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1  |  INTRODUC TION

Insufficient sleep is a growing concern both in the USA and globally 
with survey data showing that roughly one-third of adults in many 
countries do not achieve the recommended 7  h of nightly sleep 
(Hafner et al., 2017). Studies have shown that insufficient sleep im-
pacts various aspects of decision making (Harrison & Horne, 2000), at 
least in part due to the effect of sleep loss on prefrontal brain activa-
tion (Killgore, 2010). Most studies, however, involve experimentally 
manipulated sleep restriction or deprivation, and so understanding 
the extent to which these findings generalise to ecologically valid 
field settings requires complementary observational research. For 

example, we have shown the ability to integrate multiple pieces of 
information into a single decision is impaired both by experimental 
total sleep deprivation (Dickinson & Drummond, 2008) and by more 
ecologically valid self-selected short sleep duration (Dickinson et al., 
2016). In both cases, individuals who are either sleep deprived or 
sleep restricted tended to focus on a single, relatively easy to under-
stand piece of information to inform their decision, rather than also 
integrating a second, more complex piece of information. Similarly, 
total sleep deprivation (Anderson & Dickinson, 2010), chronic par-
tial sleep restriction (Dickinson & McElroy, 2017), and observational 
short sleep levels (Holbein et al., 2019) all reduced prosocial be-
haviours during a common set of decision tasks.
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Summary
Risky choice has been widely studied in experimental settings, but there is a paucity of 
research examining the effects of self-selected sleep schedules on risky choices. The 
current study examined incentivised risky choices of 100 young, healthy adults whose 
self-selected (at-home) sleep schedules were tracked via actigraphy for 1 week prior to 
decision making. Average nightly sleep was 6.43 h/night. On each trial of the decision 
task, individuals chose between two monetary gambles, with separate blocks of trials 
presenting amounts to gain versus amounts to lose for each paired gamble choice. 
In general, participants were risk-averse when trying to maximise gains (GAINS) and 
risk-seeking when trying to minimise losses (LOSSES). These tendencies were ampli-
fied in trials where gambles differed more (vs less) in their riskiness. Response times 
were longer for real choices (vs. dummy trials of random choice), LOSS versus GAINS 
trials, and when gambles were more similar versus different in risk. Gamble choices 
were not impacted by actigraphy measured average sleep levels, which suggests self-
selected moderate sleep deprivation does not affect risky monetary choices, as has 
been found in studies of experimentally induced sleep deprivation. However, our data 
showed that sleep variability increased risk-taking behaviour in the LOSS condition. 
Thus, risky decision-making may relate more to variability in sleep efficiency than to 
overall sleep duration or quality in naturalistic settings. The current study gives insight 
into how decision making in experimental sleep settings may or may not translate to 
more ecologically valid settings of self-directed sleep.
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The present paper aims to contribute to the literature by evaluat-
ing risky choice under self-selected sleep levels, using a risky choice 
paradigm previously utilised in the context of total sleep deprivation 
(McKenna et al., 2007). Risky choice, which we use to refer to the 
observed risk taking in a task, is a frequently studied topic in the 
literature on sleep and decision making. While some studies em-
ploying relatively mild sleep deprivation have reported no impact 
of experimental sleep deprivation on risky choices (Chaumet et al., 
2009; Menz et al., 2012; Sundelin et al., 2019; Venkatraman et al., 
2007), several others, of both short and long duration sleep loss, 
have reported an increase in risky choices during experimental sleep 
deprivation, though various factors can affect that general finding 
(e.g. Brunet et al., 2020; Castillo et al., 2017; Ferrara et al., 2015; 
Harrison & Horne, 2000; Killgore et al., 2006; McKenna et al., 2007; 
Womack et al., 2013). For example, Ferrara et al. (2015) reported 
that men were more likely than women to take increased monetary 
risk after sleep loss when trying to maximise gains after one night of 
total sleep deprivation. Task related factors can also influence the 
effects of sleep loss on risky choices. Sundelin et al. (2019) argued 
that decision tasks involving feedback, which necessarily include 
a learning component, may be more susceptible to sleep loss than 
those without feedback. Another factor moderating the effects of 
sleep loss on risky choices is whether the decision is framed in terms 
of maximising gains or minimising losses. McKenna et al. (2007) re-
ported that 23 h of total sleep deprivation altered risky choices, but 
the effect varied depending on the type of decision. For decisions 
designed to maximise financial gain, sleep deprivation led to indi-
viduals taking more risk (McKenna et al., 2007). In contrast, for de-
cisions designed to minimise loss, sleep deprivation was associated 
with less risky decisions. This study suggests decreased sensitivity 
to risk may be one mechanism underlying the sleep deprivation ef-
fect, since changes in risky choices over the separate domains of 
gains and losses both indicated a move towards risk neutrality in ob-
served choices (McKenna et al., 2007). In contrast to McKenna et al., 
Sundelin et al. (2019) found no differential impacts of two nights 
sleep restriction (4 h in bed/night) on risky decisions related to gains 
vs losses.

