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Abstract 
Advances in the analysis of amplicon sequence datasets have introduced a 

methodological shift in how research teams investigate microbial biodiversity, away from 

sequence identitybased clustering (producing Operational Taxonomic Units, OTUs) to 

denoising methods (producing amplicon sequence variants, ASVs). While denoising 

methods have several inherent properties that make them desirable compared to 

clustering-based methods, questions remain as to the influence that these pipelines have 

on the ecological patterns being assessed, especially when compared to other 

methodological choices made when processing data (e.g. rarefaction) and computing 

diversity indices. We compared the respective influences of two widely used methods, 

namely DADA2 (a denoising method) vs. Mothur (a clustering method) on 16S rRNA 

gene amplicon datasets (hypervariable region v4), and compared such effects to the 

rarefaction of the community table and OTU identity threshold (97% vs. 99%) on the 

ecological signals detected. We used a dataset comprising freshwater invertebrate (three 

Unionidae species) gut and environmental (sediment, seston) communities sampled in 

six rivers in the southeastern USA. We ranked the respective effects of each 

methodological choice on alpha and beta diversity, and taxonomic composition. The 

choice of the pipeline significantly influenced alpha and beta diversities and changed the 

ecological signal detected, especially on presence/absence indices such as the richness 

index and unweighted Unifrac. Interestingly, the discrepancy between OTU and ASV-

based diversity metrics could be attenuated by the use of rarefaction. The identification of 

major classes and genera also revealed significant discrepancies across pipelines. 
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Compared to the pipeline’s effect, 

OTU threshold and rarefaction had 

a minimal impact on all 

measurements. 

 

Introduction 

Evaluating the microbial diversity of 

various environments, from host-

associated microbiomes to free-

living communities in water, soil, and 

air, is essential for understanding 

biodiversity and improving human 

health and agriculture [1, 2]. The 

development and increased 
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accessibility of high-throughput 

sequencing technologies [3], has 

supported the advancement of 

large-scale assessments of microbial 

diversity over the past decade [4]. 

The most popular sequencing 

technique for analysis of bacterial 

diversity is sequencing a specific 

gene (or region of a gene, e.g. a 

hypervariable region of the bacterial 

16S rRNA gene) using Polymerase 

Chain Reaction to create sequences 

called amplicons (targeted amplicon 

sequencing), which can be done 

using diverse platforms (e.g. 454, 

Illumina, IonTorrent). One of the 

most popular is Illumina MiSeq, producing paired reads, i.e. sequencing targeted loci from 

both its 5’ (forward) and 3’ (reverse) extremities. As with improvements in sequencing 

technology, bioinformatics techniques for the analysis of high-throughput sequencing data 

have been concurrently improving [5]; for targeted amplicon sequencing alone, there are 

now at least 15 dedicated pipelines available [6–11]. 

In order to investigate biodiversity amplicon sequencing data, researchers usually 

attempt to aggregate the >50,000 paired reads into sequences (e.g. Illumina MiSeq delivers 

up to 15Gb using kits for 2x300b reads), before grouping them into clusters, widely termed 

operational taxonomic units (OTUs). OTUs are defined as a cluster of sequences that have a 

sequence identity above a given threshold, often set to 97% [6]. Clustering based on 97% 

identity reduces the size of the raw 16S rRNA dataset, and decreasing the computational 

requirements for analysis [12]. It also reduces the impact of sequencing errors in 

downstream diversity estimations, as erroneous sequences are likely to be merged with 

correct sequences [10, 13]. 

Recently, a methodological shift has occurred with the increased use of denoising 

methods, producing exact sequence variants or amplicon sequence variants (ASVs, [14]) 

instead of producing clusters. Denoising methods generate an error model based on the 

quality of the sequencing run and use this model to distinguish between the predicted 

“true” biological variation and that likely generated by sequencing error [7, 15]. Remaining 

‘true’ sequences varying from as little as one single nucleotide are then defined as separate 

ASVs, which is intended to allow for a higher accuracy than 97% identity OTUs. However, 

given their construction method, ASVs are not equivalent to “100%-OTUs” [16]. 

With the increasing popularity of denoising approaches (hereafter, ‘ASV-based 

methods’), studies have compared the results from clustering (‘OTU-based’) and ASV-based 

approaches. Based on mock communities, ASV-based approaches had a higher sensitivity in 

detecting the bacterial strains present, sometimes at the expense of specificity [17–20]. 

However, studies utilizing soil, rhizosphere, and human microbiome datasets found similar 

overall biological signals [14, 21, 22]. From these studies, the main weakness of OTU-based 

approaches appears to be in the accurate detection of alpha diversity, as OTUs often 

overestimate bacterial richness when compared to ASVs, whereas estimates of beta 

diversity estimates are typically more congruent between methodologies [15, 19, 21, 22]. 

Further, an analysis using various OTU and ASV-based programs and a wide range of natural 

and mock communities identified significant discrepancies in the taxonomic assignment and 

estimation of relative abundance of functionally important taxa [23]. 

Despite these studies, the drivers of discrepancies between OTU and ASV approaches 

have not been fully disentangled. For instance, what is the influence of choosing ASVs- vs. 

