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ABSTRACT

Determining the environmental conditions that influence the occurrence and concentration of the
cyanobacterial toxin microcystin (MC) is a critical step for predicting cases in which the toxin will
adversely affect drinking water sources, recreational waterbodies, and other freshwater
ecosystems. Although widely studied, little consensus exists regarding the factors that influence
MC on a global scale. The objective of this study was to identify the environmental variables
most strongly associated with MC concentrations using observational data from lakes and
reservoirs around the world while also addressing the substantial proportions of missing values
that a large aggregated dataset often involves. A total of 124 studies containing data from an
estimated 2040 lakes and reservoirs in 22 countries was used to construct a global dataset.
Variables including <35% of non-missing observations were removed prior to analysis. Missing
values for the remaining 12 predictors of MC were imputed using an iterative imputation
algorithm based on a random forest approach. Variable selection was performed with
generalized additive modeling on the complete case and imputed datasets. Models applied to
the imputed data produced lower prediction errors than those fit to the complete dataset.
Variables of greatest significance to MC concentration included location (longitude-latitude
pairs), total nitrogen, turbidity, and pH. Total phosphorus was not found to be a strong
predictor of MC. In addition to assisting water resource managers in protecting their
waterbodies against MC, the presented methodologies may provide a useful framework for
future water quality modeling while accounting for varying proportions of missing data.
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Introduction Hotto et al. 2008, Joung et al. 2011, Li et al. 2012) and

acts as an inhibitor to type 1 or 2A protein phosphatase

Cyanobacterial blooms are a growing threat to aquatic ~ (Sivonen 2009, Mankiewicz-Boczek et al. 2015).

ecosystems worldwide due to increases in eutrophica-
tion and climate change (Paerl and Otten 2013). Blooms
can impose numerous adverse effects on these systems
(e.g., hypoxia, decreased light penetration; Paerl et al.
2001, Paerl and Otten 2013), including the production
of secondary metabolites potentially toxic to animals
and humans (ie., cyanotoxins; Paerl et al. 2001, Graham
et al. 2004, Malbrouck and Kestemont 2006). Numerous
cyanotoxins have been identified, including but not lim-
ited to dermatoxins (e.g., aplysiatoxin), neurotoxins
(e.g., anatoxin, saxitoxin), and hepatotoxins (e.g.,
microcystin, nodularin; Sivonen 2009). Of these cyano-
bacterial toxins, microcystin (MC) is routinely observed
in freshwater systems experiencing cyanobacterial
blooms. MC is produced through non-ribosomal
peptide-polyketide synthesis in cyanobacterial strains
possessing the mcy gene cluster (Graham et al. 2004,

Although classified as a hepatotoxin, MC is known to
affect the kidneys, intestines, and muscle tissues of fish
and other aquatic organisms (Malbrouck and Kestemont
2006, Martins and Vasconcelos 2009). More than 246
variants of MC are known, and toxicity between variants
differs substantially (Hu et al. 2016, Li et al. 2017, Meri-
luoto et al. 2017). Because of its toxicity, the World
Health Organization has set a recommended guideline
of 1pg/L of MC in drinking water (WHO 2003, Li
et al. 2017). Although significant progress has been
made in the management of MC levels in freshwater sys-
tems, MC remains a consequential topic in research,
espedially because the frequency and severity of toxic
cyanobacterial blooms are expected to increase in the
following decades (Paerl and Otten 2013).

Extensive field surveys relating common water
quality measurements to MC occurrence have been
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performed during the past 2 decades (Graham et al.
2004, Giani et al. 2005, US Environmental Protection
Agency 2010, 2016, Mowe et al. 2014, Francy et al.
2016). Despite this, wide disparities in the environmen-
tal conditions that most influence MC production exist
in the literature. For example, the documented optimal
temperature range for toxigenic cyanobacteria varies
widely (15-20 °C: Billam et al. 2006; ~23 °C: Li et al.
2017; 18-35 °C: Gagala et al. 2012; and >25 °C: Boutte
et al. 2008). The difficulty in determining the precise
relationships of environmental parameters to the pro-
duction of MC stems from the complex dynamics of
harmful cyanobacterial blooms. For instance, multiple
cyanobacterial species produce MC (e.g., Microcystis,
Anabaena/Dolichospermum, Nostoc, Planktothrix, and
Nodularia; Hotto et al. 2008), and these species have
various environmental preferences and competitive
traits, such as gas vesicles, nitrogen-fixation capabilities,
thermal tolerances, seasonal preferences, and wide
nitrogen to phosphorus ratio tolerances that allow MC
production in a wide range of environmental situations
(Paerl et al. 2001, Fastner et al. 2016, Shan et al. 2020).
The amount of MC produced per cell can also be
influenced by a number of factors, including nutrient
concentration (Horst et al. 2014), temperature (Mowe
et al. 2014), and presence of toxigenic strains (ie., a
strain that possesses the genes for toxin production;
Graham et al. 2004, Joung et al. 2011). Further, a
bloom dominated by a toxigenic cyanobacterial species
capable of producing MC will not always produce tox-
ins, a factor that can often generate water quality data-
sets with periods of low MC concentrations contrasted
by periods of high MC concentrations. These numerous
issues contribute to the difficulty of creating meaningful
models that relate environmental factors to MC
occurrence.