The inconsistent findings related to the impact of sleep depriva-
tion on observed risk taking, especially when sleep loss is relatively 
mild, underscore the need to examine the impact of real-world, self-
selected insufficient sleep levels on risky choice. Very few studies 
have examined that question. Olson et al. (2016) reported acute re-
ductions in sleep duration, relative to an individual's typical duration, 
did not increase risk taking on the Iowa Gambling Task, but reduced 
sleep did shorten the time horizon over which information was in-
tegrated into participants' decisions. In a large sample (n > 2000) of 
active duty military personnel, Mantua et al. (2021) reported that 
shorter habitual sleep duration was associated with an increased 
number of self-reported high risk behaviours.

While total sleep time has been shown to influence cognition 
generally, and decision making specifically (Dickinson et al., 2016), 
sleep efficiency has not been well examined in the context of cogni-
tion. One exception is Mantua et al. (2021), who reported that worse 

sleep quality, as reported on the Pittsburgh Sleep Quality Index 
(PSQI) and Insomnia Severity Index, was associated with increased 
engagement in high risk behaviours. In adolescents, poor sleep qual-
ity as assessed on the PSQI was associated with greater levels of 
both self-reported and experimental risk taking (Telzer et al., 2013). 
The current study utilises actigraphy-derived sleep efficiency in an 
effort to extend these findings with a prospectively assessed mea-
sure of sleep quality that was collected in the days immediately be-
fore the risky choice task session. To our knowledge, the influence 
of night-to-night (N2N) sleep variability on risk taking has never been 
examined, though N2N variability in total sleep time has been shown 
to influence cognition more generally (Bei et al., 2016). Moreover, 
increased night-to-night variability is common in populations more 
likely to show increased risk taking behaviours, such as individuals 
with psychiatric disorders and shift workers (Bernert et al., 2017; 
Buysse et al., 2010; Straus et al., 2015). Thus, examining the influ-
ence of both sleep quantity/quality and the associated night-to-night 
variability of those measures together may provide unique insights 
into the role of sleep in risky decisions.

The current study seeks to address some of the aforementioned 
gaps in the literature by examining the extent to which controlled 
laboratory sleep deprivation findings on risky decisions generalise 
to insufficient sleep levels obtained in the uncontrolled home envi-
ronment. We studied young, healthy adults for a week with actig-
raphy and sleep diaries, with no constraints placed on their sleep 
schedules. At the end of the week, participants attended the labora-
tory for a decision experiment and were administered a risky choice 
task nearly identical to that administered in McKenna et al. (2007), 
where we could separately examine decisions related to maximising 
financial gain and those related to minimising financial loss. We also 
report response time data, which we conceptualise as providing in-
sight into which task details lead to increased deliberation regarding 
one's choice. We hypothesised that self-selected shorter sleep lev-
els (operationalised as average actigraphy measured total sleep time 
over the course of a full week), lower levels of objective sleep effi-
ciency, and increased night-to-night variability in sleep would each 
be associated with reduced sensitivity to risk (i.e., more risky choices 
when maximising gain and less risky choices when minimising loss) 
and faster responding during risky decisions.

2  |  METHODS

2.1  |  Participants

We collected data from 102 young adults from a regional U.S. uni-
versity and, due to two withdrawals mid-week, 100 participants 
completed the study (age: 22.98 ± 7.96 years; 50 females, 6 minor-
ity) and were included in the analysis. Inclusion criteria were: over 
18 years of age, no self-reported gambling problems, intermediate 
diurnal preference type (assessed using the short-form morningness-
eveningness questionnaire, rMEQ, of Adan and Almirall, 1991), 
subclinical risk levels of major depressive and anxiety disorder 
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(depression risk assessed using the PHQ-2, Kroenke et al., 2003, and 
anxiety risk assessed using the GAD-7, Spitzer et al., 2006). Most 
participants were students from the University (90 students, 9 staff, 
1 faculty).