OTUsbased approaches when compared to the influence of other methodological choices 

that are known to impact biological patterns, such as rarefaction, OTU identity threshold, 

and specific diversity indices [24–27]? Further, while the relative impact of each of these 

choices may depend on the characteristics (richness, evenness of relative abundances, 

phylogenetic structure) of the community analyzed, many of the aforementioned studies 

focused on only one environment (but see [17, 23]). A bacterial community with a few 

closely related dominant taxa may be more sensitive to the choice of sequence processing 
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method than a community with 

greater phylogenetic diversity or 

evenness of abundances. Lastly, while phylogenetic 

diversity indices (e.g. UniFrac) are typically more efficient at detecting ecological patterns 

and evolutionary processes than indices based on just operational units (e.g. Bray-Curtis or 

Jaccard indices, hereafter termed ‘taxonomic diversity indices’) [26, 28, 29], only one of the 

aforementioned studies compared phylogenetic diversity metrics obtained from ASVs vs. 

OTUs datasets 

[23]. 

In this study, we compare the influence of two widely used sequence-processing 

methods, namely the ASV-based DADA2 and the OTU-based MOTHUR pipeline, on the 

diversity, ecological and compositional patterns of the bacterial communities present in 

three different microbial assemblages (aquatic sediment, particle-associated freshwater 

communities ‘seston’, and the freshwater mussel gut microbiome). We compared the 

effects of ASV vs. OTU approaches using two different identity thresholds to those with 

varying levels of sequence rarefaction, and eight contrasting alpha and beta-diversity 

metrics. 

Methods 

Sampling of bacterial communities 

A total of 54 surface sediment, 54 seston, and 119 mussel (host-associated) microbiome 

samples were collected from 18 sample sites located on six rivers in the Tennessee and 

Mobile River Basins, USA, in Summer 2019 (S1 Table in S2 File). At each site, three sediment 

and three seston samples were collected in the middle of the river channel. Sediment 

samples were collected using sterile 15 mL centrifuge tubes that were dragged through the 

top 5 cm of sediment. Seston samples were collected by filtering 120 mL of river water 

through sterile 47 mm, 1 μ pore size sterile glass fiber filters, which were then placed in 

sterile 15 ml tubes. 4–5 mussel specimens belonging to three different species (Lampsilis 

ornata, Amblema plicata, Cyclonaias asperata) were manually collected (S1 Table in S2 File). 

Mussels were collected under the authority of the permit (USFWS permit #TE68616B-1 and 

ALCDNR permit 

#2016077745468680) issued by the Alabama Department of Conservation and Natural 

Resources to Dr. Carla Atkinson, University of Alabama. After collection, all filters, sediment 

samples, and mussels were stored on ice and taken to the University of Alabama for storage 

at -80˚C. Mussel gut tissue was excised using sterile dissecting equipment, and all samples 

were transported to the University of Mississippi for microbiome analysis. 

DNA extraction and 16S rRNA gene amplicon sequencing 

DNA was extracted from mussel gut tissue using a PowerSoil Pro extraction kit (Qiagen, 

Germantown, MD, USA) as described previously [30]. For seston and sediment microbiome 

analysis, filters or 30 mg of sediment were added directly into the bead beating tube of the 

extraction kit, before performing the same procedure. 
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Dual-indexed barcoded primers were used to amplify the V4 region of the 16S rRNA gene 

of the extracted DNA following established techniques [6, 30] using primers from [31]. The 

amplified 16S rRNA gene fragments were combined and spiked with 20% PhiX before being 

sequenced on an Illumina MiSeq at the University of Mississippi Medical Centre Molecular 

and Genomics Core facility. Sequence data were obtained as FASTQ files, which were further 

processed using Mothur and DADA2. Sequencing quality was assessed using fastqc reports 

and was summarized using ‘fastqcr’ R-package [32] and provided in S3 Table in S2 File. 

OTU-based pipeline (Mothur) 

We used Mothur v1.8.0 [33] to assemble, read, and filter the obtained sequences, before 

clustering them into OTUs. We followed the recommended procedures for Illumina MiSeq 

sequence data, as it is the methodology most likely to be used by researchers 

(https://mothur. org/wiki/miseq_sop/, December 2020). Briefly, after merging the forward 

and reverse reads, we screened the sequences and removed those of unusual length or that 

contained ambiguous bases. Unique sequences were then aligned to the Silva 16S rRNA 

gene database v. 138 [34], and poorly aligned reads were removed. Sequences were 

classified using the Wang method [35] in Mothur through the same database to remove all 

non-prokaryotic sequences and sequences that were not classified to the Kingdom level. 

Chimeras were determined and removed using the chimera.vsearch command with default 

parameters. OTUs were assembled based on 97%- and 99%-identity, and OTU tables were 

constructed before retrieving the consensus classification for each OTU. The most abundant 

sequence within each OTU was selected as the reference sequence for further phylogenetic 

analyses. A total of 31,453 97%OTUs and 58,483 99%-OTUs were detected in the unrarefied 

dataset of 217 samples, based on 3,420–143,827 valid sequence reads per sample. 

According to the current SOP, no abundancebased filtering of OTUs was applied before 

performing rarefaction. 

