
Recommended Citation: Xue, X., Wu, J., and Zhang, J. (2022). “Semi-Automated 

Generation of Logic Rules for Tabular Information in Building Codes to Support 

Automated Code Compliance Checking.” Journal of Computing in Civil 

Engineering, 36(1), 04021033. 

 

For Final Published Version, please refer to the ASCE Database here: 

https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000  

 

1 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management 

Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 430-2009. email: 

xue39@purdue.edu. 
2 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management 

Technology, Purdue University, West Lafayette, IN, 47907, PH (301) 275-1272; email: 

wu1275@purdue.edu. 
3 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management 

Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 494-1574; FAX (765) 496-

2246. (*corresponding author) email: zhan3062@purdue.edu. 

 

Semi-Automated Generation of Logic Rules for Tabular Information in Building Codes to 1 

Support Automated Code Compliance Checking  2 

Xiaorui Xue, S.M.ASCE 1; Jin Wu, S.M.ASCE 2; Jiansong Zhang, Ph.D., A.M.ASCE 3 * 3 

 4 

Abstract  5 

To fully automate building code compliance checking, regulatory requirements need to be 6 

automatically extracted and transformed from building codes. Existing regulatory 7 

requirement processing efforts mainly focus on building code requirements in text. A more 8 

efficient approach for processing regulatory requirements in other parts of building codes, 9 

such as tables or charts, remains to be addressed. The ability to process building code 10 

requirements in all parts and formats is necessary for an automated code compliance 11 

checking system to achieve full coverage of checkable building code requirements. To 12 

address this gap, the authors proposed a semi-automated information extraction and 13 

transformation method. The proposed method can extract building code requirements in 14 

tables and convert extracted information to logic rules. Automated code compliance 15 

checking systems can utilize the logic rules. The proposed method includes two main steps: 16 

(1) tabular information extraction, and (2) rule generation. The tabular information 17 

https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
mailto:xue39@purdue.edu


 

2 

 

extraction semi-automatically detects the layout of tables, extracts building code 18 

requirements from tables, and transforms extracted information to databases. The rule 19 

generation step automatically generates logic rules that can be directly executed by logic 20 

reasoners. The rule generation step also provides options for users to further refine the 21 

generated rules. The development of the tabular information extraction algorithm takes an 22 

iterative approach. An experiment was conducted to develop a tabular information 23 

extraction algorithm from Chapter 5 of the International Building Code 2015. The primary 24 

version of the algorithm correctly processed 91.67% of tables in Chapter 10 of the 25 

International Building Code 2015. After iterative refinements, the updated tabular 26 

information extraction algorithm correctly processed all tables in this chapter. The rule 27 

generation algorithm correctly generated logic rules that successfully represented the 28 

applicable building code requirements for a testing building, a convenience store in Texas 29 

based on the tabular information. 30 

Introduction  31 

Building Information Modeling (BIM) developed steadily in the past decade (Noor and Yi 32 

2018). Versatile usages of BIM prompted researches of BIM in the Architecture, 33 

Engineering, and Construction (AEC) industry, for various purposes such as: (1) modular 34 

construction of residential buildings (Alwisy et al. 2012), (2) construction cost estimation 35 

(Lee et al. 2014), (3) collaboration of multi-disciplinary teams (Fernando et al. 2013), and 36 

(4) energy simulation in a building’s early design stage (Kim et al. 2015). Researchers also 37 

combined BIM with other technologies, such as (1) laser scanning (Kim et al. 2015), (2) 38 

Radio-frequency Identification (RFID) (Fang et al. 2016), (3) Virtual Reality (VR) (Du et 39 

al. 2018), (4) computer vision (Asadi et al. 2019, Ham et al. 2016, Han et al. 2015), and (5) 40 



 

3 

 

natural language processing (Mutis et al. 2019, Xu and Cai 2020, Xu and Cai 2019, Xu et 41 

al. 2020, Zhang and El-Gohary 2012a,b) to explore its full potential in the AEC industry. 42 

Overall, benefits of BIM include: (1) facilitating cooperation among stakeholders (Volk et 43 

al. 2014), (2) reducing construction cost and time (Bryde et al. 2013), (3) improving 44 

construction safety (Zhang et al. 2013), and (4) decreasing carbon emission and energy 45 

consumption of buildings (Gan et al. 2019). Although BIM has a wide range of benefits 46 

and BIM-related research was extensive, the adoption and implementation of BIM in the 47 

industry are still at an early stage (Noor and Yi 2018). Overall, developed countries have a 48 

higher BIM adoption rate than developing countries (Bui et al. 2016). However, even 49 

developed countries do not fully adopt BIM. In the United Kingdom, for example, only 50 

54.88% of projects used BIM in the design phase, 51.90% of projects used BIM in the pre-51 

construction phase, and 34.67% of projects used BIM in the construction phase (Eadie et 52 

al. 2013). Project participants do not use BIM to its full extent, even when they use BIM 53 

in a project. They tend to use BIM to assist their traditional workflows and only in the most 54 

expensive and risky part of a project (Migilinskas et al. 2013). In summary, in spite of the 55 

diverse applications and benefits of BIM, the BIM adoption rate remains low. Therefore, 56 

more automation and user-friendliness in BIM-based applications is needed to facilitate the 57 

adoption of BIM.   58 

One important such application of BIM is as digital representations of buildings in 59 

automated code compliance checking systems (Dimyadi and Amor 2013). Automated code 60 

compliance checking systems can work as a driver of BIM adoption (Martins and Abrantes 61 

2010). On the other hand, BIM can support automated code compliance checking systems 62 

by providing digital representations of building designs (Ismail et al. 2017). Building 63 



 

4 

 

authorities in multiple countries published automated code compliance checking systems 64 

based on BIM such as (1) the Construction and Real Estate NETwork (CORENET) in 65 

Singapore (Sing and Zhong 2001), the ByggSok system in Norway (Haraldsen et al. 2004), 66 

the DesignCheck in Australia (Ding et al. 2006), and the 3D-4D-BIM program by the US 67 

General Services Administration (GSA) (Ho and Matta 2009). In academia, researchers 68 

also proposed BIM-based automated code compliance checking systems. For example, 69 

Nawari (2011) applied the integration of BIM and SMARTcodes by the International Code 70 

Council to check the conformance of building elements to various structural codes 71 

automatically. Balaban et al. (2012) presented a pilot study that combines BIM and AI to 72 

check compliance of a building model against fire codes automatically. Martins and 73 

Monteiro (2013) developed a BIM application for the automated compliance checking of 74 

building codes in general. Preidel and Borrmann (2015) presented a flow-based BIM 75 

automated code compliance checking system. Zhang and El-Gohary (2017) integrated 76 

semantic Natural Language Processing (NLP), logic reasoning, and BIM to develop an 77 

automated code checking system for checking with the International Building Code. Bloch 78 

and Sacks (2018) explored the possibility of integrating machine learning, rule-based 79 

inferring, and BIM to accomplish automated code compliance checking. Fayomi et al. 80 

(2018) explored the approach of automating prescriptive compliance process for building 81 

energy efficiency in a single BIM software platform. Häußler et al. (2021) integrated BIM 82 

and visual programming in code compliance checking of railway designs. In the past 83 

decade, the automated code compliance checking domain developed at a fast pace. 84 

However, a limited range of checkable codes hinders the wide adoption of automated code 85 

compliance checking systems. Few construction industry practitioners will use automated 86 



 

