRYSTAL17 code. Vibrational
wavenumbers of all of the normal modes were calculated at the I" point
within the limit of the harmonic approximation (see Murri et al., 2019
for further details). The reference simulation of an unstrained trigonal
quartz was performed with the same basis set and identical settings to
provide the Raman spectrum to be used as the unstrained reference.
Structural and vibrational data are reported in the deposited crystallo-
graphic information files (cifs) that contain the results of all the simu-
lations that we performed.
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3. Results
3.1. Structure

The strains imposed on the quartz inclusions by their host zircon
crystals reduce the symmetry of the quartz to triclinic (see Table 1b).
This symmetry breaking means that the positions of the 3 Si atoms and
the 6 O atoms within the unit-cell of quartz are no longer related by
symmetry and are independent of one another. As a consequence, there
are three symmetrically independent SiO4 tetrahedra within the primi-
tive unit-cell, which can have bond lengths, bond angles, and mutual
orientations that differ from one another. It is these differences that give
rise to additional Raman peaks arising from a splitting or change in the
activity of parent trigonal phonon modes. Indeed, the HF/DFT simula-
tions show that structurally-equivalent O-Si-O bond angles within the
SiO4 tetrahedra differ by up to 0.5° between the tetrahedra in each
structure. The range of Si-O-Si bond angles between the tetrahedra is
0.2-0.3° and the differences between equivalent Si-O bond lengths in
the tetrahedra in each structure range up to 0.005 A. The internal O-Si-O
angles of the tetrahedra also differ by up to 0.5° from the values found in
the hydrostatic simulations at the same pressure (Murri et al., 2019) and
the Si-O-Si angles are increased by 0.2°-0.3°. Despite these internal
differences in bond angles, the volumes of the SiO4 tetrahedra are the
same as those of trigonal quartz. This shows that symmetry breaking is
mostly accommodated structurally by small shears and tilts of the SiO4
tetrahedra. These structural changes are similar to those that occur in
the trigonal structure of quartz under shear strains that do not break the
symmetry (Murri et al., 2019), but with the difference that the shears
and tilts are not the same for every tetrahedron within the symmetry-
broken structures.

3.2. Raman modes

Results of the HF/DFT simulations show that symmetry breaking
induces small changes in the structure of quartz which also correspond
to small changes in the observed Raman spectra. This allows us to
compare directly the corresponding ‘parent’ modes of the trigonal
quartz structure with those calculated from the symmetry-broken quartz
structures. This reveals several slight differences between the corre-
sponding Raman spectra. First, the reduction in symmetry of the struc-
ture means that the symmetries of the modes themselves change.
Trigonal quartz has A;, Ay and E modes, of which only the A; and E
modes are Raman active, while A, are infrared active. In triclinic sym-
metry all of the modes become A modes and all are both Raman and
infrared active (Aroyo et al., 2011). However, the HF/DFT simulations
show that for this degree of symmetry breaking and structural distortion,
the Raman inactive A; modes of the trigonal structure do not develop
any significant Raman activity in the triclinic structure and their
calculated intensities all remain less than 107> of the most intense
Raman mode. Therefore, the symmetry breaking does not result in any
additional detectable Raman peaks stemming from the apparent Aj
modes under conventional experimental conditions (Fig. 2).

The Raman-active A; modes in trigonal quartz are non-polar, but
when the symmetry is reduced to triclinic they transform into polar
modes of A symmetry. Polar optical modes show the so-called LO-TO
splitting, that is, they have longitudinal optical (LO) and transverse
optical (TO) components that appear at different wavenumbers with a
difference Awro.To = w10 - ®T0. For such modes, not only the intensities
but also the positions of the corresponding Raman peaks depend on the
scattering geometry, namely the orientation of the net crystal polari-
zation with respect to the polarization of the incident light. In a random
orientation, the two components will mix into quasi phonons and may
produce two Raman peaks with a wavenumber difference Awio.To
depending on the angle of inclination between the net polarization and
the incident-light polarization. However, for the triclinic A modes
coming from trigonal A; modes the maximum Aw; .10 is less than 0.06
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Fig. 2. Comparison of the calculated Raman spectra of inclusions labelled by
entrapment conditions with the reference spectra of an unstrained quartz
crystal (bottom) and an extreme non-realistic case of large symmetry-breaking
strains (top). The symmetry labels for the modes (E and A,) refer to trigonal
reference quartz. All Raman spectra were simulated with a FWHM (Full Width
at Half Maximum) of 5 cm ™! and with a Lorentzian line shape. This FWHM is
that measured for the band near to 128 cm™! in natural quartz at ambient
conditions by using a Raman spectrometer with a resolution of 2 cm ™! (Morana
et al., 2020).

cm ! and therefore it will not result in any detectable change of Raman
signal as a function of the crystal orientation. In trigonal quartz the E
modes already exhibit LO-TO splitting, whose magnitude depends on the
phonon polarity and can be of up to 174 cm ™! (for the mode near 1060
cm ™}, see Table S2). The symmetry breaking from trigonal to triclinic
means that effectively each E mode evolves into two A modes in triclinic
and both of these A modes themselves exhibit LO-TO splitting; thus each
E mode of the trigonal Raman spectra will now appear as a doublet,
whose components may shift with the orientation of the crystal due to

