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Abstract

To fully automate building code compliance checking, regulatory requirements need to be
automatically extracted and transformed from building codes. Existing regulatory
requirement processing efforts mainly focus on building code requirements in text. A more
efficient approach for processing regulatory requirements in other parts of building codes,
such as tables or charts, remains to be addressed. The ability to process building code
requirements in all parts and formats is necessary for an automated code compliance
checking system to achieve full coverage of checkable building code requirements. To
address this gap, the authors proposed a semi-automated information extraction and
transformation.method. The proposed method can extract building code requirements in
tables ,and convert extracted information to logic rules. Automated code compliance
checking systems can utilize the logic rules. The proposed method includes two main steps:

(1) tabular information extraction, and (2) rule generation. The tabular information
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extraction semi-automatically detects the layout of tables, extracts building code
requirements from tables, and transforms extracted information to databases. The rule
generation step automatically generates logic rules that can be directly executed by logic
reasoners. The rule generation step also provides options for users to further refine the
generated rules. The development of the tabular information extraction algorithm takes an
iterative approach. An experiment was conducted to develop a tabular information
extraction algorithm from Chapter 5 of the International Building Code 2015. The primary
version of the algorithm correctly processed 91.67% of tables in Chapter 10 of the
International Building Code 2015. After iterative refinements, the updated tabular
information extraction algorithm correctly processed all tables in this chapter. The rule
generation algorithm correctly generated logic rules that successfully represented the
applicable building code requirements for a testing building, a convenience store in Texas

based on the tabular information.

Introduction

Building Information Modeling (BIM) developed steadily in the past decade (Noor and Yi
2018). Versatile/usages of BIM prompted researches of BIM in the Architecture,
Engineering, and Construction (AEC) industry, for various purposes such as: (1) modular
construction of residential buildings (Alwisy et al. 2012), (2) construction cost estimation
(Leeet al. 2014), (3) collaboration of multi-disciplinary teams (Fernando et al. 2013), and
(4) energy simulation in a building’s early design stage (Kim et al. 2015). Researchers also
combined BIM with other technologies, such as (1) laser scanning (Kim et al. 2015), (2)
Radio-frequency Identification (RFID) (Fang et al. 2016), (3) Virtual Reality (VR) (Du et

al. 2018), (4) computer vision (Asadi et al. 2019, Ham et al. 2016, Han et al. 2015), and (5)
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natural language processing (Mutis et al. 2019, Xu and Cai 2020, Xu and Cai 2019, Xu et
al. 2020, Zhang and El-Gohary 2012a,b) to explore its full potential in the AEC industry.
Overall, benefits of BIM include: (1) facilitating cooperation among stakeholders (Volk et
al. 2014), (2) reducing construction cost and time (Bryde et al. 2013), (3) improving
construction safety (Zhang et al. 2013), and (4) decreasing carbon emission and energy
consumption of buildings (Gan et al. 2019). Although BIM has a wide range-of benefits
and BIM-related research was extensive, the adoption and implementation of BIM in the
industry are still at an early stage (Noor and Y1 2018). Overall, developed countries have a
higher BIM adoption rate than developing countries (Bui et al. 2016). However, even
developed countries do not fully adopt BIM. In the:United Kingdom, for example, only
54.88% of projects used BIM in the design phase,.51.90% of projects used BIM in the pre-
construction phase, and 34.67% of projects used BIM in the construction phase (Eadie et
al. 2013). Project participants do not use BIM to its full extent, even when they use BIM
in a project. They tend to use BIM 'to assist their traditional workflows and only in the most
expensive and risky partof a project (Migilinskas et al. 2013). In summary, in spite of the
diverse applications and benefits of BIM, the BIM adoption rate remains low. Therefore,
more automation and user-friendliness in BIM-based applications is needed to facilitate the
adoption of BIM.

One important such application of BIM is as digital representations of buildings in
automated code compliance checking systems (Dimyadi and Amor 2013). Automated code
compliance checking systems can work as a driver of BIM adoption (Martins and Abrantes
2010). On the other hand, BIM can support automated code compliance checking systems