ASV-based pipeline (DADA2) 

We used DADA2 R-package v1.20 [7] on R v3.6.3 [36] following the general tutorial available 

on the Github of the software (https://benjjneb.github.io/dada2/tutorial.html, November 

2020). Forward and reverse reads with >2 or >5 estimated errors, respectively, were filtered 

and were truncated at the 3’ end, where read quality dropped below a quality score of 2 

(TrunQ = 2). After separate estimations of error rates on forward and reverse reads, ASVs 

were predicted and merged using a minimal overlap of 12 bases. Chimeras were removed 

using the consensus method with the removeBimeraDenovo() function. ASVs with <243 or 

>263 base pairs were removed. ASVs were classified using Wang’s classifier [35] and the 

SILVA 16S rRNA gene database v. 138 [34], using DADA2’s default parameters. There were a 

total of 21,606 ASVs in the unrarefied dataset of 217 samples, based on 3,164–112,811 valid 

sequence reads per sample. Despite the same version of the SILVA database utilized for 

classification of both OTUs and 

ASVs, minor differences were observed, with Oxyphotobacteria considered as a class within 

the ASV dataset, and Planctomycetes in the OTU datasets named as Planctomycetacia in the 

https://mothur.org/wiki/miseq_sop/
https://mothur.org/wiki/miseq_sop/
https://mothur.org/wiki/miseq_sop/
https://mothur.org/wiki/miseq_sop/
https://benjjneb.github.io/dada2/tutorial.html
https://benjjneb.github.io/dada2/tutorial.html
https://benjjneb.github.io/dada2/tutorial.html
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ASV dataset. To simplify comparison across methodologies, we renamed Oxyphotobacteria 

as Cyanobacteria, and Planctomycetacia as Planctomycetes within the ASV dataset. 

Relative abundance normalization and taxonomic diversity. ASV and OTU tables were 

imported into R v3.6.3 [36] using the ‘phyloseq’ R-package v1.30 [37]. The minimal number 

of sequences within samples before rarefaction were 3164, 3420, and 3400, downstream 

DADA2 (ASVs) and Mothur (97%- and 99%-OTUs), respectively (S2 Table in S2 File). 12% and 

4% of samples have less than 4,000 sequences in ASV-based and OTU-based datasets, 

respectively. Therefore, the three levels of rarefaction chosen were 1000, 2000, and 3000 

sequences in order to compare both DADA2 and Mothur methodologies without losing too 

many samples. Rarefaction was performed by random subsampling sequences using 

function “rarefy_even_depth” from ‘phyloseq’ R-package. Subsequent analyses were 

performed at each rarefaction level as well as on unrarefied 97%-OTUs, 99%-OTUs, and 

ASVs tables, for a total of 12 community tables (three ASV/OTU approaches x four levels of 

rarefaction). Sampling coverage was determined for all analysis tables using Chao’s 

coverage index provided in the ‘entropart’ R-package v1.6–8 [38]. Indices of taxonomic 

alpha diversity (observed richness, iChao1 and ACE richness indices correcting for 

unsampled operational units, and Shannon alpha diversity) were assessed using ‘vegan’ R-

package v2.5–7 (for observed richness and Shannon) [39], ‘entropart’ (for iChao1) and 

‘fossil’ R-package v0.4 (for ACE) [40]. Following recommendations from Jost [41], all alpha 

diversity indices were expressed in an equivalent number of operational units (i. 

e., equivalent numbers of species, also known as Hill numbers). The evenness of the 

abundance of operational units was measured using Bulla’s O index, which is less affected 

by the number of species than other evenness indices [42, 43]. 

Taxonomic beta diversity was assessed using complementary indices based on Jaccard 

and Bray-Curtis dissimilarities, using ‘vegan’. While Jaccard is solely based on the 

presence/absence of operational units, Bray-Curtis gives more weight to the most abundant 

operational units. 

Phylogenetic diversity 

ASV and OTU reference sequences were incorporated into the GreenGenes 99% 

phylogenetic tree v13.8 [44], using SEPP software [45] implemented in QIIME2 [46] using 

default parameters. The obtained bacterial phylogenetic tree was then pruned using ‘ape’ 

R-Package v5.5 [47] to remove all tree leaves absent from our dataset while maintaining the 

tree’s structure. This method allowed for a more accurate tree structure than a de-novo 

tree reconstruction using short sequences. Phylogenetic beta diversity was then assessed 

using the weighted (W-) and unweighted (U-) versions of the Unifrac index, using ‘GUniFrac’ 

R-package v1.3 [48]. 

Statistical analyses 

Statistical analyses were computed using R, and data visualization was made using ‘ggplot2’ 

Rpackage v3.3.5 [49]. Differences in alpha and beta diversity values across different 

methodologies (ASVs vs. 97%-OTUs vs. 99%-OTUs), rarefaction level (no rarefaction vs. 
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rarefaction to 1,000 vs. 2,000 vs. 3,000 sequences), and OTU threshold (99% vs. 97% 

identity) were assessed using pairwise Wilcoxon signed-rank tests allowing for the 

identification of a significant difference across methodologies. Spearman’s and Pearson’s 

correlations in alpha diversity metrics were computed to measure the correlation strength 

for these values across methodologies. Similarly, correlations between beta diversity indices 

were measured using Spearman’s and Pearson’s correlations in Mantel tests available in 

‘vegan’. The correlation of relative abundance of taxonomic groups across the different 

analysis treatments was made using Spearman’s signed rank tests. Similarly, correlations of 

the abundances of top bacterial classes and genera were made using separate Spearman’s 

signed rank tests and plotted using ‘corrplot’ R-package v0.90 [50]. 

Detection of ecological signals (effect of community type, river, and sample site) in alpha 

diversity was conducted with Kruskal-Wallis tests and associated post-hoc pairwise 

comparisons using ‘pgirmess’ R-package v1.7.0 [51]. 

