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ABSTRACT
Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of
fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study
a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity
to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment
populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different
numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and
contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both,
including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that,
although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of
FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under
which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS
than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the
implications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091024

I. INTRODUCTION

Kohn–Sham Density Functional Theory (KS-DFT)1–3 contin-
ues to be one of the most powerful and widely used methods
to calculate the electronic properties of matter. Approximate
exchange–correlation (XC) functionals used within KS-DFT suffer
from various errors that limit their applicability.4 Among these
errors, delocalization and static-correlation errors have been widely
studied4,5 but, despite the several recent approaches to correct
them,6–11 there is still no general, robust method that works reliably
in practice.

When dissociating a molecule into its constituent atoms, most
approximate XC functionals will minimize the energy by plac-
ing fractional numbers of electrons on the separated atoms. The
differences between these fractional numbers and the correct inte-
gers, referred to here as the “fractional-charge error” (FCE), are
sometimes taken as a measure of the delocalization error (DE).12
However, the DE, whose origin is the incorrect delocalization of

electron densities, is not only present at dissociation. It is also
present at any set of internuclear separations, for which the con-
cept of “atomic electron number” is no longer valid (i.e., there is
no unique way to assign electrons to any particular nucleus in the
molecule). Although the FCE is only well defined at dissociation, one
can show (see, for example, Fig. 2) that the error in the energy asso-
ciated with the FCE settles in long before reaching dissociation when
the “atoms” are still at interacting distances and their electronic
densities cannot be understood separately. Theories that provide a
definite prescription for calculating fragment populations at finite
internuclear separations are thus useful in this context.13–16

Various quantum embedding methods17,18 developed in recent
years offer the possibility to invest most of the computational effort
in specific fragments in a molecule while treating the remaining
molecular framework (i.e., the “environment”) as an electron bath
with which electrons can be exchanged. Among such embedding
methods, Partition-DFT (P-DFT)19–21 is particularly well suited to
calculate fragment populations because, as will be discussed in
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Sec. II, it involves an energy minimization with respect to fragment
populations. In other popular embedding methodologies, such as
frozen-density embedding theory (FDET),22–24 the fragment popu-
lations are usually kept fixed as integers. However, fractional elec-
tron populations have also been used by other embedding theories,
usually through a method that involves fractionally occupying the
KS orbitals (FOO) of the active fragment.25–27 By contrast, most
P-DFT calculations use an ensemble approach (ENS) that involves
averaging over calculations with different numbers of electrons
(always integers).13,21 Although more computationally expensive
than FOO, the ENS method shows advantages when describing
intermolecular charge transfer.16 FOO and ENS are equivalent for
the “exact” exchange–correlation functional,28 but differ for approx-
imate XC functionals as demonstrated numerically here. Although
other methods to handle fractional fragment populations are con-
ceivable, in this work, we compare and contrast the FOO and ENS
approaches in P-DFT by using the Local Density Approximation
(LDA) and examine their performance in some of the simplest
systems where one can transparently apply both.

The long-term purpose of this line of research is three-fold:
First, use P-DFT to improve the accuracy of approximate DFT
calculations through physically motivated approximations to the
partition energy,8 especially in systems with strong static or
dynamic electron correlations where standard approximations to the
exchange–correlation functional are limited; second, use P-DFT to
exploit its potential linear-scaling implementations to improve the
efficiency of calculations on systems of increasing complexity;29 and
third, allow for calculations that, through their rigorous focus on
fragment densities (as opposed to the total molecular density), can
provide additional chemical insight that is missed by standard DFT.
A clear prescription for the treatment of fractional charges is essen-
tial to make progress in all three directions. This work examines
such prescription and clarifies how electrons can be split between
fragments in P-DFT calculations.

All of the P-DFT calculations of fractional charges done to
date14,21,30–33 have been carried out on model systems of non-
interacting14,30,31 or one-dimensional interacting32 electrons.When-
ever 3D P-DFT calculations have involved fractional charges,
the molecules studied have been centro-symmetric (homonuclear
diatomics), not involving ground-state charge transfer between the
constituent atoms.21,33 We present here the first calculations on 3D
heteronuclear diatomic molecules and ions. Our goal in this work
is to examine how the two methods for splitting electrons between
fragments (ENS and FOO) differ in practice. In Sec. II, we review
the theory highlighting the role of electronegativity equalization and
show how this important condition plays differently in FOO and
ENS methods. In Sec. III, we present P-DFT calculations on 3D het-
eronuclear diatomic molecules with one, two, and four electrons,
and show that, even though both ENS and FOOmethods lead to the
same total molecular densities, they lead to different descriptions of
the charge transferred between fragments.