Table 2
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their LO-TO splitting. However, for the natural inclusion cases (i.e.
eclogite and granulite cases) the split between all pairs of A modes
coming from each E parent mode is less than 0.88 cm™!, while for the
coesite boundary case the maximum splitting is 1.82 cm™" for the first
pair of A modes (see Table 2). Such peak splitting is in general detectable
with high-resolution Raman spectrometers, but most of the
commercially-available spectrometers have an instrumental resolution
of ~2 cm ™. In this case the peak splitting would likely not be resolvable
but may produce detectable peak broadening if the split phonon modes
have similar intensities. Similarly, peak-shape asymmetry could be
observed if one of the split phonon modes is more intense than the other.
Splitting of the order of 5-6 cm™! can be achieved only when the
symmetry-breaking component of the strains approaches 0.01 in
magnitude, as shown in the example in Fig. 2, labelled ‘large strains’.
The LO-TO splitting of individual triclinic A modes arising from trigonal
E modes is about the same in magnitude as their parent modes in
trigonal (see Table S2) even for the coesite case. Thus, examination of
the LO-TO splitting does not indicate whether or not symmetry-breaking
strains are present in the inclusion. Moreover, the detection of the LO-
TO splitting requires the appropriate orientation of the crystal with
respect to the scattering geometry (Shapiro and Axe, 1972). In partic-
ular, the crystal must be oriented in different directions in order to see
both of the components. This procedure is easily performed with free
crystals, but when dealing with host inclusion systems it becomes
challenging because of the limited accessible orientations of the inclu-
sion imposed by it being buried in its' host, together with possible
symmetry and polarization mixing (e.g. Shapiro and Axe, 1972), and
peak overlaps due to the presence of the host mineral (Fig. S1).

In principle the intensities of the modes, both in parallel polarized
‘HH’ and cross polarized ‘VH’ spectra (see Campomenosi et al., 2020),
can be analysed in order to detect symmetry-breaking strains. However,
under realistic conditions, the ab initio simulations do not show any
particular trend that could be indicative of symmetry-breaking strains.
In detail, the two A modes derived from the trigonal E modes have a
similar pattern of intensities to their parent modes in trigonal quartz
with the A intensities being half of the E modes for both HH and VH
configurations. A modes from A; have similar intensity components (in
terms of absolute values), while as mentioned above, A modes coming
from A, are Raman active but with intensities close to zero (see

Wavenumbers (cm ') of Raman and IR active-modes from the HF/DFT simulations at the static limit.

Mode symm_trigonal quartz ref Mode symm_triclinic quartz_eclogite quartz_granulite quartz_coesite
TO (cm™ 1) TO (cm™ 1)
E(R, IR) 133.13 AR, IR) 136.77 128.99 137.92
A(R, IR) 137.59 129.13 139.74
A1(R) 212.72 AR, IR) 229.50 196.32 236.47
E(R, IR) 266.43 AR, IR) 269.82 263.31 271.36
A(R, IR) 270.21 263.53 271.91
A;(R) 348.42 AR, IR) 348.03 349.82 348.10
A, (IR) 353.81 AR, IR) 351.37 357.03 350.29
E(R, IR) 392.73 AR, IR) 393.33 391.42 393.50
AR, IR) 393.37 392.08 393.62
E(R, IR) 447.81 AR, IR) 452.86 442.65 454.91
AR, IR) 453.31 443.37 455.67
A;(R) 469.62 A(R, IR) 476.77 463.92 480.39
A, (IR) 503.39 AR, IR) 511.28 495.18 514.61
E(R, IR) 695.30 AR, IR) 701.16 689.10 703.54
A(R, IR) 701.76 689.64 704.66
A, (IR) 774.55 A(R, IR) 776.85 772.72 778.37
E(R, IR) 797.68 AR, IR) 804.63 792.08 808.04
A(R, IR) 804.89 792.67 808.35
E(R, IR) 1060.35 A(R, IR) 1061.96 1059.03 1062.79
AR, IR) 1062.41 1059.28 1063.56
Az (IR) 1068.49 AR, IR) 1071.75 1065.05 1072.96
A(R) 1077.31 A(R, IR) 1079.93 1075.99 1081.30
E(R, IR) 1159.50 AR, IR) 1157.38 1160.68 1156.25
AR, IR) 1158.26 1161.10 1157.83

R: Raman-active, IR: infrared-active; phonons that are IR active carry polarity and therefore exhibit LO and TO components.
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deposited cif file). Therefore, when the splitting of the two A modes
coming from an E mode is not sufficient to individually resolve them, the
intensity contributions of the A modes will sum up giving rise to a single
peak as shown in Fig. 2 for the eclogite, granulite and coesite cases.

As a consequence, for geologically relevant inclusion entrapment
conditions, the Raman spectrum of a quartz inclusion in zircon host is
expected to show similar features to that of a free quartz crystal. The
major exception is that the Raman peak positions from the quartz in-
clusions will differ based on the entrapment conditions (i.e. the
magnitude of the inclusion pressure) and the applied strain from the
zircon host. If the quartz inclusion is, however, subjected to large de-
grees of symmetry breaking, we then may observe broadening or
asymmetry of Raman peaks, or even splitting of the trigonal E modes if
the instrumental resolution of the available spectrometer is sufficient.
The question then is whether these differences between the Raman
spectra of triclinic quartz inclusions and trigonal quartz are large enough
to induce significant errors into the calculations of inclusion stress states
and thus inferred entrapment conditions.

4. Implications for Raman piezo-barometry
4.1. Inclusion remnant pressures and hydrostatic pressure calibrations

Hydrostatic pressure calibrations of Raman wavenumber shifts as a
function of pressure (e.g. Morana et al., 2020; Schmidt and Ziemann,
2000) are frequently used to estimate the remnant pressures of quartz
inclusions for the application of elastic geothermobarometry. The
problems with this approach, generally in the context of a quartz in-
clusion in a garnet host, have previously been explained in detail (e.g.
Angel et al., 2019; Gilio et al., 2021; Gonzalez et al., 2019; Murri et al.,
2018), but have not been evaluated for quartz inclusions contained in
elastically anisotropic host minerals such as zircon.

