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Abstract

Advances in the analysis of amplicon sequence datasets have introduced a
methodological shift in how research teams investigate microbial biodiversity, away from
sequence identitybased clustering (producing Operational Taxonomic Units, OTUs) to
denoising methods (producing amplicon sequence variants, ASVs). While denoising
methods have several inherent properties that make them desirable compared to
clustering-based methods, questions remain as to the influence that these pipelines have
on the ecological patterns being assessed, especially when compared to other
methodological choices made when processing data (e.g. rarefaction) and computing
diversity indices. We compared the respective influences of two widely used methods,
namely DADAZ2 (a denoising method) vs. Mothur (a clustering method) on 16S rRNA
gene amplicon datasets (hypervariable region v4), and compared such effects to the
rarefaction of the community table and OTU identity threshold (97% vs. 99%) on the
ecological signals detected. We used a dataset comprising freshwater invertebrate (three
Unionidae species) gut and environmental (sediment, seston) communities sampled in
six rivers in the southeastern USA. We ranked the respective effects of each
methodological choice on alpha and beta diversity, and taxonomic composition. The
choice of the pipeline significantly influenced alpha and beta diversities and changed the
ecological signal detected, especially on presence/absence indices such as the richness
index and unweighted Unifrac. Interestingly, the discrepancy between OTU and ASV-
based diversity metrics could be attenuated by the use of rarefaction. The identification of
major classes and genera also revealed significant discrepancies across pipelines.
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Compared to the pipeline’s effect,
OTU threshold and rarefaction had
a minimal impact on all

measurements.

Introduction

Evaluating the microbial diversity of
various environments, from host-
associated microbiomes to free-
living communities in water, soil, and
air, is essential for understanding
biodiversity and improving human
health and agriculture [1, 2]. The
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accessibility of high-throughput
sequencing technologies [3], has
supported the advancement of
large-scale assessments of microbial
diversity over the past decade [4].
The most popular sequencing
technique for analysis of bacterial
diversity is sequencing a specific
gene (or region of a gene, e.g. a
hypervariable region of the bacterial
16S rRNA gene) using Polymerase
Chain Reaction to create sequences
called amplicons (targeted amplicon
sequencing), which can be done
using diverse platforms (e.g. 454,

Illumina, lonTorrent). One of the

most popular is [llumina MiSeq, producing paired reads, i.e. sequencing targeted loci from
both its 5’ (forward) and 3’ (reverse) extremities. As with improvements in sequencing
technology, bioinformatics techniques for the analysis of high-throughput sequencing data
have been concurrently improving [5]; for targeted amplicon sequencing alone, there are
now at least 15 dedicated pipelines available [6—-11].

In order to investigate biodiversity amplicon sequencing data, researchers usually
attempt to aggregate the >50,000 paired reads into sequences (e.g. lllumina MiSeq delivers
up to 15Gb using kits for 2x300b reads), before grouping them into clusters, widely termed
operational taxonomic units (OTUs). OTUs are defined as a cluster of sequences that have a
sequence identity above a given threshold, often set to 97% [6]. Clustering based on 97%
identity reduces the size of the raw 16S rRNA dataset, and decreasing the computational
requirements for analysis [12]. It also reduces the impact of sequencing errors in
downstream diversity estimations, as erroneous sequences are likely to be merged with
correct sequences [10, 13].

Recently, a methodological shift has occurred with the increased use of denoising
methods, producing exact sequence variants or amplicon sequence variants (ASVs, [14])
instead of producing clusters. Denoising methods generate an error model based on the
quality of the sequencing run and use this model to distinguish between the predicted
“true” biological variation and that likely generated by sequencing error [7, 15]. Remaining
‘true’ sequences varying from as little as one single nucleotide are then defined as separate
ASVs, which is intended to allow for a higher accuracy than 97% identity OTUs. However,
given their construction method, ASVs are not equivalent to “100%-0TUs” [16].

With the increasing popularity of denoising approaches (hereafter, ‘ASV-based
methods’), studies have compared the results from clustering (‘OTU-based’) and ASV-based
approaches. Based on mock communities, ASV-based approaches had a higher sensitivity in
detecting the bacterial strains present, sometimes at the expense of specificity [17-20].
However, studies utilizing soil, rhizosphere, and human microbiome datasets found similar
overall biological signals [14, 21, 22]. From these studies, the main weakness of OTU-based
approaches appears to be in the accurate detection of alpha diversity, as OTUs often
overestimate bacterial richness when compared to ASVs, whereas estimates of beta
diversity estimates are typically more congruent between methodologies [15, 19, 21, 22].
Further, an analysis using various OTU and ASV-based programs and a wide range of natural
and mock communities identified significant discrepancies in the taxonomic assignment and
estimation of relative abundance of functionally important taxa [23].