by providing digital representations of building designs (Ismail et al. 2017). Building
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authorities in multiple countries published automated code compliance checking systems
based on BIM such as (1) the Construction and Real Estate NETwork (CORENET) in
Singapore (Sing and Zhong 2001), the ByggSok system in Norway (Haraldsen et al. 2004),
the DesignCheck in Australia (Ding et al. 2006), and the 3D-4D-BIM program by the US
General Services Administration (GSA) (Ho and Matta 2009). In academia, researchers
also proposed BIM-based automated code compliance checking systems. For-example,
Nawari (2011) applied the integration of BIM and SMARTcodes by the International Code
Council to check the conformance of building elements to various structural codes
automatically. Balaban et al. (2012) presented a pilot study that combines BIM and Al to
check compliance of a building model against fire codes automatically. Martins and
Monteiro (2013) developed a BIM application for.the automated compliance checking of
building codes in general. Preidel and Borrmann (2015) presented a flow-based BIM
automated code compliance checking system. Zhang and El-Gohary (2017) integrated
semantic Natural Language Processing (NLP), logic reasoning, and BIM to develop an
automated code checking system for checking with the International Building Code. Bloch
and Sacks (2018) explored the possibility of integrating machine learning, rule-based
inferring, and BIM to accomplish automated code compliance checking. Fayomi et al.
(2018)explored the approach of automating prescriptive compliance process for building
energy efficiency in a single BIM software platform. HauBler et al. (2021) integrated BIM
and visual programming in code compliance checking of railway designs. In the past
decade, the automated code compliance checking domain developed at a fast pace.
However, a limited range of checkable codes hinders the wide adoption of automated code

compliance checking systems. Few construction industry practitioners will use automated
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code compliance checking systems that require them to check a significant part of building
codes manually. After an extensive literature review, the authors found no previous
automated code compliance checking research targeted at automatically processing
building code requirements stored in tables. Some previous efforts, such as CORENET
(Sing and Zhong 2001), DesignCheck (Ding et al. 2006), and Nawari (2011) which
combined SMARTcodes by ICC and BIM, included tables in the range of-checkable
building code requirement by manually adding tables to the respective systems. However,
almost all building codes contain a large amount of building code requirements in tables.
Automated code compliance checking systems that do ‘not cover building code
requirements in tables cannot have full building code requirement coverage (Salama and
El-Gohary 2016), and pure manual addition of tabular-information into automated code
compliance checking system counters efficiency and time/cost savings. Research about
tabular information detections and extraction in other domains (Liu et al. 2007, Pinto et al.
2003) concurred with the importance of processing information that is stored in tables in
documents. In this research, the authors proposed a new semi-automated information
extraction and information transformation method for tables in building codes. The
proposed method can process tabular information in building codes to increase the scope
of checkable building codes of automated code compliance checking systems.
Background

Existing Work with Table Processing

The demand to extract information from documents that are not in plain textual formats,
such as tables and images that are hard for machines to process, is urgent (Corréa and

Zander 2017). Most existing methods take a two-step approach to extract tabular
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information: (1) table detection, and (2) table sub-structure identification (i.e., cells, rows,
columns) (Paliwal et al. 2019). Challenges in tabular information extraction include: (1)
reliance on the context of tables to interpret tables, (2) document indexing, (3) database
curation, and (4) abbreviation of phases (Shmanina et al. 2016). Table detection algorithms
can construct table hierarchies in two approaches: top-down and bottom-up. In the top-
down approach, the algorithm first identifies tables in documents and then slice-identified
tables into components. On the contrary, in the bottom-up approach, the algorithm first
identifies components of tables and then assembles the components to tables (Kriipl and
Herzog 2006). Different technologies were developed to process table information for
various purposes. For example, Vasileiadis et al. (2017) developed a rule-based, bottom-
up tabular information extraction system for access by.visually impaired people. Buitelaar
et al. (2006) published an ontology-based table processing method to extract information
from webpages as part of a multi-modal dialog system. Shafait and Smith (2010) used
Optical Character Recognition (OCR) technology to process tables with different layouts
for analyzing tables in heterogeneous documents. Qasim et al. (2019) treated the table
detection problem as a graph problem and generated a Graph Neural Network to detect the
structure of tables; which was successfully tested on public table detection datasets (e.g.,
UW3, UNLYV, and ICDAR 2013). Sinha et al. (2019) used OCR to localize tables in Piping
and Instrumentation Diagrams (P&IDs) and used regular expressions to enhance the
accuracy of text extraction. Although most researchers treated table detection and table
structure identification as two separate steps, Paliwal et al. (2019) proposed TableNet, a
neural network with an encoder-decoder structure, to detect table existence and identify

table structure in one unified step jointly. Although existing table processing works reached
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high accuracy on their respective domains, they did not touch upon automation of
processing tables in building codes, and data from such tables were still manually
interpreted and processed.