Although difficult, the need to predict environmental
variables most likely to influence the occurrence of MC
is crucial for both the management of drinking water
reservoirs and other freshwater systems. Previous stud-
ies have used multiparameter predictive and forecasting
models to monitor MC occurrence (Giani et al. 2005,
Otten et al. 2012, Francy et al. 2016, Yuan and Pollard
2017, 2019, Shan et al. 2019, 2020). Such research
often uses survey data from a single body of water or
region, thereby reducing the generality of models to
be used in other areas. Effective MC models have been
developed utilizing both national and local waterbody
datasets (Yuan and Pollard 2019), but such research is
uncommon. Contributing to the complexity of develop-
ing prediction models at larger spatial scales is securing
large and spatially expansive datasets in the field of
water quality because heterogeneous studies only collect
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subsets of potential variables of interest and produce an
aggregated dataset with varying amounts of missing val-
ues. Instances of missing data are a persistent issue
observed in all fields of science, a problem readily
addressed in the fields of ecology, physiology, health,
and social sciences (Bennett 2001, Wisz et al. 2008).
Suggestions as to the acceptable limits of missing data
within a dataset is a topic of debate, with the allowable
limits given on a case-by-case basis (e.g., 10% allowable
missingness: Bennett 2001; 30%: Taugourdeau et al.
2014; and 60%: Penone et al. 2014). Moreover, state-
ments indicating the importance of the heterogeneity
of missing data rather than the total amount missing-
ness have been observed (Tabachnick et al. 2019).
Although removing variables with large amounts of
missingness may be perceived as a logical method to cir-
cumvent this issue, doing so may reduce power and
introduce new bias into the developed model (Penone
et al. 2014, Taugourdeau et al. 2014). Limited global
models using aggregated data from various publications
have been employed for inference in ecology and water
quality because of these issues.

We present novel statistical analyses to determine the
water quality variables that best predict MC concentra-
tion in freshwater lakes and reservoirs for a global range
of waterbodies while addressing large amounts of miss-
ing values within an aggregated dataset. We first address
the issue of missing data using random forest (RF)
imputation, a machine learning technique used to
impute missing data without a regression model being
specified (Tang and Ishwaran 2017). RF imputation
efficiently inputs unknown values within a data matrix
without the use or influence of the response variable
and has been used successfully in human health and bio-
logical studies (Stekhoven and Buhlmann 2012, Penone
et al. 2014). Furthermore, RF-based imputation has
been shown to outperform other imputation methods
for missing data (Shah et al. 2014, Kokla et al. 2019).

The effect of imputation on model fit and prediction
was assessed by fitting generalized additive models
(GAMs) with variable selection to the complete case
and imputed datasets. GAMs account for nonnormal
and spatially autocorrelated data, and they accommodate
nonlinear predictors and response variables by means of
nonparametric smooth functions fit using regression
splines (Lehmann 1998, Colén-Gonzélez et al. 2013, Bra-
bec et al. 2014, Wood 2017). GAMs do not have pred-
efined functions to which the model has to conform,
allowing the data to determine the best-fit functions of
a model (Suirez-Seoane et al. 2002). After the GAMs
were fit, we then compared the predictive performance
of each of the selected models on both the complete
case and imputed data using 10-fold cross-validation.
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Lastly, the GAM with the best prediction performance, a
key benchmark to derive effective inference for manage-
ment, was used to develop predictions about MC concen-
tration from highly nonlinear data.

GAMs have been used in prior water quality and
(Carvalho et al. 2013) and ecological studies (Lehmann
1998, Sudrez-Seoane et al. 2002), and RF techniques
have been used for modeling of cyanobacterial second-
ary metabolites (Kehoe et al. 2015, Harris and Graham
2017), but RF imputation has not been used in tandem
with GAMs to predict MC concentration on such a spa-
tial scale (to the authors’ knowledge). The use of RF
imputation with GAM for inference of nonlinear rela-
tionships may provide researchers and resource manag-
ers with meaningful insights to the production of MC in
freshwater systems, even with data typically constrained
by considerable missingness. The objective of this study
was to identify the environmental variables most
strongly associated with MC concentration using a data-
set containing observations from a wide spatial scale.
Building on the insights observed in prior MC research
(e.g., Graham et al. 2004), we hypothesized that many
environmental parameters would have nonlinear rela-
tionships with MC.

Methods
Data accumulation

Articles were retrieved in February 2018 using the Web
of Science database by combining “microcystin” with
the keywords lake, reservoir, environment, parameters,
nutrients, variables, environmental parameters, and
environmental variables. Searches returned 3332 arti-
cles. Studies were included in this analysis if they fit
the following criteria: (1) were observational field stud-
ies (i.e., not experimental in nature); (2) were from a
freshwater reservoir or lake, defined as a system with
little-to-no-flow (i.e., not including impeded rivers or
streams); and (3) provided numerical sampling data in
figures, tables, or supplementary files. We determined
that 42 articles met these criteria (see references in
Supplemental Materials). Data were taken directly
from text or supplementary material in each article
when possible, but data were also obtained using the
metaDitigise package in R, which allowed the extraction
of data from article figures (Pick et al. 2019). Addition-
ally, the National Water Information System of the US
Geological Survey was used to obtain real-time data
containing MC values and respective environmental
parameters from 80 sites around the United Sates (see
Supplemental Material 1). Less than (<) symbols
observed throughout the USGS dataset were assigned

half values. USGS dataset values that were affected by
contamination (V symbol) were removed. Data were
also taken from the 2007 and 2012 US National Lake
Assessments (NLA; US Environmental Protection
Agency 2010, 2016).