Despite these studies, the drivers of discrepancies between OTU and ASV approaches
have not been fully disentangled. For instance, what is the influence of choosing ASVs- vs.
OTUsbased approaches when compared to the influence of other methodological choices
that are known to impact biological patterns, such as rarefaction, OTU identity threshold,
and specific diversity indices [24—27]? Further, while the relative impact of each of these
choices may depend on the characteristics (richness, evenness of relative abundances,
phylogenetic structure) of the community analyzed, many of the aforementioned studies
focused on only one environment (but see [17, 23]). A bacterial community with a few

closely related dominant taxa may be more sensitive to the choice of sequence processing
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method than a community with evenness of abundances. Lastly, while phylogenetic

greater phylogenetic diversity or
diversity indices (e.g. UniFrac) are typically more efficient at detecting ecological patterns
and evolutionary processes than indices based on just operational units (e.g. Bray-Curtis or
Jaccard indices, hereafter termed ‘taxonomic diversity indices’) [26, 28, 29], only one of the
aforementioned studies compared phylogenetic diversity metrics obtained from ASVs vs.
OTUs datasets
[23].

In this study, we compare the influence of two widely used sequence-processing
methods, namely the ASV-based DADA2 and the OTU-based MOTHUR pipeline, on the
diversity, ecological and compositional patterns of the bacterial communities present in
three different microbial assemblages (aquatic sediment, particle-associated freshwater
communities ‘seston’, and the freshwater mussel gut microbiome). We compared the
effects of ASV vs. OTU approaches using two different identity thresholds to those with
varying levels of sequence rarefaction, and eight contrasting alpha and beta-diversity
metrics.

Methods

Sampling of bacterial communities

A total of 54 surface sediment, 54 seston, and 119 mussel (host-associated) microbiome
samples were collected from 18 sample sites located on six rivers in the Tennessee and
Mobile River Basins, USA, in Summer 2019 (S1 Table in S2 File). At each site, three sediment
and three seston samples were collected in the middle of the river channel. Sediment
samples were collected using sterile 15 mL centrifuge tubes that were dragged through the
top 5 cm of sediment. Seston samples were collected by filtering 120 mL of river water
through sterile 47 mm, 1 u pore size sterile glass fiber filters, which were then placed in
sterile 15 ml tubes. 4-5 mussel specimens belonging to three different species (Lampsilis
ornata, Amblema plicata, Cyclonaias asperata) were manually collected (S1 Table in S2 File).
Mussels were collected under the authority of the permit (USFWS permit #TE68616B-1 and
ALCDNR permit

#2016077745468680) issued by the Alabama Department of Conservation and Natural
Resources to Dr. Carla Atkinson, University of Alabama. After collection, all filters, sediment
samples, and mussels were stored on ice and taken to the University of Alabama for storage
at -80°C. Mussel gut tissue was excised using sterile dissecting equipment, and all samples
were transported to the University of Mississippi for microbiome analysis.

DNA extraction and 16S rRNA gene amplicon sequencing

DNA was extracted from mussel gut tissue using a PowerSoil Pro extraction kit (Qiagen,
Germantown, MD, USA) as described previously [30]. For seston and sediment microbiome
analysis, filters or 30 mg of sediment were added directly into the bead beating tube of the

extraction kit, before performing the same procedure.
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Dual-indexed barcoded primers were used to amplify the V4 region of the 16S rRNA gene
of the extracted DNA following established techniques [6, 30] using primers from [31]. The
amplified 16S rRNA gene fragments were combined and spiked with 20% PhiX before being
sequenced on an lllumina MiSeq at the University of Mississippi Medical Centre Molecular
and Genomics Core facility. Sequence data were obtained as FASTQ files, which were further
processed using Mothur and DADA2. Sequencing quality was assessed using fastqc reports
and was summarized using ‘fastqcr’ R-package [32] and provided in S3 Table in S2 File.

OTU-based pipeline (Mothur)

We used Mothur v1.8.0 [33] to assemble, read, and filter the obtained sequences, before
clustering them into OTUs. We followed the recommended procedures for Illumina MiSeq
sequence data, as it is the methodology most likely to be used by researchers
(https://mothur. org/wiki/miseq_sop/, December 2020). Briefly, after merging the forward

and reverse reads, we screened the sequences and removed those of unusual length or that
contained ambiguous bases. Unique sequences were then aligned to the Silva 16S rRNA
gene database v. 138 [34], and poorly aligned reads were removed. Sequences were
classified using the Wang method [35] in Mothur through the same database to remove all
non-prokaryotic sequences and sequences that were not classified to the Kingdom level.
Chimeras were determined and removed using the chimera.vsearch command with default
parameters. OTUs were assembled based on 97%- and 99%-identity, and OTU tables were
constructed before retrieving the consensus classification for each OTU. The most abundant
sequence within each OTU was selected as the reference sequence for further phylogenetic
analyses. A total of 31,453 97%0TUs and 58,483 99%-0TUs were detected in the unrarefied
dataset of 217 samples, based on 3,420-143,827 valid sequence reads per sample.
According to the current SOP, no abundancebased filtering of OTUs was applied before
performing rarefaction.