Existing Work in Automated Building Code Compliance Checking

From a historical perspective, the traditional building code compliance checking process,
or building plan review, is a laborious, time-consuming, and error-prone process that
demands automation (Alghamdi et al. 2017, Lee et al. 2018, Preidel and Borrmann 2017).
The automation of the code compliance checking process can significantly cut its cost,
time, and manual efforts. In the manual code compliance checking process, designers need
to wait a long time for building authorities to issue a building permit or ask for further
modifications to the design documents, and may have to modify design documents multiple
cycles. The plan review process may last'a few months (City of San Clemente 2019). On
the other hand, automated code compliance checking systems can return compliance
checking results in a much shorter time with a limited need for manual input. Thus,
automated building.code compliance checking is faster and cheaper than the traditional
manual code compliance checking approach.

The automated code compliance checking systems emerged in the 1960s when Fenves
introduced decision tables to check the design of steel structures (Fenves 1966). Systems
for checking different aspects of building design were then developed over the years. For

example, Pauwels et al. (2011) implemented a sematic rule checking environment to check
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the acoustic performance of buildings. Tan et al. (2010) provided a series of decision tables
to check the design of building envelopes. Getuli et al. (2017) developed a BIM-based
workflow that checks against the compliance of Italian construction safety and health code.
Malsane et al. (2015) suggested an Industry Foundation Class (IFC)-powered, object-
oriented approach to check against fire codes in England and Wales. Bus et al. (2019)
developed an ontology-based system to achieve automated compliance checking of
semantic rules in French fire safety and accessibility codes. However, existing automated
code compliance checking systems only check a limited set of code rules and, according to
the authors’ literature review, never automatically processed building code requirements
in tables.

Database for Table

Storing and manipulating data has been an important topic since the earliest development
of computers (Ramakrishnan 2003). Integrated Data Store, developed in the 1960s, was the
first general-purpose Database Management System (DBMS), which standardized the
basis of the netwotk data model. Information Management System, on the other hand, was
an alternative data representation framework and formed the basis of the hierarchical data
model. The current dominant DBMSs utilize relational data models, which were proposed
in the 1970s and consolidated in the1980s. Structured Query Language (SQL) is the
standard query language for relational databases. DBMS has the following advantages: (1)

data independence, (2) efficient data access, (3) data integrity, (4) data security, (5)
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efficient data administration, (6) concurrent access, (7) crash recovery, and (8) reduced
application development time.

Relational database models store data in tables with unique names (Silberschatz et al.
1997). The rows in a table represent a relationship of a set of values. Relationships between
values are represented by tuples, which are sequences of values. The relational data model
allows operations like querying, inserting, deleting, and updating of tuples. The'relational
database model, such as SQL, lacks the ability to take certain actions such astaking input,
displaying outputs, or communicating with other programs. The above actions must be
done through a host language such as C, Java, or Python, with embedded SQL queries. In
spite of the above limitations, SQL supports a number of useful syntactic features (e.g.,
relation representation, querying) and has clearly .established itself as the standard

relational database language (Silberschatz et al..1997).

Logic Programming

Logic programming aims to connect logic to computer programming (Kowalski 2014).
Comparing to the well-established systems of logic, computer programming barely
covered the relationship between Turing machines (i.e., an abstract model that simulates
the computational ability of computers) and relational algebra. Logic programming
remedies the deficiency of computer programming by fitting the generality of logic into
the context of computing. Through logic programming, the tasks of defining the problem
and solving it can be separated (Spivey 1996). Prolog is a classic programming language
that implements logic programming. It uses a top-down method and carries out symbolic

reasoning with a logical formula (Kowalski 1979, Spivey 1996). One Prolog program
9
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consists of one or more logic clauses. One logic clause consists of one or more predicates.
All predicates need to be true to make the logic clause true. For example, for a requirement
that says “building height should be less than 40 feet,” one possible Prolog representation
in the form of a logic rule is “compliance building height(Building).:-building(Building),
building height(Building height), has(Building, Building height), Building height <
40.” The logic clause will be evaluated to true if all predicates to the right of “:- (i.e., in
the body of the rule) are true. The first three predicates (ice:, \“building(Building),
building height(Building height), has(Building, Building height),”’) check the existence
of a building and its building height property. The last predicate ( “Building height < 40”)
checks if the building height is less than 40 feet. The program can then be fed with building
design information in the form of logi¢ facts to check if the building exceeds the maximum
allowed building height. If building X has a building height of 50 feet, the corresponding
building design facts ‘are “building(Building X), building height(Building height),
has(Building X, Building height), Building height == 50.” Instantiating the above logic
rule with these logic facts will lead to the evaluation of the logic rule as false, indicating

these building design facts violate the building height requirement.