II. PARTITION-DFT AND TWO ALTERNATIVE
METHODS FOR DETERMINING FRACTIONAL
ELECTRON NUMBERS

To highlight the role of fractional populations in P-DFT, we
begin with a description of P-DFT in which the {Nα} (α is used to

label fragments) are presumed fixed and known in advance. We will
then describe how to optimize the set {Nα}, but—as a first step—we
consider these numbers as given, for example, by a calculation of
formal charges from any of the many methods available for that
purpose.34–38

For a system of NM electrons subject to an external potential
v(r) (due to all the nuclei), this potential can be divided as

v(r) =
N f

∑
α=1

vα(r), (1)

where vα(r) is the external potential of the αth fragment and Nf is
the number of fragments. The task of P-DFT is to minimize the sum
of fragment energies,

Ef [{nα}] ≡
N f

∑
α=1

Eα[nα], (2)

subject to the set of constraints specified below [Eqs. (3) and (4)].
In Eq. (2), Eα[nα] and nα(r) are the ground-state energy and den-
sity of the αth fragment, respectively. Given a set {Nα} satisfying
N f

∑
α=1

Nα = NM , where the total number of electrons NM is an integer,

the total ground-state density nM(r) is optimally partitioned when
E f is minimized with respect to variations of the {nα} subject to the
Nf + 1 independent constraints,

nM(r) =
N f

∑
α=1

nα(r), (3)

Nα = ∫ nα(r)dr, ∀α ∈ {1, . . . ,Nf }. (4)

Because the Nα can be non-integer, Eα[nα] needs to be defined
for non-integer electron numbers. Two alternative methods for
accomplishing this are described in Secs. II A and II B. In either case,
the constrained search for an optimum {nα} for fixed {Nα} can be
formally converted into the unconstrained minimization of a grand-
potential G[{nα}, vp(r),{χα}], where the partition potential vp(r)
and fragment electronegativities {χα} are the Lagrange multipliers
associated with constraints (3) and (4), respectively,

G[{nα}, vp(r),{χα}] = Ef [{nα}] +∫ vp(r)

× (∑
α
nα(r) − nM(r))dr

+∑
α
χα(∫ nα(r)dr −Nα). (5)

The Euler–Lagrange equation for the αth fragment can be
obtained by minimizing G[{nα}, vp(r),{χα}] with respect to the
corresponding fragment density nα(r), i.e., δG

δnα(r)
= 0, yielding

χα = −(
δEα[nα]
δnα(r)

+ vp(r)), (6)
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where δEα[nα]
δnα(r)

needs to be well defined for non-integer electron
numbers (see Secs. II A and II B).

The vp(r) for fixed {Nα} is unique,13,19,26 but E f can gener-
ally be lowered further by transferring a fraction of an electron
from a fragment of lower electronegativity to one of higher elec-
tronegativity. The global minimum of Ef is then found when all
fragment electronegativities are equal,13,19 i.e., χα = χ

∗,∀α, where
χ∗ is a common optimal electronegativity. Then, the constraints (4)
unify into

NM =

N f

∑
α=1
∫ nα(r)d3r, (7)

and the grand potential G[{nα}, vp(r),{χα}] becomes

G[{nα}, vp(r), χ∗] = Ef [{nα}] +∫ vp(r)

× (∑
α
nα(r) − nM(r))d3r

+ χ∗(∑
α
∫ nα(r)d3r −NM), (8)

with χ∗ = −( δE f [{nα}]
δnM(r)

+ vp(r)).
Thus, by varying the {Nα}, we can determine the optimal frag-

ment electron populations for which all fragment electronegativities
are equal and the grand-potential is minimized to

E∗f = min
{χα}

min
{nα}

G[{nα}, vp(r),{χα}]. (9)

A general, simple algorithm for Eq. (9) can be formulated: Start with
a guess for {Nα} and do self-consistent calculations to obtain all
fragment electronegativities {χα}. Then, update the {Nα} by using
N(k+1)α = N(k)α + Γ(χ(k)α − χ̄ (k)),20 where Γ is an appropriate positive

constant and χ̄ (k) is the average of all fragment electronegativities
for the kth iteration. The process is iterated until χ(k)α − χ̄ (k) falls
below an acceptable threshold. The resulting {Nα} will be referred
to as optimal and be denoted as {N∗α } from now on. We now turn
our attention to two alternative methods for treating non-integer
electron numbers.