ASV-based pipeline (DADA2)

We used DADA2 R-package v1.20 [7] on R v3.6.3 [36] following the general tutorial available
on the Github of the software (https://benjjneb.github.io/dada2/tutorial.html, November

2020). Forward and reverse reads with >2 or >5 estimated errors, respectively, were filtered
and were truncated at the 3’ end, where read quality dropped below a quality score of 2
(TrunQ = 2). After separate estimations of error rates on forward and reverse reads, ASVs
were predicted and merged using a minimal overlap of 12 bases. Chimeras were removed
using the consensus method with the removeBimeraDenovo() function. ASVs with <243 or
>263 base pairs were removed. ASVs were classified using Wang’s classifier [35] and the
SILVA 16S rRNA gene database v. 138 [34], using DADA2’s default parameters. There were a
total of 21,606 ASVs in the unrarefied dataset of 217 samples, based on 3,164-112,811 valid
sequence reads per sample. Despite the same version of the SILVA database utilized for
classification of both OTUs and

ASVs, minor differences were observed, with Oxyphotobacteria considered as a class within

the ASV dataset, and Planctomycetes in the OTU datasets named as Planctomycetacia in the
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ASV dataset. To simplify comparison across methodologies, we renamed Oxyphotobacteria
as Cyanobacteria, and Planctomycetacia as Planctomycetes within the ASV dataset.

Relative abundance normalization and taxonomic diversity.ASV and OTU tables were
imported into R v3.6.3 [36] using the ‘phyloseq’ R-package v1.30 [37]. The minimal number
of sequences within samples before rarefaction were 3164, 3420, and 3400, downstream
DADA2 (ASVs) and Mothur (97%- and 99%-0TUs), respectively (S2 Table in S2 File). 12% and
4% of samples have less than 4,000 sequences in ASV-based and OTU-based datasets,
respectively. Therefore, the three levels of rarefaction chosen were 1000, 2000, and 3000
sequences in order to compare both DADA2 and Mothur methodologies without losing too
many samples. Rarefaction was performed by random subsampling sequences using
function “rarefy_even_depth” from ‘phyloseq’ R-package. Subsequent analyses were
performed at each rarefaction level as well as on unrarefied 97%-0TUs, 99%-0OTUs, and
ASVs tables, for a total of 12 community tables (three ASV/OTU approaches x four levels of
rarefaction). Sampling coverage was determined for all analysis tables using Chao’s
coverage index provided in the ‘entropart’ R-package v1.6—8 [38]. Indices of taxonomic
alpha diversity (observed richness, iChaol and ACE richness indices correcting for
unsampled operational units, and Shannon alpha diversity) were assessed using ‘vegan’ R-
package v2.5-7 (for observed richness and Shannon) [39], ‘entropart’ (for iChao1l) and
‘fossil’ R-package v0.4 (for ACE) [40]. Following recommendations from Jost [41], all alpha
diversity indices were expressed in an equivalent number of operational units (i.
e., equivalent numbers of species, also known as Hill numbers). The evenness of the
abundance of operational units was measured using Bulla’s O index, which is less affected
by the number of species than other evenness indices [42, 43].

Taxonomic beta diversity was assessed using complementary indices based on Jaccard
and Bray-Curtis dissimilarities, using ‘vegan’. While Jaccard is solely based on the
presence/absence of operational units, Bray-Curtis gives more weight to the most abundant

operational units.

Phylogenetic diversity

ASV and OTU reference sequences were incorporated into the GreenGenes 99%
phylogenetic tree v13.8 [44], using SEPP software [45] implemented in QIIME2 [46] using
default parameters. The obtained bacterial phylogenetic tree was then pruned using ‘ape’
R-Package v5.5 [47] to remove all tree leaves absent from our dataset while maintaining the
tree’s structure. This method allowed for a more accurate tree structure than a de-novo
tree reconstruction using short sequences. Phylogenetic beta diversity was then assessed
using the weighted (W-) and unweighted (U-) versions of the Unifrac index, using ‘GUniFrac’
R-package v1.3 [48].

Statistical analyses
Statistical analyses were computed using R, and data visualization was made using ‘ggplot2’
Rpackage v3.3.5 [49]. Differences in alpha and beta diversity values across different

methodologies (ASVs vs. 97%-0TUs vs. 99%-0TUs), rarefaction level (no rarefaction vs.
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rarefaction to 1,000 vs. 2,000 vs. 3,000 sequences), and OTU threshold (99% vs. 97%
identity) were assessed using pairwise Wilcoxon signed-rank tests allowing for the
identification of a significant difference across methodologies. Spearman’s and Pearson’s
correlations in alpha diversity metrics were computed to measure the correlation strength
for these values across methodologies. Similarly, correlations between beta diversity indices
were measured using Spearman’s and Pearson’s correlations in Mantel tests available in
‘vegan’. The correlation of relative abundance of taxonomic groups across the different
analysis treatments was made using Spearman’s signed rank tests. Similarly, correlations of
the abundances of top bacterial classes and genera were made using separate Spearman’s
signed rank tests and plotted using ‘corrplot’ R-package v0.90 [50].