Detection of the same ecological effects on the structure of the microbial communities 

was conducted using separated PERMANOVAs performed on beta-diversity matrices using 

the ‘vegan’ R-package (900 permutations). The intensity of the signal was measured using 

the Rsquared (R2) obtained in PERMANOVA’s outcomes. Such values were compared across 

treatments to assess the respective impact of ASVs vs. OTUs, rarefaction, and the beta 

diversity metric used on PERMANOVA’s result, using random forest models provided in 

‘randomForest’ R-package v4.6–14 [52]. These models are based on successive decision 

trees to allow ranking of the effects of several correlated variables on a given response [53], 

here on the intensity of the detected ecological signal. 

Results 

Structure and coverage of 16S rRNA datasets 

ASV and OTU-based analyses resulted in significantly different numbers of operational units 

in non-rarefied datasets, with fewer ASVs (mean±standard deviation 303±215 per sample) 

than 97%-OTUs (1,386±1,026), and 99%-OTUs (1,708±1,319) (Wilcoxon signed-rank tests, 

p<0.001 in all comparisons), despite a better coverage of ASV-based data based on 

rarefaction curves (S1-S3 Figs in S1 File). Before rarefaction, Chao’s coverage was 

significantly lower in OTU-based datasets (93.7±5.6% and 91.5±7.8% respectively in 97%- 

and 99%-OTUs) than in the ASV-based dataset, where it averaged 100±0% (Wilcoxon signed-

rank tests, p<0.001 between OTUs and ASVs, P>0.05 between 97%- and 99%-OTUs). 

Accordingly, after rarefaction, the number of species in each sample was close to the 

saturation value on rarefaction curves for the ASV datasets (coverage of 98.0±1.8% after 

rarefaction to 2000 sequences), but was well below the saturation point based on 97%- and 

99%-OTUs (Coverage of 85.8±10.3% and 83.6±12.6% after rarefaction to 2000 sequences) 

(S1-S3 Figs in S1 File). 

Before rarefaction, the abundance distribution of operational units was more even in the 

ASV dataset than in the 99%-OTU dataset and 97%-OTU datasets (Fig 1; Wilcoxon 

signedrank tests p<0.001 in all comparisons). This pattern was apparent across all sample 

types, although evenness was highest in the sediment, intermediate in seston, and lowest in 
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hostassociated communities (Fig 1; Kruskal-Wallis and post-hoc associated pairwise tests, 

p<0.001 for all comparisons). 

Alpha diversity metrics 

All alpha diversity metrics were distinct between sequence processing methods (ASVs vs. 

OTUs), at every rarefaction level (Wilcoxon signed-rank tests p<0.001 in all comparisons, Fig 

2, S3 Fig in S1 File). ASV-derived richness was roughly twice as low as 99%-OTU and 97%-

OTU richness, which were closer to each other (99%-OTU richness was 1.1 times higher than 

97%-OTU richness). The difference between ASV- and OTU-derived richness was even higher 

using iChao1 (4.8–5.3 higher in 97%- and 99%-OTUs datasets than in ASVs, respectively) and 

ACE (3.5–4.1 times respectively) (S3 Fig in S1 File). However, differences between the 

approaches were lower in the case of Shannon’s alpha diversity index (1.4 and 1.7 times 

respectively, Fig 2). 

The ranks of alpha diversity metrics were more congruent across ASV- vs. OTU-based 

approaches than the values themselves (Table 1, higher correlations based on Spearman’s 

than on Pearson’s correlations). Correlations between ASVs and OTUs approaches were the 

lowest for richness indices that correct for sampling bias (iChao1 and ACE; Spearman’s r = 

0.61–0.84 depending on the index, rarefaction level, and OTU threshold), intermediate for 

observed richness (0.80–0.85), and highest for Shannon diversity (0.90–0.97) (Table 1). 

Rarefaction increased the strength of these correlations (Table 1). 

Alpha diversity was highest in the sediment, intermediate in the seston, and lowest in 

mussel host-associated communities, regardless of sequence processing method or 

rarefaction level (Kruskal-Wallis and associated pairwise post-hoc tests, p<0.05 in all cases 

and for all comparisons, Fig 2). However, the effects of river and site varied with the 

sequence processing method and the metric used, with an intensity that was dependent on 

the type of the community (Fig 3). While differences in Shannon diversity between rivers 

were consistent regardless of the sequence processing method and sample type, differences 

in observed richness across rivers were more variable. For sediment samples, richness 

differences were generally stable to shifting from ASV to OTU-based approaches (i.e. no 

significant differences between rivers). However, for seston and mussel host communities, 

the selection of an ASV or OTU-based method influenced the outcome as to whether any 

rivers were significantly different in richness or not (Fig 3). 

Beta diversity indices 

Beta diversity metrics computed with ASVs and OTUs were highly correlated (Mantel test, 

Spearman’s r >0.9), with the exception of U-Unifrac (<0.81, Table 2). Beta diversity metrics 

based on 99%-OTUs were more correlated than those from ASVs than 97%-OTUs (Table 2). 
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Fig 1. Effect of sequence processing methodology on the rank abundance of operational units. The relative 

abundance of ASVs (obtained from DADA2) and OTUs defined by 97% or 99% identity (obtained from MOTHUR). 