A. Fractional orbital occupations (FOO)
The density of the αth fragment can be constructed as

nFOOα (r) =∑
i
fα,i∣ϕα,i(r)∣2, (10)

where∑
i
fα,i = Nα, and fα,i is the occupation number for ϕα,i(r) (the

ith KS orbital of the αth fragment). Since we only consider the
ground state, fα,i = 1 for all occupied orbitals except for the highest
occupied molecular orbital (HOMO), in which case 0 < f HOMO

α ≤ 1.
The non-interacting kinetic energy is calculated by39

TFOO
s [nα] = −

1
2∑i

fα,i ∫ ϕ∗α,i(r)∇
2ϕα,i(r)dr. (11)

The energy of the αth fragment Eα[nα] is then defined in the
same way as in KS-DFT (we drop the “FOO” superscript from the
densities for notational simplicity),

Eα[nα] = TFOO
s [nα] + EHXC[nα] +∫ vα(r)nα(r)dr, (12)

where EH[nα] and EXC[nα] are the Hartree and exchange–
correlation energies of the αth fragment, respectively. Then, the
Euler–Lagrange equation (6) becomes

χFOOα = −(
TFOO
s [nα]
δnα(r)

+ vHXC[nα](r) + vα(r) + vp(r)). (13)

In the sameway as in KS-DFT,3 one can derive the KS equations
for the αth fragment,

{−
1
2
∇

2
+ veffα [nα](r) + vp(r)}ϕα,i(r) = εα,iϕα,i(r), (14)

where the fragment effective potential is

veffα [nα](r) = vα(r) + vHXC[nα](r). (15)

The fragment KS equations for the αth fragment can be
regarded as those for Nα electrons subject to the external potential
vα(r) + vp(r). Therefore, we define the total energy for the αth
fragment as

Ẽα[nα] ≡ Eα[nα] +∫ vp(r)nα(r)dr. (16)

Considering that Nα is continuous and the energy is differentiable,
we use the definition of electronegativity given by Iczkowski and
Margrave,40 i.e., χα = − ∂Ẽα

∂Nα
. It is straightforward to prove that the

energy functional Ẽα[nα] is differentiable41,42 and χFOOα = −
δẼα[nα]
δnα(r)

= − ∂Ẽα
∂Nα

.3,43 Furthermore, according to Janak’s theorem,39 we know

that ∂Ẽα
∂Nα
= εHOMO

α . Thus, we obtain χFOOα = −εHOMO
α .

B. Ensembles (ENS)
Alternatively, when Nα lies between the integers pα (= ⌊Nα⌋)

and pα + 1, we can write the α-density as

nENSα (r) = (1 − ωα)npα(r) + ωαnpα+1(r), (17)

emulating known results for the exact extension of DFT to non-
integer electron numbers28 (true for the exact XC-functional). A
related approach7 has been shown to be useful in eliminating the
asymptotic fractional dissociation problem of the LDA. In Eq. (17),
the two ensemble component densities npα(r) and npα+1(r) inte-
grate to pα and pα + 1 electrons, respectively, and 0 < ωα < 1 so that
Nα = pα + ωα.
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The corresponding fragment energy is

Eα[nα] = (1 − ωα)Eα[npα] + ωαEα[npα+1], (18)

where Eα[npα] and Eα[npα+1] are, respectively, the ground-state
energies for pα and pα + 1 electrons subject to an external potential
vα(r) + vp(r).

Since the allowed density variationsmust now keep pα electrons
in npα(r) and pα + 1 electrons in npα + 1(r), the constraints (4)
turn into 2Nf independent constraints, and the Lagrange multipli-
ers {χα} can be replaced by a pair-set of multipliers {λpα , λpα+1}.
The grand-potential in Eq. (5), now GENS

[{nα}, vp(r),{λpα , λpα+1}],
is minimized with respect to variations in the npα(r) and npα + 1(r),
yielding

λpα = −(
δEα[npα]
δnpα(r)

+ vp(r)), (19)

and a companion equation for λpα+1. Expressing Eα[npα] in terms of
KS quantities, Eq. (14) is now replaced by a pair of analogous KS
equations in which all of the α-subindices in Eq. (14) are replaced
by either pα or pα + 1. The fragment effective potential veffpα [npα](r)
has the same decomposition as in Eq. (15), but the Hartree and
XC-potentials are now evaluated at the appropriate integer-number
densities. These in turn are constructed simply by summing over the
pα (or pα + 1) occupied KS orbitals.

For atoms and molecules, εHOMO
pα < εHOMO

pα+1 and λpα > λpα+1,
since the pα and pα + 1 electrons are subjected to the same external
potential vα(r) + vp(r). Defining the total energy for the αth
fragment in the same way as Eq. (16), we now find for the
electronegativity,28

χENSα = Ẽα[npα] − Ẽα[npα+1] (0 < ωα < 1). (20)

If Nα is an integer, χENSα is strictly undefined (but one can consider
right- and left-limits for it, as will be discussed in Sec. III B).

