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ABSTRACT

A main challenge in analyzing single-cell RNA se-
quencing (scRNA-seq) data is to reduce technical
variations yet retain cell heterogeneity. Due to low
mRNAs content per cell and molecule losses dur-
ing the experiment (called ‘dropout’), the gene ex-
pression matrix has a substantial amount of zero
read counts. Existing imputation methods treat either
each cell or each gene as independently and identi-
cally distributed, which oversimplifies the gene cor-
relation and cell type structure. We propose a statis-
tical model-based approach, called SIMPLEs (SIngle-
cell RNA-seq iMPutation and celL clustErings), which
iteratively identifies correlated gene modules and
cell clusters and imputes dropouts customized for in-
dividual gene module and cell type. Simultaneously,
it quantifies the uncertainty of imputation and cell
clustering via multiple imputations. In simulations,
SIMPLEs performed significantly better than prevail-
ing scRNA-seq imputation methods according to var-
ious metrics. By applying SIMPLEs to several real
datasets, we discovered gene modules that can fur-
ther classify subtypes of cells. Our imputations suc-
cessfully recovered the expression trends of marker
genes in stem cell differentiation and can discover
putative pathways regulating biological processes.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technologies
have been widely used for discovering subtypes of cells in
the immune system (1–3), the nervous system (4–6), differ-
ent diseases (7), etc., and for identifying gene modules con-
trolling various cellular processes, such as the developmen-
tal process (8,9), or responding to different stimuli (10). A
typical scRNA-seq dataset hasmany zero entries, which can
come from two sources: the expression level below the mea-
surement limit (‘off’ state) and the technical ‘dropout’ (11).

In order to impute missing values caused by the dropout,
we need to distinguish technical zeros from the true biolog-
ical ‘off’ state. Previous methods usually pool information
from similar cells to do imputation. For example, MAGIC
defines a diffusion process on the affinity graph of cells for
imputation (12); for each of the highly probable dropout
genes, scImpute (13) imputes the dropout values in one cell
by learning from the same gene in other similar cells, in
which the weights of other cells are determined by the genes
not severely impacted by the dropout.
Similarly, VIPER uses a sparse non-negative regression

method to progressively learn the local neighborhood cells
and impute the gene expression based on these cells (14).
These methods often over-smooth the gene expression ig-
noring the cell-to-cell variations, despite the fact that amain
purpose of single cell experiments is to identify biological
heterogeneity of cells. Moreover, based on different gene
functional groups, distances between cells can be different.
The aforementioned methods define the nearby cells aver-
aging over all the genes without considering distinctions
among genes.
Different from previous methods, we model the structure

of gene correlations across similar cells and allow differ-
ent variability for the imputed values for each gene group.
The aggregated effects across multiple correlated genes can
distinguish dropouts from low expressions even if the sig-
nal to noise ratio is low for each individual gene. This ad-
ditional freedom of gene-group specific imputations pre-
serves the stochasticity of gene expressions observed in
scRNA-seq data. Our method, termed as SIngle-cell RNA-
seq iMPutation and celL clustEring (SIMPLE), infers the
probability of the dropout event for each zero entry, and im-
putes technical zeros while maintaining biological zeros at
a low level. The imputation process depends on gene cor-
relations within similar cell types, which is modeled by a
few common gene modules, as well as the gene and cell-
type specific dropout rates. Although the dropout rate can
be estimated from the empirical distribution of gene expres-
sions in the scRNA-seq, it can interfere with the estima-
tion of the gene correlation structure, especially for lowly
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expressed genes. Bulk RNA-seq data, which reveal average
gene expressions across cells and provide an extra source of
information on the dropout rate per gene, can also be in-
corporated into SIMPLE. We name such an extension for
integrating bulk RNA-seq data SIMPLE-B and refer to our
toolbox including SIMPLE and SIMPLE-B as SIMPLEs.
In addition to obtaining an imputed expression matrix as

previous methods usually do, SIMPLEs can output clusters
of cells and genemodules that distinguish different subtypes
of cells or groups of samples. Also, SIMPLEs can provide
measures of uncertainty for imputed values, which can be
incorporated into downstream analyses. For example, from
multiple imputations, SIMPLEs can provide the posterior
variance of each imputed gene expression and a consensus
matrix of clustering membership of cells indicating the un-
certainty of the clustering results.
Among recent methods, SCRABBLE (15) also uses the

bulk RNA-seq information, but only as a constraint to the
mean gene expression of the scRNA-seq data instead of a
means of estimating dropout rates. Furthermore, it assumes
similar gene expressions in a few cell types and does not
consider correlations among the genes. SAVER (16) takes
advantage of gene–gene correlations for imputation, but
does not model dropouts explicitly and treats each cell inde-
pendently without pooling information from closely related
cells. DEsingle (17) can distinguish dropouts from biologi-
cally low expression using a zero-inflatedmodel, but its goal
is to detect differentially expressed genes. Another method
scVI (18) utilizes the deep learning framework to model the
generation of scRNA-seq data by involving the information
of similar cells and genes, the batch information and techni-
cal effects. They found that scVI often underfits gene expres-
sions when the cell numbers are smaller than the number of
genes.
By simulating the entire dataset or adding more dropouts

to a published scRNA-seq data, we demonstrate the supe-
rior performances of SIMPLEs in gene expression imputa-
tion and cell clustering compared with prevailing methods
for scRNA-seq imputation. Then, we applied SIMPLEs to
two real datasets: the human embryonic stem cells (hESCs)
differentiation data and the mouse preimplantation em-
bryos data. In both datasets, we discovered gene modules
that can further classify subtypes of cells. Moreover, the im-
puted values for the marker genes by SIMPLEs align well
with the developmental stages of each cell, suggesting that
SIMPLEs can be used to discover gene markers that reg-
ulate the developmental process. Finally, we manifest the
scalability of SIMPLEs and its robustness on different pa-
rameters using a large scale dataset of mouse immune cells
from multiple tissues.

MATERIALS AND METHODS

Framework of SIMPLEs

Given the log-normalized data (e.g. logarithm of one plus
RPKM, FPKM, or TPM), we model the gene expression
within a cell type by a zero-inflated censored multivariate
Gaussian distribution, denoted as ZCN+ (Equation 2). If
the dataset contains multiple cell types, we assume that the
gene expression level across all the cells follows a mixture of

ZCN+ distributions. The zero component is used to model
the dropout event, and each gene has its own dropout rate in
each cell type. Besides random dropouts, a single cell exper-
iment usually fails to capture low-expression genes if the se-
quencing depth is not enough. To model this measurement
limit, we use a multivariate Gaussian distribution censored
below zero for the ‘amplified’ gene expression. This cen-
sored Gaussian model was also used in a previous study (8)
to model the gene expression in scRNA-seq. We did some
model checking to show that the marginal distribution of
most genes can be fitted by ZCN+ distribution and the as-
sumption of cell-type specific dropout rate per gene is rea-
sonable (Supplementary Data).
Usually the expression level of genes involved in a com-

mon biological function are correlated in such a way that
the variability of gene expression can be summarized by the
variation of several gene modules. A gene module can rep-
resent a pathway such that some genes in the pathway are
co-expressed if the pathway is activated. Based on these in-
tuitions, the co-variance matrix of gene expression for each
cell type can be expressed as a low-rank structure plus id-
iosyncratic noises as in the factor analysis. The expression
of a gene module in each cell is represented by a latent fac-
tor. These gene modules can be shared among closely re-
lated cell types. Thus, we reuse the same gene modules for
each cell type but the activity of each gene module can be
different to allow for gene modules either unique to a cell
type or shared among several cell types. Since a gene mod-
ule may only contain a few genes, we posit a Laplace prior
for the loading matrix such that only some of the genes have
nonzero weights for a gene module. This model enables us
to utilize cell clusters and gene-gene correlations to impute
the dropout values and further refine cell clusters and gene
modules.
The dropout rate for each gene can be estimated accord-

ing to the marginal distribution in scRNA-seq. However,
for low-expression genes, it is difficult to distinguish zero en-
tries due to biological low-expression from dropout events.
To avoid unduly imputation, we set an upper bound on
the dropout rate a priori. Nevertheless, with the help of
bulk RNA-seq data from similar cell population, we can
estimate the dropout rate by combining the prior dropout
rate and the ratio of the mean expression in the single cell
dataset with that in the bulk RNA-seq. The overview of our
model is shown in Figure 1. For inference, SIMPLEs em-
ploys a nested Monte Carlo EM algorithm and initializes
the algorithm using only genes with fewer zero entries. Af-
ter estimating the model parameters, SIMPLEs runs several
MCMC iterations and outputs the mean and variance of
each imputed values as well as multiply imputed expression
matrices. The multiple imputations can be used to estimate
the stability of clustering memberships.