2.2  |  Procedure

Participants were recruited to come to two laboratory sessions set 
1 week apart. The recruitment invitation explained that during the 
first Session they would be assigned a sleep tracking device to wear 
for the full week between Sessions 1 and Session 2. During Session 
1 the Need for Cognition questionnaire (NFC; Cacioppo & Petty, 
1982), which measures one's preference for cognitively effortful en-
deavours, and Epworth Sleepiness Scale were administered (Johns, 
1991). The weeklong study always commenced with Session 1 on a 
Tuesday (n = 32), Wednesday (n = 63), or Thursday (n = 5) to avoid 
weekend sleep effects. We did not include a factor for weekday vs 
free day in our analysis for two reasons. First, while weekend or “free 
day” sleep is often more variable than weekday or work/school day 
sleep, our mostly undergraduate student participants typically have 
greater variation in free days (both frequency and the exact day) due 
to varied class/work schedules than a non-student employed popu-
lation. Second, when comparing Thursday–Sunday night-to-night 
data with weekday night-to-night data (2-tailed Z-tests) our partici-
pants were found to have no significant differences in night-to-night 
variability in sleep efficiency (p > 0.10) and only marginally higher 
variability in night-to-night total sleep time (p = 0.067) on the week-
end (Thursday–Sunday) compared with weekdays.

Actigraph devices (AW-64 devices; Philips Respironics) were as-
signed to participants during Session 1 to be worn continuously until 
Session 2 a week later. Participants also kept simple sleep diaries 
over the course of weeklong study. The actigraphy data were scored 
using accepted protocols (e.g., Goldman et al., 2007) to identify the 
beginning and end points of each rest interval for each participant. 

Rest intervals were based on a combination of diary entries and 
both activity and light levels. Participants were told to maintain their 
usual routine regarding sleep, with no restrictions imposed by the 
researchers. At the end of the week, participants returned to the 
decision laboratory for Session 2 and were administered an incentiv-
ised risky choice task via computer.

The risky choice task paradigm we used extends from McKenna 
et al. (2007), which was adapted from Ellsberg (1961). The adapted 
version used here (and in the previous literature) has been shown, 
among other things, to replicate the well-known finding that indi-
viduals make less risky choices over gains but more risky choices 
over losses (Kahneman & Tversky, 2013). Over a set of 120 total 
trials, participants decided between two choices of gambles, one 
of which was riskier than the other (Figure 1). In other words, each 
gamble choice presented the participant with two options having 
the same expected payoff but different variance in payoffs. That 
is, each gamble presented some risk, but one gamble always pre-
sented a higher payoff variance to the participant compared with 
the other (safer) gamble. Because the difference in the variance 
between the gamble choices varied across trials, we can also use 
this gamble variance difference as a way to describe some gamble 
choices as being easier than others (i.e., higher variance differences 
present the participant with a more stark and therefore easier 
choice). Participants were not explicitly informed about risk levels, 
but rather they had to form their own judgements based on the 
gamble choice payoff information. Forty trials involved gambles 
where participants tried to maximise winning of money (“GAINS”: 
Figure 1a), 40 trials involved gambles where participants tried to 
minimise losses of money (“LOSSES”: Figure 1b), and 40 trials were 
control trials that involved no money (“dummy” trials: Figure 1c). 
As in McKenna et al. (2007), the task we administered did not pro-
vide any feedback to participants across trials. This is an important 
strength, as providing feedback during a decision task introduces 
a learning component on top of (in this case) the underlying risk 
preference component, which together will impact one's observed 

F I G U R E  1 Examples of risky choice 
task stimuli. Participants made a series of 
choices between two possible gambles. 
(a): trials involving potential winning 
of money (GAINS); (b): trials involving 
potential losing of money (LOSS); (c): trials 
involving a random selection, with no 
implications for study payments (dummy 
trials)
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risky choices. Indeed, Sundelin et al. have explicitly argued for the 
need to separately assess the impact of sleep loss on risky choices 
independent of any confounding influences of learning (Sundelin 
et al., 2019).

We refer to the trials involving real monetary gamble choices as 
“real” trials. The task informed subjects there was an equally likely 
chance of drawing a red, blue, or yellow chip from a container and 
one's payoff depended on the colour chip drawn. The participant 
was told to choose, for each trial, the preferred gamble. For “dummy” 
trials (Figure 1c), all payoffs were listed as X and participants were 
instructed to simply select Gamble A or Gamble B at random, and 
the decision had no payoff consequence. These dummy trials were 
included in the paradigm for use in a separate imaging experiment, 
but we nevertheless exploit them in our behavioral analysis to help 
interpret the response time (RT) data we generated.

Appendix S1 lists full instructions of the computerised task, 
along with the full set of risky choice stimuli used for both the GAINS 
and LOSS trials. At the conclusion of the experiment, one GAINS and 
one LOSS trial were selected at random, and the subject's chosen 
gamble for each was played out to add (GAINS) and subtract (LOSS) 
the appropriate payoff amount from their ultimate compensation 
from the study.