Units were sorted according to their rank of abundance and represented separately for each community type (a: 

mussel gut microbiome, b: sediment, c: seston). Inserts focus on the 500 most abundant operational units. The 

evenness of the relative abundance of the operational units computed Bulla’s O are displayed on each plot. 
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https://doi.org/10.1371/journal.pone.0264443.g001 

 

Fig 2. Effect of sequence processing methodology on alpha diversity metrics for microbiome analyses. Measure of taxonomic richness 

(expressed as the number of OTUs or ASVs and Shannon alpha diversity depending on the methodology used, namely ASV, 97%-OTU, and 99%-

https://doi.org/10.1371/journal.pone.0264443.g001


PLOS ONE Impact of sequence processing on microbial ecology studies 

PLOS ONE | https://doi.org/10.1371/journal.pone.0264443 February 24, 2022 10 / 22 

OTU, at three different levels of rarefaction (1,000; 2,000 and 3,000 sequences per sample) within each sample type studied (a-c). To ease the 

visualization of differences across methods and rarefaction levels, the y-axis of plots has been log transformed. The effect of methodological 

choices on other alpha diversity metrics is available in S3 Fig in S1 File. 

 

https://doi.org/10.1371/journal.pone.0264443.g002 

Table 1. Correlation between alpha diversity metrics between OTU- and ASV-based datasets across every 

rarefaction level tested. 

Diversity index Rarefaction ASVs vs. 97%-OTUs ASVs vs. 99%-OTUs 

Richness No rarefaction 0.80 / 0.75 0.81 / 0.77 

3,000 sequences 0.81 / 0.77 0.81 / 0.78 

2, 000 sequences 0.85 / 0.82 0.85 / 0.83 

1,000 sequences 0.90 / 0.90 0.91 / 0.90 

Shannon No rarefaction 0.95 / 0.87 0.96 / 0.87 

3,000 sequences 0.96 / 0.91 0.96 / 0.91 

2, 000 sequences 0.96 / 0.92 0.96 / 0.93 

1,000 sequences 0.96 / 0.95 0.97 / 0.96 

iChao1 No rarefaction 0.62 / 0.51 0.61 / 0.49 

3,000 sequences 0.65 / 0.58 0.66 / 0.58 

2, 000 sequences 0.70 / 0.64 0.69 / 0.61 

1,000 sequences 0.76 / 0.72 0.78 / 0.74 

ACE No rarefaction 0.70 / 0.63 0.69 / 0.61 

3,000 sequences 0.73 / 0.66 0.73 / 0.64 

2, 000 sequences 0.77 / 0.72 0.77 / 0.68 

1,000 sequences 0.84 / 0.77 0.84 / 0.75 

Correlations were tested using Spearman’s and Person’s correlation tests (all P values were < 0.001). Correlations 

estimates are indicated as follows: Spearman’s r / Pearson’s r. 

Correlations showing poorer agreement between OTUs and ASVs are noted, i.e. 0.8<r<0.9 (bold) or r<0.8 (bold and 

underlined). 

 

https://doi.org/10.1371/journal.pone.0264443.t001 

Rarefaction also slightly increased agreement between ASV and OTU-based beta diversity 

metrics, for both OTU thresholds (Table 2). Rarefaction had only a small effect on Bray-

Curtis and Jaccard indices, with a correlation >0.9 between rarefied and unrarefied data and 

no effect on W-Unifrac (r = 1; S4 and S5 Figs in S1 File). Rarefaction did, however, have a 

greater influence on U-Unifrac values computed on OTU datasets (r = 0.82–0.87, S5 Fig in S1 

File). 

Methodological choices had different effects in detecting differences between communities. 

Random Forests tests on PERMANOVAs based on presence/absence indices (Jaccard and 

U-Unifrac) revealed that the choice of OTU vs. ASVs had a lower contribution in 

PERMANOVA’s outcome compared to the other methodological choices (rarefaction level, 

beta diversity index) (S6 Fig in S1 File). Patterns based on abundance-weighted beta 

https://doi.org/10.1371/journal.pone.0264443.g002
https://doi.org/10.1371/journal.pone.0264443.t001
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diversity indices (W-Unifrac and Bray-Curtis) had more contrasts, as the choice of ASV vs. 

OTUs had the lowest influence in mussel microbiome and sediment, but had the greatest 

contribution in seston communities (S6 Fig in S1 File). 

For taxonomic beta diversity (Jaccard and Bray-Curtis indices), 97%-OTUs tended to 

detect higher differences across community types (Fig 4, R2 = 0.23±0.06 in 97%-OTUs, 

0.17±0.05 in 99%-OTUs, and 0.18±0.05 in ASVs). In contrast, for phylogenetic beta diversity 

(U- and W-Unifrac indices), ASVs-based PERMANOVAs showed a slightly higher distinction 

between sample types (R2 = 0.31±0.11 in ASVs, 0.29±0.13 in 97%-OTUs, and 0.30±0.12 in 

99%-OTUs) (Fig 4). ASVs-based metrics generally detected higher river and site effects than 

97%- and 99%-OTUs (R2 = 0.41±0.23 in ASVs, 0.38±0.21 in 97%-OTUs, and 0.39±0.21 in 99%-

OTUs Fig 4). 