C. HOMO energy and electronegativity: FOO vs ENS
The one-electron nature of the KS equations leads to densities

for finite systems that decay asymptotically as3,44

n(r)ÐÐÐ→
r→∞

e−2κr , (21)

where κ =
√
−2(εHOMO − vXC(∞)). If vXC(r)ÐÐÐ→

r→∞
0, then

κ =
√
−2εHOMO. LDA and GGA densities satisfy this condition.
Due to the density constraint of Eq. (3), we see that if the frag-

ment densities have different exponential decay rates, at least one of
them (fragment α∗) must match the decay of the total density in the
asymptotic region. Using FOO, this implies εHOMO

α∗ = εHOMO
M = const.

By using χFOOα = −εHOMO
α (see the last line of Sec. II A), we find that

χFOOα∗ = −εHOMO
M . When E f reaches its global minimum, all fragment

electronegativities are equal, so χα = −εHOMO
M for all α. Therefore,

the best way to approach the global minimum of E f is to always
assign less electrons to fragments whose electronegativities are χM
and more electrons to fragments whose electronegativities are larger
than χM . In this way, the iteration formula in the algorithm for

Eq. (9) can be modified for the (k + 1)th iteration as follows:
For fragments whose χ(k)α > χM , set N(k+1)α = N(k)α + Γ(χ(k)α − χM);

for fragments whose χ(k)α = χM , set N(k+1)α = N(k)α or N(k+1)α = NM

− ∑
β≠α

N(k)β .

In contrast, when using the ENS method of Sec. II B, we find
εHOMO
pα∗+1 = ε

HOMO
M = const, and there is no direct relation between

the fragment electronegativity χENSα of Eq. (20) and the molecular
HOMO energy.

Finally, we note a key difference between the partition poten-
tials of ENS and FOO: Assume the population of the αth fragment is
a non-integer and εHOMO

α,FOO = ε
HOMO
M , then we know εHOMO

α,ENS ≤ ε
HOMO
M .

Since there are Nα electrons subject to vα(r) + vFOOp (r) in FOO,
while there are ⌊Nα⌋ + 1 electrons subject to vα(r) + vENSp (r) in ENS,
vENSp (r) needs to be deeper than vFOOp (r) to account for the fact that
⌊Nα⌋ + 1 > Nα, and thus ∫ vENSp (r)nM(r)dr < ∫ vFOOp (r)nM(r)dr.
As a consequence, EENS

p is more negative than EFOO
p and, since FOO

and ENS must yield the same total energy, EENS
f will be less negative

than EFOO
f . All of these findings are illustrated below.

III. EXAMPLES AND DISCUSSION
We now illustrate the preceding discussions on a few model

systems of diatomic molecules that have been used in other
contexts30,45,46 and on actual diatomic molecules. In all cases, the
nuclei are separated by a distance R and located at −(R/2)ẑ and
+(R/2)ẑ along the z-axis. All calculations are performed on a
prolate-spheroidal real-space grid.21,47 Considering the azimuthal
symmetry of diatomic molecules, we only need to solve the
Kohn–Sham equations on a two-dimensional mesh. Libxc library48
is used to evaluate approximate exchange–correlation functionals.

We partition themolecules into two fragments, labeledA and B,
and denote the optimal electron populations by N∗A and N∗B . When
isolated (R→∞), the correct populations are denoted by N0

A and
N0

B, so we can define the number of electrons transferred from A to
B as ΔN = N0

A −N
∗
A = N

∗
B −N

0
B. When no superscript is used for NA

and NB, it should be understood that the numbers have been fixed,
but not optimized (i.e., they do not minimize E f ).

A. One electron: Model of a one-electron molecule
AB+ZB

We first consider a one-electron diatomic molecular ion AB+ZB

with nuclear charges ZA = 1 and variable ZB < 1, so that the dis-
sociated molecule consists of a hydrogen atom and a “proton” of
charge +ZB. (In the discussion below, we sometimes refer to ΔZ ≡ 1
− ZB.) A similar model but in 1D and with delta-function potentials
was studied in Ref. 30. We take EEXACT

XC [n] = −EH[n] as the exact
functional for the one-electron system. The exact P-DFT solution
reported here for Coulomb potentials in 3D leads to well-localized
fragment densities for all R (see Fig. 1), just like in the 1D model of
Ref. 30. As the molecule is stretched, an electron is smoothly trans-
ferred from B to A. (What we mean by “smoothly” will be clarified
below; see the right panel of Fig. 2.)