Here we can test the use of hydrostatic pressure calibrations by using
them to infer from the Raman shifts calculated in our DFT simulations
the residual pressures in the inclusions. For these tests we used the
quartz hydrostatic calibration equations of Schmidt and Ziemann (2000)
for the 206 and 464 cm ™! bands, Thomas and Spear (2018) for the 128
em ! band, and Morana et al. (2020) for the 128, 206, 265, 464, 696,
809, 1080, and 1161 cm™! bands (Table S3). In general, the resulting
“pressures” indicated by each individual mode are significantly different
from one another (Fig. 3, Table S3) and there is a large variation in the
discrepancy between the hydrostatic calibration results and the true
mean stress of the symmetry-broken inclusion. The biggest discrepancy
is for the 1080 cm™! which can yield inclusion pressures more than 1
GPa different from the true pressure (Fig. 3). Therefore, the apparent
entrapment conditions obtained by measuring single modes and using
the hydrostatic calibrations are dependent on the Raman band selected
for interpretation. Though the data in Fig. 3 appear to suggest that the
464 cm ™! band would provide a reasonable Pinc estimate, we emphasize
that this approach is still inherently incorrect because it is not consistent
with the other Raman band “pressures” or within the uncertainties of the
8Pjne = 0 line. Furthermore, unlike the quartz-in-garnet system which is
not affected by the RCO, the deviatoric stresses on a quartz inclusion in a
zircon are dependent on the orientation, implying that the discrepancy
between the hydrostatic calibrations and true inclusion pressure cannot
be predicted in a straightforward manner. Based on the facts that indi-
vidual Raman bands yield different “pressures” and that the discrep-
ancies as a function of orientation cannot be simply predicted, we
conclude that the hydrostatic calibrations of wavenumber shifts with
pressure should not be applied to the quartz-in-zircon elastic system to
estimate the residual inclusion pressure. As shown in Table S3, this
practice will yield over- or underestimated inclusion pressures and
entrapment conditions, and lead to incorrect geological interpretations.
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Fig. 3. Inclusion pressures in symmetry-broken inclusions determined from the
hydrostatic calibrations of the shifts of individual Raman lines plotted as the
difference from the true mean stress in the inclusion (APj,.). a) Plot of the Pj,.
discrepancies from all of the calibrated Raman modes available. The dashed
outline box indicates the area plotted in (b). b) Py, discrepancy for the
frequently used 464 cm™! band of quartz. Error bars were determined assuming
a 0.3 cm™! uncertainty on the Raman band position which is consistent with
typical laboratory Raman spectrometers (Bonazzi et al., 2019; Gonzalez et al.,
2019). Open symbols are the granulite case, closed symbols the eclogite case.
Hydrostatic calibrations of individual lines are indicated by symbol color, black
for Morana et al. (2020), red for Schmidt and Ziemann (2000), and blue for
Thomas and Spear (2018). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

4.2. Residual inclusion strains, stress, and pressure: The phonon-mode
Griineisen tensor approach

The strains of quartz inclusions are calculated from the measured
Raman wavenumber shifts using the trigonal phonon-mode Griineisen
tensor (Angel et al., 2019; Barron et al., 1982; Cantrell, 1980; Murri
et al., 2018; Murri et al., 2019; Ziman, 1960):

—Ao™"

o
)

=2yVer +r5es (€]

in which A@™ is the difference between the wavenumber of the Raman
mode in the inclusion from w{ the wavenumber of the same mode of a
free quartz crystal at ambient conditions. The y7' and y' are components
of the Griineisen tensor (in Voigt notation, see S-I and Angel et al. (2019)
for further details) of phonon mode m. This approach implicitly assumes
that the tensor components y7' and y3' are equal and that the tensor
components y; = yI' = y§' = 0 because of the trigonal symmetry of
quartz. When the symmetry of quartz is broken, these restrictions on the
tensor components are removed, Eq. 1 is no longer valid and we have to
consider the general formulation for the triclinic case (Angel et al.,
2019):

_Awm Jn m Jm m m Jn
o =ylei+riertriestyiestyses +yees (2
0

However, the values of these tensor components for quartz with
triclinic symmetry are not available and their calculation would require
extensive HF/DFT simulations. Furthermore, as we have shown, when
an inclusion is measured by Raman spectroscopy it is difficult to
determine from inspection of the spectra (Fig. 2) whether or not its
symmetry remained trigonal or has been broken by elastic interaction
with the host. Therefore, it is useful to evaluate the error introduced into
estimated entrapment conditions by ignoring the effects of symmetry
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breaking. For these tests we used the Raman peak positions calculated
from HF/DFT simulations in conjunction with the trigonal Griineisen
tensor of quartz at 0 K to recalculate the inclusion strains, stresses, and
entrapment conditions (values of the Griineisen tensor components are
reported in Table S4). The values obtained can be then compared against
the real values which account for the effects of symmetry breaking
(Table 1a).

For all three cases the strains were calculated from the Raman
wavenumber shifts of three sets of Raman modes: i) all modes, ii) 133,
212, 469 cm™! (HF/DFT values which correspond to the following
experimental values: 128, 206 and 464 cm’l) and iii): 133, 469, 695
em ™! (which correspond to the experimental values: 128, 464, 697
cm ™). For each set of Raman modes, the strains were calculated by
means of the trigonal phonon-mode Griineisen tensor of quartz using the
stRAInMAN software (Angel et al., 2019). Then, the strains were used
with the rescaled (Mazzucchelli et al., 2021) elastic moduli at 1 bar of
Lakshtanov et al. (2007) to determine the inclusion mean stress (i.e. Piyc)
at room temperature (25 °C; Bonazzi et al., 2019). The strains obtained
using the trigonal phonon-mode Griineisen tensor and the correspond-
ing inclusion mean stresses are reported in Table 3.

