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Abstract

From the most fundamental to the most practical side of density functional
theory (DFT), Kohn-Sham inversions (iKS) can contribute to the development of
functional approximations and shed light on their performance and limitations.
On the one hand, iKS allows for the direct exploration of the Hohenberg-Kohn
and Runge-Gross density-to-potential mappings that provide the foundations for
DFT and time-dependent DFT. On the other hand, iKS can guide the analysis
and development of approximate exchange-correlation and noninteracting kinetic
energy functionals, and diagnose their errors. iKS can also play a similar role in
the development of nonadditive functionals for modern density-based embedding
methods. Various strategies to perform iKS calculations have been explored since
the inception of DFT. We introduce n2v, a density-to-potential inversion Python
module that is capable of performing the most useful and state-of-the-art inver-
sion calculations. Currently based on NumPy, n2v was developed to be easy to
learn by newcomers to the field. Its structure allows for other inversion methods
to be easily added. The code offers a general interface that gives the freedom to
use different software packages in the computational molecular sciences (CMS)
community, and the current release supports the Psi4 and PySCF packages. Six
inversion methods have been implemented into n2v and are reviewed here along
with detailed numerical illustrations on molecules with numbers of electrons
ranging from ~10 to ~100.
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1 | INTRODUCTION

Density functional theory (DFT) is the most widely used method to calculate the electronic properties of molecules and
materials. The art of developing approximations for the exchange-correlation (XC) functional of Kohn-Sham
(KS) DFT," has been practiced for over 55 years.>* Most KS-DFT calculations are performed as forward problems (fKS):
Given an external potential and total number of electrons, choose an XC functional approximation and solve the (for-
ward) KS equations to find the ground-state density and energy of the system. However, there are occasions in which
solutions of the inverse problem (iKS) are needed and one wants to find some or all of the KS quantities (potentials, KS
orbitals, and eigenvalues) that correspond to a given density. Examples include studies of exact properties,*” analysis
and improvement of approximations,®'’” and potential-reconstruction steps for embedding methods.'®>* Numerical
approaches to address both fKS and iKS problems are needed to fully explore the one-to-one maps between densities
and potentials that establish the foundations for ground-state DFT** and time-dependent DFT.*

Many different methods have been put forth to solve numerically the iKS problem. These can be classified as either
pure density-to-potential methods, where only the densities are taken as input,”’*® or as wavefunction-to-potential
methods,” ** where a many-electron wavefunction or density matrix is employed. On the other hand, iKS problems
can also be classified based on how the convergence is reached. While some methods are based on self-consistent calcu-
lations, others depend on constrained optimizations that are usually much more efficient, especially when implemented
on finite potential basis sets. The price to pay is less robustness and more sensitivity to various factors, as discussed
recently in reference 45.

Unlike the fKS problem, whose accuracy is limited by the XC functional approximations, iKS methods are often
“exact” in the sense that, at the analytical convergence limit on a complete basis set, the potential corresponding to the
input density should be reproduced exactly by any of the methods mentioned above, and be identical for all. However,
in practice, this is not the case. Indeed, iKS are much more sensitive than fKS and ill-posed.*>*’ Additional flaws
include numerical instabilities that occur due to the use of incomplete basis sets leading to unphysical oscillations in
the potential.**">' Chayes et al.>® showed that such numerical deficiencies are not present when grids are used instead
of basis sets, but grids are not practical for larger molecules. There seems to be an implicit efficiency-accuracy trade-
off,*>*® but different methods perform differently on this seesaw, as will be stressed in this paper. Consequently, each
iKS method has zones in which it works better than others, just as different XC functional approximations are often
used for different computational purposes/systems in fKS.

A human/social factor that has slowed the development of iKS methods is that, although the algorithms are accessi-
ble, the codes in which they were implemented are not. Some methods are hidden behind a paywall that (1) makes the
codes inaccessible to research groups that cannot afford them, and (2) even if the licensing can be afforded, these codes
usually just ship as an executable, so users do not have access to the source codes. iKS methods are not trivial, and their
implementation and testing requires plenty of development time. This requirement creates an unnecessary additional
barrier for researchers to understand, reproduce, and modify an algorithm for their own purposes.