The left panel of Fig. 2 compares the exact and LDA dissocia-
tion curves of AB+ZB , showing a vivid example of LDA fractional-
charge and delocalization errors. The equilibrium distance Req is
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FIG. 1. The optimal electron densities of fragments along the bond axis for
model molecule AB+0.9 (ZA = 1 and ZB = 0.90) with the exact functional when
the internuclear distance is (a)–(d) R = 3.0, 4.0, 5.0, and 6.0 a.u., respectively.

about 2 a.u. for the exact solution and about 2.3 a.u. for the LDA
(Req is approximately constant in the range 0.9 < ZB < 1). Two
lessons can be drawn from the left panel of Fig. 2:

(1) The bond is stronger for the homonuclear case than it is
for the heteronuclear case. The larger the value of ΔZ, the
weaker the binding, as explained beautifully in Chapter 10 of
Ref. 49.

(2) The LDA error manifests most clearly at the dissociation
limit as the binding energy Eb goes incorrectly to a negative
value (Eb is defined as the difference between the ground-
state energy of the molecule and the sum of the ground-state
energies of the isolated atoms, in this case just a hydrogen
atom, so should be zero at dissociation). Furthermore, Fig. 2

shows that this error increases as ΔZ → 0. In the limiting
case of ΔZ = 0 (i.e., H+2 ), the error has been well studied5,50

and understood as due to the incorrect treatment of frac-
tional charges by the LDA. A hallmark of the delocalization
error (DE) for a heteronuclear diatomic molecule is that
the approximate functional incorrectly minimizes the total
energy by placing fractional charges on the separated atoms.
These incorrect fractional charges are well defined at disso-
ciation. An interesting question arises here: The (incorrect)
fractional charges that determine the DE are strictly only well
defined at dissociation, as mentioned in Sec. I, but the left
panel of Fig. 2 shows that the DE settles in slowly as R ≳ 4.
How do the fractional charges at finite R evolve into those at
dissociation as R→∞?

The right panel of Fig. 2 provides the answer given by Partition-
DFT through both ENS and FOOmethods described in Sec. II, using
both the exact functional and the LDA. For the exact case, ENS
and FOO fragments are identical. The number of electrons in the
B-fragment (NB) reaches a maximum value for small R and
decreases monotonically down to zero at dissociation in the same
way as was observed for the 1D model system of Ref. 30. However,
in the case of an approximate functional such as the LDA, although
FOO and ENS yield the same total molecular density and energy,
they yield different fragment energies and densities. The ENS-LDA
NB values are close to the exact ones for very small internuclear sepa-
rations and around the maximum of NB, but they do not decrease as
R grows and stay approximately constant for R ≳ 4, suggesting that
the error in NB encodes the error in Eb. The FOO-LDA NB values
converge to those of ENS-LDA as R grows, but differ significantly
for small R.

To discuss the origin of these differences, we take the case of
ZB = 0.9 as an example and fix R = 2.0 a.u. (close to equilibrium).

1. FOO
The LDA electronegativities χA and χB, as defined below

Eq. (16), become equal when N∗A = 0.5830 (for the exact case, they

FIG. 2. (a) Binding energies for the model of a one-electron heteronuclear diatomic molecule AB+ZB (Sec. III A) with the exact functional (solid) and the LDA (dashed) for
ZA = 1, and ZB = 0.90, 0.95, 0.99. (b) Corresponding optimal population of fragment B. FOO and ENS results lead to identical binding energies, but their corresponding N∗B
differ when using the LDA.
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FIG. 3. Negative electronegativities of fragments (top panels) and fragment energies and their sum (bottom panels) as a function of NA for the one-electron model molecule
AB+0.9 of Sec. III A (ZA = 1 and ZB = 0.9; at internuclear distance R = 2.0 a.u., εHOMO

M,LDA = −0.731 1 a.u., and εHOMO
M,EXACT = −1.021 6 a.u.) with LDA and exact functionals.

Left panels: FOO. Right panels: ENS.

equalize at N∗A = 0.6654, so the LDA error for the optimum occu-
pation is −12%). This number is also the minimizer of Ef (see the
bottom panels of Fig. 3). When NA < N∗A , the electronegativity of
B equals −εHOMO

M , a constant value. In this range, χA > χB, so frag-
ment A has a higher tendency than B to attract electrons—B is the
donor (“base”) and A is the acceptor (“acid”). As electrons are trans-
ferred from B to A, both the electronegativity difference χA − χB and
E f decrease. On the other hand, when NA > N∗A , fragments A and B
swap their donor/acceptor roles.