Overall, PERMANOVAs outcomes were more variable across methodologies in seston 

than in the other sample types, while they were more homogeneous in mussel microbiome 

and sediment (Fig 4 and S7 Fig in S1 File). W-Unifrac raised the most consistent results 

across ASVs 

 

Fig 3. Effect of sequence processing methodology on ecological patterns of microbial alpha diversity. Distribution of alpha diversity 

values on each river is represented by a boxplot. Kruskal-Wallis tests assessed significant differences between rivers with p-values 

indicated on each panel. Types of communities are represented using horizontal panels. Patterns within ASVs, 97%-OTUs, and 99%-

OTUs are compared using the three vertical panels on each plot. The richness index (left plot) and Shannon alpha diversity (right plot) 

are represented for each community type and sequence processing methodology. 

 

https://doi.org/10.1371/journal.pone.0264443.g003 

vs. OTUs methodologies for detecting distinct community types (PERMANOVA’s R2 = 0.42 

±0.0), rivers (R2 = 0.32±0.14), and sites (R2 = 0.59±0.24) (S5f Fig in S1 File). The second most 

consistent index was Bray-Curtis (R2 = 0.24±0.03, 0.34±0.14, and 0.57±0.21, respectively). 

https://doi.org/10.1371/journal.pone.0264443.g003


PLOS ONE Impact of sequence processing on microbial ecology studies 

PLOS ONE | https://doi.org/10.1371/journal.pone.0264443 February 24, 2022 12 / 22 

Overall, the rarefaction level minimally influenced the PERMANOVA results (S7 Fig in S1 

File). 

Composition 

While Gammaproteobacteria (12.0±9.0%), Cyanobacteria (11.1±12.4%), 

Alphaproteobacteria (10.0±8.0%), and Planctomycetes (15.7±15.3%) were the main classes 

identified in all datasets and rarefaction levels used (Fig 5), several major classes of Bacteria 

had their relative abundance computed on OTUs poorly correlated with abundance 

computed on ASVs. These classes included Bacilli (Spearman’s r = 0.34±0.21), Clostridia (r = 

0.66±0.28), Bacteroidia (0.75 ±0.13), and Actinobacteria (0.81±0.17). Other major classes 

presented a higher reproducibility across methods (0.83±0.09). The class Verrucomicrobiae, 

which was dominant in OTU datasets (8.7±14% of relative abundance), was detected at a 

much lower level within ASVs, where it wasn’t among the most common classes (1.7±0.6%) 

(Fig 5). Conversely, the ASV pipeline characterized Mollicutes within the mussel gut 

microbiome (13.4±13%), which remained completely undetected in the OTU datasets (Fig 

5). 

Differences across methods were more pronounced at the genus level, with only ~50% of 

the most common 30 genera shared between ASV and OTU-based datasets (excluding 

genera belonging to unclassified families), and correlations of the relative abundance of 

such shared genera generally below 0.9 (Spearman’s correlation, Fig 5; S3 Table in S2 File). 

The 30 most 

Table 2. Correlation between beta-diversity metrics between OTU- and ASV-based datasets across every 

rarefaction level tested. 

Beta-diversity index Rarefaction level 97%-OTUs vs. ASVs 99%-OTUs vs. ASV 

Jaccard No rarefaction 0.92 / 0.93 0.96 / 0.96 

3,000 0.93 / 0.93 0.96 / 0.96 

2,000 0.94 / 0.93 0.96 / 0.96 

1,000 0.94 / 0.93 0.96 / 0.95 

Bray-Curtis No rarefaction 0.92 / 0.93 0.96 / 0.97 

3,000 0.93 / 0.94 0.96 / 0.96 

2,000 0.94 / 0.94 0.97 / 0.96 

1,000 0.94 / 0.94 0.97 / 0.96 

U-Unifrac No rarefaction 0.80 / 0.80 0.82 / 0.83 

3,000 0.83 / 0.84 0.89 / 0.89 

2,000 0.84 / 0.83 0.90 / 0.90 

1,000 0.86 / 0.85 0.91 / 0.91 

W-Unifrac No rarefaction 0.93 / 0.94 0.95 / 0.96 

3,000 0.94 / 0.96 0.95 / 0.96 

2,000 0.94 / 0.95 0.95 / 0.96 

1,000 0.92 / 0.94 0.95 / 0.96 
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Correlations were assessed using Mantel tests, which correlation factors are indicated as follows Spearman’s r / 

Pearson’s r (all P values were < 0.001). Correlations <0.9 are highlighted in bold, showing poorer agreement 

between OTUs and ASVs. Correlations exhibiting poorer agreement between OTUs and ASVs are noted, i.e. r<0.9 

(bold). 

 

https://doi.org/10.1371/journal.pone.0264443.t002 

detected genera unique to ASV datasets included Methyloglobus, Escherichia/Shigella, and 

Clostridium sensus stricto (S3 Table in S2 File). Compared to the differences between ASV 

and OTU methodologies, rarefaction and OTU identity threshold had only a minor impact on 

overall class- or genus-level classification, with, for instance, a correlation of >0.9 in 

abundance of the major classes and genera between unrarefied and 2,000 sequence 

datasets, and between 99%- and 97% OTUs. As previously observed, with alpha and beta 

diversity indices, rarefaction had a lower impact on ASV- than OTU-based datasets, with all 

most detected genera shared before and after rarefaction (Fig 5). 