Detection of ecological signals (effect of community type, river, and sample site) in alpha
diversity was conducted with Kruskal-Wallis tests and associated post-hoc pairwise
comparisons using ‘pgirmess’ R-package v1.7.0 [51].

Detection of the same ecological effects on the structure of the microbial communities
was conducted using separated PERMANOVAs performed on beta-diversity matrices using
the ‘vegan’ R-package (900 permutations). The intensity of the signal was measured using
the Rsquared (R?) obtained in PERMANOVA’s outcomes. Such values were compared across
treatments to assess the respective impact of ASVs vs. OTUs, rarefaction, and the beta
diversity metric used on PERMANOVA's result, using random forest models provided in
‘randomForest’ R-package v4.6—14 [52]. These models are based on successive decision
trees to allow ranking of the effects of several correlated variables on a given response [53],

here on the intensity of the detected ecological signal.

Results

Structure and coverage of 16S rRNA datasets
ASV and OTU-based analyses resulted in significantly different numbers of operational units
in non-rarefied datasets, with fewer ASVs (meanztstandard deviation 303£215 per sample)
than 97%-0TUs (1,386+1,026), and 99%-0TUs (1,708+1,319) (Wilcoxon signed-rank tests,
p<0.001 in all comparisons), despite a better coverage of ASV-based data based on
rarefaction curves (51-S3 Figs in S1 File). Before rarefaction, Chao’s coverage was
significantly lower in OTU-based datasets (93.7+5.6% and 91.5+7.8% respectively in 97%-
and 99%-0TUs) than in the ASV-based dataset, where it averaged 100+0% (Wilcoxon signed-
rank tests, p<0.001 between OTUs and ASVs, P>0.05 between 97%- and 99%-0TUs).
Accordingly, after rarefaction, the number of species in each sample was close to the
saturation value on rarefaction curves for the ASV datasets (coverage of 98.0+1.8% after
rarefaction to 2000 sequences), but was well below the saturation point based on 97%- and
99%-0TUs (Coverage of 85.8410.3% and 83.6+12.6% after rarefaction to 2000 sequences)
(S1-S3 Figs in S1 File).

Before rarefaction, the abundance distribution of operational units was more even in the
ASV dataset than in the 99%-0TU dataset and 97%-0TU datasets (Fig 1; Wilcoxon
signedrank tests p<0.001 in all comparisons). This pattern was apparent across all sample

types, although evenness was highest in the sediment, intermediate in seston, and lowest in
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hostassociated communities (Fig 1; Kruskal-Wallis and post-hoc associated pairwise tests,
p<0.001 for all comparisons).

Alpha diversity metrics

All alpha diversity metrics were distinct between sequence processing methods (ASVs vs.
OTUs), at every rarefaction level (Wilcoxon signed-rank tests p<0.001 in all comparisons, Fig
2, S3 Figin S1 File). ASV-derived richness was roughly twice as low as 99%-0OTU and 97%-
OTU richness, which were closer to each other (99%-0TU richness was 1.1 times higher than
97%-0TU richness). The difference between ASV- and OTU-derived richness was even higher
using iChao1l (4.8-5.3 higher in 97%- and 99%-0TUs datasets than in ASVs, respectively) and
ACE (3.5-4.1 times respectively) (S3 Fig in S1 File). However, differences between the
approaches were lower in the case of Shannon’s alpha diversity index (1.4 and 1.7 times
respectively, Fig 2).

The ranks of alpha diversity metrics were more congruent across ASV- vs. OTU-based
approaches than the values themselves (Table 1, higher correlations based on Spearman’s
than on Pearson’s correlations). Correlations between ASVs and OTUs approaches were the
lowest for richness indices that correct for sampling bias (iChaol and ACE; Spearman’s r =
0.61-0.84 depending on the index, rarefaction level, and OTU threshold), intermediate for
observed richness (0.80-0.85), and highest for Shannon diversity (0.90-0.97) (Table 1).
Rarefaction increased the strength of these correlations (Table 1).

Alpha diversity was highest in the sediment, intermediate in the seston, and lowest in
mussel host-associated communities, regardless of sequence processing method or
rarefaction level (Kruskal-Wallis and associated pairwise post-hoc tests, p<0.05 in all cases
and for all comparisons, Fig 2). However, the effects of river and site varied with the
sequence processing method and the metric used, with an intensity that was dependent on
the type of the community (Fig 3). While differences in Shannon diversity between rivers
were consistent regardless of the sequence processing method and sample type, differences
in observed richness across rivers were more variable. For sediment samples, richness
differences were generally stable to shifting from ASV to OTU-based approaches (i.e. no
significant differences between rivers). However, for seston and mussel host communities,
the selection of an ASV or OTU-based method influenced the outcome as to whether any
rivers were significantly different in richness or not (Fig 3).