As a response, we present the library n2v (n2v stands for “density-to-potential”). n2v is a free, open-source library
that offers many of the widely used and recent inversion methods. Six selected methods are implemented and studied:
the direct KS-inversion method,* the modified Ryabinkin-Kohut-Staroverov method (mRKS),**** the Wu-Yang
method (WY),*° the error function partial-differentiation-equation constrained-optimization method (PDE-CO),**>* the
Zhao-Morrison-Parr method (ZMP)*! and the Ou-Carter methods (OC).*”” mRKS is accurate but expensive to run.>*
WY is the lightest and most efficient method. ZMP and WY are most widely used. PDE-CO was implemented in various
approaches and shows promising features and capabilities. OC is a pure iKS method that balances well the efficiency
and accuracy. Helpful tips and insights regarding these methods are discussed in references 8, 45, 54-56. A comparison
of methods in the context of embedding potentials is discussed in references 57, 58. n2v includes a repository with
Jupyter Notebooks that allows users to test all the methods and reproduce all of the procedures shown in this paper.

There are two other recent packages that feature density-to-potential inversions. Serenity™ is a C++ code for calcu-
lations on systems composed of several subsystems, and it includes inversion subroutines that are useful in the context
of embedding theories; KS-pies,” is another high-level code that allows users to perform iKS; n2v is introduced as an
alternative that provides users with access to more inversion methods as well as the possibility to interface with more
than one computational chemistry package.

n2v offers users sufficient options when they are faced with an iKS problem. Users can test and compare the results
from the WY method (most efficient) to the mRKS (very accurate) and identify the methods that will serve them best.
Also, iKS method-developers can compare their own methods to those implemented into n2v. We provide in this paper
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numerical comparisons of various methods and benchmarks on systems from 2 to about 100 electrons (largest system
reported for iKS). We begin with a brief overview of the theory underlying the methods implemented so far into n2v.
Atomic units are used throughout.

2 | METHODS CURRENTLY IMPLEMENTED INTO n2v

All of the methods relate to the Kohn-Sham equations:
1
=5 V2 Ve (1) v (1) +vxe (r) [ (x) = e (x), (1)

where {y;(r)} and {€;} are the KS orbitals and corresponding eigenvalues, vey(r) is the external potential due to the
nuclei, vy (r) =vy[n|(r) = [dr’ ‘:(fr?‘ is the Hartree potential, and vxc(r) =vxc[n|(r) is the XC potential. For a given
approximation to the XC energy functional Exc[n|, the forward KS problem consists on solving Equation (1) self-

consistently with vxc[n](r) = 6Exc[n]/dn(r), where the electron density is defined as:

occ

n(r) ZZZ jyi(r) . ()

In the following, any function that carries the subscript “in” (as in nj, (r) below) represents a quantity that enters
iKS as input.

2.1 | Direct Kohn-Sham inversion
Let us start with the most direct inversion (the “Kohn-Sham Inversion Formula”), applicable when the set of occupied

orbitals is available. Reorganize Equation (1) by pre-multiplying by y7;,(r), summing i over the N occupied orbitals,
and then dividing by ni, (r) to find vxc(r). The result is a weighted average of orbital-specific potentials*':

() = s 2[5 (O 7 i ) i) | e 6) (). )

This direct method is rarely useful in practice because it requires KS orbitals that are already the result of a KS cal-
culation. Nevertheless, Equation (3) has been used for determining exchange-correlation potentials.,“’62 where the
direct vxc(r) is less obvious to obtain directly on a grid for a high level XC functional. It has also been used for deter-
mining the functional derivative of a kinetic energy functional,® and for constructing orbital-averaged exchange-
correlation potentials for orbital-dependent functionals.*!

Unfortunately, the procedure indicated by Equation (3) suffers from numerical difficulties when the w;(r)'s are
expanded on finite basis-sets.® These numerical issues are almost exclusively dependent on the basis-sets employed.
Gaiduk et al.** showed how one could build an oscillation profile from a simple method such as the Slater exchange
functional. The profile can then be used to subtract the errors from any other more sophisticated density-functional
approximations. This method along with its basis-set correction is the first method available in n2v.