Application of the trigonal phonon-mode Griineisen tensor assumes
that the inclusion symmetry is not broken and therefore the constraints
of the trigonal symmetry are valid. Therefore, only the strains that
conform to trigonal symmetry are obtained, with &; = &3 # €3. These
values are different from the real strains (Table 1b) where £, # €5 and the
components &4,€65,6¢ are non-zero. This assumption affects the deter-
mined inclusion stresses and average pressures (Pihermo for the unrelaxed
strains, Pjp. for the relaxed strains) causing slight differences between
the symmetry broken and trigonal Griineisen cases (see Table 3).
Furthermore, the strains determined from these calculations vary
slightly depending on the subset of Raman modes that is used, because
the different Raman modes have different sensitivities to each strain
component as they have different values for the components of their
phonon-mode Griineisen tensors. This can also be seen in the slopes of
the isoshift lines when plotted against the strains (see Murri et al., 2018).

Table 3
Strains, Pjnc and Py, determinations.
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As a consequence of these variations in sensitivity the resulting in-
clusion pressures (i.e. Pj,c and Pihermo) for the three different sets of
Raman modes (i.e. all modes; 128, 206, 464 cm ™! and 128, 464, 695
em™!) using the trigonal phonon-mode Griineisen approach differ
slightly (Table 3) but are always less than the real pressure values by
<0.1 GPa. However, in practice it is not feasible to use all of the quartz
Raman bands to calculate the inclusion strain because there are peak
overlaps from the host mineral (see Fig. S1). The problem is even worse
when the host mineral has a high absorbance, such as zircon, which
produces an intense Raman signal that masks the signal from the un-
derlying quartz inclusion. In previous studies of quartz inclusions
(typically contained in garnet), the 128, 206, and 464 cm ™! bands are
generally used for the determination of residual strain (e.g. Bonazzi
et al., 2019). When using this phonon-mode combination, we obtain
inclusion pressure values of 0.736 GPa, —0.751 GPa, and 1.025 GPa,
compared to the real Pjp. and Pihermo (quartz-coesite case) calculated
from the symmetry-breaking strains of 0.757 GPa, -0.648 GPa and 1.102
GPa for the eclogite, granulite and quartz-coesite cases, respectively. But
on the basis of experimental experience with quartz in zircon host-
inclusion systems, this band combination is often not usable because
of the interfering peak overlaps on the 206 cm ™! band (see Fig. S1).
Therefore, a more realistic phonon-mode combination for the determi-
nation of inclusion strains is the 128, 464, and 695 em ! bands, where
there is generally less interference from the zircon host, so hereafter only
this case from the trigonal approach will be discussed. When this
phonon-mode combination is used for the calculation of the inclusion
pressures, we obtain values of 0.727 GPa, —0.659 GPa, and 1.057 GPa,
which yields errors of 0.03, 0.01, and 0.05 GPa with respect to the real
inclusion pressures (Table 3). These results suggest that application of
the trigonal quartz phonon-mode Griineisen tensor to calculate the re-
sidual pressure from a Raman measurement of a slightly symmetry-
broken inclusion will result in generally small errors that would typi-
cally fall within the uncertainty of the Raman measurements. However,
in order to determine whether these errors in the inclusion pressures
lead to geologically significant errors in the calculation of inclusion

Trigonal approach_1 (AlLmodes)

Trigonal approach_ 2 (128,206,464)

Trigonal approach_3 (128,464,695)

ECL GRAN COE ECL GRAN COE ECL GRAN COE

P = 2.2GPa P =0.6 GPa P =3GPa P =2.2GPa P = 0.6 GPa P=3GPa P =2.2GPa P =0.6 GPa P =3GPa

T =650°C T=725°C T=927°C T =650°C T=725°C T=2927°C T =650°C T=725°C T=927°C
€1 —0.00677 0.00820 —0.00917 —0.00697 0.01011 —0.00814 —0.00660 0.00698 —0.00914
€ —0.00677 0.00820 —0.00917 —0.00697 0.01011 —0.00814 —0.00660 0.00698 —0.00914
€3 —0.00608 0.00309 —0.00943 —0.00578 0.00101 —0.01060 —0.00616 0.00395 —0.00972
Pinc 0.736 —0.707 - 0.736 —0.751 - 0.727 —0.659 -
Pthermo 0.973 —0.876 1.048 0.973 —0.920 1.025 0.960 —-0.819 1.057
Pirap_ iso trig 2.135 0.575 2.803 2.135 0.572 2.774 2.118 0.585 2.815
Pirap_aniso trig 2.192 0.592 2.951 2.196 0.503 2.906 2.176 0.602 2.966

Symm break Approach Symm break Approach Symm break Approach

€ —0.00636 0.00687 —0.00837 —0.00636 0.00687 —0.00837 —0.00636 0.00687 —0.00837
€ —0.00788 0.00750 —0.01124 —0.00788 0.00750 —0.01124 —0.00788 0.00750 —0.01124
€3 —0.00601 0.00337 —0.00967 —0.00601 0.00337 —0.00967 —0.00601 0.00337 —0.00967
€4 0.00252 0.00048 0.0048 0.00252 0.00048 0.0048 0.00252 0.00048 0.0048
€5 0.00000 —0.00076 0 0.00000 —0.00076 0 0.00000 —0.00076 0
€6 0.00000 0.00106 0 0.00000 0.00106 0 0.00000 0.00106 0
Pinc 0.757 —0.648 - 0.757 —0.648 - 0.757 —0.648 -
Pthermo 1.001 —0.806 1.102 1.001 —0.806 1.102 1.001 —0.806 1.102
Pirap. iso SD 2.171 0.588 2.873 2.171 0.588 2.873 2.171 0.588 2.873
Pirap_aniso SD 2.200 0.600 3.000 2.200 0.600 3.000 2.200 0.600 3.000
Pinc_Sb- Pinc trig 0.021 0.059 0.020 0.103 0.030 0.011
Pthermo Sb- Pthermo trig 0.028 0.070 0.055 0.028 0.114 0.077 0.041 0.013 0.045
Pirap_ iso Sb - Prrap_ iso t1ig 0.036 0.013 0.070 0.036 0.016 0.099 0.053 0.003 0.058
Pirap_aniso SD- Pirap_ iso trig 0.065 0.025 0.197 0.065 0.028 0.226 0.082 0.015 0.185
Pirap_aniso SD - Pirap_aniso trig 0.008 0.008 0.049 0.004 0.097 0.094 0.024 —0.002 0.034

N-B: All pressure values are in GPa.
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entrapment conditions, the entrapment pressures have been calculated
and discussed in the framework of both isotropic and anisotropic
models.