2. ENS
The LDA electronegativities now cross at N∗A = 0.6485. By

switching from FOO to ENS, the magnitude of the error in N∗A
has thus been reduced from 12% to 2%. The HOMO energy of the
molecule equals the HOMO energy of one of the two fragments.
That fragment is A when NA > N∗∗A and B when NA < N∗∗A , where
N∗∗A is the crossing point of the fragment HOMO energies, which
differs slightly from N∗A (the crossing point for the electronegativ-
ities). In the case of Fig. 3 (see the inset in the top right panel),
N∗∗A = 0.6630.

This example indicates that the FOO method leads to a larger
estimate than ENS for the charge transferred. In the case of Fig. 3,
ΔNFOO

= 0.4170 and ΔNENS
= 0.3515.

Now, we note another qualitative difference between the
two methods for calculating fractional populations: The ENS-LDA
values of E f are above the exact ones, but the FOO-LDA values
are below. This behavior can be traced back to an increased

delocalization of the LDA-FOO densities when compared to ENS
(see Fig. 4), which in turn leads to an increased magnitude for
the (negative) electron–nuclear interaction energy in FOO. This
observation agrees with our analysis in Sec. II C.

FIG. 4. Fragment densities of the one-electron model molecule AB+0.9 (ZA = 1
and ZB = 0.9) along the bond axis at optimal electron populations with
FOO + LDA and ENS + LDA when the internuclear distance is R = 2.0 a.u.
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Setting the bond mid-point as the origin, we define
fragment electronic dipole moments as pα = ∫ rnα(r)dr.
Then, pFOOA = 0.4219 > 0.3962 = pENSA and ∣pFOOB ∣ = ∣−0.2942∣
> ∣−0.2685∣ = ∣pENSB ∣. Clearly, the FOO fragments are more polarized
than the ENS fragments.

For a given approximation to the XC energy functional (in this
case LDA), P-DFT produces the same total energy and density that
one would get from a molecular KS-DFT calculation. FOO and ENS
partition the same total density differently as can be seen in Fig. 4,
but when the internuclear distance grows beyond the equilibrium
separation, the density in this internuclear region becomes expo-
nentially small and the differences in fragment densities produced
by FOO and ENS also become correspondingly small. At the disso-
ciation limit, these differences tend to zero and FOO and ENS yield
the same dissociation error in this limit.

B. Two electrons: Model of a two-electron
molecule AB+δ

Wenow add onemore electron and allow both electrons to fully
interact with each other and with the two nuclei. To keep the system
bound in the LDA, this time we fix ZB = 1 and let ZA ∈ [1, 2], so we
vary δ ≡ ZA − ZB from zero (H2) to one (HeH+). While the fragment
electron populations were always non-integers for the previous one-
electron diatomic molecule, we will show here that, for a range of
δ, the electron–electron interaction can make the fragments acquire
strictly integer populations, i.e., N∗A = N

∗
B = 1.

Our goal in this section is to compare the performance of
ENS and FOO for the LDA, so the “reference data” needed here is
simply that of a molecular LDA calculation. We consider two sep-
aration channels in the LDA: channel I—when 1 ≤ ZA < 1.607, the
separated state is one hydrogen atom and a one-electron atomwhose
nuclear charge is ZA, and channel II—when 1.607 < ZA ≤ 2, the sep-
arated state is one proton and a two-electron atom with nuclear
charge ZA.

We begin by finding the optimum populations by identifying
the value of NA at which the electronegativities of A and B become
equal. However, special care is needed here as the ENS electroneg-
ativities are undefined at strictly integer populations, but one can
define left- (right-) electronegativities, χ−α (χ+α ), as the left (right)
limits of −∂Ẽα[nα]

∂nα(r)
. Figure 5 shows that fragment electronegativities

are discontinuous at NA = 1. When ZA = 1.1, NA = 1 is the global
minimizer of Ef . However, when ZA = 1.45, NA = 1 is no longer
the global minimizer (the inset in the lower right panel of Fig. 5
shows that N∗A = 1.1 leads to a slightly lower Ef than NA = 1.0).
How can one know if the global minimizer of Ef will involve inte-
ger or fractional populations? Fig. 6 provides the answer. The left
and right electronegativities at NA = 1 are shown here as a func-
tion of ZA. We find that when 1 ≤ ZA ≤ 1.422, the intersection of
[−χ−A ,−χ+A] and [−χ+B ,−χ−B ] is not empty (shaded area in Fig. 6), and
NA = 1 is the global minimizer of Ef . Otherwise, NA = 1 is no longer
the global minimizer of Ef , and the optimum populations become
fractional, in agreement with the electronegativity equalization
principle.