Details of the model and inference procedure

The log-normalized gene expressions of each single cell are
modeled by a zero-inflated negative-censored multivariate
normal distribution. Suppose there areM cell types, for cell
i of type Cm, its vector of gene expressions, �yi = {ygi , g ∈
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Figure 1. Overview of SIMPLEs. The input is a gene expressionmatrix from scRNA-seq and, optionally, the corresponding bulk RNA-seq data. SIMPLEs
identifies the cell clusters and gene modules in which gene expressions are highly correlated. Each gene module is shown as a shaded box and the gene
expression pattern across cells is represented by a curve. Each dot is the gene expression in a cell. Green dots are non-zero expressions, blue ones are
dropouts and red ones are biological zeros, which represent genes having low expression in the corresponding cells. Gene module 1 is activated in both cell
types but others are unique to one cell type. The expression pattern of genes shared in modules 1 and 2 show characteristics of both modules. SIMPLEs
outputs the imputed matrix, cell clusters and gene modules.

1, . . . , G}, is modeled as:

�yi | i ∈ Cm ∼ (1 − �pm) ◦ δ(0) + �pm ◦ max(�xi , 0),
�xi | i ∈ Cm ∼ MVN( �μm, �m) (1)

where �m = B�mBT + Dm, Dm is a diagonal matrix
whose diagonal entries are {σ 2

gm, g = 1, ..., G}, and �m

≡ diag(�km, k = 1, . . . , K), for m = 1, . . . , M, is a se-
quence of K × K diagonal matrices satisfying

∑M
m=1 λ2

km =
1, ∀1 ≤ k ≤ K . Notation ‘©’ denotes the entry-wise prod-
uct, and ‘MVN’ stands for the multivariate Gaussian dis-
tribution. Let X = (�x1, �x2, . . . , �xn) be the gene expression
matrix without truncation and dropout. The purpose of
imputation is to recover X from Y. The first component
of Equation (1) is a point mass at zero, which models the
dropout event, and 1 − �pm is the dropout rate vector for cell
type m, where �pm = {pgm, g ∈ 1, ..., G}. Each gene has its
own dropout rate in each cell type. The second component,
called ‘amplified’, models the expression amounts when the
corresponding mRNA molecules are captured and subse-
quently sequenced in the scRNA-seq experiment. It is as-
sumed to be a multivariate Gaussian censored below zero,
denoted by CN+( �μ,�), in which ‘censoring’ represents the
measurement limit of low-expression genes in the single
cell experiment. More precisely, we define: �Y ∼ CN+( �μ,�)
if �Y = max( �X, 0), where the maximum is taken entry-wise

and �X ∼ MVN( �μ,�). Using this notation, we can rewrite
Equation (1) as:

�yi | i ∈ Cm ∼ (1 − �pm) ◦ I(�yi = 0)

+ �pm ◦ CN+( �μm, �m) (2)

We call the distribution in Equation (2) a zero-inflated
negative-censored multivariate Gaussian distribution
(ZCN+). �μm = {μgm, g ∈ 1, ..., G} is the vector of average
expression of every gene in cell type m. The second com-
ponent takes account of the fact that when �gm is smaller,
more zero counts are observed, whereas the first compo-
nent models additional zeros due to dropout for median or
high mean expression level. For real applications, we set a
threshold δ0 close to zero and regard the expression below
δ0 as ‘zero’, allowing for some background noise (typically
δ0 = 0.1). The co-variance matrix (�m) of gene expression
for each cell type can be expressed as a low-rank structure
(B�mBT) plus idiosyncratic noises (Dm). The loading matrix
B = [Bgk] is a G × K matrix where K is the number of gene
modules or pathways. We used the same B for all the cell
types allowing gene modules to be shared among cell types,
but this does not constrain that every cell type must have
the same gene module, since we allow the activities of gene
modules vary in different cell types. Without noise, each
gene expression can be represented by a linear combination
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of these gene modules, where each row of B is the vector of
weights for each gene to be mapped to the gene modules.
The activity of the gene modules in a cell type is controlled
by �m. When gene module or pathway k is unique to a
single cell type, say type m0, then �km 
= 0 only for m = m0.
Closely related cell types usually have similar gene module
activities. Since the log-likelihood does not change when
both B and �m are scaled by reciprocal amount, we let
the sum of λ2

km for each factor in different cell types be 1
(Equation 4).
To facilitate imputation and clustering, we augment the

data by zi ∈ {1, 2, ..,M}, i= 1, 2, ...,N, indicating the cluster
membership and the latent factors fi, i= 1, 2, ...,N, for each
cell:

(�yi | zi = m) ∼ (1 − �pm) ◦ δ(0) + �pm ◦ max(�xi , 0) (3)

(�xi | zi = m, fi ) ∼ MVN( �μm + B �fi , Dm), P(zi = m) = πm(
�fi | zi = m

)
∼ MVN(0,�m), �m

= diag
(
{λ2mk}Kk=1

)
with

M∑
m=1

λ2km = 1, ∀k

σ 2
gm ∼ Inv-Gam(α/2, β/2), μgm ∼ N(0, σ 2

0 ), π

∼ Dir(A), Bgk ∼ Laplace(γ ) (4)

We use F, a K × N matrix, to denote all the factors, where
row �fk· is the factor associated with gene module B· k. Each
column �f·i of F represents the expression of the gene mod-
ules in cell i, which is i.i.d given the clustering membership.
�m is the probability that a cell is in cluster m. We assume a
Laplace prior for each entry of B so that the weight of each
gene within a gene module is sparse. Non-zero entries in
each column of B reflect the correlation between genes im-
posed by a gene module. We rank genes representing a gene
module by their (non-zero) weights in the corresponding
column of loading matrix B. We use inverse Gamma distri-
bution as the prior for each diagonal entry ofDm, an Gaus-
sian prior for each entry of the cluster mean �gm, Dirichlet
distribution as the prior for � = (�1, �2, ..., �M).
The EM algorithm (19) is often used to estimate param-

eters in missing data problems and for models with a la-
tent structure. However, the E-step of the algorithm needs
to compute the expectation of the log-likelihood over all the
latent variables, which cannot be achieved analytically for
our model. Thus, we employ the nesting Monte Carlo EM
algorithm (20), which alternatively uses Gibbs sampling to
impute themissing data conditioning on the current param-
eter values, computes the expectation over the cluster mem-
berships (Z = (z1, z2, ..., zN)) and factors (F) conditioning
on the imputed data (X), and updates the parameters Θ =
(B, �, D, �, �) by maximizing the approximated expecta-
tion of the full log-likelihood. In other words, the algorithm
iteratively clusters the cells (Z) and updates the gene mod-
ules (B).
Once the EM algorithm converges, we fix all the parame-

ters and sample C copies of the imputed matrix to compute
the log-likelihood and the Bayesian information criterion