4.3. Recalculation of apparent entrapment pressures: isotropic model

The same volume EoS for quartz (Angel et al., 2017a) and zircon
(Ehlers et al., 2022) used for the original calculation of inclusion strains
have been used for the calculation of isotropic entrapment isomekes by
means of the EosFit7-Pinc software (Angel et al., 2017b). The entrap-
ment isomeke is a path in P-T space where the fractional volume changes
of both the host and the inclusion phases remain equal to one another
but non-zero (e.g. Adams et al., 1975; Rosenfeld and Chase, 1961).When
the Pjyc from the fully symmetry-broken strains is used in the isotropic
model, the entrapment pressures are 2.171 GPa for the eclogite facies,
0.588 GPa for the granulite facies, and 2.873 GPa for the coesite-quartz
case. The discrepancies, with respect to the preset entrapment condi-
tions (see Table 3), occur because of the assumed isotropic behavior
during the back calculation of the entrapment conditions and are in
agreement with similar tests performed by Gonzalez et al. (2021). If
instead we take the Pj,. that is calculated from the strains using the
trigonal quartz Griineisen tensor, we obtain Py, estimates that even
further underestimate the original entrapment conditions. For the Py,
values calculated using the 128, 464 and 695 cm ™! modes, we obtain
Puap values of 2.118 GPa for the eclogite facies, 0.585 GPa for the
granulite facies, and 2.815 GPa for the coesite-quartz boundary and this
gives discrepancies of 0.082 GPa, 0.015 GPa, and 0.185 GPa with respect
to the preset entrapment conditions. These discrepancies represent the
errors introduced by assuming that (i) the inclusion is trigonal with no
symmetry breaking when the strain is obtained from Raman measure-
ments, and (ii) the host and inclusion are completely isotropic for the
calculation of the entrapment conditions. These results imply that more

4 * v v 1.5
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significant errors result from the application of fully isotropic calcula-
tions to anisotropic host-inclusion systems (see Table 3). Furthermore,
the magnitudes of these errors are dependent on the entrapment con-
ditions and RCO.

4.4. Recalculation of apparent entrapment conditions: anisotropic model

In the anisotropic elastic model, the inverse relaxation tensor was
calculated for a given orientation (Table S1) and applied to the trigonal
symmetry relaxed strains to determine the unrelaxed strain tensor
(Mazzucchelli et al., 2019). The unrelaxed strain tensor was then used in
EoSFit7c (Angel et al., 2014a) to calculate the axial isomekes (i.e. curves
in P-T space along the crystallographic directions where no strain gra-
dients are developed) of the quartz inclusion using the method of Alvaro
et al. (2020) but extended to lower symmetry host-inclusion systems.
This calculation provides the axial isomekes of the quartz inclusion for
the directions of quartz parallel to the three crystallographic axes of the
zircon host. The entrapment conditions are interpreted as the intersec-
tion point of the axial isomekes. As expected, this was verified for each of
the three entrapment conditions when the full symmetry broken strain
tensor was input to calculate the axial isomekes, meaning that our cal-
culations are internally consistent (see Fig. 4). On the other hand, when
the strains from the trigonal quartz Griineisen tensors are used, the three
axial isomekes do not intersect at a single P-T point. This happens
because application of the trigonal Griineisen tensor yields incorrect
inclusion strains that conform to the trigonal symmetry but are not to
the actual triclinic strains. This result implies that unique entrapment
conditions cannot be calculated from symmetry-broken inclusions un-
less the full symmetry-broken strain tensor is known. Despite this, the
results in Fig. 4 show that the average of the three axial isomekes still
nearly intersects the original entrapment conditions. Indeed, from the
trigonal Griineisen tensor strains using the 128, 464, and 695 cm™!
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Fig. 4. Axial and volume isomekes calculated for the various sets of entrapment conditions and selected quartz phonon-mode combinations. Figures a-c show the
results from the true symmetry-broken strains. Figures d-f show the results from the trigonal strains calculated using the trigonal Griineisen phonon-mode tensor for
the 128, 464 and 695 cm ! modes. The cross in each panel represents the entrapment conditions used for the simulation. Axial isomekes are drawn for the directions
of the a,b, and c-axes of the zircon host and their corresponding directions in the quartz inclusion, and their average (black solid line) is labelled ‘avg’.
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bands, the calculated entrapment conditions are 2.176 GPa, 0.602 GPa,
and 2.966 GPa, giving discrepancies on Py, of 0.024 GPa, —0.002 GPa,
and 0.034 GPa (Table 3). These discrepancies demonstrate that the error
in the individual axial isomekes and their failure to intersect at one
unique PT point results solely from the use of the trigonal quartz phonon
mode Griineisen tensor because all other parts of the calculations are
equivalent.