2.2 | The Zhao-Morrison-Parr method

One of the earlier iKS methods is the ZMP, named after their developers Zhao, Morrison, and Parr’! in the early 1990's,
and recently generalized by Kumar and Harbola.”® The method uses a self-consistent calculation to determine the one-
electron effective potential from the target density n(r). To do so, a constraint enforces a density to be equal to ni,(r) at
a certain limit:
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C[n(r),nin(r)}:%//{”(r)—l’lin(l')}{n(l'/)—"in(r/)}drdr/:o (@)

[r—r|

By attaching a Lagrange multiplier 4, one finds the corresponding potential

vl(r):A/Mdr’. (5)

: =

So that we can solve the differential equations

_%V2 + Vext (1) + (1 —;) vi(r) +Vﬁ(r)} wi(r) =elyl(x), (6)

where y? and ¢/ are the eigenfunctions and eigenvalues found with v} with a particular 4, and the term (1—2)vy(r) is
the Fermi-Amaldi approximation. This term, besides being exact for 1 electron,’® ensures the correct—1/r asymptotic
behavior of the resulting potential.

In the limit 4 — oo Equation (5) becomes Equation (1) and we can retrieve the Kohn-Sham orbitals and orbital
energies up to a constant. For finite 4, the solution will only be an approximation to the exact orbitals.

With a choice of 4, at convergence, the resulting vxc(r) is given by:

1

Ve (1) = v (x) = om (x). (7)

Finite values of A lead to numerical difficulties.*" This issue is immediately clear by examining the results for large
values of 1. Thus, the most important and time-consuming aspect of this method relies on carefully choosing one or sev-
eral values of A. The original work® uses an extrapolation technique in which the potentials from the values of
A = {100,140,200} were expanded using a three-term power series in 1/4. To avoid fitting and make the method more
generally applicable, the default for n2v is the iterative method used by Morrison and Zhao.** In this approach, one
starts with a small value of A = 1;, then increases its value to A = 4;,; and incorporates the previous self-consistent
potential as a starting potential for the calculation of 4;, ;. This process is iterated until the desired convergence criteria
are reached.

2.3 | The Wu-Yang method

The Wu-Yang method*’ implemented with finite potential basis sets is one of the most efficient methods for iKS prob-
lems.** With explicitly derived Hessian and gradient, a regular optimizer (e.g., trust-region) will usually converge within
10 iterations. Because of the absence of mesh points, the memory required is also usually acceptable.

The Wu-Yang method optimizes the KS noninteracting kinetic energy T under the constraint that the output den-
sity n(r) is the same as the target density ni,(r). By setting the Lagrangian multiplier as the KS potential vgs(r), which
is the condition for the stationary point, the Lagrangian can be built as:

WMﬂ:RWwMﬂ+/ﬁmﬁWM%%MM, (8)

where Wye[Vgs] is the Slater determinant corresponding to vgs(r). W[vgs] is proven to be concave.*® Thus, in order to
reach the stationary point, the Lagrangian can be optimized with its gradient:

o W[VKs}
5VKS (I‘)

= n(r) — nin(r) ©)

and hessian
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W [Wget[Vks], Vi)

Svgs (r)Svgs (1)
_ on(r)
~ ougs(r) (10)
ocC. unocce. x / * /
vi (0)wa (0w (g ()
=2 Z Z L p— a )
vgs(r) can be decomposed similarly as in ZMP:
Vs () = Vext (X) +o(r) + veps (1), (11)

where vy(r) is a guide potential designed to capture known features of the correct KS potential; the Fermi-Amaldi
potential is the usual choice. The rest is expanded on a finite potential basis set (PBS) {¢}

Veas (1) = > bidh (r). (12)

In n2v, finite difference checks are implemented for both the gradient and hessian in the PBS.** This can be a practi-
cally useful tool to check the error and convergence. Since the Wu-Yang optimization can be very sensitive for multiple
reasons, regularization is important for practice.*’

24 | PDE-constrained optimization

Even though the iKS problem is generally ill-posed,*® it is still supposed that within a reasonably close region around
the exact XC potential, the closer the KS density is to the exact density, the more accurate the potential will be.**>* Fol-
lowing this intuition, a density error is defined and optimized under several constraints required by the KS
model.*>**** The density error is defined as:

Nerror = / dr|n(r) — ni (r))?. (13)

The Lagrangian is defined as:

Livks, {wi}. {€i}. {pi} {mi}]
- / (n(x) — nua(r))elr

N/2

#3 [0i6) (=57 +vest0) = i a4)

N/2

3 [miwrar1).

where {p;} and {;} are Lagrange multipliers for the constraints that {y;} are the KS orbitals of vgs with corresponding
eigenvalues {¢;} (Equation 1) and that {y;} are normalized. The normal equations with respect to p;, u;, v;, €;, and
Vks are:

(—%vz +va<r>)wi<r> — (15)
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Jwite)Pa=1, (15b)

(=572 i) = ) ) =8(mi0) — )~ 2 ), (150)
[pwiwd—o, (15d)

= fz/ipxrwi(r» (150)

Equations (15a) with (15b) are solved for the {y;}; Equations (15c¢) with (15d) are solved for the {p;}. Then {;} and
{p:} can be plugged into (15e) to solve for the gradient.

The PDE-constrained optimization has been implemented into n2v in finite basis sets as described in reference 45.
Since the Lagrangian (Equation (14)) is not concave as in WY (Equation (8)),** there is no guarantee that the optimi-
zation will perform well. Usually a good guide potential (such as Fermi—Amaldi) in Equation (11) with a zero initial
guess in Equation (12) are sufficient to achieve convergence. Moreover, special care should be given to the singularity
introduced by subtracting the Hamiltonian operator by its eigenvalues as in Equation (15c) and the orthogonality as
defined in Equation (15d).>

2.5 | The modified Ryabinkin-Kohut-Staroverov method

The three methods above are pure KS inversion methods, in which only the densities are taken as input. The modified
Ryabinkin-Kohut-Staroverov (mRKS) method*>* is an accurate method that makes use of one-electron reduced density
matrices y;, (r,r') and two-electron reduced density matrices I'i,(r,r,;1’,x,’") obtained from higher-level wavefunction
calculations (WF). In mRKS, the vxc(r) is solved self-consistently on Kohn-Sham systems (KS) in equation:

TWF TKS
bcl0) = o2 (0) €5 (6) () 7 T TR (16)

The potential of the exchange-correlation hole (142°), the average local electron energy (€), and the Pauli kinetic

energy density (zp) are defined as:

Ve (1) = / drz%, (17a)
5 N2
€S(r) :nT(r)Zl: eilwi(r) %, (17b)
€ (6) = gy D P, (170)
o (r) = nwﬁ(r) > el () Vi (6) = 1y (0) Ve (x) (17d)
k<l

) (17e)
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where the exchange-correlation hole nxc(r,r,) is

[ (1,12;1,12)

nin(r) —Nin(12). (18)

nxc (1', 1‘2) =

The {y,} are the natural orbitals of y;,(r,’), electron density from wavefunction method is n"F (r) = y;, (r,¥). {I},
{f(r)} are the eigenvalues and eigenfunctions of the generalized Fock matrix:

F(r,Y')= <—v7§+v(r)>yin(r,r’)+/drzw. (19)

|r—1,|

and n;jy, is the orbital occupation number. When a new vxc is obtained from Equation (16), it is inserted into
Equation (1) to solve for quantities that will fill in the right-hand-side of Equation (16). Superscripts “WF” and “KS”
are used to distinguish the results of a wavefunction calculation (input) from those of a KS calculation (fKS).

2.6 | The Ou-Carter method

Ou and Carter developed a pure iKS method inspired by mRKS.?” Instead of a cancellation between one equation
derived from a wavefunction calculation and one from the KS system, only the KS system is utilized to derive a self-
consistent equation for vxc(r) from the KS equation:

TKS
vxe(r) =€5(r) — n%(S((Il“)) —Vext (1) — v (x), (20)

where 755 is the KS kinetic energy density and

() [Vn®S(r) ’ Vin®S(r) K5(r)
WS(r) SES(r)f | AnS(r) | nS(r)’ (21)

By replacing the KS density everywhere with the accurate input density and the external potential vex(r) by an
effective Ve (r), the final expression for vxc(r) is:

20, i 2 XS _
() =250+ L ) o) i ). @)