(BIC), respectively:

LL = E(log P(X|�)|Y,�, �p) ≈ 1
C

C∑
c=1

log P(Xc|�)

= 1
C

C∑
c=1

N∑
i=1

log

(
M∑
m=1

πmMVN(�xic| �μm, B�mBT + Dm)

)
;

BIC = −2 · (LL+ log P(B)) + (2GM+ G) log(N)

+K(M− 1) log(NG) + K(G + N) log
(

GN
G + N

)
,

which are used for choosing tuning parameters, especially
K and M. The first term of BIC includes both the full log-
likelihood and the log-prior probability of B; the second
term penalizes the number parameters associated with cell
clustering including ( �μm, �pm, Dm); the third term is associ-
ated with the number of free parameters in �; and the last
term penalizes the number of parameters associated with B,
which is adopted from (21) for determining the number of
factors in a factor model.
The algorithm is initializedwithB= 0, implying that each

gene is independent of others for cells in the same cluster,
and with the dropout rate estimated independently for each
gene. For genes with many zero entries, it is hard to distin-
guish the dropout from the amplified component based only
on the marginal distribution of individual gene expression.
Thus, we only use genes with a small number of zero entries
(‘high-quality’ genes) for initial imputation. Then, we esti-
mate factors F using ‘high-quality’ genes, and project the
expression of the remaining genes onto F. Here we define
‘high-quality’ genes as those whose percentages of zeros are
lower than a threshold and also set a minimal number of
genes for initialization. We found that initializing F using
only high-quality genes is better than using all the genes
since information about the cell cluster and latent factors
can be revealed from only a subset of genes (Supplemen-
tary Figure S6). Initial imputations for genes with many ze-
ros can be quite noisy and including these genes can drive
the estimation toward an undesirable local mode.
In cases without bulk RNA-seq information, we fit

each gene’s expression by a zero-inflated negative-censored
Gaussian distribution and obtain the maximum likelihood
estimator of the dropout rate per cell type, (1 − pgm). If the
dataset has cell type labels, SIMPLE can utilize the cell type
information to estimate the cell type specific dropout rate;
otherwise it initializes cell clustering by the K-means algo-
rithm. We set an upper bound on dropout rates to prevent
excessive imputation since we do not have enough informa-
tion to estimate dropout rates for ‘low-quality’ genes. With
bulk RNA-seq information, SIMPLE-B can estimate the
dropout rates more accurately. Assuming that bulk RNA-
seq measures the mean expression level for each gene with-
out dropout, we can estimate the dropout rate for each gene
by a linear combination of the prior dropout rate (1 − p0)
and the ratio of the mean expressions of the scRNA-seq
(mg) and the bulkRNA-seq (mB

g ), provided that the scRNA-
seq and the bulk RNA-seq are normalized similarly, i.e.
pg = p0+mg

1+mB
g
.

Including a prior dropout rate can alleviate the instabil-
ity of the ratio when the gene expression value in the bulk
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RNA-seq is too low. We use 1 − p0 to denote the upper
bound or the prior of the dropout rate, which can be es-
timated experimentally (22) or empirically from the dataset
(see ‘Implementation details of different imputation meth-
ods’ section). To account for possibly different scales, we
assume that a gene’s expression in bulk RNA-seq is a linear
transformation of its mean expression in the scRNA-seq.
Since highly expressed genes are unlikely to be dropped out,
we conducted a weighted least squares method to estimate
the scaling factor with weights proportional to the square of
the mean expression value. If multiple bulk RNA-seq data
for different cell types are available, SIMPLE-B will esti-
mate the gene-specific dropout rate per cell type. For more
details, see Supplementary Data.

Cell clustering and identifying marker genes

Although our method can output the cell clusters directly,
those previously published imputation methods we com-
pared with do not provide any clustering result. As a fair
comparison, we used K-means clustering after projecting
the imputed or the original unimputed data onto the space
spanned by the topl principal components, e.g. l = 20, of
the data matrix for all methods. Since no existing impu-
tation methods provide an explicit procedure to select the
number of clusters M, we used the true number of clusters
when applying K-means clustering to the outputs obtained
from all imputationmethods.We also applied the true num-
ber of cell types to methods that require the number of cell
types as input, i.e. SIMPLEs and scImpute, if the number of
cell types is available (see Supplementary Data for details of
each dataset). If we have multiple imputed expression ma-
trices (with nearly independent imputations), we apply the
aforementioned clustering procedure (i.e. the K-means) for
each imputed expression matrix and record the frequency
that each pair of cell is in the same cluster, forming a co-
clustering consensus matrix (23) based on which we assign
an uncertainty score for each cell (Supplementary Data).
If the cell labels are ambiguous, we ran SIMPLEs for

different number of clusters and selected the one with the
smallest BIC. The imputed gene expression can be used
for clustering extraneously and identifying differentially ex-
pressed genes. We showed in simulations that the imputa-
tion result is similar with different choices of M (Supple-
mentary Figure S19), thus alleviating the need of estimating
the number of clusters precisely.
To identify marker genes for each cell cluster, we applied

Student’s t-test in simulations and the Wilcoxon rank-sum
test for the real datasets, comparing gene expression in one
cell cluster with the rest. To separate from clustering error,
we used the true labels of the cells for identifying cluster-
specific genes. Then, we tested the genes with fold change
>1.2 and ranked the genes by the P-values output from
either t-test or Wilcoxon test. To compute AUC, we com-
pared the test statistics to the truly differentially expressed
genes for each cluster, and obtained the average AUC. For
simulations, we know the true markers for each cluster. For
the hESC cell types dataset, we identified differentially ex-
pressed genes for each of the seven cell types using R pack-
age DESeq2 (24) from bulk RNA-seq and treated the genes
with FDR <1e − 6 and fold change >1.4 as the true mark-

ers. The number of cell type-specific markers varies from
2000 to 4000 for the seven cell types. For the sc 10x 5cl
dataset, we identified differentially expressed genes from
a matched bulk RNA-seq data (GEO number: GSE86337
(25)) using R package DESeq2 as the ‘gold standard’ for
evaluating different imputation methods. Genes are defined
as differentially expressed if the fold change is no <2.0 and
FDR < 0.05.

Simulation procedures

For the first two experiments, we set the number of genes
G = 1000 and the total number of cells N = 300 divided
into three clusters evenly. We simulated the mean expres-
sion of each gene by �g ∼ log-Normal (0.5, 0.5). Then, we
randomly selected 20 cluster-specific genes for each cluster,
and changed their mean expressions in the corresponding
cluster. The fold change for the mean expressions was sam-
pled uniformly from {0.2, 0.5, 1.2, 1.5, 2} to make the over-
all mean expression of cluster-specific genes similar to oth-
ers. After that, we sampled the gene expression in each cell
from a multivariate normal distribution with the specified
mean and covariance matrix. Finally, we added dropout to
each gene by sampling from the Bernoulli distribution with
dropout rate e−0.1·m2

g or e−0.3·m2
g , corresponding to high or

low dropout rate scenarios, where mg is the overall mean
expression for each gene. The mean dropout rate of every
gene was about 0.7 or 0.4 for high and low dropout rate
scenario respectively. We simulated bulk RNA-seq data by
taking the mean expression of each gene, i.e. mg.
For simulating independent gene expressions within each

cell cluster, we sampled the gene expressions in cell cluster
m i.i.d. from N(μgm, σ 2

g ) , where �g ∼ Gamma(2, 0.3). To
simulate correlated gene expressions, we constructed the co-
variance matrix as a low rank matrix plus a diagonal ma-
trix, i.e. � = BBT + �0, where �0 is a diagonal matrix
with the squared root of each diagonal entry drawn inde-
pendently from Gamma(2, 0.3), B is a G × K matrix, and
K is the number of factors (or gene modules). We consid-
ered two scenarios: a large number of small gene modules,
where we set K = 6 with 32 genes in each module with no
genes shared by two modules; and a small number of large
gene modules with overlapped genes, where we set K = 3
with 100 genes in each module, totaling 190 distinct genes
with about 50% genes belonging to multiple modules. Each
entry ofB is either 1/4 or 0. In addition, we simulated about
800 independently expressed genes so that we hadG= 1000
in total (details in Supplementary Data). The correlation
between genes is stronger in the second scenario than that
in the first one. For simulation with correlated gene expres-
sion, we only considered the low dropout rate scenario.
Besides the simulations above, we also generated both