Beta diversity indices

Beta diversity metrics computed with ASVs and OTUs were highly correlated (Mantel test,
Spearman’s r >0.9), with the exception of U-Unifrac (<0.81, Table 2). Beta diversity metrics
based on 99%-0TUs were more correlated than those from ASVs than 97%-0OTUs (Table 2).
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OTU, at three different levels of rarefaction (1,000; 2,000 and 3,000 sequences per sample) within each sample type studied (a-c). To ease the
visualization of differences across methods and rarefaction levels, the y-axis of plots has been log transformed. The effect of methodological
choices on other alpha diversity metrics is available in S3 Fig in S1 File.

https://doi.org/10.1371/journal.pone.0264443.9002

Table 1. Correlation between alpha diversity metrics between OTU- and ASV-based datasets across every

rarefaction level tested.
Diversity index

Richness

Shannon

iChaol

ACE

Rarefaction

No rarefaction
3,000 sequences
2, 000 sequences
1,000 sequences
No rarefaction
3,000 sequences
2, 000 sequences
1,000 sequences
No rarefaction
3,000 sequences
2, 000 sequences
1,000 sequences
No rarefaction
3,000 sequences
2, 000 sequences

1,000 sequences

ASVs vs. 97%-OTUs
0.80/0.75
0.81/0.77
0.85 /0.82
0.90/0.90
0.95/0.87
0.96 /0.91
0.96 /0.92
0.96 /0.95
0.62 /0.51
0.65 /0.58
0.70 / 0.64
0.76 /0.72
0.70 /0.63
0.73 /0.66
0.77 /0.72

0.84/0.77

ASVs vs. 99%-0TUs

0.81/0.77
0.81/0.78
0.85/0.83
0.91/0.90
0.96 / 0.87
0.96/0.91
0.96/0.93
0.97/0.96
0.61/0.49
0.66 / 0.58
0.69 /0.61
0.78/0.74
0.69 /0.61
0.73/0.64
0.77/0.68

0.84/0.75

Correlations were tested using Spearman’s and Person’s correlation tests (all P values were < 0.001). Correlations

estimates are indicated as follows: Spearman’s r / Pearson’s r.

Correlations showing poorer agreement between OTUs and ASVs are noted, i.e. 0.8<r<0.9 (bold) or r<0.8 (bold and

underlined).

https://doi.org/10.1371/journal.pone.0264443.t001

Rarefaction also slightly increased agreement between ASV and OTU-based beta diversity

metrics, for both OTU thresholds (Table 2). Rarefaction had only a small effect on Bray-

Curtis and Jaccard indices, with a correlation >0.9 between rarefied and unrarefied data and

no effect on W-Unifrac (r = 1; S4 and S5 Figs in S1 File). Rarefaction did, however, have a

greater influence on U-Unifrac values computed on OTU datasets (r = 0.82-0.87, S5 Fig in S1

File).

Methodological choices had different effects in detecting differences between communities.

Random Forests tests on PERMANOVAs based on presence/absence indices (Jaccard and

U-Unifrac) revealed that the choice of OTU vs. ASVs had a lower contribution in

PERMANOVA'’s outcome compared to the other methodological choices (rarefaction level,

beta diversity index) (S6 Fig in S1 File). Patterns based on abundance-weighted beta

PLOS ONE | https://doi.org/10.1371/journal.pone.0264443 February 24, 2022

10/22


https://doi.org/10.1371/journal.pone.0264443.g002
https://doi.org/10.1371/journal.pone.0264443.t001

PLOS ONE Impact of sequence processing on microbial ecology studies

diversity indices (W-Unifrac and Bray-Curtis) had more contrasts, as the choice of ASV vs.
OTUs had the lowest influence in mussel microbiome and sediment, but had the greatest
contribution in seston communities (S6 Fig in S1 File).

For taxonomic beta diversity (Jaccard and Bray-Curtis indices), 97%-0TUs tended to
detect higher differences across community types (Fig 4, R*= 0.23+0.06 in 97%-0TUs,
0.1740.05 in 99%-0TUs, and 0.18+0.05 in ASVs). In contrast, for phylogenetic beta diversity
(U- and W-Unifrac indices), ASVs-based PERMANOVAs showed a slightly higher distinction
between sample types (R?=0.31+0.11 in ASVs, 0.29+0.13 in 97%-0TUs, and 0.30+0.12 in
99%-0TUs) (Fig 4). ASVs-based metrics generally detected higher river and site effects than
97%- and 99%-0TUs (R?=0.41+0.23 in ASVs, 0.38+0.21 in 97%-0TUs, and 0.39£0.21 in 99%-
OTUs Fig 4).