Because in this method there is no error cancellation between wavefunction results and KS-DFT results as in mRKS,
using ey (1) is necessary to eliminate the errors (mostly numerical) in each component.*®>* This is achieved by doing
one extra calculation with a known (and simple) functional (usually LDA) on the same basis set to handle the error that
comes from finite basis sets*®:

V(1) = €5 (1) = "L v [k (1) — o2 [P (1), (23)

IDA(r) | .
- i 1s defined by Equation (21).

n

where

3 | THE n2v LIBRARY

Our library is written in the high-level programming language Python, allowing us to focus on readability and rapid
development. This enables users to quickly learn and use the library as well as the inverse Kohn-Sham methodology.
We aim to follow the rapid-prototyping scheme introduced by Psi4Numpy,® a repository of reference implementations
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and interactive tutorials. By using this methodology, we provide access to a set of inversion methods that can be learned
and modified quickly, leading to faster implementations of new applications and methods.

In a nutshell, n2v implements high-level details of the inversion algorithms but relies on other computational chem-
istry packages to perform other lower-level operations such as computing the orbitals, densities, and energies.

n2v has an upstream dependence on many other canonical Python libraries. For example, Numpy®® is used for gen-
eral numerical operations; Scipy67 is used to minimize functionals; opt_einsum68 is used for efficient contraction of
matrices; Pylibxc®® allows computation of exchange—correlation functionals, and Matplotlib™ is used for visualization.

3.1 | Code overview

From its early design, we have focused on making n2v easy to learn, use, maintain and extend. We believe we have
accomplished this by focusing on the following points:

+ Readability. In addition to providing an extensive documentation for every component of our code, we use an auto-
matically generated documentation through the use of Sphinx.”! This can be accessed through the website:
wasserman-group.github.io/n2v/. Additionally, we created a set of tutorials in Jupyter Notebooks, providing instruc-
tions into using our code and details of the algorithm for every method. The Notebooks can be accessed through the
following repository: github.com/wasserman-group/n2v_examples. All of the results shown in this work are com-
puted in the same fashion as the examples.

« Accessibility. Users can run our code in the Windows (through the use of Windows Subsystem), Linux, and macOS
operating systems. We recommend the use of conda and the Python Package Index (PyPI). To begin with, at least
one engine should be installed (see Section 3.2). For example, Psi4 can be installed with conda install -c psi4
psi4, and Pyscf can be installed with pip install pyscf. Additionally, libxc is required for the Ou-Carter
method. To access libxc through Python, one must obtain libxc through conda and proceed to manually install
pylibxc. More details are available on the repository. Proceed to install n2v through github.com/wasserman-group/
n2v or by direct install with pip install ntov.

« Modern software development. We follow the “best practices”’~ paradigm defined by The Molecular Science Software
Institute”® that covers testing, code coverage, and continuous integration.

 Licensing. We released our code under the BSD 3-clause license, a permissive license that allows for our code's modi-
fications and redistribution.

9572

3.2 | Code structure

The software ecosystems within the computational molecular sciences (CMS) community are vast, and with the
increasing popularity of high-level languages such as Python’*”® or Julia,**~®* they will only continue to grow. Nowa-
days, developers designing software must keep in mind that users do not want to start using a new package to access
different features.®® To aid in lowering the barrier of using n2v, we introduce engines. An engine is an abstract class in
Python that specifies what a computational chemistry code interfaced with n2v is expected to provide. These include
basic information like geometry and basis set, as well as ingredients needed for each inversion method, such as the
orbitals and densities in the atomic orbital basis set and, in some cases, on the grid.

The Psi4**®® and PySCF®*”® engines are available in the current release. Psi4 interfaces with our code through
PsiAPI, its application programming interface (API). The API allows users to access most of Psi4's core C++ libraries at
the Python level. On the other hand, PySCF is written in Python and thus can be connected to n2v directly. The Psi4
engine can perform all the available methods, while the PySCF engine can perform all except the Ou-Carter and mRKS
methods. Given the intrinsic dependence on the grid of these two methods, they are still under development, but they
will be ready in a future release.