Discussion 

Using a dataset that contained three types of microbial communities (mussel gut, sediment, 

and seston), we tested whether alpha and beta diversity metrics and community 

composition were consistent across sequences clustering methods, in addition to other 

methodological choices such as rarefaction and index. We detected significant influences of 

ASVs vs. OTUs on richness estimates, both on their values and the ranking of samples, as 

reported in previous studies [15, 19, 23]. Further, these differences resulted in discrepancies 

in the detection of biological signals. These discrepancies were accentuated by sampling 

bias corrected richness estimators like iChao1 and ACE, which, of all those tested, were the 

least correlated across the ASV and OTU datasets (Table 1). This discrepancy in diversity 

estimates was driven by the lower evenness of relative abundances and a much higher 

number of rare units with OTUs than ASVs (Fig 1). Hence, the large number of OTUs with 

low abundance likely induced greater variation in such estimators between OTU and ASV-

based datasets, as such estimators use low-abundance units to infer the “real” richness 

within communities [54, 55]. As a consequence, the impact of ASVs vs. OTUs on the value of 

all richness measures was greater for 

https://doi.org/10.1371/journal.pone.0264443.t002
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Fig 4. Effect of sequence processing on the ecological signal based on beta-diversity estimates in microbial 

communities. The intensity of the effect of (a) community type, (b) sampling river, and (c) collection site on 

community structure was assessed using separated PERMANOVAs for each factor, and each combination of 

sequence processing method x rarefaction level x index of dissimilarity. All rarefaction levels are aggregated on this 

figure. Differences across rarefaction levels are reported in S7 Fig in S1 File. 
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https://doi.org/10.1371/journal.pone.0264443.g004 

 

Fig 5. Composition of mussel gut microbiome, sediment, and seston communities found using OTU-based and 
ASV-based methodologies. (a) The relative abundance of the 11 most common bacterial classes in datasets 

rarefied to 2,000 sequences/sample. (b) Heatmap representing agreement of the 20 most detected bacterial 

genera across methodologies and rarefaction levels. Numbers represent the percentage of those 20 genera in 

common across the compared treatments (‘shared’); color intensity represents overall Spearman’s correlation 

coefficient of the shared genera between treatments. 

 

https://doi.org/10.1371/journal.pone.0264443.g005 

environmental samples than for host-associated (mussel) microbiome (Fig 2 & S3 Fig in S1 

File), due to the typical high microbial richness in environmental samples, especially 

sediment 

[56], contrary to gut mussel microbiomes which are dominated by fewer operational units 

[30, 57]. These findings contrast with Glassman and Martiny [14], who did not find a major 

effect of ASV vs. OTU-based pipelines on richness for bacterial communities sampled on leaf 

litter, which may be due to the lower richness in leaf litter environments. Purahong et al. 

[58] found a maximum richness in leaf litter of ~500 OTUs in similar leaf litter communities, 

while richness in our sediment samples averaged 2485±734 based on 97%-OTUs. In this 

context, the lower intrinsic richness of mussels’ microbiomes may be an asset, as it would 

facilitate a correct estimation of richness measures and its comparison across studies based 

on distinct methodologies. However, a correlation of 0.70 in richness measured across 

pipelines highlights an important discrepancy between estimates for many samples as, for 

instance, 48% of these samples presented a variation >70% in their richness estimates 

between ASVs and OTUs before rarefaction. 

Interestingly, in our study, a simple rarefaction of the OTU community tables increased 

the correlation between ASV- and OTU-based richness estimates, and decreased OTU-based 

richness to a level comparable to the estimate from ASVs (Table 1, Fig 2, S3 Fig in S1 File). 

While the use of rarefaction is considered a poor way of normalizing sequence data counts 

that can sometimes lead to false conclusions [25], it is also more likely to remove the rare 

operational units that could originate from sequencing errors, and may therefore be useful 

in richness estimation in OTU datasets [59]. In contrast, the impacts of ASV or OTU selection 

and rarefaction were much lower on Shannon entropy (with a correlation >0.9 at every 

rarefaction level studied, Table 1), and were comparable to previous comparisons on natural 

https://doi.org/10.1371/journal.pone.0264443.g004
https://doi.org/10.1371/journal.pone.0264443.g005
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and mock communities [23, 60]. Indeed, the Shannon index accounts less for the rarest 

operational units than species richness metrics and thus is more robust to the difference in 

the number of rare units obtained with ASVs vs. OTUs clustering. 

As with previous studies [14, 22, 23], we reported more consistency between OTU and 

ASV-based beta diversity metrics (Table 2). Beta diversity estimates based on 99%-OTUs 

were slightly more correlated to those based on 97%-OTUs, which is expected given the 

higher resolution of 99%- compared to 97%-OTUs, making them more comparable to ASVs 

[60]. Such correlation was also variable across beta diversity indices and was lower in the 

case of U-Unifrac, while it was higher in all other indices. This is consistent with previous 

observations from Nearing et al. [15], who computed Bray-Curtis, U-Unifrac, and W-Unifrac 

dissimilarities on host-associated and soil datasets using several ASV-based pipelines and 

one OTU based pipeline. They also observed that U-Unifrac correlated poorly across 

pipelines, while the abundance-weighted indices were highly consistent. 

We further compared the ecological signal raised by PERMANOVAs, testing the 

community type, river, and site’s effect on ASV- and OTU-based datasets (Fig 4). Based on 

previous observations, distinction across sample types was expected, as these communities 

are extracted from very distinct environments [56, 61, 62]. Differences across rivers and 

sites were also expected in seston and sediment, as is typically the case in similar 

environmental communities [62]. Moderate differences across sites in the mussel 

microbiome were also previously observed by our group based on 97%-OTUs [30, 57]. 