Overall, PERMANOVAs outcomes were more variable across methodologies in seston
than in the other sample types, while they were more homogeneous in mussel microbiome
and sediment (Fig 4 and S7 Fig in S1 File). W-Unifrac raised the most consistent results

across ASVs
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Fig 3. Effect of sequence processing methodology on ecological patterns of microbial alpha diversity. Distribution of alpha diversity
values on each river is represented by a boxplot. Kruskal-Wallis tests assessed significant differences between rivers with p-values
indicated on each panel. Types of communities are represented using horizontal panels. Patterns within ASVs, 97%-OTUs, and 99%-
OTUs are compared using the three vertical panels on each plot. The richness index (left plot) and Shannon alpha diversity (right plot)
are represented for each community type and sequence processing methodology.

https://doi.org/10.1371/journal.pone.0264443.9003

vs. OTUs methodologies for detecting distinct community types (PERMANOVA’s R2=0.42
+0.0), rivers (R?= 0.3240.14), and sites (R?= 0.59+0.24) (S5f Fig in S1 File). The second most
consistent index was Bray-Curtis (R?= 0.24+0.03, 0.34+0.14, and 0.57+0.21, respectively).
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Overall, the rarefaction level minimally influenced the PERMANOVA results (S7 Figin S1
File).

Composition

While Gammaproteobacteria (12.0+9.0%), Cyanobacteria (11.1£12.4%),
Alphaproteobacteria (10.0+8.0%), and Planctomycetes (15.7£15.3%) were the main classes
identified in all datasets and rarefaction levels used (Fig 5), several major classes of Bacteria
had their relative abundance computed on OTUs poorly correlated with abundance
computed on ASVs. These classes included Bacilli (Spearman’s r = 0.34+0.21), Clostridia (r =
0.66+0.28), Bacteroidia (0.75 £0.13), and Actinobacteria (0.81+0.17). Other major classes
presented a higher reproducibility across methods (0.83+0.09). The class Verrucomicrobiae,
which was dominant in OTU datasets (8.7+14% of relative abundance), was detected at a
much lower level within ASVs, where it wasn’t among the most common classes (1.7+0.6%)
(Fig 5). Conversely, the ASV pipeline characterized Mollicutes within the mussel gut
microbiome (13.4+13%), which remained completely undetected in the OTU datasets (Fig
5).

Differences across methods were more pronounced at the genus level, with only ~50% of
the most common 30 genera shared between ASV and OTU-based datasets (excluding
genera belonging to unclassified families), and correlations of the relative abundance of
such shared genera generally below 0.9 (Spearman’s correlation, Fig 5; S3 Table in S2 File).
The 30 most

Table 2. Correlation between beta-diversity metrics between OTU- and ASV-based datasets across every
rarefaction level tested.

Beta-diversity index Rarefaction level 97%-0TUs vs. ASVs 99%-0TUs vs. ASV
Jaccard No rarefaction 0.92/0.93 0.96 /0.96
3,000 0.93/0.93 0.96 /0.96
2,000 0.94/0.93 0.96 /0.96
1,000 0.94/0.93 0.96 /0.95
Bray-Curtis No rarefaction 0.92/0.93 0.96/0.97
3,000 0.93/0.94 0.96 /0.96
2,000 0.94/0.94 0.97 /0.96
1,000 0.94/0.94 0.97/0.96
U-Unifrac No rarefaction 0.80/0.80 0.82/0.83
3,000 0.83/0.84 0.89/0.89
2,000 0.84/0.83 0.90/0.90
1,000 0.86 / 0.85 0.91/0.91
W-Unifrac No rarefaction 0.93/0.94 0.95/0.96
3,000 0.94 /0.96 0.95/0.96
2,000 0.94/0.95 0.95/0.96
1,000 0.92/0.94 0.95/0.96
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Correlations were assessed using Mantel tests, which correlation factors are indicated as follows Spearman’s r /
Pearson’s r (all P values were < 0.001). Correlations <0.9 are highlighted in bold, showing poorer agreement
between OTUs and ASVs. Correlations exhibiting poorer agreement between OTUs and ASVs are noted, i.e. r<0.9
(bold).

https://doi.org/10.1371/journal.pone.0264443.t002

detected genera unique to ASV datasets included Methyloglobus, Escherichia/Shigella, and
Clostridium sensus stricto (S3 Table in S2 File). Compared to the differences between ASV
and OTU methodologies, rarefaction and OTU identity threshold had only a minor impact on
overall class- or genus-level classification, with, for instance, a correlation of >0.9 in
abundance of the major classes and genera between unrarefied and 2,000 sequence
datasets, and between 99%- and 97% OTUs. As previously observed, with alpha and beta
diversity indices, rarefaction had a lower impact on ASV- than OTU-based datasets, with all

most detected genera shared before and after rarefaction (Fig 5).