5 

 

code compliance checking systems that require them to check a significant part of building 87 

codes manually. After an extensive literature review, the authors found no previous 88 

automated code compliance checking research targeted at automatically processing 89 

building code requirements stored in tables. Some previous efforts, such as CORENET 90 

(Sing and Zhong 2001), DesignCheck (Ding et al. 2006), and Nawari (2011) which 91 

combined SMARTcodes by ICC and BIM, included tables in the range of checkable 92 

building code requirement by manually adding tables to the respective systems. However, 93 

almost all building codes contain a large amount of building code requirements in tables. 94 

Automated code compliance checking systems that do not cover building code 95 

requirements in tables cannot have full building code requirement coverage (Salama and 96 

El-Gohary 2016), and pure manual addition of tabular information into automated code 97 

compliance checking system counters efficiency and time/cost savings. Research about 98 

tabular information detections and extraction in other domains (Liu et al. 2007, Pinto et al. 99 

2003) concurred with the importance of processing information that is stored in tables in 100 

documents. In this research, the authors proposed a new semi-automated information 101 

extraction and information transformation method for tables in building codes. The 102 

proposed method can process tabular information in building codes to increase the scope 103 

of checkable building codes of automated code compliance checking systems.  104 

Background 105 

Existing Work with Table Processing 106 

The demand to extract information from documents that are not in plain textual formats, 107 

such as tables and images that are hard for machines to process, is urgent (Corrêa and 108 

Zander 2017). Most existing methods take a two-step approach to extract tabular 109 



 

6 

 

information: (1) table detection, and (2) table sub-structure identification (i.e., cells, rows, 110 

columns) (Paliwal et al. 2019). Challenges in tabular information extraction include: (1) 111 

reliance on the context of tables to interpret tables, (2) document indexing, (3) database 112 

curation, and (4) abbreviation of phases (Shmanina et al. 2016). Table detection algorithms 113 

can construct table hierarchies in two approaches: top-down and bottom-up. In the top-114 

down approach, the algorithm first identifies tables in documents and then slice identified 115 

tables into components. On the contrary, in the bottom-up approach, the algorithm first 116 

identifies components of tables and then assembles the components to tables (Krüpl and 117 

Herzog 2006). Different technologies were developed to process table information for 118 

various purposes. For example, Vasileiadis et al. (2017) developed a rule-based, bottom-119 

up tabular information extraction system for access by visually impaired people. Buitelaar 120 

et al. (2006) published an ontology-based table processing method to extract information 121 

from webpages as part of a multi-modal dialog system. Shafait and Smith (2010) used 122 

Optical Character Recognition (OCR) technology to process tables with different layouts 123 

for analyzing tables in heterogeneous documents. Qasim et al. (2019) treated the table 124 

detection problem as a graph problem and generated a Graph Neural Network to detect the 125 

structure of tables, which was successfully tested on public table detection datasets (e.g., 126 

UW3, UNLV, and ICDAR 2013). Sinha et al. (2019) used OCR to localize tables in Piping 127 

and Instrumentation Diagrams (P&IDs) and used regular expressions to enhance the 128 

accuracy of text extraction. Although most researchers treated table detection and table 129 

structure identification as two separate steps, Paliwal et al. (2019) proposed TableNet, a 130 

neural network with an encoder-decoder structure, to detect table existence and identify 131 

table structure in one unified step jointly. Although existing table processing works reached 132 



 

7 

 

high accuracy on their respective domains, they did not touch upon automation of 133 

processing tables in building codes, and data from such tables were still manually 134 

interpreted and processed.  135 

Existing Work in Automated Building Code Compliance Checking 136 

From a historical perspective, the traditional building code compliance checking process, 137 

or building plan review, is a laborious, time-consuming, and error-prone process that 138 

demands automation (Alghamdi et al. 2017, Lee et al. 2018, Preidel and Borrmann 2017). 139 

The automation of the code compliance checking process can significantly cut its cost, 140 

time, and manual efforts. In the manual code compliance checking process, designers need 141 

to wait a long time for building authorities to issue a building permit or ask for further 142 

modifications to the design documents, and may have to modify design documents multiple 143 

cycles. The plan review process may last a few months (City of San Clemente 2019). On 144 

the other hand, automated code compliance checking systems can return compliance 145 

checking results in a much shorter time with a limited need for manual input. Thus, 146 

automated building code compliance checking is faster and cheaper than the traditional 147 

manual code compliance checking approach.  148 

The automated code compliance checking systems emerged in the 1960s when Fenves 149 

introduced decision tables to check the design of steel structures (Fenves 1966). Systems 150 

for checking different aspects of building design were then developed over the years. For 151 

example, Pauwels et al. (2011) implemented a sematic rule checking environment to check 152 



 

8 

 

the acoustic performance of buildings. Tan et al. (2010) provided a series of decision tables 153 

to check the design of building envelopes. Getuli et al. (2017) developed a BIM-based 154 

workflow that checks against the compliance of Italian construction safety and health code. 155 

Malsane et al. (2015) suggested an Industry Foundation Class (IFC)-powered, object-156 

oriented approach to check against fire codes in England and Wales. Bus et al. (2019) 157 

developed an ontology-based system to achieve automated compliance checking of 158 

semantic rules in French fire safety and accessibility codes. However, existing automated 159 

code compliance checking systems only check a limited set of code rules and, according to 160 

the authors’ literature review, never automatically processed building code requirements 161 

in tables. 162 

Database for Table 163 

Storing and manipulating data has been an important topic since the earliest development 164 

of computers (Ramakrishnan 2003). Integrated Data Store, developed in the 1960s, was the 165 

first general-purpose Database Management System (DBMS), which standardized the 166 

basis of the network data model. Information Management System, on the other hand, was 167 

an alternative data representation framework and formed the basis of the hierarchical data 168 

model. The current dominant DBMSs utilize relational data models, which were proposed 169 

in the 1970s and consolidated in the1980s. Structured Query Language (SQL) is the 170 

standard query language for relational databases. DBMS has the following advantages: (1) 171 

data independence, (2) efficient data access, (3) data integrity, (4) data security, (5) 172 



 

9 

 

efficient data administration, (6) concurrent access, (7) crash recovery, and (8) reduced 173 

application development time.  174 

Relational database models store data in tables with unique names (Silberschatz et al. 175 

1997). The rows in a table represent a relationship of a set of values. Relationships between 176 

values are represented by tuples, which are sequences of values. The relational data model 177 

allows operations like querying, inserting, deleting, and updating of tuples. The relational 178 

database model, such as SQL, lacks the ability to take certain actions such as taking input, 179 

displaying outputs, or communicating with other programs. The above actions must be 180 

done through a host language such as C, Java, or Python, with embedded SQL queries. In 181 

spite of the above limitations, SQL supports a number of useful syntactic features (e.g., 182 

relation representation, querying) and has clearly established itself as the standard 183 

relational database language (Silberschatz et al. 1997). 184 

Logic Programming  185 

Logic programming aims to connect logic to computer programming (Kowalski 2014). 186 

Comparing to the well-established systems of logic, computer programming barely 187 

covered the relationship between Turing machines (i.e., an abstract model that simulates 188 

the computational ability of computers) and relational algebra. Logic programming 189 

remedies the deficiency of computer programming by fitting the generality of logic into 190 

the context of computing. Through logic programming, the tasks of defining the problem 191 

and solving it can be separated (Spivey 1996). Prolog is a classic programming language 192 

that implements logic programming. It uses a top-down method and carries out symbolic 193 

reasoning with a logical formula (Kowalski 1979, Spivey 1996). One Prolog program 194 