In total, data from 124 studies or sites included in our
analyses contained physicochemical factors (e.g., tem-
perature; pH; Secchi disk depth, a measure of water clar-
ity; and conductivity), nutrients (e.g., nitrogen, nitrate,
nitrite, phosphorus, and phosphate), phytoplankton
biomass (measured as the concentration of chlorophyll,
both total and a), and/or concentrations of MC. Many
USGS sites also contained a wide array of measured var-
iables, such as heavy metals, organic or inorganic chem-
icals, physicochemical measurements, and nutrients.
Variables not also reported in the obtained published
studies were largely removed, resulting in 41 predictors.
Lastly, the reporting of MC and its variants differed
between studies and datasets. The 5 most occurring
MC measurements observed, including total MC, total
MC-LR, total MC + nodularins (largely Environmental
Protection Agency [EPA] reported data), intracellular
MC, and intracellular MC-LR, were kept for analysis
and the others discarded. To maintain observation
numbers and the global scale of the data, all MC concen-
tration responses were treated as one variable. Disparate
scales were not a concern because MC levels from all
studies were measured in pg/L. MC values >500 pg/L
were considered outliers and removed (n =14, 0.3% of
total data).

An estimated 2040 lakes in 22 countries were repre-
sented in the global dataset (Fig. 1). Because of the range
of survey studies with differing sampling methodologies
incorporated into this global dataset, varying rates of
missingness were observed among the 41 predictor vari-
ables (Table 1). Missingness ranged from 0% (latitude
and longitude) to 99.3% (soluble reactive phosphorus).
Variables not measured in at least 35% of the observa-
tions were removed prior to statistical analysis because
these variables could be considered as not regularly col-
lected in relation to MC. This process left 12 remaining
environmental predictor variables, including Secchi
depth, pH, ammonium as nitrogen, nitrite as nitrogen,
nitrate as nitrogen, nitrate + nitrite as nitrogen, total
phosphorus, dissolved organic carbon, chlorophyll, total
nitrogen, turbidity, and specific conductivity (Table 2).
Observations without both latitude and longitude coordi-
nates were also removed, resulting in 4316 observations.

Statistical analysis overview

Statistical analysis of the aggregated global dataset
occurred in 4 steps: (1) impute missing data using RF
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Figure 1. Location of waterbodies used for data collection.

machine learning, (2) fit GAMs with variable selection
on complete case and imputed data, (3) compare models
fit in step 2 to both complete case and RF-imputed data
using 10-fold cross-validation, and (4) fit GAM with
lowest prediction errors from step 3 for inference
(each step is described in detail). R 4.0.2 was used to per-
form all statistical analyses (R Core Team 2020).

Imputation of missing data using random forest
machine learning

To address missingness, RF-based imputation was
applied to impute missing values for the 12 remaining
predictor variables. Imputation in this study was per-
formed by RF machine learning using the statistical
package missForest in R, which allows the imputation
of both continuous and categorical values with limited
assumptions of the data by utilizing RF machine learn-
ing (Stekhoven and Buhlmann 2012). Briefly, the RF
algorithm in missForest first imputes all missing values
with the mean for each variable of interest in a data
matrix X = (Xy, X, ..., X,;) with p variables, then
sorts the variables X,, m=1, ...,p from least to
highest proportions of missingness. Starting with the
variable with the least amount of missingness X,,, an
RF is fit on the observed data values in the data matrix
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and is used to predict the missing values in X,,. These
RF predictions are then used as the new imputed values
for the missing values of variable X,,. The algorithm
proceeds through the remaining predictor variables
from least to highest missingness, and the algorithm
repeats until a user-specified maximum number of iter-
ations is reached or a stopping criteria is met, typically
when the difference between the new imputations and
previously imputed values of the data matrix X increases
(Stekhoven and Buhlmann 2012).

The response value MC was removed from the data-
set before RF-based imputation to avoid biased esti-
mates. Latitude and longitude values were also
removed because RF-based imputation methods are
not suitable for imputing geolocational data. The global
data matrix was then imputed, after which MC, latitude,
and longitude were returned to the dataset in their
respective rows. Out-of-bag mean squared error
(OOBMSE) estimates of imputation error were assessed
for each of the imputed predictor variables.

Fitting of GAMs with variable selection on

complete case and imputed data

Because relationships between MC concentrations
and environmental predictors were expected to be
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Table 1. Percent missingness in the variables collected for this
analysis.

Percent
Number Variable missingness
1 Soluble reactive phosphorus 99.3
2 Phosphate/orthophosphate as phosphorus 99.1
3 Dissolved inorganic nitrogen 99.1
4 Particulate nitrogen 98.7
5 Chlorophyll corrected 97.9
6 Carbonate 976
7 Alkalinity 97
8 Bicarbonate 96.9
9 Phosphate/orthophosphate, unfiltered 96.8
10 Ammonium and organic nitrogen as 956
nitrogen
11 Dissolved solids 956
12 Nephelometric turbidity ratio unit 95.4
13 Total dissolved nitrogen 945
14 Hardness 93.7
15 Carbon dioxide 929
16 Formazin Nephelometric Unit (FNU) 92
17 Suspended sediments 91.7
18 Organic nitrogen filtered 91
19 Total suspended solids 90.8
20 Total dissolved phosphorus 90.5
21 Ammonium and organic nitrogen as 885
nitrogen, unfiltered

22 Ammonia and ammonium as nitrogen 856
23 Total organic nitrogen 849
24 Phosphate/orthophosphate 835
25 Dissolved oxygen 75
26 Temperature 68.4
27 Organic carbon unfiltered 65.5
28 Nitrite as nitrogen 58.7
29 Nephelometric Turbidity Unit (NTU) 421
30 pH M5
3 Dissolved organic carbon 36.2
32 Ammonium as nitrogen 36.2
33 Secchi disk depth 299
34 Nitrate and nitrite as nitrogen 245
35 Nitrate as nitrogen 235
36 Chlorophyll 226
37 Specific conductivity 19
38 Total nitrogen 186
39 Total phosphorus 185
40 All microcystin 0
41 Latitude 0
42 Longitude 0

nonlinear, 2 GAMs of the form:

(E(Y)) = By + filx1) + fo(x2) + - - - + fr2(x12)
+ s(u, v), (1)

Table 2. Out-of-bag mean squared error (OOBMSE) for random
forest imputation for 12 predictor variables.