2.3  |  Dependent variable measures

Regarding risky choice outcomes, we examined gamble choices 
in two ways. First, a subject-level analysis will pool the data for a 
given subject across all 40 real trials in a block to create a subject-
specific outcome measure of risky choice, Safe Choice Score, follow-
ing McKenna et al. (2007). Specifically, Safe Choice Score is defined 
as the proportion of the 40 trials where the less risky gamble was 
chosen (i.e., the gamble with the lower variance), minus the propor-
tion of the 40 trials where the more risky gamble was chosen. Note 
that, as constructed, Safe Choice Score ∈ [−1, +1] and operationalises 
one's underlying risk preference construct in this task. A Safe Choice 
Score = 0 indicates risk neutral preferences in the sense that an equal 
number of the more versus less risky gambles were chosen across 
the trials, a positive score suggests risk averse preference, negative 
score suggests risk seeking preferences. A Safer Choice Score is con-
structed separately for each individual for the GAINS and LOSS do-
main trials. In addition to analysis on subject-level Safe Choice Score, 
to compare with the previous literature, we also performed analysis 
using each (real) trial as the unit of observation by coding a dichoto-
mous dependent variable (equal to 0 or 1) to indicate the selection of 
the Safer Choice for that trial (i.e., the gamble with the lower payoff 
variance in that trial). Such trial-level analysis will treat the data as a 
panel where the error term is clustered by participant to account for 
multiple observations per participant.

Response times (RT) were also captured for each of the decision 
trials. In the context of our study, we conceptualise RTs as providing 
an indicator of more deliberation in this particular paradigm (i.e., tri-
als requiring greater deliberation produce longer RTs). We assessed 

the validity of this assumption with two RT comparisons: (1) real 
trials compared with dummy trials; and (2) trials where the differ-
ence in variance between Gamble A and B is smaller. To examine 
the extent to which RT is influenced by the amount of deliberation 
required on a given trial, we hypothesised that real trials would have 
longer RTs than dummy trials, and trials where the risk level of the 
choices was more similar would have longer RTs than trials where 
the risk choice contrast was greater.

2.4  |  Data processing

Actigraphy data were processed with manufacturer software 
(Actiware, version 6.0.9). The sleep opportunity window was uncon-
strained in order to measure self-selected sleep in the most natural-
istic way possible. We obtained total sleep time and sleep efficiency 
data from the actigraph, and we constructed the N2N variability 
measures following the approach used in recent research (Straus 
et al., 2015; Walters et al., 2020). The N2N variability measure for 
sleep outcome measure, X, across N days/nights was calculated as:

3  |  RESULTS

Figure 2 shows the histogram of average nightly sleep levels over the 
1-week data recording period. Average actigraphy-measured nightly 
sleep was 385.84 (±57.51) minutes per night in our sample. Figure 
S1 in Appendix S1 shows the distributions of bed and wake times 
extracted from the actigraphy records of our present data, which 
represent the typical self-selected bed and wake times in our obser-
vational sample of 100 participants.

3.1  |  Gamble choices

We next evaluated the actual risky choices of the participant as re-
flected in the choices of riskier versus safer gambles. We note our 
data replicate the general domain-effect that subject choices were 
consistent with risk averse preferences in the GAINS domain (aver-
age Safer Choice Score of 0.368; one-sample Z-test p < 0.001) but 
risk seeking preferences in the LOSS domain (average Safer Choice 
Score of −0.080: p <  0.05) (McKenna et al., 2007; Sundelin et al., 
2019). Tables 1 and 2 present the results from both subject-level and 
trial-level analysis of risky choices, separated by GAINS versus LOSS 
domain trials. The difference across Tables 1 and 2 is whether the 
key independent variable sleep measures are actigraphy measured 
average nightly total sleep time and its N2N variability or average 
nightly sleep efficiency and its N2N. We estimated models sepa-
rated by choice of sleep measure and its variability due to the high 
correlation between total sleep time and sleep efficiency in the ac-
tigraphy data (simple correlation of ρ = 0.5099).

N2N variability of X =

√

(X2−X1)
2 + (X3−X2)

2 +… + (Xn−X(n−1))
2

(n − 1)
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The results in Tables 1 and 2 on the subject-level data (far left col-
umns of each table) showed no significant predictive capacity of our 
individual specific demographic controls (Age, Female, rMEQ score, 
NFC score, Epworth). The trial-level analysis did reveal a significant 
impact of Variance Dif between Gambles in predicting the likelihood 
of choosing the safer (lower variance) gamble. In both Tables 1 and 2, 
our results showed that participants were more likely to choose the 
safer gamble in the GAINS domain but the riskier gamble in the LOSS 
domain as the variance difference between gambles increased (i.e., 
the riskier gamble of the pair was much more risky in such instances).