 

10 

 

consists of one or more logic clauses. One logic clause consists of one or more predicates. 195 

All predicates need to be true to make the logic clause true. For example, for a requirement 196 

that says “building height should be less than 40 feet,” one possible Prolog representation 197 

in the form of a logic rule is “compliance_building_height(Building):-building(Building), 198 

building_height(Building_height), has(Building, Building_height),  Building_height < 199 

40.” The logic clause will be evaluated to true if all predicates to the right of “:-“ (i.e., in 200 

the body of the rule) are true. The first three predicates (i.e., “building(Building), 201 

building_height(Building_height), has(Building, Building_height),”) check the existence 202 

of a building and its building height property. The last predicate (“Building_height < 40”) 203 

checks if the building height is less than 40 feet. The program can then be fed with building 204 

design information in the form of logic facts to check if the building exceeds the maximum 205 

allowed building height. If building_X has a building height of 50 feet, the corresponding 206 

building design facts are “building(Building_X), building_height(Building_height), 207 

has(Building_X, Building_height),  Building_height == 50.” Instantiating the above logic 208 

rule with these logic facts will lead to the evaluation of the logic rule as false, indicating 209 

these building design facts violate the building height requirement.  210 

Proposed Method 211 

In this paper, the authors proposed a semi-automated table processing method for tables in 212 

building codes. The proposed method takes a two-step approach to process tabular 213 

information in building codes: (1) tabular information extraction, and (2) information 214 



 

11 

 

conversion to logic rules. The proposed method takes building codes and digital models of 215 

buildings as inputs, and outputs applicable rules for the building models. The developed 216 

method needs to be robust over a wide range of tables, i.e., to be able to process tables in 217 

an unseen format. The tabular information extraction method needs to extract building code 218 

requirements from tables in building codes and store the extracted information in a 219 

structured format. The extraction process needs to reach a very high precision to meet the 220 

100% recall goal of noncompliance detection in automated code compliance checking 221 

(Salama and El-Gohary 2016). The format to store extracted building code requirements 222 

needs to support easy information access and processing to ensure the performance of the 223 

automated code compliance checking system. Integrated methods that directly convert 224 

building code tables to logic rules and store these rules in automated code compliance 225 

checking system are the most straightforward and intuitive method to process building code 226 

requirements from tables. However, state-of-the-art integrated methods lack robustness in 227 

processing tables in different layouts and the manual effort to maintain integrated methods 228 

may not be less than the effort in the manual encoding of building codes per se. The diverse 229 

layouts of tables may require customized methods for each table. Frequent updates of 230 

building codes will therefore require constant method updates. To address that, the authors 231 

proposed the separation of information extraction from rule generation to increase the 232 

robustness and reduce the maintenance need of the method.  233 



 

12 

 

Information Extraction 234 

The proposed method takes a semi-automated approach to extract tabular information from 235 

building codes. Users need to collect tables from building codes in digital format and 236 

provide them together with some structural information of these input tables. The method 237 

then processes one table at a time. Structural information of tables helps the information 238 

extraction method identify the layout of the table. For tables with different layouts, the 239 

underlying relationships between cells are different. For example, some tables use a single 240 

cell to store an entry of building code requirement, and some tables use an entire row to 241 

store an entry of building code requirement. Layouts of tables implicitly specify how tables 242 

store building code requirements. One type of table, for example, uses a cell and its 243 

corresponding row header and column header to represent one requirement to buildings. 244 

Another type of table uses all cells in a row and their corresponding column headers to 245 

represent one requirement to buildings. The proposed method uses structural information 246 

provided by the users to automatically distinguish layouts of tables and uncover underlying 247 

relationships and information inferred by layouts. 248 

The authors took an iterative approach to develop the sub-algorithms in the tabular 249 

information extraction algorithm, i.e., the sub-algorithms are continuously improved until 250 

they can correctly extract all tabular information from training data. The basic unit of a 251 

table is the cell. Cells can be classified into four types: (1) row header, (2) column header, 252 

(3) footnote, and (4) content (Fig. 1). The four types of cells form the body of a table. The 253 



 

13 

 

finished algorithm can recognize the cell type and connect the information in each cell (e.g., 254 

texts, numbers). As a result, the authors developed: (1) a header detection sub-algorithm to 255 

recognize the boundaries of cells for each type, (2) a table layout detection sub-algorithm 256 

to distinguish layouts of tables, (3) two information transformation sub-algorithms to 257 

connect contents in the cells, and (4) a rule generation sub-algorithm.  258 

The header detection sub-algorithm uses the structural information of the table to detect 259 

information components. The algorithm requires three inputs from the user for locations of 260 

row headers, column headers, and footnotes, respectively. Users then provide: (1) the 261 

number of columns used for row headers X1, (2) the number of rows used for column 262 

headers X2, and (3) the number of columns used for footnotes X3. There may be no 263 

footnotes (i.e., zero for X3) or row headers (i.e., zero for X1). The header detection sub-264 

algorithm can then automatically identify the locations of different contents and split the 265 

table into different information components according to inputs from the user.   266 

After that, the layout detection sub-algorithm distinguishes the layouts of the tables based 267 

on their structural information. Tables in building codes have diverse layouts. The authors 268 

identified two master layouts based on how the information is organized in a table. Tables 269 

with row headers are considered to be in Master Layout One: a single cell is used to store 270 

an entry of building code requirement (Fig. 2). Tables without row headers are considered 271 

to be in Master Layout Two: a row of cells is used to store an entry of building code 272 

requirement (Fig. 3). Master layouts ensure the robustness of this algorithm and simplify 273 



 

14 

 

the information extraction process. The layout detection sub-algorithm can classify all 274 

tables in building codes into these two master layouts depending on whether a table has a 275 

row header or not. The authors kept the algorithm simple to ensure the robustness of the 276 

entire table information processing.  277 

The end product of this step is a database that stores information from the table. The 278 

information conversion sub-algorithm connects information in different components of a 279 

table and inserts connected information into the database. Each master layout has a 280 

customized information conversion sub-algorithm. Customized information conversion 281 

sub-algorithm ensures the correct extraction of information inferred by the layout of tables. 282 

Tables in the same master layout use the same information conversion sub-algorithm. For 283 

tables in the same master layout, variations exist, such as having or not having a column 284 

for footnotes, having or not having a different number of rows in the column header. The 285 

information transformation sub-algorithms are sufficiently robust to process such 286 

variations of tables in the same master layout.  287 

The sub-algorithm for the Master Layout One, which is for tables that use a single cell to 288 

store an entry of building code requirement, connects the cell, its corresponding row header 289 

and column header, and its corresponding footnote (if exists) together and generates a 290 

command to insert the entry of building code requirement into the database. The sub-291 

algorithm for the Master Layout Two, which is for tables that use an entire row to store an 292 

entry of building code requirement, connects each cell in the row with its corresponding 293 



 

15 

 

column header and generates a command to insert the entry of building code requirement 294 

into the database. Once a command is generated, both sub-algorithms execute the 295 

command to insert building code requirements into the database. 296 

Information Conversion to Logic Rules 297 

The conversion to logic rules follows a semi-automated approach. The conversion process 298 

has three parts: raw-rule generation, invariant signatures generation, and information 299 

matching. 300 

Raw-rule Generation 301 

The raw-rule generation utilizes existing semantic NLP-based algorithms that convert 302 

building code requirements to Prolog logic rules with placeholders for information from 303 

tables (Zhang and El-Gohary 2013, 2015; 2017). The logic rules are generated from 304 

building code provisions with reference to tables for depicting certain required range of 305 

values. These existing algorithms lack the ability to process tabular information of building 306 

code requirements. Therefore, this step generates logic rules with placeholders for building 307 

code requirements in tables. At this step, the information extraction and transformation 308 

algorithm by Zhang and El-Gohary (2013; 2015; 2017) was directly adopted, and 309 

placeholders were generated in the logic rules for the part dealing with tabular information. 310 