UMI and non-UMI based scRNA-seq data using a pop-
ular tool SymSim (26). SymSim simulates the entire exper-
imental procedures of scRNA-seq by kinetic modeling of
RNA transcription in different cells and polymerase chain
reaction amplification in either UMI or non-UMI experi-
mental protocols. It also takes into account batch effects.
We set the number of genes G = 1000 and the numbers of
cells N = 300, which is divided randomly into five distinct
cell populations with at least 50 cells in each population.
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We set the dimension of kinetic parameters for RNA tran-
scription to be 10, and varied five of them among genes.
For sequencing depth and RNA capture efficiency, we used
the default parameters provided by SymSim: the mean and
variance of the sequencing depth for the UMI-based proto-
col are 45 000 and 4500, respectively, and the mean RNA
capture efficiency is 0.1; the mean and variance for the non-
UMI protocol are 100 000 and 10 000, respectively, and the
mean RNA capture efficiency is 0.4. The simulations were
repeated 20 times.
Finally, to imitate the gene expression pattern from real

scRNA-seq dataset, we added dropouts to the hESC cell
types dataset, by either randomly set 20 or 40% entries to
zero uniformly for all genes or set the probability of dropout
decreasing with the mean expression of each gene, e.g. pg =
e−0.3·m2

g . In this simulation, we also subsampled 50 or 75%of
all the cells, which correspond to 509 and 763 cells, respec-
tively, and randomly selected 3000 genes thatwere expressed
inmore than 50 cells for each experiment to reduce the com-
putational cost and test the stability of different methods.

Implementation details of different imputation methods

The results shown in the main text were obtained by setting
the upper bound or the prior of dropout rate to be 1 − p0 =
0.6 in SIMPLEs and scImpute unless otherwise stated. For
simulations based on the hESC cell types data, the results
shown in the main text were obtained by setting 1 − p0 =
0.3 when we added 20%more dropouts and 1− p0 = 0.5 for
other scenarios. For real applications, we set 1 − p0 = 0.2 as
default. The parameter in the Laplace prior of the loading
matrix (� ) was set to be 1 unless otherwise stated. We set δ0
= 0.1 for SIMPLEs in all the experiments. These parameters
are typical choices for SIMPLEs and we did not tune these
parameters further. Results varying other parameters in the
simulations are shown in Supplementary Figures S3–6.
For real data applications, we recommended choosing

genes with their fraction of zero entries <50% but keeping
a minimum of 2000 genes for initialization. For the prior
of dropout rate, we adopted the empirical Bayes approach,
which first estimates the dropout rate per gene based on
the marginal distribution for SIMPLE and bulk RNA-seq
for SIMPLE-B, and then set 1 − p0 as the 75% quantile of
the dropout rates across all the genes. For choosing the pe-
nalization parameter (� ) for weights in the loading matrix
and the number of factors (K), we suggest to either use the
BIC output by SIMPLEs or add some ‘fake’ dropouts to
the dataset and find the optimal parameters to recover the
original entries as we did in the simulations based on the
hESC cell types dataset. Typically, the penalization param-
eter should be small when the number of factors is small.
Also, if the dropout rate is high, SIMPLEs prefer relatively
large gene modules so that more correlated genes can be
incorporated for imputation. Thus, we recommend choos-
ing a smaller penalization parameter and fewer number of
factors when the data is more sparse. For other imputation
methods, we used the default parameters for all the datasets.
The posterior mean output from scVI was used as the im-
puted matrix for downstream analyses. The DDRTree al-

gorithm from Monocle 2 was used to order the cells in the
hESC time course dataset and obtain the pseudo times.

Datasets

The hESC differentiation (GEO series number: GSE75748)
and the mouse preimplantation embryos datasets (GEO
series number: GSE45719) were downloaded from
https://hemberg-lab.github.io/scRNA.seq.datasets. For
the mouse immune cells dataset (GEO series number:
GSE109774), the FACS scRNA-seq data was downloaded
from https://s3.amazonaws.com/czbiohub-tabula-muris/
TM facs mat.rds. The cell annotation was obtained from
https://raw.githubusercontent.com/czbiohub/tabulamuris-
vignettes/master/data/TM facs metadata.csv, which con-
tains the cell ontology class for each cell. The cell ontology
data were downloaded from https://raw.githubusercontent.
com/obophenotype/cell-ontology/master/cl-basic.obo.
Finally, the sc 10x 5cl data (GEO series number:
GSM3618014) was obtained from the CellBench datasets
(27).

Data preprocessing

For non-UMI based scRNA-seq and bulk RNA-seq
datasets, we normalized the read count by the total number
of read counts in each cell and scaled by a factor of 10e6. For
the hESC datasets, we selected genes with nonzero entries
in at least 10% cells. After log-normalization and further fil-
tering, we included 8148 genes with the standard deviation
>1.2 in the hESC cell types dataset and 5135 genes with the
standard deviation >1.5 in the hESC time course dataset.
For the mouse embryos dataset, we filtered out genes with
fractions of zero entries <5%, which are more likely house-
keeping genes that are expressed inmost cells, or>60%, and
used the remaining 8648 genes for further analysis.
Themouse immune cells dataset was obtained from a col-

lection of scRNA-seq experiments of more than 100 000
cells from 20mouse organs and tissues (28).We extracted all
the immune cells fromFACS-based scRNA-seq data for our
analysis. The cell annotation was obtained from the original
study, which contains the cell ontology class for each cell.
We collected cells with cell ontology ID CL:0000738 or its
descendants from the cell hierarchy (29). According to the
data preprocessing procedure in (28), we excluded cells with
fewer than 500 detected genes or larger than 20 000 detected
genes, or cells with fewer than 50 000 reads or larger than
2 × 106 reads. Moreover, we filtered out genes in the im-
mune cells if they are only expressed in fewer than 5% cells
or the standard deviations of the log-normalized values are
less than 1.2. Finally, 7809 genes and 12 905 cells are kept
in our analysis. These cells are from 12 different tissues, and
can be classified into 22 immune cell types.
The sc 10x 5cl dataset from CellBench (27) is based on

10× Genomics platform, which contains five cell lines and
3918 single cells. We normalized the read counts by the to-
tal number of read counts in each cell and rescaled by a fac-
tor of 10 000 as in the common procedure for UMI-based
protocols. After filtering out genes expressed in fewer than
10% of the cells and mitochondrial genes, we obtained 9071
genes for further analysis.
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RESULTS

Simulations

In the first experiment, we simulated data following the pro-
cedure in Li and Li (13), in which the gene expression was
sampled from mixtures of normal distributions and each
gene was independent within each cluster of cells (see ‘Ma-
terials and Methods’ section). We simulated three cell clus-
ters and randomly selected 20 cluster-specific genes for each
cluster that are only differentially expressed in one of the
cluster. Then, we randomly added dropouts to each gene by
sampling from a Bernoulli distribution with gene specific
dropout rate. We considered both high and low dropout
rate scenarios in which dropout rates decay either slowly
or quickly along with mean expression levels, respectively.
The average dropout rate per gene is about 0.7 or 0.4 for the
high and the low dropout rate scenario, respectively. The
bulk RNA-seq data were simulated as the mean expression
of each gene.
We compared SIMPLEs with MAGIC, scImpute,