Regarding actigraphically derived mean sleep measures and 
sleep variability, neither average nightly total sleep time nor sleep ef-
ficiency was a significant predictor of risky choice in our task (Tables 
1 and 2). Sleep variability, as measured by N2N total sleep time vari-
ability, did not predict risky choices (Table 1). However, greater N2N 
sleep efficiency variability, was associated with a reduced likelihood 
of making a safer choice (i.e., a greater likelihood of making riskier 
choices) on LOSS trials (Table 2). N2N variability in sleep efficiency 
did not influence risk taking on the GAINS trials.

3.2  |  Response times

Summary data on RT are presented in Figure 3 (panels a–c), and 
Table 3 presents the supporting statistical results. Specifically, we 
found longer RTs related to the following trial characteristics: real 
(vs dummy) choices; choices in LOSS (vs GAINS) trials; choices where 
the gamble options are more similar (defined as lower differences in 
the payoff variance of each choice). These three variables account 
for 30% of the total variance in RT in our data (Table 3).

Additionally, Table 4 shows decisions across both GAINS and 
LOSS domains became faster across trials (i.e., as the task pro-
gressed, RT decreased). The only other significant predictor of RT 
was the dichotomous indicator variable, Safer Choice, where our re-
sults indicated choosing the Safer Choice gamble resulted in a quicker 
decision in the GAINS trials but not in LOSS trials. Regarding the 
other independent variables, neither the individual-specific control 
measures nor the objective actigraphy-measured 1-week sleep met-
rics significantly predicted RT (p > 0.05).

F I G U R E  2 Voluntary nightly objective sleep levels. Sleep was 
measured via actigraphy over 7 consecutive nights. Line shows the 
smoothed kernel density estimate of the distribution

TA B L E  1 Predictors of safer gamble choices (TST and N2N-TST variability covariates)

Variable

Subject-level analysis (OLS regressions)
Dependent variable = Safe choice score ∈[−1, +1]

Trial-level analysis (random effects GLS 
regression, errors clustered by subject)
Dependent variable = Safer choice (=1)

GAINS LOSSES GAINS LOSSES

Constant −0.2106 (0.4391) −0.5226 (0.4552) 0.1421 (0.2189) 0.4439 (0.2041)*

Trial – – 0.0009 (0.0005) −0.0006 (0.0006)

Variance Dif between gambles – – 0.0013 (0.0001)** −0.0012 (0.0001)**

Avg nightly total sleep time 0.0004 (0.0007) 0.0011 (0.0007) 0.0002 (0.0002) 0.0006 (0.0003)

N2N total sleep time variability 0.0004 (0.0007) −0.0008 (0.0008) 0.0002 (0.0003) −0.0004 (0.0003)

Epworth 0.0147 (0.0108) 0.0167 (0112) 0.0076 (0.0062) 0.0088 (0.0055)

rMEQ score 0.0400 (0.0218) 0.0208 (0.0226) 0.0205 (0.0110) 0.0106 (0.0113)

Age −0.0074 (0.0047) −0.0078 (0.0049) −0.0038 (0.0028) −0.0039 (0.0023)

Female (=1) 0.0118 (0.0776) −0.0893 (0.0805) 0.0049 (0.0335) −0.0473 (0.0383)

NFC score −0.0022 (0.0012) −0.0017 (0.0013) −0.0011 (0.0006) −0.0009 (0.0006)

R-squared (overall) 0.1154 0.1110 0.1221 0.0867

Observations 100 100 3967 3903

Coefficients (standard errors) shown. *0.05, **0.01 for the 2-tailed test. Trial-level analysis restricted to Real Trials. Trial-level analysis results similar 
using nonlinear random effects probit estimation.
Avg, average; N2N, night-to-night; NFC, need for cognition; rMEQ, reduced morningness-eveningness questionnaire; Variance Dif, variance 
difference.
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4  |  DISCUSSION