 311 



 

16 

 

Invariant Signatures Generation 312 

To allow the rules to be compiled with correct quantities and units for the placeholders, the 313 

rule generation sub-algorithm uses invariant signature (Wu et al. 2021; Wu and Zhang 2019) 314 

to decide the configuration of buildings, e.g., occupancy of the building. Each model is 315 

processed into invariant signatures, which can represent all the building elements in a 316 

uniform way and keep all the needed information for further processing. The invariant 317 

signatures include geometrical, locational, and metadata information of the building. Table 318 

1 shows an example of state-of-the-art invariant signature features for structural analysis. 319 

In this step, the invariant signatures will be expanded to support the compliance checking 320 

use case by adding model-level invariant signatures. Invariant signature allows the 321 

proposed algorithm to select the best matching building code requirements from a table for 322 

a building. 323 

Information Matching 324 

The tabular data usually stores the regulatory requirements of multiple possible types of 325 

buildings. On the other hand, one building usually has a fixed type (e.g., occupation) that 326 

corresponds to one entry of the tabular information. The final rule generation sub-algorithm 327 

can process the digital model of a building, find the corresponding type of the building in 328 

the table by querying the databases to get the building code requirements for the building. 329 



 

17 

 

For example, the occupancy of a building will determine the maximum allowable number 330 

of stories of the building (ICC 2015).  331 

With the raw rules with placeholders and the invariant signatures, the rule generation sub-332 

algorithm generates final logic rules by an information matching sub-algorithm. The 333 

information matching sub-algorithm will process the invariant signatures to select the 334 

corresponding content to fill in placeholders and generate semantically correct B-Prolog (a 335 

Prolog system implementation with extensions for programming concurrency, constraints, 336 

and interactive graphics) rules (Zhou 2014). For example, the information matching 337 

algorithm can process the invariant signature to obtain the occupancy of the building and 338 

query the corresponding maximum allowable stories from the database. The query process 339 

is based on the invariant signatures. After querying, the rule generation sub-algorithm fills 340 

the returned values into placeholders of raw logic rules. For example, the maximum 341 

allowable stories of the building from the corresponding type of occupancy will be placed 342 

in the logic rule. After that, users have the option to manually compile generated rules 343 

again to further increase their semantic simplicity if needed.   344 

Experiment 345 

Algorithm Development 346 

The header detection sub-algorithm, the layout detection sub-algorithm, and two 347 

information conversion sub-algorithms were developed based on tables (Table 2) in 348 

Chapter 5 of IBC 2015 and were tested on tables in Chapter 10 (Table 3) of IBC 2015. 349 



 

18 

 

Inputs of the developed algorithms were digital tables. Digital tables left less space for 350 

errors comparing to tables collected as scanned images. The authors manually inspected 351 

the extraction results by the algorithm to examine their performance.  352 

After that, the information conversion sub-algorithm injected the extracted information 353 

into databases. The authors used the SQLite database in the implementation of information 354 

conversion sub-algorithms (SQLite Consortium 2020). Each table was stored in a separate 355 

database. Two information conversion sub-algorithms were developed for the two master 356 

layouts. The layout detection sub-algorithm selects which information conversion 357 

algorithm to use. The information conversion algorithm generates an SQLite insertion 358 

command based on the syntax of SQLite and the layout of the table being processed.  359 

Information Conversion to Logic Rule 360 

To test the performance of the rule generation sub-algorithm, the authors evaluated it on 361 

an IFC model of a real convenience store as the sample building model. The model was 362 

using the IFC2x3 standard, which was still the most widely used IFC data standard, to 363 

ensure the generality of validation. Fig. 4 shows a visualization of the model. 364 

The authors examined the proposed rule generation sub-algorithm on the rules in Table 365 

504.3 and Table 504.4 of IBC 2015, which were applicable to the validation case. While 366 

Table 506.2 was also applicable, the authors excluded it because it involved the 367 

identification and calculation of equations, which were out of the scope of this research. 368 

The selected rules are shown in Fig. 5. 369 



 

19 

 

To store model-level information, the authors developed invariant signatures to cover 370 

Occupancy, Construction Type, and Sprinklered categories. The Occupancy category 371 

contains all possible occupancy types of a building, such as Group H, Group I, etc. The 372 

Construction Type category contains all possible construction types of a building, such as 373 

Type I, Type II. The Sprinklered category depicts whether the building is sprinkled, using 374 

a Boolean variable. 375 

The authors then processed the model of the convenience store into 58 invariant signatures, 376 

which contains 1,363 pieces of information that can be converted into logic facts. Among 377 

the 58 invariant signatures, 55 covered element level information about building 378 

components such as wall, slab, roof, window, and door. The remaining three invariant 379 

signatures covered model-level information for occupancy, construction type, and 380 

sprinkler information. 381 

In the final step, the authors developed an information matching sub-algorithm to allow the 382 

rules to be filled with the correct content in their placeholders, based on the invariant 383 

signatures of the convenience store. The information matching sub-algorithm checked each 384 

place holder using the invariant signatures and selected the correct header and footer 385 

content to modify the raw logic rule into final logic rules with the proper information that 386 

are needed for checking the compliance of the building.  387 



 

20 

 

Results 388 

The testing results are presented in Table 4. The results showed that the proposed method 389 

provided the correct results on eleven testing tables and failed in one. Correctly processed 390 

tables are the tables that are correctly converted to databases by the proposed method. The 391 

results can be verified manually using queries on the database. The failed table was Table 392 

1006.2.1 (Fig. 6). Therefore, the proposed method processed 91.67% of the tables in the 393 

testing dataset correctly. The reason that the proposed method failed to provide correct 394 

results in Table 1006.2.1 was that this table had four levels of column headers. No table in 395 

Chapter 5 of 2015 IBC (i.e., training data) had more than two levels of column headers.  396 

The authors then updated the developed algorithm to accommodate tables with different 397 

levels of column headers. The updated algorithm was then tested on all testing tables again. 398 

The updated algorithm provided correct results on all tables.  399 

 400 

The following experiment was further conducted to test if the information extraction sub-401 

algorithm correctly preserved the information inferred by the layout of tables and correctly 402 

extracted building code requirements in the cells. The accuracy of the algorithm was tested 403 

by checking if the generated database returns the correct results when queried. Correct 404 

results were where the corresponding value of a building code requirement in tables can be 405 

successfully returned by the query. For example, when the database for Table 1006.2.1 is 406 

queried for the maximum occupant load of space of occupancy Type B, it should return 49. 407 

The authors queried every entry in the generated databases for every table in the testing 408 



 