Proposed Method

In this paper, the authors proposed a semi-automated table processing method for tables in
building codes. The proposed method takes a two-step approach to process tabular

information in building codes: (1) tabular information extraction, and (2) information

10
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conversion to logic rules. The proposed method takes building codes and digital models of
buildings as inputs, and outputs applicable rules for the building models. The developed
method needs to be robust over a wide range of tables, i.e., to be able to process tables in
an unseen format. The tabular information extraction method needs to extract building code
requirements from tables in building codes and store the extracted information in a
structured format. The extraction process needs to reach a very high precision to meet the
100% recall goal of noncompliance detection in automated code compliance checking
(Salama and El-Gohary 2016). The format to store extracted building code requirements
needs to support easy information access and processing to ensure the performance of the
automated code compliance checking system. Integrated methods that directly convert
building code tables to logic rules and store these rules in automated code compliance
checking system are the most straightforward and intuitive method to process building code
requirements from tables. However, state-of-the-art integrated methods lack robustness in
processing tables.in different layouts and the manual effort to maintain integrated methods
may not be'less than the effort in the manual encoding of building codes per se. The diverse
layouts of tables may require customized methods for each table. Frequent updates of
building codes will therefore require constant method updates. To address that, the authors
proposed the separation of information extraction from rule generation to increase the

robustness and reduce the maintenance need of the method.
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Information Extraction

The proposed method takes a semi-automated approach to extract tabular information from
building codes. Users need to collect tables from building codes in digital format and
provide them together with some structural information of these input tables. The method
then processes one table at a time. Structural information of tables helps the information
extraction method identify the layout of the table. For tables with different layouts, the
underlying relationships between cells are different. For example, some tables use a single
cell to store an entry of building code requirement, and-some tables use an entire row to
store an entry of building code requirement. Layouts of tables implicitly specify how tables
store building code requirements. One type of table, for example, uses a cell and its
corresponding row header and column-header to represent one requirement to buildings.
Another type of table uses all cells in a row and their corresponding column headers to
represent one requirement to.buildings. The proposed method uses structural information
provided by the users to automatically distinguish layouts of tables and uncover underlying
relationships and information inferred by layouts.

The authors took an iterative approach to develop the sub-algorithms in the tabular
information extraction algorithm, i.e., the sub-algorithms are continuously improved until
they can correctly extract all tabular information from training data. The basic unit of a
table is the cell. Cells can be classified into four types: (1) row header, (2) column header,

(3) footnote, and (4) content (Fig. 1). The four types of cells form the body of a table. The

12
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finished algorithm can recognize the cell type and connect the information in each cell (e.g.,
texts, numbers). As a result, the authors developed: (1) a header detection sub-algorithm to
recognize the boundaries of cells for each type, (2) a table layout detection sub-algorithm
to distinguish layouts of tables, (3) two information transformation sub-algorithms to
connect contents in the cells, and (4) a rule generation sub-algorithm.

The header detection sub-algorithm uses the structural information of the table to detect
information components. The algorithm requires three inputs from the user for locations of
row headers, column headers, and footnotes, respectively. Users then provide: (1) the
number of columns used for row headers X/, (2) the number of rows used for column
headers X2, and (3) the number of columns used for footnotes X3. There may be no
footnotes (i.e., zero for X3) or row headers (i.e., zero for X7). The header detection sub-
algorithm can then automatically identify the locations of different contents and split the
table into different information components according to inputs from the user.

After that, the layout detection sub-algorithm distinguishes the layouts of the tables based
on their structural information. Tables in building codes have diverse layouts. The authors
identified two master layouts based on how the information is organized in a table. Tables
with row headers are considered to be in Master Layout One: a single cell is used to store
an entry of building code requirement (Fig. 2). Tables without row headers are considered
to be in Master Layout Two: a row of cells is used to store an entry of building code

requirement (Fig. 3). Master layouts ensure the robustness of this algorithm and simplify
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the information extraction process. The layout detection sub-algorithm can classify all
tables in building codes into these two master layouts depending on whether a table has a
row header or not. The authors kept the algorithm simple to ensure the robustness of the
entire table information processing.

The end product of this step is a database that stores information from the“table. The
information conversion sub-algorithm connects information in different components of a
table and inserts connected information into the database. Each master layout has a
customized information conversion sub-algorithm. Customized information conversion
sub-algorithm ensures the correct extraction of information inferred by the layout of tables.
Tables in the same master layout use the same information conversion sub-algorithm. For
tables in the same master layout, variations exist, such as having or not having a column
for footnotes, having or not having a different number of rows in the column header. The
information transformation sub-algorithms are sufficiently robust to process such
variations of tables in the same master layout.