VIPER, SAVER and SCRABBLE, using the original
unimputed data as a baseline. To compare the perfor-
mance, we measured the clustering performance after
imputation using the adjusted rand index (aRI); the
mean-squared error (MSE) of imputed values compared
with the truth; the ability of calling cluster-specific genes
from the imputed data matrix using Area Under the ROC
Curve (AUC). A larger aRI means that the clustering result
is closer to the true labels, and aRI is 1 when the true
labels are completely recovered. From Table 1, SIMPLE-B
performed better than others; SCRABBLE and SIMPLE
did the second best in all aforementioned performance
evaluations. When the dropout rate was high, all methods
except SCRABBLE and SIMPLEs were not able to identify
the true cell types, resulting in poor aRI values. VIPER was
not able to recover the true gene expression and its MSE
between the imputed and true values was even worse than
the unimputed data. The imputed value of VIPER was
often much smaller than the true value. VIPER also had
the longest running time among all the methods.
SIMPLE-B, which incorporates the simulated bulk

RNA-seq information, was consistently better than SIM-
PLE, reflecting that the bulk RNA-seq provides substan-
tial information about the dropout rate that could not be
reliably identified especially for lowly expressed genes. Fig-
ure 2 shows the projections of a few simulated low and high
dropout datasets onto two-dimensional spaces, based on ei-
ther the original unimputed data or the imputed data us-
ing different methods. SIMPLEs recovered the cell types
even when cell clusters were indiscernible because of high
dropout rate (Figure 2F and H). Moreover, the perfor-
mances of SIMPLE-B were not sensitive to the number of
factors chosen in the model (Supplementary Figure S3);
while the clustering performance of SIMPLE was worse
with too large K. In this simulation, the true number of
factors should be zero but the results shown were from a
misspecified model where the number of factors was set at
2. The clustering performances of SIMPLEs were not sen-
sitive to other parameters but the performances for impu-
tation and identifying the true marker genes deteriorated
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A B C D E

JIHGF

Figure 2. Examples of a simulation dataset. We projected both the original unimputed data and the imputed data matrix onto the space spanned by the
first two principal components (represented by the X and Y-axes, respectively). Each point is a cell colored by its true cell-type color. (A–E): low dropout
rate scenarios, and aRI = 0.85, 1, 1, 0.86 and 1 for respective methods. (F–J): high dropout rate scenarios, and aRI = 0.03, 0.81, 0.95, 0.30 and 0.80 for
the respective methods. Other methods that were tested performed worse (Table 1).

if the prior upper bound for the dropout rate in SIMPLE
was set much smaller than the true dropout rate (Supple-
mentary Figure S3). The impact of the dropout rate prior
in SIMPLE-B was much lessened because of incorporating
bulk RNA-seq.
In the second experiment, we simulated data with corre-

lated gene expression in each cluster of cells. The mean gene
expression for each cluster was simulated in the same way as
in the first experiment; the covariance matrix was the sum-
mation of twomatrices: one formodeling the genes’ correla-
tions within each module, and the other, a diagonal matrix,
for modeling the idiosyncratic noise for each gene (see ‘Ma-
terials andMethods’ section).We considered two scenarios:
(i) a large number of small sized gene modules with no over-
lapping genes; (ii) a small number of large-sized modules
with some genes shared by a pair of modules. In addition,
we simulated independently expressed genes so that the to-
tal number of genes was 1000, the same as in the previous
simulation. Genes are positive correlated only if they are in
the same module; otherwise, their correlation is zero. To fo-
cus on the effect of correlation between genes, the dropout
rate was simulated the same as the low dropout rate scenario
in the previous experiment (more details in ‘Materials and
Methods’ section). Clustering and identifying marker genes
are more difficult in the second scenario, as the within-
cluster variations of gene expression are larger but the mean
differences between clusters stay the same. However, large
gene modules are beneficial for imputation using SIMPLEs
since the method can incorporate correlated genes for im-
puting the missing entries. Besides the evaluation metrics
proposed in the previous simulation, we also compared the

gene–gene correlation estimated from the imputed data to
the true correlation. Estimating correlations are of inter-
est in some applications, such as constructing gene regula-
tory networks. To separate from the clustering performance,
we only considered gene correlation within each simulated
‘true’ cell cluster. The positive correlations between genes
within a module and zero correlations in different modules
were evaluated separately. Table 2 shows theMSEs between
the estimated correlation from imputed data and the true
positive or zero correlations, denoted as ‘cor1’ and ‘cor0’,
respectively.
Most methods did well in clustering and identifying

marker genes in this experiment since the dropout rate was
relatively low (Table 2). MAGIC and scImpute were not as
good as other methods in the large gene modules scenario
because the strong correlations among the genes overwhelm
the differences between clusters. SIMPLE-B had the small-
estMSE of the imputed values and SCRABBLE performed
the second best. Comparing large and small gene modules
scenarios, SIMPLE-B and SIMPLE had smaller MSEs in
the scenario with large gene modules, where more corre-
lated genes can be used for imputation. Imputation MSEs
of othermethods were similar in these two scenarios. For es-
timating correlations within a cluster, SIMPLE was better
than others even without incorporating bulk RNA-seq. Be-
cause of random dropout, the sample gene-gene correlation
matrix is usually smaller than the true one. SIMPLEs re-
covered the gene modules and restored the correlations be-
tween genes, but other methods often imputed gene expres-
sion close to the cluster mean and underestimated the non-
zero within cluster gene correlations. MAGIC performed
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much worse than other methods. Due to its forcing the im-
puted gene expressions to follow a common trend, MAGIC
substantially overestimated gene correlations. As a conse-
quence, MAGIC also performed poorly in cell clustering
and identifying differentially expressed genes.
Moreover, we computed the BIC for differentM’s andK’s

and selected the pair that gave us the minimum. When the
total number of cells is large enough (e.g. 900 in this sim-
ulation), the minimal BIC was obtained at the true values
of K andM. The differences of BICs are larger for different
M’s compared to K’s, and the BIC can select the correctM
no matter what K is (Supplementary Figure S7). However,
when the total number of cells is small (e.g. 300 in this sim-
ulation setting), there is no guarantee that BIC can select
the true model. For this example, the BIC can still select
the true M when the true K is 6; however, the BIC tends
to select a smaller K and M in other scenarios. We varied
the tuning parameters of SIMPLEs for this experiment and
observed similar results as in the first experiment (Supple-
mentary Figure S4). The performances were reported under
the trueK in Table 2, but they remained almost the same for
other Ks.

In the third experiment, we generated both the UMI-
based and non-UMI scRNA-seq datasets using Sym-
Sim (26) (more details in the ‘Materials and Methods’ sec-
tion). We compared SIMPLEs with other methods on cell
clustering and detecting differentially expressed genes af-
ter imputations. The clustering is challenging in this exper-
iment. As shown in the t-SNE plot using simulated true
gene expressions, some of the cell types are in close proxim-
ity to each other (Supplementary Figure S17). None of the
imputation methods obtained perfect clustering results. In
non-UMI based experiments, only SIMPLE outperformed
the control, which used the original unimputed data for cell
clustering (Supplementary Figure S18a). In UMI-based ex-
periments, more methods, such as SAVER, outperformed
the control (using the original unimputed data) , but SIM-
PLE still performed the best (Supplementary Figure S18c).
For detecting differentially expressed genes, SIMPLE is one
of the best methods for non-UMI experiments; but it is
slightlyworse than some of the other imputationmethods in
the UMI-based experiments (Supplementary Figure S18b
and d). As the model assumption of SIMPLEs is valid for
non-UMI protocol, it is expected that SIMPLEs has better
performance for non-UMI based simulations. On the other
hand, scVI andMAGICwere inferior to any other methods
including the control in detecting differentially expressed
genes, as they do not model the gene expression variation
within each cell cluster adequately. We showed the results
for two choices of the numbers of factors and cell clusters:
the setting most similar to the truth, and the one most fre-
quently selected by the BIC. The performances of these two
settings were similar. Results for full ranges of parameters
are shown in Supplementary Figure S19. Although SIM-
PLEs models data generated from non-UMI platform, it
also performs well for UMI data, especially in clustering.