21 

 

dataset and reviewed the returned values of every query. In 100% of cases, the query 409 

returned correct results. The generated database preserves all information inferred by the 410 

layout of the tables. Another reason for the 100% accuracy is the authors used digital tables, 411 

instead of scanned tables, as inputs to the information extraction sub-algorithm. Errors in 412 

recognizing the content of scanned tables were therefore prevented. For example, the 413 

algorithm did not suffer from errors in OCR. 414 

Furthermore, the rule generation sub-algorithm was tested to generate logic rules with 415 

correct parameters based on the invariant signatures of the building model of a real-world 416 

convenience store model. The rule generation sub-algorithm was tested to generate logic 417 

rules for checking the compliance of maximum building height and number of stories of 418 

the convenience store. The correct logic rules should represent the meaning of 419 

corresponding building code provisions correctly. The raw logic rules with placeholders 420 

were checked manually to ensure that the meanings of corresponding building code 421 

provisions were correct. Correct final logic rules should have correct building code 422 

requirement values (from tables) filled in by the information matching algorithm. The 423 

algorithm correctly generated the required final rules for checking the compliance of the 424 

convenience store with building code requirements in Table 504.3 and Table 504.4 of IBC 425 

2015. The generated rules checked and concluded that the convenience store does not 426 

violate the required values in Table 504.3 and Table 504.4 of IBC 2015. The detailed 427 

testing of the rule generation algorithm is described as follows: 428 



 

22 

 

The first step was to apply the state-of-the-art information extraction and transformation 429 

algorithms by Zhang and El-Gohary (2013; 2015; 2017) to generate the raw logic rules 430 

with placeholders for building code requirements stored in tables that vary with 431 

configurations of buildings. An example result was shown in Fig. 7.  432 

Invariant signatures of the convenience store were generated automatically by state-of-the-433 

art invariant signature generation algorithm (Wu et al. 2021; Wu and Zhang 2019). There 434 

were eleven door elements, two slab elements, one roof elements, twenty-seven wall 435 

elements, and fourteen window elements in the building, as shown in Table 5. Table 5 also 436 

showed a few example values of the invariant signature features. Each element is 437 

represented uniquely by an invariant signature, which preserves the needed information 438 

that will be used for generating the logic rules. In addition to the element-level invariant 439 

signatures, the authors also developed model-level invariant signatures. Table 6 showed 440 

the building had Occupancy M, Construction Type V-B, and Sprinklered None based on 441 

model-level invariant signatures. This information was converted into configurations of the 442 

convenience store. 443 

Based on the configurations of the convenience store, the developed algorithm was able to 444 

find the correct numbers from the table and generate the correct final logic rules. The 445 

resulted final logic rules are shown in Fig. 8. 446 

The authors manually compiled generated rules again to make them concise and 447 

straightforward. For example, the predicate “not exceed_the_limits” was refined to “<=” 448 



 

23 

 

because B-Prolog supports the symbol of mathematical inequalities. The finalized rules 449 

were improved to use mathematical inequalities to be more concise and machine-readable 450 

while staying reader friendly (Fig. 9). This step is optional. Logic rules in Fig. 8 and Fig. 451 

9 are equivalent to logic reasoners.  452 

Contributions to The Body of Knowledge 453 

The authors proposed a new method to extend the range of checkable building code 454 

requirements of automated building code compliance checking systems to cover tables in 455 

building codes. The contributions to the body of knowledge are four-fold. First, the 456 

extension of checkable building code requirements to tables proves the feasibility of 457 

checking non-textual building code requirements in a semi-automated way. Second, this 458 

research could help incorporate more building code requirement details into fully 459 

automated code compliance checking systems in a more efficient way, comparing to the 460 

state of the art. With an enlarged range of checkable building code requirements, an 461 

automated code compliance checking system can provide more value to its users, which 462 

could lead to a wider adoption of automated building code compliance checking and 463 

synergistically facilitating the adoption of BIM. Third, the authors enhanced the robustness 464 

of an automated code compliance checking system. By storing database and generating 465 

logic rules on the go, automated code compliance checking systems will benefit from a 466 

smaller rule set which has better maintainability comparing to a larger one. Last but not 467 

least, the authors calculated that 1,542 logic rules can be generated from tables in the 468 



 

24 

 

training and test datasets, sourced from 17 tables in two chapters of IBC 2015, which has 469 

35 chapters in total. After interpolation, the authors estimated that the proposed method 470 

can help complete about 26,985 new rules with tabular information for IBC 2015. The 471 

proposed method can therefore significantly expand the range of checkable building code 472 

requirements of ACC systems.  473 

Interface Discussion 474 

Although not the focus of this paper, the proposed method provides a friendly 475 

programming interface to support an easy adoption. The information extraction component 476 

only needs users to provide a digital table and some structural information of the digital 477 

table. To use the information extraction component, users only need to put the digital table 478 

and the script of the proposed method in the same folder. When the script is executed, it 479 

will prompt users to input information about the table. The output of the information 480 

extraction component is database files that are supported in SQL language. The database 481 

allows developers to incorporate the tabular information into automated code compliance 482 

checking systems more efficiently comparing to pure manual interpretation and processing. 483 

Limitations and Future Work 484 

The following limitations are acknowledged. First, the proposed method requires digital 485 

tables as inputs and manual conversion or third-party software to process tables from hard 486 

copy or images into digital tables. Future versions of the proposed method should 487 

incorporate the processing of scanned tables, e.g., using OCR functions. Second, the 488 



 

25 

 

proposed method requires manual inputs in layout detection. The proposed method cannot 489 

detect layouts of tables without such inputs from users in spite of the fact that such inputs 490 

are minimal. The authors propose to develop a fully automated layout detection algorithm 491 

for tables in building codes in their future work. Third, the rule generation sub-algorithm 492 

requires manual effort to refine generated rules. Although logic reasoners have no problem 493 

in processing unrefined rules, the authors propose to develop refinement algorithms to 494 

generate more human-processable rules also automatically in their future work. 495 

Conclusion 496 

This research incorporated tabular information in building codes into automated code 497 

compliance checking systems. The proposed table information extraction method achieved 498 

a 91.67% success rate in our experiment on tables from IBC 2015. The updated information 499 

extraction algorithms could successfully process all tables in the testing dataset and 500 

correctly preserved information inferred by the layout of tables. The proposed method still 501 

requires minor human input, which the authors will further address in their future work. 502 

Data Availability Statement 503 

Some data that support the findings of this study are available from the corresponding 504 

author upon reasonable request. 505 

1. Building Codes Tables Used 506 

2. Logic Rules Generated  507 



 

26 

 

Acknowledgements 508 

The authors would like to thank Dr. Mark J. Clayton for providing the testing model. The 509 

authors would like to thank the National Science Foundation (NSF). This material is based 510 

on work supported by the NSF under Grant No. 1827733. Any opinions, findings, and 511 

conclusions, or recommendations expressed in this material are those of the author and do 512 

not necessarily reflect the views of the NSF.  513 

References 514 

Alghamdi, A., Sulaiman, M., Alghamdi, A., Alhosan, M., Mastali, M., and Zhang, J. 515 

(2017). "Building accessibility code compliance verification using game simulations 516 

in virtual reality." Proc., Computing in Civil Engineering 2017, Seattle, WA, 262-517 

270. 518 

Alwisy, A., Al-Hussein, M., and Al-Jibouri, S. (2012). "BIM approach for automated 519 

drafting and design for modular construction manufacturing." Proc., Computing in 520 

civil engineering 2012, Clearwater Beach, FL,221-228. 521 

Asadi, P., Gindy, M., and Alvarez, M. (2019). "A Machine Learning Based Approach for 522 

Automatic Rebar Detection and Quantification of Deterioration in Concrete Bridge 523 

Deck Ground Penetrating Radar B-scan Images." KSCE Journal of Civil 524 

Engineering, 23(6), 2618-2627. 525 

 526 

Balaban, Ö., Kilimci, E. S. Y., and Cagdas, G. (2012). "Automated code compliance 527 

checking model for fire egress codes." Proc., The 30th International Conference on 528 