Choices over monetary risk often present a pattern consistent with 
risk aversion when gambles relate to monetary gains but more 
risk seeking preferences when gambles relate to monetary losses 
(Barberis et al., 2001; Kahneman & Tversky, 2013; Wakker, 2010). 
Our results are consistent with this pattern and, in that sense, rep-
licate the payoff domain specific result from McKenna et al. (2007) 
using a largely similar task. We also found this “risk averse for gains, 
risk seeking for losses” pattern was amplified when the difference 
between gambles was more stark. Additionally, McKenna et al. 
(2007) found that 23 h of total sleep deprivation produced choices 
consistent with a decreased sensitivity to risk (i.e., domain specific 
differences in risky choices were diminished). Here, we did not find 
similar alterations to risky choice patterns in those who self-selected 
shorter sleep duration over the course of the study week. However, 
relatively few participants were fully sleep restricted (e.g., mean 
sleep durations <6  h) prior to the experimental session. This sug-
gests more modest levels of sleep loss, even when relatively chronic, 
may not lead to changes in risky choice. This is consistent with the 
findings of Sundelin et al. (2019), who found two nights of 4-h sleep 
restriction did not influence participants risky choices on either gain 
or loss trials, where each trial contrasted a guaranteed outcome to 
a risky outcome. The discrepancy between the findings of experi-
mental laboratory-based total sleep deprivation in McKenna et al. 
(2007) and those reported here with home-based self-selected sleep 
schedules (only some of which involved sleep restriction) also high-
lights the importance of studying the impact of sleep loss in real-
world settings. While total sleep deprivation does indeed occur 

outside the laboratory, usually in operational settings, chronic sleep 
restriction is considerably more common. Indeed, a recent survey re-
ported 50.6% of Australian adults reported sleeping an insufficient 
amount (i.e., <7 h/night) on a regular basis and 12% routinely sleep 
<5.5 h/night (Adams et al., 2017). The results of this study suggest 
chronic sleep restriction, as manifested in self-selected short sleep, 
may not negatively affect risk-based decisions, at least those related 
to monetary risk. Rather, it may be total sleep deprivation or more 
chronic and/or severe sleep restriction is needed before risky choice 
patterns change.

On the other hand, some aspects of sleep variability did impact 
risky monetary choices. Specifically, greater night-to-night variabil-
ity in sleep efficiency was associated with taking more risk when 
trying to minimise potential losses. Given that subjects were, overall, 
risk seeking in the LOSS domain, this result indicates those individ-
uals having more variability in sleep efficiency across our 1 week 
sleep data collection period made even riskier choices. Venkatraman 
and co-authors have twice reported blunted responses within the 
anterior insula component of limbic system in response to losses 
during experimental sleep deprivation (Venkatraman et al., 2007, 
2011). If night-to-night variability in sleep quality has a similar ef-
fect on the limbic system, it would suggest individuals may be willing 
to take more risk when faced with monetary losses, because they 
experience less negative affect should they lose the gamble. This 
limbic system mechanism hypothesis has implications for gambling 
or investing behaviours, which often present gambles over loss 
amounts. Another potential mechanism to explain increased risky 
choices during loss trials in those with more irregular sleep effi-
ciency is that such irregularity increases impulsivity. However, to 

TA B L E  2 Predictors of safer gamble choices (Sleep Efficiency and N2N-Sleep Efficiency variability covariates)

Variable

Subject-level analysis (OLS regressions)
Dependent variable = Safe Choice Score ∈[−1, +1]

Trial-level analysis (random effects GLS 
regression, errors clustered by subject)
Dependent variable = Safer Choice (=1)

GAINS LOSSES GAINS LOSSES

Constant 0.0266 (0.7140) 0.1909 (0.7282) 0.2723 (0.2783) 0.8228 (0.3333)*

Trial – – 0.0009 (0.0005) −0.0006 (0.0006)

Variance Dif between gambles – – 0.0013 (0.0001)** −0.0012 (0.0001)**

Avg nightly sleep efficiency 0.0002 (0.0072) −0.0008 (0.0073) 0.00002 (0.0028) −0.0006 (0.0038)

N2N sleep efficiency variability −0.0019 (0.0101) −0.0224 (0.0103)* −0.0010 (0.0052) −0.0116 (0.0056)*

Epworth 0.0129 (0.0110) 0.0079 (0.0113) 0.0067 (0.0060) 0.0043 (0.0052)

rMEQ score 0.0393 (0.0221) 0.0147 (0.0226) 0.0201 (0.0107) 0.0074 (0.0112)

Age −0.0084 (0.0045) −0.0065 (0.0046) −0.0043 (0.0027) −0.0032 (0.0020)

Female (=1) 0.0289 (0.0758) −0.0780 (0.0773) 0.0141 (0.0325) −0.0412 (0.0353)

NFC score −0.0023 (0.0013) −0.0021 (0.0013) −0.0011 (0.0006) −0.0011 (0.0006)