Human embryonic stem cell differentiation

We applied SIMPLEs to a study of hESC differentiation
toward definitive endoderm (30). It includes a single-cell

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/4/lqaa077/5912574 by guest on 05 August 2022



10 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4

RNA-seq dataset for seven cell types (1018 cells in total),
referred to as ‘hESC cell types’: two types of embryonic
stem cells (H1 and H9), definitive endoderm cells (DEC),
endothelial cells (EC), human foreskin fibroblasts (HFF),
neuronal progenitor cells (NPC) and trophoblast-like cells
(TB) and the bulkRNA-seq dataset for each cell type. DEC,
EC and NPC are differentiated cells from three germ lay-
ers. DEC and EC share a transient precursor state called
mesendoderm. In this study, they also conducted another
scRNA-seq experiment at different time points in the dif-
ferentiation process toward DEC, referred to as ‘hESC time
course’ and produced the corresponding bulk RNA-seq
data at each time point.
First, we compared the clustering performance of SIM-

PLEs with other methods for the ‘hESC cell types’ dataset.
We only input the average gene expression across all cell
types in the bulkRNA-seq to SIMPLE-B and SCRABBLE.
Otherwise, the gene expression from bulk RNA-seq can dis-
close the true cell type information we wanted to recover.
However, for real application, we can definitely incorpo-
rate the bulk RNA-seq of different cell types for better im-
putation and identification of differential expressed genes
among different cell types. This dataset has good quality
with low dropout rate. The cells can be nearly perfectly clus-
tered using either the original unimputed data or imputed
ones by SIMPLEs, VIPER, or SAVER. However, the aRI
was only about 0.75 using scImpute, MAGIC and SCRAB-
BLE (Figure 3B). Since SAVERwas too conservative to im-
pute the data (also shown in the following experiments), it
is not surprising that it had similar clustering performance
as using the original unimputed data.
A main utility of scRNA-seq data in comparison with

bulk RNA-seq is to explore cell heterogeneity within ma-
jor cell types. From the distributions of the latent factors
(F) in each cell type, we observed several factors showing
larger variations in DECs than in other cell types (Sup-
plementary Figure S8a), indicating hyper transcriptional
stochasticity especially for genes in the corresponding gene
modules. As an illustration, we re-performed clustering for
DECs and ECs only, based on top 1000 genes with largest
absolute weights in gene module 1. We showed the results
from SIMPLE without involving additional information
from bulk RNA-seq to distinguish DEC and EC. DECs
and ECs were still well separated but both of them can be
further divided into subtypes (Supplementary Figure S8b).
The expressions of these top genes further validate the dis-
tinct transcriptomes of cell subtypes (Supplementary Fig-
ure S8d). The heatmaps using the original unimputed data
and the imputed ones look similar since the dropout rate is
low for this dataset, yet the differences among subtypes were
more discernible after imputation (Supplementary Figure
S8c and d). We observed similar subtypes and gene mod-
ules by SIMPLE-B.
Then, as another evaluation of the imputationmethods in

consideration, we took the original hESC cell types dataset
as the ground truth and added dropouts to evaluate how
well each method can recover the original expression ma-
trix. We designed two dropout schemes: (i) randomly select
20 or 40% entries and set them zero, uniformly for all genes;
(ii) set the probability of dropout decreasing with the mean

expression of each gene, i.e. 1 − pg = e−0.3·m2
g . We also sub-

sampled 50 or 75% of all the cells and 3000 genes uniformly
in order to test how the performance is influenced by the
sample size and to examine the stability of the performance
as data vary due to subsampling.
For this experiment, SIMPLEs performed the best in al-

most all scenarios for all the evaluation metrics (Figure 3).
scImpute performed the second best and its clustering re-
sults were about same as that of SIMPLEs. The imputed
data by SAVER incurred almost the sameMSE as the orig-
inal unimputed data, as SAVER was too conservative to
impute any dropouts (Figure 3A). None of the methods
could get perfect clustering result (Figure 3B). As we sub-
sampled genes and cells for this experiment, the variance
of aRI was large for some cases. To test the performances
of identifying differentially expressed genes, we used the
marker genes obtained from bulk RNA-seq as the ground
truth. Although the AUCwas higher for identifying marker
genes using SIMPLEs, the markers identified from single-
cell datasets and bulk RNA-seq only agreed to some ex-
tent, as the AUC was around 0.75 when we used the origi-
nal dataset without additional dropouts (Figure 3C). Com-
paring with SIMPLE, SIMPLE-B showed better perfor-
mance incorporating bulk RNA-seq when we added arti-
ficial dropouts whose rate is a monotonically decreasing
function of the mean expression (Figure 3A). Furthermore,
we varied the parameters in SIMPLEs (Supplementary Fig-
ures S5 and 6). The clustering performance and identifying
differential expressed genes were not sensitive to the choices
of parameters. The imputation performance was worse if
specifying too small the upper bound of the dropout rate for
SIMPLE, but the prior dropout rate did not affect the impu-
tation performance for SIMPLE-B.Moreover, when assum-
ing a large number of factors and a small penalty parameter
in the prior of the loadingmatrix, the model was susceptible
to over-fitting, as the imputation MSE was larger. The im-
putation performance of SIMPLE-B stayed similar as vary-
ing the number of ‘high-quality’ genes for initialization. On
the other hand, for SIMPLE, the performance was better
if only using 500 genes with fewest zero entries for initial-
ization, indicating that the cell type information can be ob-
tained using only a few genes. However, setting the number
of ‘high-quality’ gene too small might lose the information
of cell subtypes in the real data.
Finally, in order to show that the imputed expression

levels by using SIMPLEs can reconstruct gene expression
trends in biological processes, we also applied SIMPLEs to
the hESC time course dataset. It contains 758 single cells
captured at 0, 12, 24, 36, 72 and 96 h in the cell developmen-
tal process from pluripotent state through mesendoderm to
DE, as well as bulk RNA-seq data at each time point. Since
cells’ developmental process is asynchronous, cells collected
at the same time could be at different developmental stages.
Thus, the true developmental state of each cell should be
correlated but not exactly the same as the cell’s time stamp.
Clustering results using either the original unimputed data
or the imputed data indicated that similar cell types are ob-
served at 72 and 96 h, whereas cells from other time points
are well separated (Supplementary Figure S9). Cells from
72 and 96 h form two clusters, of which one contains purely
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A B

C

Figure 3. Performance comparisons for various simulation scenarios based on the hESC cell types data. (A) MSE of imputed values compared with
the original dataset without ‘fake’ dropouts; (B) aRI comparing K-means clustering results with the true cell labels; (C) AUC comparing differentially
expressed genes identified by different imputation methods with the genes identified by bulk RNA-seq using DESeq2 (24) as ground truth (see ‘Materials
and Methods’ section). Each bar represents the result from an imputation method or data without imputation (‘no impute’); X-axis marks different
simulation scenarios. The first number in the parenthesis is the fraction of cells subsampled and the second is either the dropout probability adding to the
original dataset or ‘vary’ for cases where the dropout rate per gene decreases with mean expression. The error bar is the standard error over 10 repetitions.