Variable OO0BMSE
Nitrite as nitrogen 0.00
Ammonium as nitrogen 0.01
Total phosphorus 0.07
pH 022
Nitrate as nitrogen 0.70
Nitrate and nitrite as nitrogen 072
Secchi disk depth 131
Total nitrogen 146
Organic carbon filtered 14248
Turbidity (NTU) 686.39
Chlorophyll 1897.74
Specific conductivity 2 959 980

were fit for the complete case data and RF-imputed data,
where 3, is the parametric intercept; fi, f>, ..., fi2 are
smoothing functions describing the nonlinear relation-
ships between the 12 predictors x;, x5, ..., x12 and
the response Y; and g(-) represents the link function
between the response and predictors (Wood 2017). The
GAMs include a spatial interaction term s(u, v),
where u, v are longitude-latitude pairs and s(-) is a
2-dimensional smoothing function, allowing the
response to vary over space and enabling the measure-
ment of effects of other variables to be independent of
location. Selection of terms significant to variation in
MC levels was performed for each of the 2 GAMs
using the mgcv package in R (Wood 2017). A Tweedie
distribution was developed where mgcv estimated the
distribution parameter, and a restricted maximum
likelihood estimation was used for smoothing param-
eter estimation and variable selection. To assess fit of
the models to the data, the reduced model selected
for the complete case data (GAM¢c) and the reduced
model selected using the RF-imputed data were each
fit on both the complete case and RF-imputed data,
and the percentage of deviance explained was recorded
for each of the 4 fitted models. Deviance explained is
approximately equivalent to unadjusted R? as a mea-
sure of fit for GAMs with non-Gaussian families
(Wood 2017).

Compatrison of selected GAMs using 10-fold cross-
validation

A 10-fold cross-validation of models selected for the
complete case data (GAMcc) and RF-imputed data
(GAMgr) was performed to assess their prediction accu-
racy. Both datasets were randomly split into 10 parts
with 9 parts used as training data and 1 part as testing
data. GAMc was fit on the training partitions of both
the complete case and RF-imputed data, then the
model fits were used for prediction on the testing por-
tions of both datasets. The same cross-validation proce-
dure was implemented for GAMgr fit on both the
complete case and imputed data. The 4 GAMs were
compared using median absolute deviation (MAD) to
assess prediction accuracy (Davydenko and Fildes
2016).

Fitting of GAM with lowest prediction errors for
inference

The GAM fit with lowest prediction errors determined
by cross-validation was used for inference to determine
significant predictors of MC concentration in lakes and
reservoirs globally. Plots of the relationships between
significant (p < 0.05) predictor variables determined



by GAM selection and MC were generated for interpre-
tation. Proportion of deviance explained was deter-
mined for each significant predictor term in the final
model (Wood 2017). The proportion of deviance
explained for the variable of interest x was calculated as:

_ Dp—Dg

D.
x By

, ()
where Dy, is the explained deviance of the full GAM, Dy
is the deviance of the reduced GAM with the variable
of interest removed, and Dy is the deviance of the
intercept-only GAM. We allowed the Tweedie distribu-
tion parameters to be estimated by mgcv for the full
model and then used the same distribution parameters
to fit the reduced and null models. Percent deviance
explained (D, x 100) was reported for straight-forward
interpretation.

Results

RF imputation of the aggregated dataset exclusive of lat-
itude, longitude, and MC concentration generated
OOBMSE for each of the 12 variables with missingness
<65% (Table 2). OOBMSE varied substantially, with
specific conductivity having the largest OOBMSE but
also having a wide range (0-2 959 980); however, 8 of
the 12 included variables had small OOBMSE < 1.46.

Variable selection on the GAM fit with the complete
dataset (1 =986) removed ammonium as nitrogen and
specific conductivity from the model, while ammonium
as nitrogen, nitrate as nitrogen, and chlorophyll were
dropped in the GAM using variable selection on the
RF-imputed dataset (n=4316). The complete case
dataset comprised data from the United States and
Canada while the RF-imputed dataset utilized data
from all 22 countries. When broken down by latitude
into temperate (30-60° N and S), subtropical (23-30°
N and S), and tropical (0-23° N and S) climate regions,
the amount of data representing each region was
92.6%, 5.8%, and 14%, respectively. Both GAMc¢c
and GAMgr had better fit (higher total deviance
explained) when estimated using RF-imputed data
than either of those selected models estimated using
the complete case data (Table 3). GAM: and
GAMgr fit on RF-imputed data produced lower predic-
tion errors than those models fit on complete data,
with GAMgr fit on imputed data performing the best
(MAD = 1.79; Fig. 2).

The GAMgpgr fit on the RF-imputed data, the
preferred final model for inference, removed the vari-
ables ammonium as nitrogen, nitrate as nitrogen, and
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Table 3. Total deviance explained (%) for variable selection on
GAMs when estimated using complete and RF-imputed
datasets. GAM¢¢ is the selected model from complete case
data; GAMge is the selected model from RF-imputed data.