FIG. 5. Top left: Negative electronegativities of fragments and HOMO energies as a function of NA for the two-electron molecule AB+δ of Sec. III B (ZA = 1.1 and ZB = 1)
with LDA and ENS at internuclear distance R = 1.446 a.u. and εHOMO

M = −0.441 9 a.u. Bottom left: Fragment energies and their sum as a function of NA. The top and bottom
right panels are the same as the top and bottom left panels, respectively, but with ZA = 1.45.
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FIG. 6. ENS-LDA left and right electronegativities of fragments A and B as a func-
tion of ZA for the two-electron model molecule AB+δ of Sec. III B (ZB = 1) at
internuclear distance R = 1.446 a.u. when NA = NB = 1. The shaded area corre-
sponds to the range of ZA for which the optimum fragment populations are strictly
integers.

FIG. 7. (a) Optimal electron population of fragment A, N∗A , as a function of ZA for
the two-electron model molecule AB+δ (ZB = 1) with FOO and ENS, at inter-
nuclear distance R = 1.446 a.u. (b) The number of electrons transferred from
fragment B to A, ΔN, as a function of ZA for the two dissociation channels
discussed in the text.

FIG. 8. Electronic dipole moments of fragment A as a function of ZA for the two-
electron model molecule AB+δ (ZB = 1) with FOO and ENS.

The FOO electronegativities are well defined when the electron
populations are integers.39 There is no need to define left and right
quantities here, as in ENS. The behavior of the χFOOα is similar to that
of the one-electron electronegativities of Fig. 3.

Figure 7 compares N∗A(ZA) from FOO and ENS. While the
optimum numbers are non-integers in FOO for the entire range
1 < ZA ≤ 2, they are integers in ENS when 1 < ZA ≤ 1.422 for the
reasons mentioned above. Figure 7 also shows that FOO and ENS
yield the same N∗A at ZA = 1.607. This is the critical nuclear charge
above which channel II becomes the ground state. To emphasize this
point, Fig. 7 shows the number of electrons transferred ΔN for the
range 1 < ZA < 2, indicating the ground-state dissociation channel
in each case. Electrons are transferred from B to A when ZA < 1.607
and from A to B when ZA > 1.607. We note that ∣ΔN∣ is always lower
in ENS than in FOO. The ENS fragment dipoles are also always
smaller (Fig. 8).

FIG. 9. Optimal electron population of fragment H, N∗H , as a function of internuclear
distance for HeH+ with FOO and ENS.
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1. Dissociation of HeH+

We now compare FOO and ENS results for the optimum num-
ber of electrons transferred in HeH+ as the internuclear separation
increases from R ∼ 1 a.u. up to R ∼ 5 a.u (Fig. 9). The separated
state of HeH+ is a helium atom and a proton. The proton is dressed
with a small fraction of an electron at finite R and we note that the
qualitative behavior of this small fraction N∗H(R) is similar to that
observed in the exact case for the one-electron molecule of Sec. III A
(Fig. 2): (1) The fraction of an electron reaches a maximum for ENS
at R ∼ 1.8 a.u.; (2) the FOO and ENS values approach each other as
R grows; and (3) the electron fraction given by FOO is larger than
that given by ENS for all R.

C. Four electrons: Lithium hydride
Finally, we briefly examine the four-electron molecule LiH at

its equilibrium separation (Req = 3.03 a.u.). In a previous work,51 it
was speculated that the optimal P-DFT electron populations of the
atomic fragments would be non-integers at Req. However, a recent
exact P-DFT calculation32 of a one-dimensional two-electron model
of LiH yielded strictly integer populations. Figure 10 shows our LDA
P-DFT energies for 3D LiH using both ENS and FOO. We find
that, by using ENS, the populations are, indeed, integers, as in the
one-dimensional two-electron model.32 Although the densities of
Li and H fragments are distorted versions of the corresponding
isolated-atom densities (see the H-atom density distortions in
Fig. 11), there is no electron transfer between fragments in ENS.
However, by using FOO, the fragment electron populations are non-
integers. At the equilibrium internuclear distance, Req = 3.03 a.u.,
we obtain N∗Li = 2.663 and N∗H = 1.337. The number of electrons
transferred from Li to H is ΔN = 0.337. Just as in the examples of
Secs. III A and III B, the number of electrons transferred with the
FOO method is larger than with the ENS method (which is just
zero in this case). To understand why, we distinguish three zones
and note that when the number of electrons in the lithium atom
is less than the optimum predicted by FOO (zone 1: NLi < 2.663),

FIG. 10. The sum of fragment energies, Ef , as a function of NA for LiH with FOO
and ENS at the equilibrium internuclear distance R = 3.03 a.u.