cells at 96 h, but the other is composed of the cells from
both time points, indicating that cells entered the final stage
of differentiation asynchronously. As a consequence, in or-
der to identify genemarkers for each developmental stage, it
is not sufficient to compare gene expression for cells at each
time point from bulk RNA-seq. On the other hand, single
cell data provides information of the developmental stage
of each cell and can be used to identify key genes governing
the developmental process.
If the imputation reflects the true biological process, the

expression level of the known marker genes in the devel-
opmental process should be correlated well with the devel-
opmental stage. Considering the fact that the true develop-
mental stage of each cell is not known, we applied Monocle
2 (8) to order the cells using the original unimputed data.
It assigned a pseudo-time to each cell indicting the devel-
opmental stage of the cell. The pseudo time agreed with
the true time label from 0 to 36 h. However, cells from 72
and 96 h cannot be distinguished by pseudo-time. Then,
we checked the imputed gene expression of several known
markers along the pseudo-time (Figure 4 and Supplemen-
tary Figure S10). Imputed values by SIMPLEs followed
the cell developmental process and preserved the variabil-
ity of gene expressions in a single cell, while other meth-
ods (e.g. scImpute and MAGIC) tended to impute the gene
expression as the mean expression in each cell cluster. Al-

though SIMPLEs utilizes correlated expression changes of
the genes with similar functions to infer the dropout val-
ues, the imputation will not interfere genes with different
functions that can be turned on or off at different stages.
For example, PRDM1, a DE-specific gene, was expressed
at a high level after 72 h indicating that cells differenti-
ated toward the DE state, whereas pluripotent state marker
NANOG was downregulated during differentiation (30).
MAGIC changed all the expression values to the mean in
each cell cluster and completely ignored the heterogeneity
of single cell expression. SCRABBLEmis-identified the cell
state and imputed PRDM1 by the overall mean expression
before 12 h when PRDM1 is not expressed (Figure 4A). Im-
puted values by VIPER were correlated with the cell differ-
entiation timeline for most of the cells, but had a similar
weakness as SCRABBLE in that it imputed the expression
of PRDM1 for the cells at the very early stage as high as
the ones at the intermediate stage. Compared to VIPER,
SIMPLEs imputed zero entries at a relatively low expres-
sion level for PRDM1 in the cells at early stages. Moreover,
SIMPLEs preserved the stochasticity of single cell expres-
sion while other methods reduced the variability of gene ex-
pression after imputation. SIMPLEs estimates the variance
of expression for each gene. For genes with large variances,
the probability of observing zeros from the amplified com-
ponent is high, so SIMPLEs imputes less frequently and
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Figure 4. Examples of imputed marker gene expressions along the hESC developmental pseudo-time. (A) PRDM1 gene; (B) NANOG gene. Each dot
is the gene expression level in a cell. Green dot: non-zero expression in the original unimputed data. Blue dot: zero in the original unimputed data but is
imputed by different methods. The solid black lines are the smoothed LOESS curves computed for each data. Cells are first ordered by time label, then
within each time stamp, are ordered by pseudo-time output by Monocle 2, except that we treated cells at 72 and 96 h as one group and ordered them by
pseudo time. The dashed lines are the boundaries of 0, 12, 24 and 36 h cells.
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retains low expression level for zero entries. For example,
NANOG, a pluripotent statemarker, was expressed at a rela-
tively low level and had a high variance in cells at late stages.
VIPER imputed the expression of NANOG by its mean af-
ter 36 h, but SIMPLEs imputed zero entries at low level
and maintained the variability of gene expression at late
stages (Figure 4B).More imputed expressions of themarker
genes along with the cell developmental pseudo-time are
shown in Supplementary Figure S10, demonstrating that
SIMPLEs can faithfully recover the gene expression pattern
designated by the gene’s biological functions.
Moreover, SIMPLEs can restore the (anti-)correlation

between genes. For example, both CER1 and GATA4 are
early DE-specific markers, which were turned on as early
as 36 h in the DE differentiation process. However, the cor-
relation between them was attenuated because of dropout.
Nevertheless, the close relationship between these two genes
was revealed after imputation by SIMPLE-B (Figure 5A).
For MAGIC, most pairs of genes had extremely high cor-
relations after imputation. scImpute and VIPER also did
well, but imputation from SCRABBLE and SAVER under-
estimated the correlation between CER1 and GATA4. As
another example, T and CXCR4 are negatively correlated
as cells transform from a T-positive to a CXCR4-positive
state during differentiation toward DE cells (30). The nega-
tive correlation betweenT andCXCR4was weakened in the
original imputed data due to dropouts. All of the imputa-
tionmethods retrieved the negative correlation but to differ-
ent extent, from the strongest correlation by MAGIC, then
by SIMPLE-B, to the weakest by SAVERwhich is the same
as the original imputed data (Supplementary Figure S11).
Furthermore, we identified differentially expressed genes at
each time point based on the imputed data (see ‘Material
and Methods’ section). From the gene expression heatmap,
cells at different stages showed distinct transcriptome pro-
files (Figure 5B). These differentially expressed genes of
each developmental stage are putative key regulators con-
trolling the developmental process. They included known
regulators of the developmental process, such as pluripotent
state markers: SOX2, POU5F1, NANOG and DNMT3B;
early cell state markers (expressed in 12–24 h of differen-
tiation): NODAL, ID1, T, MSX2; late cell state markers
(turned on at 36–72 h of differentiation):CER1,DKK4; and
DE markers: KIT, PRDM1 and POU2AF1.

Mouse preimplantation embryos

As another example, we applied our method to a single-cell
RNA-seq dataset of mouse embryos (31). It contains 12 zy-
gotes, 22 cells at the 2-cell stage, 14 cells at 4-cell stage, 36
cells at 8-cell stage, 50 cells at 16-cell stage and 133 blasto-
cysts (267 cells in total). The dataset does not have the cor-
responding bulk RNA-seq, so we only compared SIMPLE
with other methods. Using either the original unimputed
or the imputed data by various methods, we derived simi-
lar cell clustering results, which separated blastocysts into
two clusters but merged 16-cell and 8-cell stages into one
cluster, indicating that blastocysts is even more diverse than
cells at 8-cell and 16-cell stages (Figure 6). Indeed, thesema-
jor cell stages can be further divided into 10 subtypes (31).
Although different imputation methods had similar results

for clustering themajor cell stages, SIMPLE can distinguish
subtypes better than others (Figure 6). When trying to clus-
ter the cells into 10 subtypes, SIMPLE achieved aRI = 0.8,
whereas the second best method SAVER had aRI = 0.6. In
contrast, the clustering aRI was only 0.4 without imputa-
tion. Some subtypes have very few cells, e.g. <10, rendering
them unrecognizable by any method. Yet this dataset con-
tains many more cells at the blastocyst stage, which can be
further divided into three subtypes. SIMPLE could clearly
separate three stages of blastocysts, i.e. early, mid and late
blastocyst, while other methods missed the substructure of
cells because the imputation might have over-smoothed the
gene expression. In addition, SIMPLE can output multiple
imputations and compute the stability of the clustering re-
sult for each cell. For example, a small group of cells at 8-cell
stage separated from others on the t-SNE plot have a high
clustering uncertainty as they sometimes were clustered as
an isolated group while sometimes joined with other cells
at 8-cell stage; clusters of 8-cell and 16-cell were also not
stable as they were often clustered together but occasion-
ally separated into two clusters (Figure 6B). It indicates that
the distinction between 8-cell and 16-cell are relatively small
and concealed by the noise of the data. If the cluster label is
unknown, the consensus clusters identified by multiple im-
putations is more trustful than clusters that only appear in
few imputations, which might due to random noise in the
data.
Looking into the distributions of cells’ latent factors in