Data
Complete case RF-imputed
Model GAM 60.7 62.5
GAMge 58.2 62.3

chlorophyll from the model (p > 0.05; Table 4). This

final reduced model is given as:

g(EQMC)) = By + fi(Secchi) + f(pH)
+ fs(nitrite — N)
+ fa(nitrate + nitrite — N)
+ fs(total phosphorus)
+ fe(dissolved organic carbon)
+ f7(total nitrogen)
+ fs(turbidity ) + fo(specific conductivity)
+ s(longitude, latitude),
(3)

where B, = —0.76 (t = 33.97, p < 0.001), revealed
highly nonlinear relationships between the selected pre-
dictor variables and MC concentrations (Fig. 3). It was
observed that most variables had a negative relationship
with MC in at least some portion of the range where the
primary fraction of data were located. Nitrite as nitro-
gen, total phosphorus, and specific conductivity had
largely negative relationships with MC in the sections
where the majority of their data existed (nitrite as nitro-
gen 0-0.1 mg/L=99.8%; total phosphorus 0-2mg/L =
99.7%; specific conductivity 0-5000 pS/cm = 98.7%);
however, the remaining variables had more nuanced
relationships with MC (Fig. 3). The relationship
between total nitrogen and MC went from negative to
slightly positive from 0 to 10 mg/L, where 99.5% of
the data was present. Nitrate + nitrite as nitrogen had
99.8% of its values between 0 and 5 mg/L where the rela-
tionship with MC was slightly negative. pH within the
range of 6-10, where 99.0% of the data fell, changed
from a negative to positive relationship with MC as
pH values increased. Dissolved organic carbon between
0 and 50 mg/L, where 99.1% of its data were located, had
a negligible relationship to MC. Turbidity measure-
ments largely ranged from 0 to 200 NTU (99.1% of
the data) and went from a negative to positive relation-
ship to MC. Secchi depth had a slightly positive, but
oscillating to negative, relationship to MC from 0 to
10 m, which included 99.1% of the data. Lastly, the 2-
dimensional latitude-longitude smoother predicted
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Figure 2. Median absolute deviation (MAD) from 10-fold validation of reduced models selected by generalized additive models
(GAMs) fit on complete data and RF-imputed data. GAMc¢ is the selected model from complete case data; GAMgr is the selected

model from RF-imputed data.

MC to be much higher than the global average at loca-
tions within the grid of 25-50° longitude and 25-50° lat-
itude (Fig. 4). Location, total nitrogen, turbidity, Secchi
depth, nitrate + nitrite-nitrogen, and pH had a larger
association with MC than the other variables within
the GAMgr fit on the RF-imputed data (Table 5).

Discussion
Modeling of MC in freshwater systems

The development of prediction-based models to deter-
mine the occurrence of MC is an underutilized but
growing practice in water resource management
(Francy et al. 2016, Harris and Graham 2017, Yuan
and Pollard 2017, 2019, Shan et al. 2019, 2020). Mean-
ingful studies have been constructed assessing MC on
large spatial areas and incorporating numerous water-
bodies (Kotak et al. 2000, Graham et al. 2004, US Envi-
ronmental Protection Agency 2016, 2010, Yuan and
Pollard 2017, 2019, Shan et al. 2020) and have also
been constructed for other cyanobacterial response var-
iables like biomass (Carvalho et al. 2013, Shan et al.
2019, 2020, Vuorio et al. 2019). This study is, to our
knowledge, the largest determination of associative fac-
tors related to MC concentration in fresh waterbodies
around the world. As such, the findings from this

research may serve to support the often-anecdotal
trends between MC concentration and select water
quality variables and assist resource managers in deter-
mining the most relevant parameters to measure in a
freshwater system experiencing MC issues.

The final model of this study utilized 12 variables that
contained varying degrees of missingness up to 65%.
Variables not used within our analyses merely illustrate
that those variables are not commonly collected at fresh-
water sites, but their exclusion in our final model is not
necessarily a reflection of their lack of significance to
MC production in lab or region-specific studies. For
instance, temperature was reported for <35% of the
data collected for our analyses but is of noted impor-
tance to toxin-producing cyanobacteria (Billam et al.
2006, Boutte et al. 2008, Gagata et al. 2012, Li et al.
2017) because select cyanobacteria have greater growth
rates at higher temperatures and prefer a more stable
water column brought on by thermally stratified sys-
tems (Paerl and Huisman 2008). This finding has been
reflected in other modeling research, such as by Shan
et al. (2019) who observed in a Bayesian network
analysis that warmer water temperatures (=24 °C)
increased the probability of hazardous MC conditions
(=1 pg/L) occurring by 23.9%.

Limited availability is a prominent restraint in the
accumulation of global data. In this work, limited
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Table 4. Summary of final GAM fit on RF-imputed data (n = 4316). Deviance explained = 62.5%. edf = estimated degrees of freedom.

Ref, df = reference degrees of freedom.