Education and research in Computer Aided Architectural Design in Europe, 529 

Education and research in Computer Aided Architectural Design in Europe and 530 

Faculty of Architecture, Prague, Czech, 117-125. 531 

Bloch, T., and Sacks, R. (2018). "Comparing machine learning and rule-based 532 

inferencing for semantic enrichment of BIM models." Automation in Construction, 533 

91, 256-272. 534 

Bryde, D., Broquetas, M., and Volm, J. M. (2013). "The project benefits of building 535 

information modelling (BIM)." International Journal of Project Management, 31(7), 536 

971-980. 537 

Bui, N., Merschbrock, C., and Munkvold, B. E. (2016). "A review of Building 538 

Information Modelling for construction in developing countries." Procedia 539 

Engineering, 164, 487-494. 540 



 

27 

 

Buitelaar, P., Cimiano, P., Racioppa, S., and Siegel, M. (2006). "Ontology-based 541 

information extraction with soba." Proc., the International Conference on Language 542 

Resources and Evaluation (LREC), Genoa, Italy , 2321-2324. 543 

Bus, N., Roxin, A., Picinbono, G., and Fahad, M. (2019). "Towards French Smart 544 

Building Code: Compliance Checking Based on Semantic Rules." Proc., LDAC2018 545 

6th Linked Data in Architecture and Construction Workshop, London, UK, CEUR 546 

Workshop Proceedings, 6-15. 547 

 548 

City of San Clemente (2019). "Ordinance No. 1668."San Clement, California. 549 

Corrêa, A. S., and Zander, P.-O. (2017). "Unleashing Tabular Content to Open Data: A 550 

Survey on PDF Table Extraction Methods and Tools." Proc., the 18th Annual 551 

International Conference on Digital Government Research, Association for 552 

Computing Machinery, Staten Island, NY, 54–63. 553 

Dimyadi, J., and Amor, R. (2013) "Automated Building Code Compliance Checking - 554 

Where is it at?" Proc., 19th International CIB World Building Congress, Brisbane,  555 

Australia,172-185. 556 

Ding, L., Drogemuller, R., Rosenman, M. and Marchant, D. (2006), “Automating code 557 

checking for building designs – DesignCheck.”, Proc., Cooperative Research 558 

Centre (CRC) for Construction Innovation, Brisbane, Australia, pp. 1–16. 559 

Du, J., Zou, Z., Shi, Y., and Zhao, D. (2018). "Zero latency: Real-time synchronization of 560 

BIM data in virtual reality for collaborative decision-making." Automation in 561 

Construction, 85, 51-64. 562 

Eadie, R., Browne, M., Odeyinka, H., McKeown, C., and McNiff, S. (2013). "BIM 563 

implementation throughout the UK construction project lifecycle: An analysis." 564 

Automation in Construction, 36, 145-151. 565 

Fang, Y., Cho, Y. K., Zhang, S., and Perez, E. (2016). "Case study of BIM and cloud–566 

enabled real-time RFID indoor localization for construction management 567 

applications." Journal of Construction Engineering and Management, 142(7), 568 

05016003. 569 

Fayomi, A., Castronovo, F., and Akhavian, R. (2018). "Automating prescriptive 570 

compliance process for building energy efficiency through BIM." Proc., 18th 571 

International Conference on Construction Applications of Virtual Reality, R. Amor, 572 

ed., The University of Auckland, Auckland, New Zealand, 121-132.  573 

Fenves, S. J. (1966). "Tabular decision logic for structural design." Journal of the 574 

Structural Division, 92(6), 473-490. 575 

Fernando, T., Wu, K.-C., and Bassanino, M. (2013). "Designing a novel virtual 576 

collaborative environment to support collaboration in design review meetings." 577 

Journal of Information Technology in Construction, 18, 372-396. 578 



 

28 

 

Gan, V. J., Lo, I. M., Tse, K. T., Wong, C., Cheng, J. C., and Chan, C. M. (2019). "BIM-579 

based integrated design approach for low carbon green building optimization and 580 

sustainable construction." Proc., Computing in Civil Engineering 2019: 581 

Visualization, Information Modeling, and Simulation-Selected Papers from the 582 

ASCE International Conference on Computing in Civil Engineering 2019, Atlanta, 583 

Georgia, 417-424. 584 

Getuli, V., Ventura, S. M., Capone, P., and Ciribini, A. L. (2017). "BIM-based code 585 

checking for construction health and safety." Procedia engineering, 196, 454-461. 586 

Ham, Y., Han, K. K., Lin, J. J., and Golparvar-Fard, M. (2016). "Visual monitoring of 587 

civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles 588 

(UAVs): a review of related works." Visualization in Engineering, 4(1), 1. 589 

Han, K. K., Cline, D., and Golparvar-Fard, M. (2015). "Formalized knowledge of 590 

construction sequencing for visual monitoring of work-in-progress via incomplete 591 

point clouds and low-LoD 4D BIMs." Advanced Engineering Informatics, 29(4), 592 

889-901. 593 

Haraldsen, M., Stray, T. D., Päivärinta, T., and Sein, M. K. (2004). "Developing e-594 

government portals: from life-events through genres to requirements." Proc., 11th 595 

Norwegian Conference on Information Systems, Copenhagen, Denmark, 44-70. 596 

Häußler, M., Esser, S., and Borrmann, A. (2020). "Code compliance checking of railway 597 

designs by integrating BIM, BPMN and DMN." Automation in Construction, 121, 598 

103427. 599 

Ho, P., and Matta, C. (2009). "Building better: GSA's national 3D‐4D‐BIM program." 600 

Design Management Review, 20(1), 39-44. 601 

International Code Council (ICC), (2015). " 2015 International Building Code." < 602 

https://codes.iccsafe.org/content/IBC2015> (Dec. 31, 2020). 603 

Ismail, A. S., Ali, K. N., and Iahad, N. A. (2017). "A Review on BIM-based automated 604 

code compliance checking system." Proc., 2017 International Conference on 605 

Research and Innovation in Information Systems (ICRIIS), IEEE, Langkawi 606 

Malaysia, 1-6. 607 

Kim, J. B., Jeong, W., Clayton, M. J., Haberl, J. S., and Yan, W. (2015). "Developing a 608 

physical BIM library for building thermal energy simulation." Automation in 609 

Construction, 50, 16-28. 610 

Kim, M.-K., Cheng, J. C., Sohn, H., and Chang, C.-C. (2015). "A framework for 611 

dimensional and surface quality assessment of precast concrete elements using BIM 612 

and 3D laser scanning." Automation in Construction, 49, 225-238. 613 

Kowalski, R. (1979). "Logic for problem solving.", Ediciones Díaz de Santos. 614 

Kowalski, R. (2014). "Logic for Problem Solving, Revisited. " Books on Demand (BoD), 615 

Norderstedt, Germany. 616 



 

29 

 

Krüpl, B., and Herzog, M. (2006). "Visually guided bottom-up table detection and 617 

segmentation in web documents." Proc., the 15th international conference on World 618 

Wide Web, New York, New York, 933-934. 619 

Lee, S.-K., Kim, K.-R., and Yu, J.-H. (2014). "BIM and ontology-based approach for 620 

building cost estimation." Automation in Construction, 41, 96-105. 621 

Lee, Y.-C., Ghannad, P., Shang, N., Eastman, C., and Barrett, S. (2018). "Graphical 622 

scripting approach integrated with speech recognition for BIM-based rule checking." 623 