The sub-algorithm for the Master Layout One, which is for tables that use a single cell to
storean entry of building code requirement, connects the cell, its corresponding row header
and column header, and its corresponding footnote (if exists) together and generates a
command to insert the entry of building code requirement into the database. The sub-
algorithm for the Master Layout Two, which is for tables that use an entire row to store an

entry of building code requirement, connects each cell in the row with its corresponding
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column header and generates a command to insert the entry of building code requirement
into the database. Once a command is generated, both sub-algorithms execute the

command to insert building code requirements into the database.

Information Conversion to Logic Rules

The conversion to logic rules follows a semi-automated approach. The conversion process
has three parts: raw-rule generation, invariant signatures generation,-and information

matching.

Raw-rule Generation

The raw-rule generation utilizes existing semantic) NLP-based algorithms that convert
building code requirements to Prolog logic rules with placeholders for information from
tables (Zhang and El-Gohary 2013, 2015; 2017). The logic rules are generated from
building code provisions with reference to tables for depicting certain required range of
values. These existing algorithms lack the ability to process tabular information of building
code requirements. Therefore, this step generates logic rules with placeholders for building
code requirements in tables. At this step, the information extraction and transformation
algorithm by Zhang and EI-Gohary (2013; 2015; 2017) was directly adopted, and

placeholders were generated in the logic rules for the part dealing with tabular information.
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Invariant Signatures Generation

To allow the rules to be compiled with correct quantities and units for the placeholders, the
rule generation sub-algorithm uses invariant signature (Wu et al. 2021; Wu and Zhang 2019)
to decide the configuration of buildings, e.g., occupancy of the building. Each medel is
processed into invariant signatures, which can represent all the building elements in a
uniform way and keep all the needed information for further processing. The invariant
signatures include geometrical, locational, and metadata information of the building. Table
1 shows an example of state-of-the-art invariant signature features for structural analysis.
In this step, the invariant signatures will be expanded to support the compliance checking
use case by adding model-level invariant signatures. Invariant signature allows the
proposed algorithm to select the best matching building code requirements from a table for

a building.

Information Matching

The tabular data usually stores the regulatory requirements of multiple possible types of
buildings. On the other hand, one building usually has a fixed type (e.g., occupation) that
corresponds to one entry of the tabular information. The final rule generation sub-algorithm
can process the digital model of a building, find the corresponding type of the building in

the table by querying the databases to get the building code requirements for the building.
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For example, the occupancy of a building will determine the maximum allowable number
of stories of the building (ICC 2015).

With the raw rules with placeholders and the invariant signatures, the rule generation sub-
algorithm generates final logic rules by an information matching sub-algorithm. The
information matching sub-algorithm will process the invariant signatures to select the
corresponding content to fill in placeholders and generate semantically correct B-Prolog (a
Prolog system implementation with extensions for programming concurrency, constraints,
and interactive graphics) rules (Zhou 2014). For example, the information matching
algorithm can process the invariant signature to obtain the occupancy of the building and
query the corresponding maximum allowable stories from the database. The query process
is based on the invariant signatures. After querying, the rule generation sub-algorithm fills
the returned values into placeholders of raw logic rules. For example, the maximum
allowable stories of the building from the corresponding type of occupancy will be placed
in the logic rule. After that, users have the option to manually compile generated rules

again to further increase their semantic simplicity if needed.

Experiment

Algorithm Development

The header detection sub-algorithm, the layout detection sub-algorithm, and two
information conversion sub-algorithms were developed based on tables (Table 2) in

Chapter 5 of IBC 2015 and were tested on tables in Chapter 10 (Table 3) of IBC 2015.
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Inputs of the developed algorithms were digital tables. Digital tables left less space for
errors comparing to tables collected as scanned images. The authors manually inspected
the extraction results by the algorithm to examine their performance.

After that, the information conversion sub-algorithm injected the extracted information
into databases. The authors used the SQLite database in the implementation of information
conversion sub-algorithms (SQLite Consortium 2020). Each table was stored in a separate
database. Two information conversion sub-algorithms were developed for the two master
layouts. The layout detection sub-algorithm selects which information conversion
algorithm to use. The information conversion algorithm generates an SQLite insertion

command based on the syntax of SQLite and the layout of the table being processed.

Information Conversion to Logic Rule

To test the performance of the rule generation sub-algorithm, the authors evaluated it on
an IFC model of a real convenience store as the sample building model. The model was
using the IFC2x3 standard, which was still the most widely used IFC data standard, to
ensure the generality of validation. Fig. 4 shows a visualization of the model.