Parametric edf Ref. df F-value p-value
Longitude, latitude 27.23 29 61.52 <0.0001
Secchi 8.22 9 11.51 <0.0001
pH 5.07 9 16.07 <0.0001
Ammonium as nitrogen 0.0001 9 0.00 0.563

Nitrite as nitrogen 4.84 92 259 <0.0001
Nitrate as nitrogen 0.42 9 0.07 0.196

Nitrate + nitrite as nitrogen 5.59 9 10.95 <0.0001
Total phosphorus 6.80 9 5.10 <0.0001
Dissolved organic carbon 7.7 9 5.66 <0.0001
Fluorometric chlorophyll 1.02 9 022 0.125

Total nitrogen 6.22 92 3469 <0.0001
Turbidity (NTU) 8.43 9 2251 <0.0001
Specific conductivity 216 9 1.78 <0.0001

relevant studies originated from the subtropical (30—
23° N and S) and tropical (23-0° N and S) climate
regions. A small number of studies in tropical regions
compared to that of temperate regions is a known
impediment to comprehensive inference in the field
of limnology (Lewis 2002, Ramirez et al. 2020). Con-
tinued assessments of water quality and MC toxicol-
ogy in these areas will certainly improve our

understanding of MC production in warmer climates
and beyond. However, inclusion of the few currently
available studies from these regions into our GAM
framework, which accounts for spatial dependence,
enables us to leverage information from these studies
to understand average effects of environmental fac-
tors on MC concentrations across several climate
regions worldwide.
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Figure 3. Centered smooths of variables selected by the final GAM fit on RF-imputed data. Black hash marks represent the presence of
data for the x-axis variable. Nitrite and nitrate + nitrite parameters reported as nitrogen.
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Figure 4. Centered MC concentrations (ug/L) estimated by the final GAM fit on RF-imputed data using 2-dimensional smoothing over
longitude-latitude coordinates. Black points represent true locations from data.

Imputing missing values using RF machine learning
from original data with variables having up to 65%
missingness produced models with greater predictive
ability than models fit only on complete data. RF
imputation allowed us to include a greater number of
locations in the final model, resulting in a model
based on data from 22 countries. Complete case data
on all the 41 variables were only available for 2 coun-
tries: the United States and Canada. Methods to
address missing data are numerous, and limits on the
total allowable amounts of missingness within each
variable differs considerably even within fields, as pre-
viously described (Bennett 2001, Penone et al. 2014,
Taugourdeau et al. 2014, Tabachnick et al. 2019).
Effectiveness of imputation methods vary, but select
methods, including RF-based imputation deployed by
the R package missForest used in our analysis, can
impute variables with up to 60% of their original values
removed without significantly altering true relation-
ships in the data (Penone et al. 2014, Taugourdeau
et al. 2014). The use of machine learning imputation
methods such as RF may therefore provide a useful

Table 5. Percent deviance explained (D, x 100) for each of the
selected predictor variables in the final GAM fit on RF-imputed
data.

Deviance
Variable explained (%)
Latitude and longitude 9.01
Secchi 071
pH 113
Nitrite as nitrogen 0.10
Nitrate + nitrite as nitrogen 0.08
Total phosphorus 0.14
Dissolved organic carbon 0.31
Total nitrogen 1.80
Turbidity (NTU) 115
Specific conductivity 0.00

way to address issues of missingness in global datasets
and reduce personal bias from manual removal of
incomplete data.

Nonlinear relationships between MC and environ-
mental predictors were generated using GAMs in this
study. The additive structure of GAMs contributes to
the interpretability of the model and make it a prefer-
able choice for real-world data, such as climatological
and ecological research (Sudrez-Seoane et al. 2002,
Wisz et al. 2008, Brabec et al. 2014), and was an effec-
tive method for analyzing MC and water quality data
across large spatial scales. Modest differences in the
selected variables occurred in the GAMs fit on the
complete case data and RF-imputed datasets. These
dissimilarities are expected given the number of miss-
ing values imputed for some variables, but overall
findings regarding potential contributors to MC in
freshwater lakes and reservoirs are anticipated to be
conserved (Penone et al. 2014). Note that the relation-
ships found among the studied variables and MC are
independent of location, which is included in the
model. The interpretation is ceteris paribus (i.e., all
other predictors held constant). For example, for a
given lake, turbidity has a nonlinear relationship to
MC concentration. Variation not captured by the
selected environmental variables in the final model is
captured through the spatial smooth, which is a nui-
sance variable in our model. This finding is a key
strength of our approach because the effects shown in
our results are average effects for any freshwater system
within the spatial range of the data used in our
analyses.

The concentration of data within the ranges of each
of the 9 environmental variables reported (Fig. 3) should
be noted (e.g., 99.5% of total nitrogen was from 0 to



10 mg/L). The relationship between a select parameter
and MC generated outside of these ranges has much
larger confidence regions due to the limited range of
data. Within these ranges, several trends in the data
were observed and may relate to several different fac-
tors. Other than more obvious positive and negative
relationships observed between variables and MC con-
centration, a flattened relationship between increasing
variable values and MC concentration may be an indica-
tion of a saturation point. For instance, Dolman et al.
(2012) found a saturation point between phosphorus
content and cyanobacterial biovolume, whereas the
relationship between nitrogen to cyanobacteria bio-
volume was not limited. Saturation of a toxic cyano-
bacterial bloom would eventually limit the amount of
MC present within a system. Peaks in MC concentration
may also reflect a limited preferable range for toxic
cyanobacteria to thrive. For instance, Graham et al.
(2004) found MC concentration and cyanobacterial bio-
mass were highest between 1500 and 4000 pg/L total
nitrogen. Such potential saturation values are revealed
by using the GAM framework, which flexibly models
these types of nonlinear relationships. Each selected var-
iable in the final GAM and its relationship with MC is
further discussed.