These results suggest that we can still use the trigonal quartz phonon-
mode Griineisen tensor to calculate the entrapment conditions using the
anisotropic elastic model. However, in this case an external constraint
on either pressure or temperature is still required to determine the
unique entrapment conditions. It is important to note that despite the
requirement of an external constraint, this approach yields a smaller
error than the use of an isotropic elastic model. Because these errors are
relatively small and substantially less than those produced by the errors
on measured Raman peak positions, we conclude that the trigonal quartz
phonon mode Griineisen tensor can be used to calculate the strains from
slightly symmetry broken quartz inclusions contained in zircon hosts
without introducing major uncertainties in the inferred entrapment
pressures.

5. Conclusions

We have reported the first study on symmetry breaking strains in
quartz by HF/DFT. Ab initio simulations allowed us to avoid the diffi-
culties that would arise if we tried to apply deviatoric stress to quartz
experimentally and measure the Raman modes (e.g. Briggs and Ramdas,
1977). These HF/DFT simulations have shown that the changes in the
positions of the Raman modes for strains that are expected for real
quartz inclusions in zircon are similar to those that would be seen if the
quartz inclusions remained truly trigonal in symmetry. But, because the
Raman bands of the inclusions do not shift as they would under hy-
drostatic pressure, the use of the positions of single bands and a hy-
drostatic calibration leads to incorrect pressure estimates for
entrapment of quartz inclusions in zircon.

Very large symmetry-breaking strains can generate a broadening or
even a splitting of the Raman modes (see Fig. 2) coming from the parent
E modes, and therefore particular attention should be paid to these
modes when studying quartz in zircon host-inclusion systems. If no
broadening or splitting of the Raman modes is observed, our results
show that, even when the inclusion is subjected to symmetry-breaking
strains, the measured Raman modes of quartz can be used to calculate
the average inclusion pressures with small errors.

These inclusion pressures yield entrapment isomekes with the
isotropic model that pass within 0.185 GPa of the true entrapment
pressures. The inclusion strains calculated via the trigonal phonon-mode
Griineisen tensors are not correct, as would be expected, so the axial
isomekes calculated from them often do not intersect as would be
required to define the P and T of entrapment (Alvaro et al., 2020).
However, the average of the axial isomeke pressures result in better
estimates, within 0.034 GPa of the true entrapment pressures. Therefore,
the use of the trigonal phonon-mode Griineisen tensor to interpret
Raman spectra of quartz inclusions in zircon does not introduce
geologically significant errors in calculated entrapment pressures within
the stability field of a-quartz provided the anisotropic analysis is
followed.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

MLM is supported by an A. von Humboldt research fellowship. JPG is

LITHOS 422-423 (2022) 106716

supported by a NSF-EAR Postdoctoral Fellowship (No. 1952698). This
research has been supported by the ERC-StG TRUE DEPTHS project
under the European Union's Horizon 2020 Research and Innovation
Programme (n.714936) to M. Alvaro. This work has been partly sup-
ported by the PRIN-MUR project “THALES” Prot.2020WPMFE9_003.
MA is also supported by the Highlight funded by Fondi regione Lom-
bardia DGR 3776. We thank Marta Morana, Caterina Canovaro and
Fabrizio Nestola, Nicola Campomenosi and Yuuki Hagiwara for
providing the pictures used in Fig. 1a, b, ¢ and d respectively.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.1ithos.2022.106716.

References

Adams, H.G., Cohen, L.H., Rosenfeld, J.L., 1975. Solid inclusion piezothermometry I:
comparison dilatometry. Am. Mineral. 60, 574-583.

Alvaro, M., Mazzucchelli, M.L., Angel, R.J., Murri, M., Campomenosi, N.,

Scambelluri, M., Nestola, F., Korsakov, A., Tomilenko, A.A., Marone, F., Morana, M.,
2020. Fossil subduction recorded by quartz from the coesite stability field. Geology
48, 24-28.

Angel, R.J., Alvaro, M., Miletich, R., Nestola, F., 2017a. A simple and generalised P-T-V
EoS for continuous phase transitions, implemented in EosFit and applied to quartz.
Contrib. Mineral. Petrol. 172, 29.

Angel, R.J., Gonzalez-Platas, J., Alvaro, M., 2014a. EosFit7c and a Fortran module
(library) for equation of state calculations. Z. Kristallogr. 229, 405-419.

Angel, R.J., Mazzucchelli, M.L., Alvaro, M., Nestola, F., 2017b. EosFit-Pinc: a simple GUI
for host-inclusion elastic thermobarometry. Am. Mineral. 102, 1957-1960.

Angel, R.J., Mazzucchelli, M.L., Alvaro, M., Nimis, P., Nestola, F., 2014b. Geobarometry
from host-inclusion systems: the role of elastic relaxation. Am. Mineral. 99,
2146-2149.

Angel, R.J., Murri, M., Mihailova, B., 2019. Stress, strain and Raman Shifts. Z. Kristallogr.
129-140.

Aroyo, M.1., Perez-Mato, J.M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A., 2011.
Crystallography online: Bilbao Crystallographic Server. Bulg. Chem. Commun. 43,
183-197.

Baldwin, S.L., Schonig, J., Gonzalez, J.P., Davies, H., von Eynatten, H., 2021. Garnet
sand reveals rock recycling processes in the youngest exhumed high- and ultrahigh-
pressure terrane on Earth. Proc Natl Acad Sci U S A 118.

Barron, T.H.K., Collins, J.F., Smith, T.W., White, G.K., 1982. Thermal expansion,
Griineisen functions and static lattice properties of quartz. J. Phys. C Solid State
Phys. 15, 4311-4326.

Bonazzi, M., Tumiati, S., Thomas, J.B., Angel, R.J., Alvaro, M., 2019. Assessment of the
reliability of elastic geobarometry with quartz inclusions. Lithos 350-351.

Bose, K., Ganguly, J., 1995. Quartz-coesite transition revisited: reversed experimental
determination at 500-1200 C and retrieved thermochemical properties. Am.
Mineral. 80, 231-238.