Proc., Construction Research Congress 2018, New Orleans, Louisiana, 262-272. 624 

Liu, Y., Bai, K., Mitra, P., and Giles, C. L. (2007). "Tableseer: automatic table metadata 625 

extraction and searching in digital libraries." Proc., the 7th ACM/IEEE-CS joint 626 

conference on Digital libraries, New York, New York, 91-100. 627 

Malsane, S., Matthews, J., Lockley, S., Love, P. E., and Greenwood, D. (2015). 628 

"Development of an object model for automated compliance checking." Automation 629 

in Construction, 49, 51-58. 630 

Martins, J., and Abrantes, V. (2010). "Automated code-checking as a driver of BIM 631 

adoption." International Journal for Housing Science, 34(4), 287-295. 632 

Martins, J. P., and Monteiro, A. (2013). "LicA: A BIM based automated code-checking 633 

application for water distribution systems." Automation in Construction, 29, 12-23. 634 

Migilinskas, D., Popov, V., Juocevicius, V., and Ustinovichius, L. (2013). "The benefits, 635 

obstacles and problems of practical BIM implementation." Procedia Engineering, 636 

57, 767-774. 637 

Mutis, I., Ramachandran, A., and Martinez, M. (2019). "The BIMbot: A Cognitive 638 

Assistant in the BIM Room.” Proceedings of the 35th CIB W78 2018 Conference: IT 639 

in Design, Construction, and Management,, Chicago, IL, 155-163. 640 

Nawari, N. O. (2011). "Automating codes conformance in structural domain." Proc. 641 

Computing in Civil Engineering 2011, Miami, FL, 569-577. 642 

Noor, B. A., and Yi, S. (2018). "Review of BIM literature in construction industry and 643 

transportation: meta-analysis." Construction Innovation, 18(4), 433-452.. 644 

Paliwal, S. S., Vishwanath, D., Rahul, R., Sharma, M., and Vig, L. (2019). "TableNet: 645 

Deep Learning model for end-to-end Table detection and Tabular data extraction 646 

from Scanned Document Images." Proc., 2019 International Conference on 647 

Document Analysis and Recognition (ICDAR), IEEE, Sydney, Australia,128-133. 648 

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, 649 

R., and Van Campenhout, J. (2011). "A semantic rule checking environment for 650 

building performance checking." Automation in Construction, 20(5), 506-518. 651 

Pinto, D., McCallum, A., Wei, X., and Croft, W. B. (2003). "Table extraction using 652 

conditional random fields." Proc., the 26th annual international ACM SIGIR 653 

conference on research and development in informaion retrieval, Toronto, Canada, 654 

235-242. 655 



 

30 

 

Preidel, C., and Borrmann, A. (2015). "Automated code compliance checking based on a 656 

visual language and building information modeling." Proc., the International 657 

Symposium on Automation and Robotics in Construction, IAARC Publications, 658 

Oulu, Finland, 1, 266-274. 659 

Preidel, C., and Borrmann, A. (2017). "Refinement of the visual code checking language 660 

for an automated checking of building information models regarding applicable 661 

regulations." Proc., Computing in Civil Engineering 2017, Seattle, WA, 157-165. 662 

Qasim, S. R., Mahmood, H., and Shafait, F. (2019). "Rethinking Table Recognition using 663 

Graph Neural Networks." Proc., 2019 International Conference on Document 664 

Analysis and Recognition (ICDAR), IEEE, Sydney, Australia,142-147. 665 

Ramakrishnan, R., and Gehrke, J. (2003). "Database management systems. " McGraw-666 

Hill, Boston, MA. 667 

Salama, D. M., and El-Gohary, N. M. (2016). "Semantic text classification for supporting 668 

automated compliance checking in construction." Journal of Computing in Civil 669 

Engineering, 30(1), 04014106. 670 

Shafait, F., and Smith, R. (2010). "Table detection in heterogeneous documents." Proc., 671 

the 9th IAPR International Workshop on Document Analysis Systems, Boston, MA, 672 

65-72. 673 

Shmanina, T., Zukerman, I., Cheam, A. L., Bochynek, T., and Cavedon, L. (2016). "A 674 

corpus of tables in full-text biomedical research publications." Proc., the Fifth 675 

Workshop on Building and Evaluating Resources for Biomedical Text Mining 676 

(BioTxtM2016), Osaka, Japan, 70-79. 677 

Silberschatz, A., Korth, H. F., and Sudarshan, S. (1997). "Database system concepts.", 678 

McGraw-Hill, New York. 679 

Sing, T. F., and Zhong, Q. (2001). "Construction and real estate NETwork (CORENET)." 680 

Facilities, 19(11-12), 419-428. 681 

Sinha, A., Bayer, J., and Bukhari, S. S. (2019). "Table Localization and Field Value 682 

Extraction in Piping and Instrumentation Diagram Images." Proc., 2019 683 

International Conference on Document Analysis and Recognition Workshops 684 

(ICDARW), IEEE, 26-31. 685 

Spivey, J. M. 1996. "An introduction to logic programming through Prolog." Prentice 686 

Hall, London, UK. 687 

Tan, X., Hammad, A., and Fazio, P. (2010). "Automated code compliance checking for 688 

building envelope design." Journal of Computing in Civil Engineering, 24(2), 203-689 

211. 690 

Vasileiadis, M., Kaklanis, N., Votis, K., and Tzovaras, D. (2017). "Extraction of Tabular 691 

Data from Document Images." Proc., the 14th Web for All Conference on The 692 

Future of Accessible Work, New York, New York, 1-2. 693 



 

31 

 

Volk, R., Stengel, J., and Schultmann, F. (2014). "Building Information Modeling (BIM) 694 

for existing buildings—Literature review and future needs." Automation in 695 

construction, 38, 109-127. 696 

Wu, J., Sadraddin, H. L., Ren, R., Zhang, J., and Shao, X. (2021). "Invariant Signatures 697 

of Architecture, Engineering, and Construction Objects to Support BIM 698 

Interoperability between Architectural Design and Structural Analysis." Journal of 699 

Construction Engineering and Management, 147(1), 04020148. 700 

Wu, J., and Zhang, J. (2019). “Introducing geometric signatures of architecture, 701 

engineering, and construction objects and a new BIM dataset.” Proc., 2019 ASCE 702 

International Conference on Computing in Civil Engineering, ASCE, Reston, VA, 703 

264-271. 704 

Xu, X., and Cai, H. (2020). "Semantic approach to compliance checking of underground 705 

utilities." Automation in Construction, 109, 103006. 706 

Xu, X., and Cai, H. (2019). "Semantic Frame-Based Information Extraction from Utility 707 

Regulatory Documents to Support Compliance Checking." Advances in Informatics 708 

and Computing in Civil and Construction Engineering, 223-230. 709 

Xu, X., Chen, K., and Cai, H. (2020). "Automating Utility Permitting within Highway 710 

Right-of-Way via a Generic UML/OCL Model and Natural Language Processing." 711 

Journal of Construction Engineering and Management, 146. 712 

Zhang, J., and El-Gohary, N. (2012a). "Automated regulatory information extraction 713 

from building codes: Leveraging syntactic and semantic information." Proc., 714 

Construction Research Congress 2012: Construction Challenges in a Flat World, 715 

West Lafayette, Indiana, 622-632. 716 

Zhang, J., and El-Gohary, N. M. (2012b). "Extraction of construction regulatory 717 

requirements from textual documents using natural language processing techniques." 718 