Variables of significance

Nutrients: nitrogen and phosphorus

Nitrogen and phosphorus have been identified as
major contributors to cyanobacterial blooms and MC
occurrence (Paerl et al. 2001, Yuan and Pollard
2017), with some models able to account for large
amounts of MC variation in US lakes using only nitro-
gen and phosphorus (Yuan and Pollard 2017). In our
study, total nitrogen had a largely positive relationship
with MC at concentrations >1 mg/L and had the sec-
ond strongest association with MC in the final GAM.
Positive linear relationships between total nitrogen
and MC have also been identified in past field studies
(Downing et al. 2001, Pham et al. 2020; Graham et al.
2004 data not incorporated in this study). Because
MC is a peptide structure, nitrogen is a key building-
block in its production (Hotto et al. 2008). Nitrogen
is also an integral nutrient for cyanobacterial growth
and function (Hotto et al. 2008). The structure of
MC comprises 14% nitrogen, and conditions in
which the carbon to nitrogen molar ratio is <4.3 can
reduce MC production in Microcystis aeruginosa cul-
tures (Wagner et al. 2019). These factors contribute
to nitrogen being noted as one of the primary drivers
of MC production in freshwater systems (Otten et al.
2012, Beaulieu et al. 2013).
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Although total nitrogen was observed to have a pos-
itive relationship with MC, differences were found in
the relationships between the various forms of nitrogen
incorporated into the final GAM. Despite nitrate being
separately nonsignificant to the analysis, nitrite as nitro-
gen and nitrate + nitrite as nitrogen displayed negative
or nearly-zero associations with MC, possibly suggest-
ing a nuance in best forms of nitrogen for MC produc-
tion in cyanobacteria. Findings may also suggest that if
toxins are at high densities, a sizable bloom would
require an ample amount of nitrogen, which could
include nitrate as nitrogen, nitrite as nitrogen, or
ammonium as nitrogen.

Total phosphorus, the only phosphorus derivative
to be incorporated into the final GAM, had a negative
relationship to MC. However, 98.8% of the data fell
below 1 mg/L, where the relationship between total
phosphorus and MC was nearly-zero to slightly nega-
tive. This limited relationship was not expected and
may be attributed to several factors. First, such a rela-
tionship may indicate that although evidence suggests
that phosphorus is a key nutrient to the bloom forma-
tions of phytoplankton, including cyanobacteria (Trim-
bee and Prepas 1987, Schindler et al. 2008, Paerl and
Otten 2013), it is not a dominant factor in the produc-
tion of MC. Laboratory observations indicate that MC
production in M. aeruginosa requires a carbon to phos-
phorus molar ratio of <200 but a carbon to nitrogen
molar ratio <8 (Wagner et al. 2019). Wagner et al.
(2019) suggested that phosphorus is important for cell
biomass, but nitrogen has a greater importance to the
production of toxins, which may reflect the relatively
weak association of phosphorus to MC compared to
that of nitrogen observed in this analysis. Second, the
sampled sites were possibly highly eutrophic with
ample amounts of phosphorus, and therefore a strong
relationship between phosphorus and MC would not
be observed. The average phosphorus content of the
sampled lakes before the imputation of the dataset was
120 + 309 pg/L, which equates to conditions of possible
hypereutrophy based on the Carlson trophic state index
(Carlson and Simpson 1996). Such eutrophic,
phosphorus-rich conditions have been shown to have
other nutrients, such as nitrogen, as the dominant con-
tributors to cyanobacterial bloom formation and/or the
production of MC (Scott et al. 2019).

The reduction of both nitrogen and phosphorus will
likely be needed to reduce cyanobacterial blooms and
subsequent MC toxins. This possibility has been put for-
ward in prior modeling studies such as Shan et al.
(2020), whose Bayesian analysis identified that reducing
MC risks in 3 lakes in China could be achieved by set-
ting total phosphorus and nitrogen thresholds of 0.5



440 (& R P.BULEYETAL.

and 1.8 mg/L, respectively. Such findings solidify the
growing call for dual nitrogen and phosphorus reduc-
tions in systems plagued by cyanobacterial blooms
(Paerl and Otten 2013).

pH

The majority of pH values used in this study fell within
6-10, in which the relationship of pH to MC turned
from negative to positive with the increase in pH
value. The increase in MC production at more alkaline
pH conditions has been documented (Song et al. 1998),
and MC-producing species have been shown to out-
compete other phytoplankton in prior laboratory stud-
ies (Yang et al. 2018). Because of the ease of
measuring pH with handheld meters, it is a useful mea-
surement to track cyanobacterial bloom formation and
possibly MC occurrence, but note that bloom densities
and sampling time may affect the value of pH within a
system. Typically, pH values will be higher in the day-
light hours as primary producers photosynthesize and
lower at night when respiration occurs. The variation in
pH values is also affected by the alkalinity (i.e., buffering
capacity) in a waterbody and should be considered as
well (Boyd et al. 2016).

Specific conductivity

Specific conductivity had a slightly negative relationship
with MC from 0 to 5000 uS/cm, where 98.7% of the data
fell. Past lab research has indicated that both the growth
of cyanobacteria and MC concentration decrease with
the increase in salinity (Georges des Aulnois et al. 2019).
Moreover, the MC-producing species, Microcystis, has
been found to have a lower salinity tolerance of up to 2
practical salinity units (PSU) when compared to other
cyanobacterial species that can tolerate salinity of 35
PSU or greater (Paerl et al. 2001). However, Microcystis
has also been found to tolerate a salinity of up 9.8 g/L,
suggesting that the tolerances across MC-producing
strains and species may vary (Orr et al. 2004). Specific con-
ductivity measures a range of salts and inorganic capable
of holding an electrical current; however, such compounds
may hold differing importance to MC production. For
instance, Cerasino and Salmaso (2012) found a positive
correlation to MC (Spearman correlation = 0.50) in Italian
subalpine lakes, whereas Aboal and Puig (2005) found a
negative correlation (Pearson correlation = —0.31) in the
reservoirs of the Segura river basin of southeastern
Spain. Because of these understudied differences, further
research is needed to understand the specific relationships
that compounds have with MC occurrences, and specific

conductivity’s usefulness in monitoring MC should be
assessed on a case-by-case basis.