Briggs, R.J., Ramdas, A.K., 1977. Piezospectroscopy of the Raman spectrum of a-quartz.
Phys. Rev. B 16, 3815-3826.

Campomenosi, N., Mazzucchelli, M.L., Mihailova, B.D., Angel, R.J., Alvaro, M., 2020.
Using polarized Raman spectroscopy to study the stress gradient in mineral systems
with anomalous birefringence. Contrib. Mineral. Petrol.

Campomenosi, N., Scambelluri, M., Angel, R.J., Hermann, J., Mazzucchelli, M.L.,
Mihailova, B., Piccoli, F., Alvaro, M., 2021. Using the elastic properties of zircon-
garnet host-inclusion pairs for thermobarometry of the ultrahigh-pressure Dora-
Maira whiteschists: Problems and perspectives. Contrib. Mineral. Petrol. 176.

Cantrell, J.H., 1980. Generalized Griineisen tensor from solid nonlinearity parameters.
Phys. Rev. B 21, 4191-4195.

Carpenter, M.A,, Salje, E.K.H., Graeme-Barber, A., 1998. Spontaneous strain as a
determinant of thermodynamic properties for phase transitions in minerals. Eur. J.
Mineral. 10, 621-691.

Cisneros, M., Barnes, J.D., Behr, W.M., Kotowski, A.J., Stockli, D.F., Soukis, K., 2021.
Insights from elastic thermobarometry into exhumation of high-pressure
metamorphic rocks from Syros, Greece. Solid Earth 12, 1335-1355.

Civalleri, B., D’Arco, P., Orlando, R., Saunders, V., Dovesi, R., 2001. Hartree-Fock
geometry optimisation of periodic systems with the CRYSTAL code. Chem. Phys.
Lett. 348, 131-138.

Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C.M., Civalleri, B., Maschio, L.,
Rérat, M., Casassa, S., Baima, J., Salustro, S., Kirtman, B., 2018. Quantum-
mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 8, 1-36.

Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C.M., Civalleri, B., Casassa, S.,
Maschio, L., Ferrabone, M., De La Pierre, M., D’Arco, P., Noél, Y., Causa, M.,
Rérat, M., Kirtman, B., 2014. CRYSTAL14: a program for the ab initio investigation
of crystalline solids. Int. J. Quantum Chem. 114, 1287-1317.

Ehlers, A.M., Zaffiro, G., Angel, R.J., Boffa-Ballaran, T., Carpenter, M.A., Alvaro, M.,
Ross, N.L., 2022. Thermoelastic properties of zircon: Implications for
geothermobarometry. Am. Mineral. 107, 74-81.


https://doi.org/10.1016/j.lithos.2022.106716
https://doi.org/10.1016/j.lithos.2022.106716
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0005
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0005
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0010
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0010
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0010
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0010
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0015
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0015
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0015
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0020
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0020
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0025
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0025
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0030
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0030
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0030
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0035
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0035
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0040
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0040
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0040
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0045
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0045
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0045
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0050
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0050
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0050
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0055
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0055
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0060
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0060
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0060
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0065
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0065
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0070
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0070
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0070
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0075
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0075
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0075
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0075
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0080
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0080
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0085
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0085
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0085
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0090
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0090
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0090
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0095
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0095
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0095
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0100
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0100
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0100
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0100
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0105
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0105
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0105
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0105
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0110
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0110
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0110

M. Murri et al.

Gilio, M., Angel, R.J., Alvaro, M., 2021. Elastic geobarometry: how to work with residual
inclusion strains and pressures. Am. Mineral. 106, 1530-1533.

Gonzalez, J.P., Mazzucchelli, M.L., Angel, R.J., Alvaro, M., 2021. Elastic geobarometry
for anisotropic inclusions in anisotropic host minerals: Quartz-inzircon. J. Geophys.
Res. Solid Earth 126.

Gonzalez, J.P., Thomas, J.B., Baldwin, S.L., Alvaro, M., 2019. Quartz-in-garnet and Ti-in-
quartz thermobarometry: Methodology and first application to a quartzofeldspathic
gneiss from eastern Papua New Guinea. J. Metamorph. Geol. 37, 1193-1208.

Griineisen, E., 1926. Zustand des festen Korpers. Handbuch der Physik 1, 1-52.

Harvey, K.M., Penniston-Dorland, S.C., Kohn, M.J., Piccoli, P.M., 2020. Assessing P-T
variability in mélange blocks from the Catalina Schist: is there differential movement
at the subduction interface? J. Metamorph. Geol. 39, 271-295.

Howell, D., Wood, 1.G., Dobson, D.P., Jones, A.P., Nasdala, L., Harris, J.W., 2010.
Quantifying strain birefringence halos around inclusions in diamond. Contrib.
Mineral. Petrol. 160, 705-717.

Johnson, T.A., Cottle, J.M., Larson, K.P., 2020. Delineation of multiple metamorphic
events in the Himalayan Kathmandu complex, Central Nepal. J. Metamorph. Geol.
39, 443-472.

Key, S.W., 1967. Griineisen tensor for anisotropic materials. J. Appl. Phys. 38,
2923-2928.

Lakshtanov, D.L., Sinogeilin, S.V., Bass, J.D., 2007. High-temperature phase transitions
and elasticity of silica polymorphs. Phys. Chem. Miner. 34, 11-22.

Mazzucchelli, M.L., Angel, R.J., Alvaro, M., 2021. EntraPT: an online platform for elastic
geothermobarometry. Am. Mineral. 106, 830-837.

Mazzucchelli, M.L., Burnley, P., Angel, R.J., Morganti, S., Domeneghetti, M.C.,
Nestola, F., Alvaro, M., 2018. Elastic geothermobarometry: Corrections for the
geometry of the host-inclusion system. Geology 46, 231-234.