Two other classes are relevant to understanding the structure of n2v. The first one is the Inverter, a high-level
class that requests tasks from the engine. Additionally, the Inverter collects all of the information needed for an
inversion, generates a guiding potential and routes it to the requested method. Each of the methods from Section 2 is
contained within its class, so the Inverter inherits properties from all of them. In this way, once an Inverter object
has been initialized, the user can access all of the different methods with the same object.
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To perform some of the methods and visualize the resulting potentials, the class Grider is supplied to each engine. A
Grider object computes relevant quantities on any given grid, such as density, orbitals and their derivatives, and more.
Each of the available engines (Psi4 and PySCF) uses their default spherical grid to compute the DFT kernel on the grid.
For example, Psi4 uses a Lebedev-Treutler grid using 75 radial and 302 spherical points. Although the default is robust
enough to express exchange-correlation potentials on the grid, it is advised that users refine the parameters according to
each system and method.

We encourage other developers to write their engines and make them available for future releases through pull requests
in the repository. Our licensing allows any user to use and modify any code component that is useful in their projects.

3.3 | Using n2v

To illustrate how to perform a calculation using n2v, we present a minimal example of a Neon atom using the Wu-Yang
inversion method (See Figure 1) using the Psi4 engine, for a comparison with the PySCF engine, please look at Appendix S1.
The example below is general enough to provide users with an idea of how to use any of the methods discussed in this paper.
This example was run in a Jupyter Notebook and can be accessed through the link: github.com/wasserman-group/n2v_
examples. To better describe its usage, the calculation is separated into three groups highlighted by each cell in the Jupyter
Notebook. These correspond to (1) the calculation of target density using Psi4, (2) defining an Inverter object and the
inversion itself, and (3) the generation of the potential on the grid handled by the Grider and additional data (Figure 1).

1. Calculation of target density. We define the geometry as a standard Psi4 geometry. Units should be set to atomic units
and symmetry should be set to C1. We are currently working on exploiting the irreducible representations that
would allow different symmetries to be used. Our code takes the reference used—restricted or unrestricted—from
the Psi4 set option. Except for the mRKS method, every other method is available in the unrestricted scheme. In this
example, we obtain the target density using the coupled-cluster with singles and doubles determinants (CCSD)
method. Psi4 does not compute the CCSD density from a simple energy calculation. This means that we need to gen-
erate a property such as the “Dipole.” Other SCF methods will not depend on this step but users should refer to the
documentation of each engine for more information.

2. Inverting the density. Initialize an Inverter object by selecting an engine as well as setting the system and the target
components. Alternatively, one can simply initialize it by providing a wfn object from the calculation. If no additional
basis-set is given, the basis set used will be the same as the energy calculation. Here we specified a larger basis set to be
exclusively used for to express the inverted potential. To perform the inversion, we use the method “invert” that requires
as basic arguments the “method,” followed by the “guide_components” that allows to select a starting point for the inver-
sion. In the example, we use the “Fermi-Amaldi potential” that ensures that the resulting potential has the correct decay
as “r” tends to infinity.

3. Visualizing the resulting potential. To visualize the inverted potential, we require to prepare all quantities on the
grid. In this case, we are interested on visualizing a component of the Kohn-Sham effective potential,
the exchange-correlation potential. We build a grid by using the 1inspace function in numpy. Then we make
use of the esp function of the Grider to calculate the Hartree and Fermi-Amaldi potentials, followed by the
actual potential inverted (rest). This is necessary since the optimizer did not have to invert the full potential, but
only a part of it. By adding all of the components accordingly one can visualize the potential. It should be noted
that not every method generates the same output; users should refer to the documentation of each method to
ensure that they are visualizing the appropriate potential.

4 | ILLUSTRATIVE RESULTS COMPARING INVERSE METHODS IN n2v

We begin by comparing the XC potential of stretched H, obtained through iKS from an accurate density. The exact XC
potential famously features a spike in between the two nuclei.**~°" This spike is a signature of strong static correlation
and is missed by most approximate XC functionals in the fKS problem. When using an input density calculated through
full configuration interaction on a Universal Gaussian Basis Set (UGBS), Figure 2 shows that four out of the five iKS
methods attempt to explore this spike, but its shape and height can differ significantly. Furthermore, the result is
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import n2v

import psi4d

import numpy as np

import matplotlib.pyplot as plt

S WN

# Define a Psi4 geometry. Set symmetry as Cl. Set units as Bohr.
Ne = psid.geometry("""

Ne

symmetry cl

units bohr

")

O 00 N o un

[ S
N R

psi4.set_options({"reference" : "rhf"})

e
[V, B S Y]

# Perform Calculation. Store wavefunction.

16 # The energy method not always constructs the density. Obtain a property instead.