The authors examined the proposed rule generation sub-algorithm on the rules in Table
504.3 and Table 504.4 of IBC 2015, which were applicable to the validation case. While
Table 506.2 was also applicable, the authors excluded it because it involved the
identification and calculation of equations, which were out of the scope of this research.
The selected rules are shown in Fig. 5.

18



370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

To store model-level information, the authors developed invariant signatures to cover
Occupancy, Construction Type, and Sprinklered categories. The Occupancy category
contains all possible occupancy types of a building, such as Group H, Group I, etc. The
Construction Type category contains all possible construction types of a building, such as
Type I, Type II. The Sprinklered category depicts whether the building is sprinkled, using
a Boolean variable.

The authors then processed the model of the convenience store into 58)invariant signatures,
which contains 1,363 pieces of information that can be converted into logic facts. Among
the 58 invariant signatures, 55 covered element level information about building
components such as wall, slab, roof, window, and door. The remaining three invariant
signatures covered model-level information for occupancy, construction type, and
sprinkler information.

In the final step, the authors developed an information matching sub-algorithm to allow the
rules to be filled with the correct content in their placeholders, based on the invariant
signatures of the convenience store. The information matching sub-algorithm checked each
place holder using the invariant signatures and selected the correct header and footer
content to modify the raw logic rule into final logic rules with the proper information that

are needed for checking the compliance of the building.
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Results

The testing results are presented in Table 4. The results showed that the proposed method
provided the correct results on eleven testing tables and failed in one. Correctly processed
tables are the tables that are correctly converted to databases by the proposed method. The
results can be verified manually using queries on the database. The failed table was Table
1006.2.1 (Fig. 6). Therefore, the proposed method processed 91.67% of the tables in the
testing dataset correctly. The reason that the proposed method failed to-provide correct
results in Table 1006.2.1 was that this table had four levels of column headers. No table in
Chapter 5 of 2015 IBC (i.e., training data) had more than two levels of column headers.
The authors then updated the developed algorithm to accommodate tables with different
levels of column headers. The updated algoerithm was then tested on all testing tables again.

The updated algorithm provided correct results on all tables.

The following experiment was further conducted to test if the information extraction sub-
algorithm correctly preserved the information inferred by the layout of tables and correctly
extracted building code requirements in the cells. The accuracy of the algorithm was tested
by checking if the generated database returns the correct results when queried. Correct
results were where the corresponding value of a building code requirement in tables can be
successfully returned by the query. For example, when the database for Table 1006.2.1 is
queried for the maximum occupant load of space of occupancy Type B, it should return 49.

The authors queried every entry in the generated databases for every table in the testing
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dataset and reviewed the returned values of every query. In 100% of cases, the query
returned correct results. The generated database preserves all information inferred by the
layout of the tables. Another reason for the 100% accuracy is the authors used digital tables,
instead of scanned tables, as inputs to the information extraction sub-algorithm. Errors in
recognizing the content of scanned tables were therefore prevented. For example, the
algorithm did not suffer from errors in OCR.

Furthermore, the rule generation sub-algorithm was tested to generate logic rules with
correct parameters based on the invariant signatures of the building model of a real-world
convenience store model. The rule generation sub-algorithm was tested to generate logic
rules for checking the compliance of maximum building height and number of stories of
the convenience store. The correct logic. rules should represent the meaning of
corresponding building code provisions correctly. The raw logic rules with placeholders
were checked manually' to ensure that the meanings of corresponding building code
provisions were_correct. Correct final logic rules should have correct building code
requirement. values (from tables) filled in by the information matching algorithm. The
algorithm correctly generated the required final rules for checking the compliance of the
convenience store with building code requirements in Table 504.3 and Table 504.4 of IBC
2015. The generated rules checked and concluded that the convenience store does not
violate the required values in Table 504.3 and Table 504.4 of IBC 2015. The detailed

testing of the rule generation algorithm is described as follows:

21



429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

The first step was to apply the state-of-the-art information extraction and transformation
algorithms by Zhang and El-Gohary (2013; 2015; 2017) to generate the raw logic rules
with placeholders for building code requirements stored in tables that vary with
configurations of buildings. An example result was shown in Fig. 7.

Invariant signatures of the convenience store were generated automatically by state-of-the-
art invariant signature generation algorithm (Wu et al. 2021; Wu and Zhang 2019). There
were eleven door elements, two slab elements, one roof elements, twenty-seven wall
elements, and fourteen window elements in the building, as shown in Table 5. Table 5 also
showed a few example values of the invariant signature features. Each element is
represented uniquely by an invariant signature, which preserves the needed information
that will be used for generating the logic rules. In addition to the element-level invariant
signatures, the authors also developed model-level invariant signatures. Table 6 showed
the building had Occupancy M, Construction Type V-B, and Sprinklered None based on
model-level invariantsignatures. This information was converted into configurations of the
convenience store.