Dissolved organic carbon

Dissolved organic carbon had an overall nearly-zero to
negative relationship with MC from 0 to 100 mg/L,
where most of the data were present. This relationship
may be indicative of conditions not favorable for cyano-
bacterial growth or MC production, although a positive
relationship between cyanobacterial growth and dis-
solved organic matter has been observed previously
under laboratory conditions (Paerl et al. 2001, Zhao
et al. 2019), possibly because of the ability of cyano-
bacterial cells to directly uptake this carbon source
for growth or to be used by bacterial communities sup-
porting the cyanobacterial blooms (Paerl et al. 2001,
Znachor and Nedoma 2010). More dissolved organic
matter is typically present in a system as cyanobacterial
blooms decay and cells lyse (Tessarolli et al. 2018). The
negative relationship observed between dissolved
organic carbon and MC in this study may be indicative
of the break-down of a bloom and therefore a reduction
in MC being produced.

Transparency: turbidity and Secchi depth

Turbidity had a nonlinear relationship to MC, with a
positive relationship occurring at ~50-200 NTU. The
relationship between MC concentration and turbidity
has been observed in past lake surveys. Kotak et al.
(2000) suggested that MC was produced at low light
intensities, thereby making turbid systems favorable.
Increased MC production at low light intensities has
been reported in laboratory culture studies using Micro-
cystis (Wiedner et al. 2003), but toxic strains of Micro-
cystis do not produce more MC at low-light versus
high-light conditions. However, toxic strains will dom-
inate nontoxic strains under both light conditions
(LeBlanc et al. 2011). Microcystis colonies are equipped
with gas vesicles, allowing them to regulate buoyancy
(Paerl and Otten 2013). This physiological characteristic
may allow them to form blooms on the surface, giving
them preferential access to sunlight over other phyto-
plankton species and other cyanobacteria by circum-
venting the low-light conditions of highly turbid areas.

Secchi depth, a measure of water transparency, had
an oscillating relationship with MC. Approximately
99.2% of the Secchi depth measurements in the data
were <10 m, in which a peak of positive relationship
was observed from ~2-4 m before returning to a nega-
tive or nearly-zero relationship on either side of this
range. In general, MC was unrelated to Secchi depth



as its value increased. This finding was expected because
greater Secchi depths can be associated with oligo-
trophic conditions containing low phytoplankton densi-
ties (Carlson and Simpson 1996). Secchi depth is a
useful tool to track the progression and density of the
bloom in some situations (Joung et al. 2011). However,
measurements are not always proportional to cyano-
bacterial or phytoplankton abundances in a waterbody
because inorganic turbidity (e.g., sediment) or other
pollution factors may affect Secchi depth values (Swift
et al. 2006). Such disruptive factors may have contrib-
uted to the minimal relationship between Secchi depth
and MC and may be the reason for the negative relation-
ship between MC and Secchi depths <2 m.

Location: latitude and longitude

Location was the most important predictor of MC. In a
study of 200 Midwestern United States lakes and reser-
voirs, particulate MC was significantly correlated to an
increase in latitude, which was attributed to correlated
changes in nutritional, physical, and chemical parame-
ters (Graham et al. 2004). An assessment of MC concen-
tration over the conterminous United States by
grouping land patterns into 9 ecoregions also found
substantial differences in the MC concentrations
between regions (Beaver et al. 2014). In this study,
MC was predicted to be highest at ~25-50° longitude
and 25-50° latitude, corresponding to some of the high-
est MC concentrations documented in this study found
in eastern Europe, including Serbia (Simeunovic et al.
2010, Taugourdeau et al. 2014) and Poland (Mankie-
wicz-Boczek et al. 2006). Because data collected for
this study largely originated in North America, increas-
ing MC data collection in Asia, Europe, and Africa may
better help determine global factors contributing to MC
occurrence and accumulation.

Conclusions

The results of multiple statistical methods incorporated
into this study revealed various environmental variables
significantly related to the concentration of MC world-
wide and included a reliable technique to impute miss-
ing data within an aggregated water quality dataset. To
our knowledge, the aggregated dataset is the largest
global accumulation of MC data. Not only did the fit
of the model on imputed data produce more accurate
predictions, an important metric for managers, but the
imputed data also provided more spatial coverage for
the model. Utilizing datasets with low overall missing-
ness is recommended, but some missingness may be
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resolved using imputation and will likely need to be
assessed on a case-by-case basis.

The final GAM indicated that environmental vari-
ables, such as location, total nitrogen, turbidity, and
pH, are associated with MC concentrations in fresh
waterbodies. Numerous nonlinear relationships were
observed between the selected predictors and MC con-
centration. Such results reflect the usefulness of GAMs
to assess nonlinear and nonnormal data.

These findings may serve as both reference and vali-
dation to often-anecdotal summaries of the trends in
MC concentration worldwide. Moreover, the combina-
tion of machine learning methods for imputation and
nonparametric modeling used in this analysis may
serve as an effective procedure for utilizing global data-
sets containing large amounts of missingness, which is
often the case when using data from many origins and
sampling methodologies. Lastly, water resource manag-
ers can apply these methods to observational data to
improve future water quality forecasting of toxic cyano-
bacterial blooms.
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