FIG. 11. Optimal electron densities for the H fragment in LiH with FOO and ENS
at the equilibrium internuclear distance R = 3.03 a.u.; the solid line corresponds
to an isolated hydrogen atom density. The inset shows the difference between the
FOO and ENS fragment densities on the xz plane.

then εHOMO
H,FOO = ε

HOMO
H,ENS = ε

HOMO
LiH . However, when that number is

higher than the optimum predicted by ENS (zone 2: NLi > 3.0), then
εHOMO
Li,FOO = ε

HOMO
Li,ENS = ε

HOMO
LiH . Finally, when NLi is in between those two

values (zone 3: 2.663 < NLi < 3.0), then εHOMO
Li,FOO = ε

HOMO
H,ENS = ε

HOMO
LiH

FIG. 12. Partition potential along the bond axis for LiH with FOO and ENS at the
equilibrium internuclear distance R = 3.03 a.u. when (a)–(c) NLi = 2.5, 2.8, and
3.5. The red (blue) dashed-dotted straight lines indicate the positions of the Li (H)
nuclei.
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and εHOMO
Li,ENS < ε

HOMO
LiH . Our analysis of Sec. II C then implies that

vENSp (r) is deeper than vFOOp (r) (Fig. 12) and EENS
f > EFOO

f (Fig. 10).
It can be seen in Fig. 12 that the partition potential does not change
qualitatively when NLi crosses from zone 1 to zone 3, but there are
major qualitative changes when it crosses to zone 2.

IV. CONCLUDING REMARKS
By treating fragment electron populations as variables in

P-DFT calculations, we have shown how to find optimal popula-
tions via two alternative methods, one that involves fractional orbital
occupations (FOO) and another that makes use of ensemble aver-
ages (ENS). The optimal populations are found in both cases when
the sum of fragment energies Ef reaches its global minimum and all
fragment electronegativities become equal. At that optimum, a value
for the charge transferred between two fragments can be assigned
unambiguously even at finite internuclear separations.

Through the formal analysis of Sec. II and the explicit numer-
ical calculations of Sec. III, we have revealed differences between
FOO and ENS that had not been observed in previous studies:
(1) Although both methods lead to the same molecular densities
and energies, the fragment densities of hetero-nuclear diatomic
molecules can be significantly different, with the FOO method con-
sistently yielding a larger fraction of an electron transferred from
donor to acceptor, at least when the LDA is employed; (2) the
FOO fragment dipole moments are observed to provide an upper
bound to the corresponding ENS dipole moments; (3) the ENS par-
tition potentials are deeper than the corresponding FOO partition
potentials; and (4) accordingly, EENS

f > EFOO
f and EENS

p < EFOO
p .

Although a general proof of these observations is far beyond
the scope of this work, we suspect that FOO will generally transfer
more electrons than ENS: When the nuclei are far enough apart, the
effect of the partition potential on the fragment densities is negligible
and the ENS fragment energies vary linearly with electron number.
Since this occurs for both fragments, and since the FOO energies are
observed to be convex functions of the electron number, the sum
of fragment energies is expected to be lower in FOO than in ENS.
The situation is less clear at finite internuclear separations R, but
the small deviations from linearity detected for ENS even at small
R (certainly at equilibrium) suggest that the conclusions will remain
valid, in general, at finite R.

With appropriate approximations to the partition energy
functional, P-DFT has been recently shown to overcome static-
correlation and delocalization errors when stretching homonuclear
diatomic molecules.8 Also, for homonuclear diatomic molecules,
a proposed “covalent” approximation for the non-additive non-
interacting kinetic energy shows promising results for orbital-free
calculations.29 An extension of these approximations to the ionic
case and, more generally, to chemical bonds connecting inequivalent
fragments, would be desirable. This extension will require choosing
a method to treat fractional populations. Although both FOO and
ENS methods are valid candidates, the results of this work point to
the advantages of each method in different cases: The observation
that ENS fragment densities are less distorted than FOO densities
upon formation of a chemical bond is a significant advantage
for ENS, both conceptually and computationally. Conceptually,
it is pleasing to have fragments-in-molecules that are minimally

distorted from their isolated counterparts. Computationally,
although each iteration of the P-DFT equations involves two
integer-number calculations (vs only one in FOO), the minimal
distortion of the isolated input densities leads to a faster conver-
gence that will benefit future applications. On the other hand, when
using the LDA on polar diatomic molecules at their equilibrium
internuclear separations, the FOO method has the advantage that
it always leads to fractional populations in line with the chemist’s
intuition that polar molecules are composed of fragments with
fractional formal charges.
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