Discussion

Using a dataset that contained three types of microbial communities (mussel gut, sediment,
and seston), we tested whether alpha and beta diversity metrics and community
composition were consistent across sequences clustering methods, in addition to other
methodological choices such as rarefaction and index. We detected significant influences of
ASVs vs. OTUs on richness estimates, both on their values and the ranking of samples, as
reported in previous studies [15, 19, 23]. Further, these differences resulted in discrepancies
in the detection of biological signals. These discrepancies were accentuated by sampling
bias corrected richness estimators like iChaol and ACE, which, of all those tested, were the
least correlated across the ASV and OTU datasets (Table 1). This discrepancy in diversity

estimates was driven by the lower evenness of relative abundances and a much higher
number of rare units with OTUs than ASVs (Fig 1). Hence, the large number of OTUs with
low abundance likely induced greater variation in such estimators between OTU and ASV-
based datasets, as such estimators use low-abundance units to infer the “real” richness
within communities [54, 55]. As a consequence, the impact of ASVs vs. OTUs on the value of

all richness measures was greater for
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Fig 4. Effect of sequence processing on the ecological signal based on beta-diversity estimates in microbial
communities. The intensity of the effect of (a) community type, (b) sampling river, and (c) collection site on
community structure was assessed using separated PERMANOVAs for each factor, and each combination of
sequence processing method x rarefaction level x index of dissimilarity. All rarefaction levels are aggregated on this
figure. Differences across rarefaction levels are reported in S7 Fig in S1 File.
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Fig 5. Composition of mussel gut microbiome, sediment, and seston communities found using OTU-based and
ASV-based methodologies. (a) The relative abundance of the 11 most common bacterial classes in datasets
rarefied to 2,000 sequences/sample. (b) Heatmap representing agreement of the 20 most detected bacterial
genera across methodologies and rarefaction levels. Numbers represent the percentage of those 20 genera in
common across the compared treatments (‘shared’); color intensity represents overall Spearman’s correlation
coefficient of the shared genera between treatments.
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environmental samples than for host-associated (mussel) microbiome (Fig 2 & S3 Figin S1
File), due to the typical high microbial richness in environmental samples, especially
sediment

[56], contrary to gut mussel microbiomes which are dominated by fewer operational units
[30, 57]. These findings contrast with Glassman and Martiny [14], who did not find a major
effect of ASV vs. OTU-based pipelines on richness for bacterial communities sampled on leaf
litter, which may be due to the lower richness in leaf litter environments. Purahong et al.
[58] found a maximum richness in leaf litter of ~500 OTUs in similar leaf litter communities,
while richness in our sediment samples averaged 2485+734 based on 97%-0TUs. In this
context, the lower intrinsic richness of mussels’ microbiomes may be an asset, as it would
facilitate a correct estimation of richness measures and its comparison across studies based
on distinct methodologies. However, a correlation of 0.70 in richness measured across
pipelines highlights an important discrepancy between estimates for many samples as, for
instance, 48% of these samples presented a variation >70% in their richness estimates
between ASVs and OTUs before rarefaction.

Interestingly, in our study, a simple rarefaction of the OTU community tables increased
the correlation between ASV- and OTU-based richness estimates, and decreased OTU-based
richness to a level comparable to the estimate from ASVs (Table 1, Fig 2, S3 Figin S1 File).
While the use of rarefaction is considered a poor way of normalizing sequence data counts
that can sometimes lead to false conclusions [25], it is also more likely to remove the rare
operational units that could originate from sequencing errors, and may therefore be useful
in richness estimation in OTU datasets [59]. In contrast, the impacts of ASV or OTU selection
and rarefaction were much lower on Shannon entropy (with a correlation >0.9 at every

rarefaction level studied, Table 1), and were comparable to previous comparisons on natural
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and mock communities [23, 60]. Indeed, the Shannon index accounts less for the rarest
operational units than species richness metrics and thus is more robust to the difference in
the number of rare units obtained with ASVs vs. OTUs clustering.

As with previous studies [14, 22, 23], we reported more consistency between OTU and
ASV-based beta diversity metrics (Table 2). Beta diversity estimates based on 99%-0TUs
were slightly more correlated to those based on 97%-0TUs, which is expected given the
higher resolution of 99%- compared to 97%-0TUs, making them more comparable to ASVs
[60]. Such correlation was also variable across beta diversity indices and was lower in the
case of U-Unifrac, while it was higher in all other indices. This is consistent with previous
observations from Nearing et al. [15], who computed Bray-Curtis, U-Unifrac, and W-Unifrac
dissimilarities on host-associated and soil datasets using several ASV-based pipelines and
one OTU based pipeline. They also observed that U-Unifrac correlated poorly across
pipelines, while the abundance-weighted indices were highly consistent.

We further compared the ecological signal raised by PERMANQOVAs, testing the
community type, river, and site’s effect on ASV- and OTU-based datasets (Fig 4). Based on
previous observations, distinction across sample types was expected, as these communities
are extracted from very distinct environments [56, 61, 62]. Differences across rivers and
sites were also expected in seston and sediment, as is typically the case in similar
environmental communities [62]. Moderate differences across sites in the mussel
microbiome were also previously observed by our group based on 97%-0OTUs [30, 57].