17 wfn = psi4.properties('ccsd/cc-pvqz', molecule=Ne, return_wfn=True, properties=[‘'dipole'])[1]
18

19 # Extract data needed for n2v.

20 da, db = np.array(wfn.Da()), np.array( wfn.Db())

21 ca, cb = np.array(wfn.Ca_subset('A0', 'OCC')) , np.array(wfn.Ca_subset('A0', 'OCC"))

22 ea, eb = np.array(wfn.epsilon_a()), np.array(wfn.epsilon_b())

2 1 # Initialize inverter object manually.

2 ine = n2v.Inverter( engine='psi4' )

3 ine.set_system( Ne, 'cc-pvqz', pbs='aug-cc-pvqz', wfn=wfn )

4 ine.nalpha = wfn.nalpha()

5 ine.nbeta = wfn.nbeta()

6 1ine.Dt = [da, db]

7 |ine.ct = [ca, cbl]

8 1ine.et = [ea, eb]

2
10 # Or extract information directly from the wavefunction object.
11 ine = n2v.Inverter.from_wfn(wfn, pbs='aug-cc-pvqz')
12
13 # Perform Wu Yang Inversion with "Fermi-Amaldi" potential as guide.

14 ine.invert("WuYang", guide_components="fermi_amaldi")
Optimization Successful within 3 iterations! |grad|=8.50e-04

Generate plotting grid

= np.linspace(0,5,3001)[:,None]

= np.zeros_like(x)

= np.zeros_like(x)

grid = np.concatenate((x,y,z), axis=1).T

N < X %
1

7 # Extract quantities on the grid.

8 ext, ha ,esp = ine.eng.grid.esp(grid=grid)

9 vrest = ine.eng.grid.ao(ine.v_pbs, grid=grid, basis=ine.eng.pbs)
10 fa = (1-1/(ine.nalpha + ine.nbeta)) * ha

11 |vxc = fa + vrest - ha

FIGURE 1 The input as a Jupyter Notebook for calculating the v,.(r) for the Neon atom with a CCSD target density. CCSD, coupled-
cluster with singles and doubles determinants method

strongly dependent on the basis set choice: The reader can try n2v and see that when UGBS is replaced by a basis even
as large as cc-pCVQZ, the spike disappears from both WY and PDE-CO inversions (but not from OC or mRKS). Next,
we compare results of five methods available in n2v on systems with 10 to almost 100 electrons (the largest system
reported by now but not yet the limit for n2v), both spin-polarized and spin-unpolarized. We report results for the Ne
atom, the NO molecule and the caffeine molecule. Calculations are done on the cc-pCVQZ basis set unless otherwise
stated. Exact results are available for the first two molecules, and we use two metrics to assess “quality” and two metrics
to assess “efficiency.” The quality metrics are the HOMO eigenvalue eyomo = —I and the density errors measured as:
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FIGURE 2
density on Universal Gaussian Basis Set. In each subplot, one method is highlighted and compared with others (transparent)
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The exchange-correlation (XC) potentials of stretched H, from five methods inverted from the full configuration interaction

TABLE 1 Comparison for different methods
Ne
Method N,,, €HoMO™ Peak memory” Time®
WY 1.6E—2 —0.7683 7E2 8E—1 S5E—-2 2E34
PDE-CO 1.6E—2 —0.7557 9E2 2E2 3E—1 2E3¢
ZMP 2.3E-2 —0.7961 5E2 5E—1 2E3°¢
oC 34E-2 —0.7586 1E3 3E3
mRKS 1.7E-2 —0.7823 6E3 2E5
NOf
Method Ne,-,- FA Ne,-,- H EHOMOg FA €HOMOg H
WY 7.8E—-3 9.3E—3 —0.3392 —0.1042
PDE-CO 2.1E-2 2.2E—2 —0.3123 —0.0702
ZMP 1.5E-2 1.6E—2 —0.3248 —0.0696
oC 7.9E—-2 —0.3348
Experimental ionization energy I = —egomo = 0.7925.%
Million bytes.
“Seconds.
9Time: regularization parameter search, main calculation on a basis set, produce potential on the grid.
“Time: main calculation, produce potential on the grid.
fFA, Fermi-Amaldi; H, Hartree.
SExperimental ionization energy I = —epomo = 0.3405.%3
1
2 2
Ny = (/dr|n(r) — Rin (1) > . (24)