Based on the configurations of the convenience store, the developed algorithm was able to
find the correct numbers from the table and generate the correct final logic rules. The
resulted final logic rules are shown in Fig. 8.

The authors manually compiled generated rules again to make them concise and

straightforward. For example, the predicate “not exceed the limits” was refined to “<="
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because B-Prolog supports the symbol of mathematical inequalities. The finalized rules
were improved to use mathematical inequalities to be more concise and machine-readable
while staying reader friendly (Fig. 9). This step is optional. Logic rules in Fig. 8 and Fig.

9 are equivalent to logic reasoners.

Contributions to The Body of Knowledge

The authors proposed a new method to extend the range of checkable building code
requirements of automated building code compliance checking systemsto cover tables in
building codes. The contributions to the body of knowledge are four-fold. First, the
extension of checkable building code requirements to.tables proves the feasibility of
checking non-textual building code requirements in a semi-automated way. Second, this
research could help incorporate motre building code requirement details into fully
automated code compliance checking systems in a more efficient way, comparing to the
state of the art. With an enlarged range of checkable building code requirements, an
automated code compliance checking system can provide more value to its users, which
could lead.to a wider adoption of automated building code compliance checking and
synergistically facilitating the adoption of BIM. Third, the authors enhanced the robustness
of an automated code compliance checking system. By storing database and generating
logic rules on the go, automated code compliance checking systems will benefit from a
smaller rule set which has better maintainability comparing to a larger one. Last but not

least, the authors calculated that 1,542 logic rules can be generated from tables in the
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training and test datasets, sourced from 17 tables in two chapters of IBC 2015, which has
35 chapters in total. After interpolation, the authors estimated that the proposed method
can help complete about 26,985 new rules with tabular information for IBC 2015. The
proposed method can therefore significantly expand the range of checkable building code

requirements of ACC systems.

Interface Discussion

Although not the focus of this paper, the proposed method provides a friendly
programming interface to support an easy adoption. The information extraction component
only needs users to provide a digital table and some structural information of the digital
table. To use the information extraction component, users only need to put the digital table
and the script of the proposed method in the same folder. When the script is executed, it
will prompt users to input information about the table. The output of the information
extraction component is database files that are supported in SQL language. The database
allows developers to.incorporate the tabular information into automated code compliance

checking systems more efficiently comparing to pure manual interpretation and processing.

Limitations and Future Work

The following limitations are acknowledged. First, the proposed method requires digital
tables as inputs and manual conversion or third-party software to process tables from hard
copy or images into digital tables. Future versions of the proposed method should

incorporate the processing of scanned tables, e.g., using OCR functions. Second, the
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proposed method requires manual inputs in layout detection. The proposed method cannot
detect layouts of tables without such inputs from users in spite of the fact that such inputs
are minimal. The authors propose to develop a fully automated layout detection algorithm
for tables in building codes in their future work. Third, the rule generation sub-algorithm
requires manual effort to refine generated rules. Although logic reasoners haveno problem
in processing unrefined rules, the authors propose to develop refinement algorithms to

generate more human-processable rules also automatically in their future work.

Conclusion

This research incorporated tabular information in building codes into automated code
compliance checking systems. The proposed table information extraction method achieved
a91.67% success rate in our experiment on tables from IBC 2015. The updated information
extraction algorithms could sueccessfully process all tables in the testing dataset and
correctly preserved information inferred by the layout of tables. The proposed method still

requires minor human input, which the authors will further address in their future work.

Data Availability Statement
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Table 1. Example invariant signatures

Signature . . Example
Name Signature Type Description Values
X-dim Geometrical X d1men§1on of the 57.4

bounding box
Y-dim Geometrical Y d1men§1on of the 420
bounding box
Origin Locational The origin.of the placement (0, 0, 5.0)
X-axis Locational Vector of x-axis (1.0, 0, 0)
Ave- The average number of
vertices Metadata vertices of each face 4.7