Mazzucchelli, M.L., Reali, A., Morganti, S., Angel, R.J., Alvaro, M., 2019. Elastic
geobarometry for anisotropic inclusions in cubic hosts. Lithos 350-351.

Morana, M., Mihailova, B., Angel, R.J., Alvaro, M., 2020. Quartz metastability at high
pressure: what new can we learn from polarized raman spectroscopy? Phys. Chem.
Miner. 47.

Murri, M., Alvaro, M., Angel, R.J., Prencipe, M., Mihailova, B.D., 2019. The effects of
non-hydrostatic stress on the structure and properties of alpha-quartz. Phys. Chem.
Miner. 46, 487-499.

Murri, M., Mazzucchelli, M.L., Campomenosi, N., Korsakov, A.V., Prencipe, M.,
Mihailova, B., Scambelluri, M., Angel, R.J., Alvaro, M., 2018. Raman elastic
geobarometery for anisotropic mineral inclusions. Am. Mineral. 103, 1869-1872.

10

LITHOS 422-423 (2022) 106716

Musiyachenko, K.A., Murri, M., Prencipe, M., Angel, R.J., Alvaro, M., 2021. A Griineisen
tensor for rutile and its application to host-inclusion systems. Am. Mineral. 106,
1586-1595.

Nye, J.F., 1957. Physical Properties of Crystals. Oxford University Press, Oxford.

Pascale, F., Zicovich-Wilson, C.M., Orlando, R., Roetti, C., Ugliengo, P., Dovesi, R., 2005.
Vibration frequencies of MgsAl;Si3O12 pyrope. An ab initio study with the CRYSTAL
code. J. Phys. Chem. B 109, 6146-6152.

Prencipe, M., Scanavino, L., Nestola, F., Merlini, M., Civalleri, B., Bruno, M., Dovesi, R.,
2011. High-pressure thermo-elastic properties of beryl (Al4BegSi12036) from ab initio
calculations, and observations about the source of thermal expansion. Phys. Chem.
Miner. 38, 223-239.

Rosenfeld, J.L., Chase, A.B., 1961. Pressure and temperature of crystallization from
elastic effects around solid inclusion minerals? Am. J. Sci. 259, 519-541.

Salje, E.K.H., Graeme-Barber, A., Carpenter, M.A., Bismayer, U., 1993. Lattice-
parameters, spontaneous strain and phase-transitions in Pb3(PO4)2. Acta Crystallogr.
B: Struct. Sci. 49, 387-392.

Schmidt, C., Ziemann, M.A., 2000. In-situ Raman spectroscopy of quartz: a pressure
sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures.
Am. Mineral. 85, 1725-1734.

Shapiro, S.M., Axe, J.D., 1972. Raman scattering from polar phonons. Phys. Rev. B 6,
2420-2427.

Stangarone, C., Angel, R.J., Prencipe, M., Campomenosi, N., Mihailova, B., Alvaro, M.,
2019. Measurement of strains in zircon inclusions by Raman spectroscopy. Eur. J.
Mineral. 31, 685-694.

Thomas, J.B., Spear, F.S., 2018. Experimental study of quartz inclusions in garnet at
pressuresup to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic
thermobarometer. Contrib. Mineral. Petrol. 173, 42.

Valenzano, L., Torres, F.J., Doll, K., Pascale, F., Zicovich-Wilson, C.M., Dovesi, R., 2006.
Ab initio study of the vibrational spectrum and related properties of crystalline
compounds; the case of CaCOs calcite. Z. Phys. Chem. 220, 893-912.

van Schrojenstein Lantman, H.W., Scambelluri, M., Gilio, M., Wallis, D., Alvaro, M.,
2021. Extensive fluid-rock interaction and pressure solution in a UHP fluid pathway
recorded by garnetite, Lago di Cignana, Western Alps. J. Metamorph. Geol. 39,
501-518.

Zhong, X., Andersen, N.H., Dabrowski, M., Jamtveit, B., 2019. Zircon and Quartz
Inclusions in Garnet Used for Complementary Raman Thermobarometry: Application
to the Holsngy Eclogite, Bergen Arcs, Western Norway. Contrib. Mineral. Petrol. 174.

Ziman, J.M., 1960. Electrons and Phonons: The Theory of Transport Phenomena in
Solids. Oxford University Press, Oxford.


http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0115
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0115
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0120
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0120
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0120
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0125
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0125
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0125
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0130
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0135
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0135
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0135
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0140
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0140
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0140
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0145
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0145
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0145
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0150
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0150
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0155
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0155
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0160
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0160
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0165
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0165
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0165
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0170
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0170
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0175
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0175
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0175
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0180
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0180
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0180
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0185
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0185
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0185
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0190
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0190
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0190
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0195
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0205
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0205
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0205
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0210
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0210
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0210
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0210
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0215
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0215
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0220
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0220
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0220
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0225
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0225
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0225
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0235
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0235
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0240
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0240
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0240
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0245
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0245
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0245
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0250
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0250
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0250
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0230
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0230
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0230
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0230
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0255
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0255
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0255
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0260
http://refhub.elsevier.com/S0024-4937(22)00125-6/rf0260

	The role of symmetry-breaking strains on quartz inclusions in anisotropic hosts: Implications for Raman elastic geobarometry
	1 Introduction
	2 Methods
	3 Results
	3.1 Structure
	3.2 Raman modes

	4 Implications for Raman piezo-barometry
	4.1 Inclusion remnant pressures and hydrostatic pressure calibrations
	4.2 Residual inclusion strains, stress, and pressure: The phonon-mode Grüneisen tensor approach
	4.3 Recalculation of apparent entrapment pressures: isotropic model
	4.4 Recalculation of apparent entrapment conditions: anisotropic model

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