Proc., 2012 ASCE Int. Conf. on Computational Civil Engineering, ASCE, Reston, 719 

VA, 453–460. 720 

Zhang, J., and El-Gohary, N. (2013). "Semantic NLP-Based Information Extraction from 721 

Construction Regulatory Documents for Automated Compliance Checking." Journal 722 

of Computing in Civil Engineering, 30, 141013064441000. 723 

Zhang, J., and El-Gohary, N. (2015). "Automated information transformation for 724 

automated regulatory compliance checking in construction." Journal of Computing 725 

in Civil Engineering, 29(4),B4015001. 726 

Zhang, J., and El-Gohary, N. M. (2017). "Integrating semantic NLP and logic reasoning 727 

into a unified system for fully-automated code checking." Automation in 728 

Construction, 73, 45-57. 729 

Zhang, S., Teizer, J., Lee, J.-K., Eastman, C. M., and Venugopal, M. (2013). "Building 730 

information modeling (BIM) and safety: Automatic safety checking of construction 731 

models and schedules." Automation in Construction, 29, 183-195. 732 

http://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000427
http://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000427


 

32 

 

Zhou, N. (2014). “B-Prolog user’s manual (version 8.1): Prolog, agent, and constraint 733 

programming.” 〈http://www.picat-lang.org/bprolog/download/manual.pdf〉 (Apr. 1, 734 

2021). 735 

 736 

 737 

 738 

Table 1. Example invariant signatures 739 

Signature 

Name 
Signature Type Description 

Example 

Values 

X-dim Geometrical 
X dimension of the 

bounding box 
57.4 

Y-dim 
Geometrical Y dimension of the 

bounding box 
42.0 

Origin Locational The origin of the placement (0, 0, 5.0) 

X-axis Locational Vector of x-axis (1.0, 0, 0) 

Ave-

vertices 
Metadata 

The average number of 

vertices of each face 
4.7 

 740 

Table 2. Header and cell count of training tables 741 

 742 

Table 

Index 
Heading 

Number of 

Headers 

Number of 

Contents 

504.3 
ALLOWABLE BUILDING HEIGHT IN FEET 

ABOVE GRADE PLANE 
39 120 

504.4 
ALLOWABLE NUMBER OF STORIES ABOVE 

GRADE PLANE 
102 455 

506.2 
ALLOWABLE AREA FACTOR (At = NS, S1, S13R, 

or SM, as applicable) IN SQUARE FEET 
124 612 

508.4 
REQUIRED SEPARATION OF OCCUPANCIES 

(HOURS) 
41 200 

509 INCIDENTAL USES 2 34 

 743 

 744 

 745 

Table 3. Header and cell count of testing tables 746 

Table Index Heading 
Number of 

Headers 

Number of 

Contents 

1004.1.2 
MAXIMUM FLOOR AREA ALLOWANCES 

PER OCCUPANT 
2 54 

1006.2.1 
SPACES WITH ONE EXIT OR EXIT ACCESS 

DOORWAY 
20 52 

1006.3.1 
MINIMUM NUMBER OF EXITS OR ACCESS 

TO EXITS PER STORY 
2 6 



 

33 

 

1006.3.2(1) 
STORIES WITH ONE EXIT OR ACCESS TO 

ONE EXIT FOR R-2 OCCUPANCIES 
4 8 

1006.3.2(2) 
STORIES WITH ONE EXIT OR ACCESS TO 

ONE EXIT FOR OTHER OCCUPANCIES 
7 18 

1010.1.4.1(1) 
MAXIMUM DOOR SPEED MANUAL 

REVOLVING DOORS 
2 10 

1010.1.4(2) 
MAXIMUM DOOR SPEED AUTOMATIC OR 

POWER-OPERATED REVOLVING DOORS 
2 24 

1017.2 EXIT ACCESS TRAVEL DISTANCE 13 20 

1020.1 CORRIDOR FIRE-RESISTANCE RATING 11 18 

1020.2 MINIMUM CORRIDOR WIDTH 2 14 

1029.6.2 
CAPACITY FOR AISLES FOR SMOKE-

PROTECTED ASSEMBLY 
11 20 

1029.12.2.1 
SMOKE-PROTECTED ASSEMBLY AISLE 

ACCESSWAYS 
16 32 

 747 

Table 4. Results of testing 748 

Table Index Heading 
Trained 

Algorithms 

Updated 

Algorithms 

1004.1.2 
MAXIMUM FLOOR AREA ALLOWANCES PER 

OCCUPANT 
Success Success 

1006.2.1 
SPACES WITH ONE EXIT OR EXIT ACCESS 

DOORWAY 
Fail Success 

1006.3.1 
MINIMUM NUMBER OF EXITS OR ACCESS TO 

EXITS PER STORY 
Success Success 

1006.3.2(1) 
STORIES WITH ONE EXIT OR ACCESS TO ONE 

EXIT FOR R-2 OCCUPANCIES 
Success Success 

1006.3.2(2) 
STORIES WITH ONE EXIT OR ACCESS TO ONE 

EXIT FOR OTHER OCCUPANCIES 
Success Success 

1010.1.4.1(1) 
MAXIMUM DOOR SPEED MANUAL 

REVOLVING DOORS 
Success Success 

1010.1.4(2) 
MAXIMUM DOOR SPEED AUTOMATIC OR 

POWER-OPERATED REVOLVING DOORS 
Success Success 

1017.2 EXIT ACCESS TRAVEL DISTANCE Success Success 

1020.1 CORRIDOR FIRE-RESISTANCE RATING Success Success 

1020.2 MINIMUM CORRIDOR WIDTH Success Success 

1029.6.2 
CAPACITY FOR AISLES FOR SMOKE-

PROTECTED ASSEMBLY 
Success Success 

1029.12.2.1 
SMOKE-PROTECTED ASSEMBLY AISLE 

ACCESSWAYS 
Success Success 

 749 

 750 



 

34 

 

Table 5. Invariant signatures count and examples of building elements 751 

Signature 

Name 

Number of 

Elements 

Example X-

dim 
Example Origin 

Door 11 0.42 (-33.2, 44.1, 338.0) 

Slab 2 68.7 (-68.7, 64.71, 338.03) 

Roof 
1 

68.7 
(-103.03, 43.96, 

350.17) 

Wall 27 17.7 (-49.03, 43.96, 338.0) 

Window 14 5.36 (-63.44 80.2 339.21) 

 752 

Table 6. Property values based on the invariant signatures of the building 753 

Property Value 

Occupancy M 

Construction Type V-B 

Sprinklered None 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 



 

35 

 

 770 

 771 

 772 

 773 

Figure Captions List: 774 

Fig. 1. Example Table with the Four Types of Cell Components and Title (ICC 2015) 775 

Fig. 2. Example Table in Master Layout One (ICC 2015) 776 

Fig. 3. Example Table in Master Layout Two (ICC 2015) 777 

Fig. 4. Visualization of The Convenience Store Model Used for Testing 778 

Fig. 5. Selected Rules from Chapter 5 of IBC 2015 that have Tabular Information (ICC 779 

2015) 780 

Fig. 6. Table 1006.2.1 from IBC 2015 (ICC 2015) 781 

Fig. 7. Generated Raw Rules from Chapter 5 of IBC 2015 with Tabular Information 782 

Fig. 8. Final Logic Rules from Chapter 5 of IBC 2015 with Tabular Information 783 

Fig. 9. Refined Logic Rules from Chapter 5 of IBC 2015 with Tabular Information 784 