Table 2. Header and cell count of training tables

Table Heading Number of Number  of
Index Headers Contents
043 Aoy emlE BUTDNG FEGHT N FEET 5y
504.4 élﬁk%\g?EXEIENUMBER OF STORIES ABOVE 102 455
62 AOUABLE ARG ACTOR (L NS.SUSER. 1y
508.4 ggg&l;;ED SEPARATION OF OCCUPANCIES 41 200
509 INCIDENTAL USES 2 34
Table 3. Header and cell count of testing tables
. Number of Number of
Table Index  Heading Headers Contents
1004.1.2 %%?{Xéhgg{l}/i)A%TOOR AREA ALLOWANCES b 54
1006.2.1 IS)POAOC}E\%:VYITH ONE EXIT OR EXIT ACCESS 20 57
1006.3.1 IF}/IOH\IIEIPI\(/;I;IQ/IPEI({JE/IEOEI};YOF EXITS OR ACCESS ) 6
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STORIES WITH ONE EXIT OR ACCESS TO

1006.3 2(1) ONE EXIT FOR R-2 OCCUPANCIES 4 8
STORIES WITH ONE EXIT OR ACCESS TO

1006.3 2(2) ONE EXIT FOR OTHER OCCUPANCIES 7 18
MAXIMUM DOOR SPEED MANUAL

1010.1.4.1(1)  REyvoLvING DOORS 2 10
MAXIMUM DOOR SPEED AUTOMATIC OR

1010.1 4(2) POWER-OPERATED REVOLVING DOORS 2 24

1017.2 EXIT ACCESS TRAVEL DISTANCE 13 20

1020.1 CORRIDOR FIRE-RESISTANCE RATING 11 18

1020.2 MINIMUM CORRIDOR WIDTH 2 14
CAPACITY FOR AISLES FOR SMOKE-

1029.6.2 PROTECTED ASSEMBLY 11 20
SMOKE-PROTECTED ASSEMBLY AISLE

1029.12.2.1 ACCESSWAYS 16 32

Table 4. Results of testing
) Trained Updated
Table Index  Heading ) P .
Algorithms Algorithms

MAXIMUM FLOOR AREA ALLOWANCES PER

1004.1.2 Success Success
OCCUPANT
SPACES WITH ONE EXIT OR. EXIT' ACCESS

1006.2.1 Fail Success
DOORWAY
MINIMUM NUMBER OF EXITS OR ACCESS TO

1006.3.1 Success Success
EXITS PER STORY
STORIES WITH ONE EXIT OR ACCESS TO ONE

1006.3.2(1) Success Success
EXIT FOR R-2 OCCUPANCIES
STORIES-WITH ONE EXIT OR ACCESS TO ONE

1006.3.2(2) Success Success
EXIT FOR'OTHER OCCUPANCIES
MAXIMUM DOOR SPEED MANUAL

1010.1.4.1(1) Success Success
REVOLVING DOORS
MAXIMUM DOOR SPEED AUTOMATIC OR

1010.1.4(2) Success Success
POWER-OPERATED REVOLVING DOORS

1017.2 EXIT ACCESS TRAVEL DISTANCE Success Success

1020.1 CORRIDOR FIRE-RESISTANCE RATING Success Success

1020:2 MINIMUM CORRIDOR WIDTH Success Success
CAPACITY FOR AISLES FOR SMOKE-

1029.6.2 Success Success
PROTECTED ASSEMBLY
SMOKE-PROTECTED ASSEMBLY AISLE

1029.12.2.1 Success Success
ACCESSWAYS
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Table 5. Invariant signatures count and examples of building elements

Signature Number of Example X- Example Origin
Name Elements dim
Door 11 0.42 (-33.2,44.1, 338.0)
Slab 2 68.7 (-68.7, 64.71, 338.03)
1 (-103.03, 43.96,
Roof 68.7 350.17)
Wall 27 17.7 (-49.03, 43.96, 338.0)
Window 14 5.36 (-63.44 80.2 339.21)
Table 6. Property values based on the invariant signatures of the building
Property Value
Occupancy M
Construction Type  V-B
Sprinklered None
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Figure Captions List:

Fig. 1. Example Table with the Four Types of Cell Components and Title:(ICC 2015)
Fig. 2. Example Table in Master Layout One (ICC 2015)

Fig. 3. Example Table in Master Layout Two (ICC 2015)

Fig. 4. Visualization of The Convenience Store Model Used for Testing

Fig. 5. Selected Rules from Chapter 5 of IBC 2015 that have Tabular Information (ICC
2015)

Fig. 6. Table 1006.2.1 from IBC 2015(ICC 2015)

Fig. 7. Generated Raw Rules from Chapter 5 of IBC 2015 with Tabular Information

Fig. 8. Final Logic Rules from Chapter 5 of IBC 2015 with Tabular Information

Fig. 9. Refined Logic Rules from Chapter 5 of IBC 2015 with Tabular Information
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