R-squared (overall) 0.1101 0.1349 0.1212 0.0903

Observations 100 100 3967 3903

Coefficients (standard errors) shown. *0.05, **0.01 for the 2-tailed test. Trial-level analysis restricted to Real Trials. Trial-level analysis results similar 
using nonlinear random effects probit estimation.
Avg, average; N2N, night-to-night; NFC, need for cognition; rMEQ, reduced morningness-eveningness questionnaire; Variance Dif, variance 
difference.
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the extent RT on this task reflects deliberation in one's decisions 
(a hypothesis supported by findings in Figure 3a and Table 3), our 
finding that night-to-night sleep efficiency variability does not sig-
nificantly affect RT (Table 4) suggests that impulsivity did not vary 
with sleep efficiency variability and, thus, is likely not the mechanism 
influencing risky choice on loss trials. Our data are therefore more 
consistent with the hypothesis that night-to-night variability in sleep 

efficiency increased risk tolerance in LOSS trials via the affect mech-
anism. Interestingly, night-to-night variability in sleep efficiency did 
not impact risk taking related to gains, and night-to-night variability 
in total sleep time did not affect either type of risk taking.

A few limitations of the study should be considered when in-
terpreting results. First, our primary interest here was to examine 
if laboratory-based sleep deprivation findings would translate to 

F I G U R E  3 Response times on risky choice task. (a) N = 3878 total trial level observations of Dummy Trials, N = 7870 trial level 
observations of Real Trials. (Total N = 12,000 trials administered with 252 total trials (2.1%) and 130 Real Trials (1.7%) discarded from 
analysis due to recorded response time (RT) = 0). (b): Distributions generated from consequential real trials with monetary incentives: 
N = 3967 Gains and 3903 Losses trials. Data pooled across subjects and trials for display shown. (c): N = 2000 trial level observations in 
each quartile shown above. Only Real Trials with RT > 0 (n = 7870) considered in establishing the quartiles, and all Real Trial gamble choices 
had the same expected gain or loss (quartiles established prior to discarding trials with RT = 0). While summary distributions pool Gains and 
Losses Trial data, the results are similar with separate plots for Gains and Losses data (available on request). The lower quartile represents 
gamble choices for which the difference between the riskiness of the two gambles is smallest, which implies a more difficult risky choice 
for the participant because the two options become more similar. Summary graph combines all trials, Gains and Loss treatment, and across 
all participants and so is not constructed with all independent observations (multiple observations per subject per treatment). Panels a–c: A 
random-effects regression with errors clustered at the individual subject level documents longer response times are associated with: (a) Real 
Choice trials, compared with dummy trials; (b) LOSS trials, compared with GAINS trials; and (c) lower variance difference between gamble 
options. See Table 3 for these results (p < 0.001 in each instance)
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observational, unmanipulated sleep levels observed in a university 
community sample. Thus, we did not design the study to test a par-
ticular theoretical mechanism underlying the impact of sleep loss on 
risky choice. Indeed, despite some very good studies examining the 
neural correlates of risk during sleep loss, there is no well accepted 
theory regarding how or why sleep loss affects risky choice. Thus, 
future research should seek to better develop theories related to 
mechanisms explaining how sleep or sleep loss impacts specific 
components of risk taking. Second, the models tested here only ac-
counted for a modest amount of variance (about 9–13%) in the risky 
choices made by participants. One potential explanation for this may 

be the task we administered is not a sufficiently sensitive measure 
of risky choices (e.g., we did not see the typical gender effect on 
risk preference in this study, as noted in Charness & Gneezy, 2012). 
However, the fact that the models in our prior total sleep deprivation 
study with this task explained as much as 29.7% of the variance in 
risky choices argues against task insensitivity being the likely issue. 
We should note, though, the gambles used in the current study had 
a smaller range in variance difference between the higher risk and 
lower risk gambles compared with the previous TSD study using this 
risky choice paradigm (McKenna et al., 2007). Future research could 
vary this attribute of the gamble choices or even provide a certain 
payment safe-option to determine the contribution that relative risk 
level plays in moderating the sleep effect. Another difference with 
McKenna et al. is that our between-subject design may have had 
less power to detect sleep effects than the within-subject designed 
utilised by McKenna et al. (2007). Mitigating that limitation, though, 
is the fact our sample size here was considerably larger than that of 
McKenna et al. (100 vs 26, respectively). The cross-sectional nature 
of this study also does not allow us to assess the causal influence 
of interindividual differences in sleep quantity or quality on risky 
decisions in a way one can with a within-subjects design. The field 
would benefit from future studies taking a longer-term longitudinal 
approach to capture naturally occurring large differences in sleep 
quantity or quality (e.g., during the school term vs during vacation). 
An additional limitation is we ran eight primary models related to risk 

TA B L E  3 Documenting the significance of trends in distribution 
graphs

Key task determinants of response times (RT)
Dependent variable = RT (milliseconds)

Variable
Coefficient (Robust 
standard error)

Real choice trial (=1) 2137.125 (87.617)**

Gains trial (=1) −318.421 (56.3325)**

Variance difference between gambles −2.02141 (0.168)**

R-squared (overall) 0.3022

N = 11,748 observations. **0.01 for the 2-tailed test. Random effects 
generalised least squares. Errors clustered at the subject-level.