According to the higher correlation between beta diversity estimates from ASVs and 

99%OTU datasets, PERMANOVA outcomes were also more similar between these two 

datasets, 99%-OTUs detecting higher river and site effects in seston and lower detection of 

the distinction between sample types than 97%-OTUs, consistent with patterns based on 

ASVs (Fig 4). The only exception to an overall high correlation between OTU- and ASV-based 

datasets was the U-Unifrac index, which showed a poor agreement between OTUs and ASV-

based ecological signal (Fig 4, S7 Fig in S1 File). The choice of beta diversity index is crucial 

before a PERMANOVA, as while abundance weighted indices (taxonomic Bray-Curtis or 

phylogenetic W-Unifrac) are more sensitive to a change in dominant members of the 

community across contrasted conditions, indices based on presence-absence (taxonomic 

Jaccard or phylogenetic U-Unifrac) are more sensitive to the rare members of the 

community, and are therefore generally more useful in detecting subtle changes across 

near-identical communities [63]. Surprisingly in our study, the other presence-absence index 

tested, Jaccard, exhibited a higher correlation across ASVs vs. OTU methodologies (Fig 4, S7 

Fig in S1 File), highlighting that in our dataset, differences across ASVs and OTUs are due to 

the rarest units, which are phylogenetically distinct from the more dominant ones. The 

Jaccard index ignores such phylogenetic information, allowing a more consistent pattern 

between OTUs and ASVs using this index. 

Although clustering programs producing OTUs cluster more dissimilar sequences into the 

same unit than ASVs, previous authors suggested they could also generate a higher number 

of spurious, low-abundance OTUs that would inflate richness measures [15, 19]. Similarly, in 

a shrimp microbiome study, richness measurements were systematically higher in OTUs 

datasets compared to ASVs [60]. In our study, OTU-based datasets did generate up to 9 and 
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12 times (respectively for 97%- and 99%-OTUs) more OTUs than ASVs on the same samples 

before rarefaction (Fig 1, S1 Fig in S1 File). With the present data, we cannot conclude 

whether the high number of low-abundance, phylogenetically distinct OTUs are indeed 

erroneous. However, they certainly impacted the functioning of the U-Unifrac index, which 

detected lower ecological signals overall. 

Prodan et al. [19] reported that applying a cutoff on sequence abundance within Mothur 

before constructing the OTUs was necessary for reducing the erroneous inflation of 

observed richness. The removal of singletons (OTUs represented by only one sequence) can 

drastically reduce the variation across sample replicates within the same sequencing run 

[64], underlining the sensitivity of OTU-based methods to sequencing errors. Including their 

removal may be important for OTU-based analyses to pre-filter potentially spurious, low 

abundance sequences that could induce the construction of numerous erroneous OTUs. 

However, in our study, rarefaction, while improving the agreement of alpha diversity 

estimates between OTUs and ASVs by removing low-abundance OTUs (Table 1), only 

marginally impacted the signal based on beta diversity, and showed no improvement of the 

ecological signal based on U-Unifrac in any dataset (Table 2, S7 Fig in S1 File). This suggests 

that additional filtering of sequences may be needed for performing U-Unifrac on OTU 

datasets, or at least that patterns should be compared to those obtained from other beta 

diversity indices to identify potential bias due to rare units. 

In addition to the influence of the analysis method on patterns in beta diversity, there 

were significant differences between ASVs and OTUs in terms of community composition, 

both at the genus and class level, including in the most abundant taxa (Fig 5, S3 Fig in S1 

File). Similar discrepancies were highlighted by Straub et al. [23], who found that the 

relative abundance of several dominant taxa was poorly reproduced across both 

methodologies. We found that the OTU identity threshold and rarefaction level had only a 

marginal effect on the identity and the relative abundance of major classes and genera. 

Regarding the differences across methodologies, ASVs notably detected Mollicutes as 

preponderant in the mussel gut microbiome, which were absent in the OTU datasets. In 

contrast, OTUs detected much higher amounts of Verrucomicrobiae in the seston and 

sediment samples than were detected by the ASV approach. These differences are 

surprising given that both OTU and ASV approaches classified sequences to the same 

database. In this specific case, while the cultivation of Mollicutes is difficult [65], they have 

been successfully isolated from the digestive gland of various hosts, including aquatic 

invertebrates [66], making their detection within the gut of the mussels studied here 

plausible. On the other hand, Verrucomicrobia are also found in soil and water 

environments, and their presence is not surprising. Such discrepancies across dominant taxa 

are important to consider when comparing OTU- and ASV-based studies. While a previous 

study could increase the agreement between the two methodologies by applying a 

percentage cutoff to the operational units in the lowest abundance [60], in our case 

rarefaction was not sufficient to remove the discrepancies we found across both datasets. 
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Conclusions 

Using a dataset comprising environmental and host-associated samples, we revealed 

important differences in results obtained from an ASV-based denoising approach (DADA2) 

and an OTU-based clustering method (Mothur). We showed that the difference in tests’ 

outcome and the ecological conclusion is predominantly due to rare operational units, 

which are more prevalent in OTU-based clustering approaches and therefore have more 

impact on indices computed only on presence/absence of units. However, there are also 

major differences in the occurrence and relative abundance of major bacterial taxa 

identified by both approaches. Other methodological choices (rarefaction, OTU identity 

threshold) had generally lower effects, although rarefaction and a clustering of 99%-identity 

OTUs tend to reconcile the differences between OTU- and ASV-based approaches. 
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