We also report the peak memory and run time on a single thread as the efficiency metrics. Note that the run time
can vary with multi-threading, CPU clock speeds and many other factors. Also, the peak memory can vary with differ-
ent numerical details, such as the data structure used and the grid size. Memory and time are only given to the order of
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XC potentials
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100 — Exact
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==+ PDE-CO
== ZMP
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FIGURE 3 Ne atom exchange-correlation (XC) potentials inverted by different methods from configuration interaction singles and
doubles densities. The exact one is from the quantum Monte Carlo calculations®*®
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FIGURE 4 NO molecule spin-up exchange—correlation (XC) potentials

magnitude for comparison. Nevertheless, these two factors do illustrate the capability, limitation, difference
and general trends for each method. Fermi-Amaldi guide potentials are used for WY, PDE-CO, and ZMP.
Table 1 compares these methods for the Ne atom, and Figure 3 shows the corresponding XC potentials. One
can see that WY, PDE-CO, and ZMP are much faster than OC and mRKS, even when regularization parameters
are searched for. Most of the computational time of WY, PDE-CO, and ZMP is spent in basis transformation to
a plotting grid of about 1,000,000 points, specifically the Hartree/Hartree-like potential by density fitting.
Thus, a small plotting grid can save most of the time. As an example, a grid of 1000 points will take only about
1 sec. Moreover, for WY and PDE-CO, when the guide potential vy(r) in Equation (11) is the Hartree potential,
vpps(r) can be identified directly with vxc(r) and the Hartree potential on the grid is not needed. But this comes with a



SHI ET AL. WIREs _Wl L EY 13 of 17

PBE

XC potentials
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FIGURE 5 Caffeine molecule exchange-correlation (XC) potentials from WY, ZMP, and OC on the xy-plane. The last two panels show
the potentials along the red and blue dotted lines, respectively. OC, Ou-Carter method; WY, Wu-Yang method; ZMP, Zhao-Morrison-Parr
method

cost of accuracy.45 For OC and mRKS, all the calculations are done on a Lebedev-Treutler grid (about 73,000 points in
this case) and are therefore slower. In particular, mRKS needs a double integral for V{2 (r) by grid quadratures, which
makes it too slow for even medium-sized systems. We also compare spin-polarized cases. Figure 4 shows spin-up XC
potentials for the NO molecule. One can again notice that, even though all the methods are capable to reproduce the
bulk part of the potentials, small details vary. As mentioned in the introduction, this is largely (if not totally) due to the
different numerical features of the methods, as opposed to fundamental differences (i.e., all methods would provide the
same numerical XC potentials in the infinite basis-set limit). The spin-down XC potentials can be found in
Appendix S1. In Figure 5, the direct PBE XC potential of the caffeine molecule is compared with XC potentials inverted
from the PBE density by WY, ZMP, and OC, with vy(r) as Fermi-Amaldi. However, it should be noted that inverting
from the PBE density is an easier job compared to inverting from a density that has been generated through a
wavefunction-based method; the former is one of the “inverse crimes” discussed in references 45, 46. More details about
the tests can be found in Appendix S1.

5 | CONCLUDING REMARK

The CMS community has built a vast ecosystem for computational chemistry thriving with users and developers who
openly share their work. With the release of n2v, we are pleased to join a larger community of libraries that add useful
functionalities to Psi4 and PySCF.

We have compared the performance of various iKS methods implemented in n2v on a few carefully selected sys-
tems. For more details on the examples provided, we refer the reader to Appendix S1, which also has a short tutorial
explaining how to run an iKS calculation in practice with n2v. For a more thorough discussion on the advantages and
disadvantages of all the methods implemented into n2v, we refer the reader to reference 45.
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