TA B L E  4 Predictors of response times—Trial level analysis

Variable

(random effects GLS regression, errors clustered by 
subject)
GAINS TRIALS
Dependent variable = Trial response time 
(milliseconds)

(random effects GLS regression, errors clustered 
by subject)
LOSSES TRIALS
Dependent variable = Trial response time 
(milliseconds)

(1) (2) (3) (4)

Constant 2571.022 (1238.656)** 3573.623 (1249.991)** 4245.227 (1608.575)** 5095.915 (1913.05)**

Trial −8.656 (1.721)** −8.654 (1.722)** −13.516 (1.570)** −13.514 (1.570)**

Variance Dif between gambles −1.689 (0.236)** −1.688 (0.236)** −2.209 (.247)** −2.210 (0.247)**

Avg nightly total sleep time −0.319 (1.676) −0.523 (1.677) 1.243 (2.009) 1.085 (1.973)

Sleep efficiency 1.895 (10.144) −8.469 (12.191) −14.478 (15.748) −24.070 (18.962)

N2N total sleep time variability −2.027 (1.328) — −2.340 (1.626) —

N2N sleep efficiency variability — −31.801 (21.552) — −30.324 (32.152)

Epworth 22.853 (22.070) 15.334 (21.808) 33.429 (30.433) 26.555 (29.402)

rMEQ score 75.668 (47.400) 68.800 (46.076) 8.570 (65.717) 2.535 (65.656)

Age 5.233 (10.577) 9.621 (10.327) 11.045 (15.860) 16.063 (13.595)

Female (=1) −98.626 (146.717) −112.347 (144.072) 49.154 (199.059) 29.342 (193.597)

NFC score −0.760 (2.571) −0.997 (2.525) 1.595 (3.212) 1.317 (3.201)

Safer choice (=1) −386.558 (67.237)** −387.266 (66.902)** 68.491 (54.184) 67.916 (54.324)

R-squared (overall) 0.0917 0.0931 0.0589 0.0582

Observations 3967 3967 3903 3903

Coefficients (standard errors) shown. *0.05, **0.01 for the 2-tailed test. Analysis restricted to Real Trials (N = 8000 total: 4000 per treatment. Trials 
with recorded response time = 0 were discarded from all analysis).
Avg, average; GLS, generalised least squares; N2N, night-to-night; NFC, need for cognition; rMEQ, reduced morningness-eveningness questionnaire; 
Variance Dif, variance difference.
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preference and four related to RT, and we did not control for multi-
ple comparisons. Thus, our significant results may represent Type I 
error, arguing for the need to replicate our findings using real-world 
sleep schedules.

Related to our focus on external validity, it is important to note 
the sleep levels of our participants were not manipulated in any way, 
and we explicitly put no limitation on compensatory behaviours (e.g., 
caffeine consumption). While this presents a limitation in the sense 
that variables known to influence performance or alertness are 
not controlled in our study, it is also a strength in that our findings 
may better reflect what would be observed in a general community 
sample of U.S. young adults than would findings from a tightly con-
trolled study. However, our exclusion criteria imply our results may 
not apply beyond the population of healthy young adults. The focus 
on external validity, rather than internal control, may also help to 
explain why our models generally only accounted for 9–12% of the 
variance in our outcome variables. Additional uncontrolled factors 
likely influenced the results, as well. Finally, as in McKenna et al. 
(2007), our design did not allow for feedback learning. Thus, to the 
extent such learning may also decline in the presence of low sleep 
levels or variability in sleep level or quality, our results may not gen-
eralise to risky decisions that include feedback on each decision.

In summary, our data indicate that how sleep impacts risky 
choice in more naturalistic settings with self-selected sleep sched-
ules may be related to variability in sleep quality, as opposed to mean 
levels of sleep duration or quality. They also suggest that results of 
experimental sleep deprivation studies may not translate cleanly to 
real-world settings. While these results require replication and gen-
eralisation, the fact that night-to-night variability in sleep efficiency 
from a naturalistic setting was found to significantly increase one's 
tendency to make risky choices in certain settings (i.e., LOSS gamble 
scenarios) is noteworthy. This argues for more research to under-
standing the robustness of this finding with respect to night-to-night 
variability in sleep quality, because such variations are not uncom-
mon in the real world and yet are rarely studied experimentally or 
observationally.
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