According to the higher correlation between beta diversity estimates from ASVs and
99%0TU datasets, PERMANOVA outcomes were also more similar between these two
datasets, 99%-0TUs detecting higher river and site effects in seston and lower detection of
the distinction between sample types than 97%-0TUs, consistent with patterns based on
ASVs (Fig 4). The only exception to an overall high correlation between OTU- and ASV-based
datasets was the U-Unifrac index, which showed a poor agreement between OTUs and ASV-
based ecological signal (Fig 4, S7 Fig in S1 File). The choice of beta diversity index is crucial
before a PERMANOVA, as while abundance weighted indices (taxonomic Bray-Curtis or
phylogenetic W-Unifrac) are more sensitive to a change in dominant members of the
community across contrasted conditions, indices based on presence-absence (taxonomic
Jaccard or phylogenetic U-Unifrac) are more sensitive to the rare members of the
community, and are therefore generally more useful in detecting subtle changes across
near-identical communities [63]. Surprisingly in our study, the other presence-absence index
tested, Jaccard, exhibited a higher correlation across ASVs vs. OTU methodologies (Fig 4, S7
Fig in S1 File), highlighting that in our dataset, differences across ASVs and OTUs are due to
the rarest units, which are phylogenetically distinct from the more dominant ones. The
Jaccard index ignores such phylogenetic information, allowing a more consistent pattern
between OTUs and ASVs using this index.

Although clustering programs producing OTUs cluster more dissimilar sequences into the
same unit than ASVs, previous authors suggested they could also generate a higher number
of spurious, low-abundance OTUs that would inflate richness measures [15, 19]. Similarly, in
a shrimp microbiome study, richness measurements were systematically higher in OTUs
datasets compared to ASVs [60]. In our study, OTU-based datasets did generate up to 9 and
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12 times (respectively for 97%- and 99%-0TUs) more OTUs than ASVs on the same samples
before rarefaction (Fig 1, S1 Fig in S1 File). With the present data, we cannot conclude
whether the high number of low-abundance, phylogenetically distinct OTUs are indeed
erroneous. However, they certainly impacted the functioning of the U-Unifrac index, which
detected lower ecological signals overall.

Prodan et al. [19] reported that applying a cutoff on sequence abundance within Mothur
before constructing the OTUs was necessary for reducing the erroneous inflation of
observed richness. The removal of singletons (OTUs represented by only one sequence) can
drastically reduce the variation across sample replicates within the same sequencing run
[64], underlining the sensitivity of OTU-based methods to sequencing errors. Including their
removal may be important for OTU-based analyses to pre-filter potentially spurious, low
abundance sequences that could induce the construction of numerous erroneous OTUs.
However, in our study, rarefaction, while improving the agreement of alpha diversity
estimates between OTUs and ASVs by removing low-abundance OTUs (Table 1), only
marginally impacted the signal based on beta diversity, and showed no improvement of the

ecological signal based on U-Unifrac in any dataset (Table 2, S7 Fig in S1 File). This suggests

that additional filtering of sequences may be needed for performing U-Unifrac on OTU
datasets, or at least that patterns should be compared to those obtained from other beta
diversity indices to identify potential bias due to rare units.

In addition to the influence of the analysis method on patterns in beta diversity, there
were significant differences between ASVs and OTUs in terms of community composition,
both at the genus and class level, including in the most abundant taxa (Fig 5, S3 Figin S1
File). Similar discrepancies were highlighted by Straub et al. [23], who found that the
relative abundance of several dominant taxa was poorly reproduced across both
methodologies. We found that the OTU identity threshold and rarefaction level had only a
marginal effect on the identity and the relative abundance of major classes and genera.
Regarding the differences across methodologies, ASVs notably detected Mollicutes as
preponderant in the mussel gut microbiome, which were absent in the OTU datasets. In
contrast, OTUs detected much higher amounts of Verrucomicrobiae in the seston and
sediment samples than were detected by the ASV approach. These differences are
surprising given that both OTU and ASV approaches classified sequences to the same
database. In this specific case, while the cultivation of Mollicutes is difficult [65], they have
been successfully isolated from the digestive gland of various hosts, including aquatic
invertebrates [66], making their detection within the gut of the mussels studied here
plausible. On the other hand, Verrucomicrobia are also found in soil and water
environments, and their presence is not surprising. Such discrepancies across dominant taxa
are important to consider when comparing OTU- and ASV-based studies. While a previous
study could increase the agreement between the two methodologies by applying a
percentage cutoff to the operational units in the lowest abundance [60], in our case
rarefaction was not sufficient to remove the discrepancies we found across both datasets.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264443 February 24, 2022 17 /22




PLOS ONE

Impact of sequence processing on microbial ecology studies

Conclusions

Using a dataset comprising environmental and host-associated samples, we revealed
important differences in results obtained from an ASV-based denoising approach (DADA2)
and an OTU-based clustering method (Mothur). We showed that the difference in tests’
outcome and the ecological conclusion is predominantly due to rare operational units,
which are more prevalent in OTU-based clustering approaches and therefore have more
impact on indices computed only on presence/absence of units. However, there are also
major differences in the occurrence and relative abundance of major bacterial taxa
identified by both approaches. Other methodological choices (rarefaction, OTU identity
threshold) had generally lower effects, although rarefaction and a clustering of 99%-identity
OTUs tend to reconcile the differences between OTU- and ASV-based approaches.
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