each subtype, we observed that subtypes of cells can be dis-
criminated by several latent factors (Supplementary Fig-
ure S13). For example, factors 2 and 3 can separate late
and early blastocysts from the rest of blastocysts, which ex-
plains why SIMPLE was able to distinguish different stages
of blastocysts. Factor 6 can distinguish different stages of 2-
cell; and factor 1 can differentiate 8-cell and 16-cell. Other
factors did not show significant differences in any particular
subtype, indicating that the expression of associated gene
modules vary uniformly across all subtypes. In summary,
by modeling within cluster covariance structure, SIMPLEs
can discover different subtypes beyond major cell types.
Then, we compared the expressions of marker genes

for each subtype before and after imputations. To identify
marker genes, we merged some of the subtypes with <10
cells in the original study, and obtained eight subtypes: zy-
gote, 2-cell, 4-cell, 8-cell, 16-cell stage and early, mid, late
blastocyst.Marker genes were identified by comparing their
expression levels in each subtype with the rest of the cells
using the imputed data (see ‘Materials and Methods’ sec-
tion). The imputed expression of marker genes by SIMPLE
showed clearer patterns of specifically expressed in one or
more subtypes than that of other methods (Figure 7; im-
puted gene expressions by other methods are shown in Sup-
plementary Figure S12).

Mouse immune cells from multiple organs

To show the scalability of SIMPLE on a large number of
cells with diverse cell types, we applied SIMPLE on 12 905
immune cells from 12mouse organs including 22 known im-
mune cell types (28). Compared with the previous example,
different cell types are less discernible since some cell types
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A

B

Figure 5. hESC time course data. (A) Original unimputed or imputed expression of CER1 and GATA4 by different methods. Each dot represents a cell
and the correlations between the two genes are shown in the title of each sub-figure. (B) Imputed gene expression by SIMPLE-B. Each row is a gene and
each column is a cell ordered by the time label. The color indicates the z-score (centered and scaled by gene). The heatmap shows top 100 differentially
expressed genes ranked the P-values from Wilcoxon rank-sum test for each time point.

are of the same origin. The preprocessing procedure is de-
scribed in the ‘Materials andMethods’ section. The original
unimputed data and the imputed data obtained by SIM-
PLE with various numbers of clusters and factors were dis-
played using t-SNE in Figure 8, where colors indicate dif-
ferent cell types. Results from the imputed data resembled
the cell clusters identified from the original unimputed data.
The overlapping of cells with different labels, especially in
the result obtained from the original data, is mainly due to
similar cell types in the same lineage on the cell ontology.
These cell types come fromdifferent tissues but has the same
ancestor on the cell hierarchy (Supplementary Figure S14).
Compared with the original unimputed data, the imputed
data show qualitatively tighter clusters for cells from the
same type, but separated different cell types further apart,
e.g. the immature B cell frommarrow andB cellmainly from
other tissues. As the cell labels have some ambiguities and
no ground truth of differentially expressed genes is avail-
able, we focused on exploratory analysis on clustering result
and biologically functional analysis of gene modules in this
example.
Varying the parameters in SIMPLE, such as the num-

ber of clusters (M) and the number of factors (K), did not
change the t-SNE plot in any noticeable way when the im-
puted data was used, which demonstrates the robustness of
SIMPLE with respect to parameter choices. However, as
shown in Figure 8, when increasingM or K, different types
of T cells reflecting the organ of origin becomes more dis-
cernible: immature T cellsmostly from thymus andmarrows
are separated from the T cells from other organs such as fat,
lung, limb, muscle and spleen (labeled as T cell) and imma-

ture NK T cells. The BIC value of the model reaches the
minimum when M = 1 or M = 2. From the t-SNE plot,
as cells form a cell spectrum rather than discrete cell types,
it is no doubt that a smaller M fits the data better. After
choosing M, we select the number of factors at the elbow
of the BIC curve, i.e. K = 15 or K = 20 (Supplementary
Figure S15a). AlthoughM is chosen to be 1 or 2, the load-
ing matrix B represents gene modules that can distinguish
cell types. Based on these observations, for a given dataset
without any prior knowledge about the cell type composi-
tion, we setM as 1 and K about 10 to 20 for SIMPLEs for
a preliminary exploration and initial imputation.
Furthermore, we focused on 2125 T cells fromT-cell fam-

ily including immature T cell, regulatory T cell, immature
NK T cells and others (labeled as ‘T cell’ without specific
subclass information) and analyzed the latent factors and
gene modules captured by SIMPLE. We used M = 1 and
K = 10 in the following analysis as indicated by the BIC
(Supplementary Figure S15b). We identified representative
genes for each gene module based on the weights in the cor-
responding column of the loading matrix B (see ‘Materi-
als and Methods’ section) and the biological functions of
these genes. Distributions of several latent factors (e.g. me-
dians) showed significant differences across six organs (Sup-
plementary Figure S16), indicating that these gene modules
identified by SIMPLE can reflect the origin of T cells. We
took as example two gene modules, corresponding to latent
factors 3 and 9, since they both have large average weights
over genes and their latent factors show distinct patterns
across organs (Figure 9A). The medians of latent factor 9
varied the most in organs considered, indicating differential
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A B C

D E F

Figure 6. Visualizing the original unimputed data or imputed data by different methods using t-SNE for the mouse embryos dataset. (A)-(F) t-SNE plots
for different methods. Each point is a cell colored by subtypes. For SIMPLE, the size of the point indicates the uncertainty of clustering membership of
each cell across multiple imputations (the larger the size, the more uncertain the cell is). For SIMPLE, we varied the number of factors from five to eight
and the results were similar. The result shown here was obtained from K= 8. For SIMPLE and scImpute, we set the number of clusters equal to six, which
is the number of major cell stages.

expression of gene module 9 in various organs. The medi-
ans of latent factor 3 in cells from thymus was higher than
that of other tissues, suggesting specific expression of gene
module 3 in thymus. These distinct patterns imply that the
genes in these two genemodules play different roles in T-cell
developments.
To verify the above observations, we plotted the expres-

sion values of the top 10 genes with the largest loadings in
these two modules in Figure 9B. After imputations, the per-
centages of cells expressing these top ranked genes increased
as expected, yet the imputed data maintained gene expres-
sion variations across organs. Among the top genes from
gene module 9, S100a4 showed a higher expression in fat
and limb muscle, which is consistent with the result from a
previous study (28). Many of the top genes from gene mod-
ule 3 had higher expression levels in thymus than in other or-
gans and function in the early stage of T-cell development.
For example,Myb encodes c-Myb transcription factor, and
is essential in early T-cell development (32); Dnnt encodes
a DNA nucleotidylexotransferase, which is a specific DNA
polymerase in pre-B and pre-T cells; finally, Rag2 involves
in the recombination during B- and T-cell development.
The time cost andmemory usage of SIMPLEs for this ex-

ample is approximately linear to the number of cells. Com-
paring the running times with other methods, SIMPLEs is

the second fastest method and is six times faster than scIm-
pute and SAVER for a dataset with 12K cells (Supplemen-
tary Figure S21).

DISCUSSION

SIMPLEs impute dropout values in the single cell RNA-seq
data based on both cell similarities and gene correlations.
The imputed data matrix can be used to reduce dimen-
sionality for visualizing the cell spectrum, to identify mark-
ers between different samples, and to construct gene co-
expression networks. The underlying model of SIMPLEs
shares some similarities with previous zero-inflated latent
factor models for scRNA-seq, e.g. ZINB-WaVE (33) and
ZIFA (34). All of them assume a low-rank latent structure
among genes, described by several latent factors. However,
SIMPLEs assume that cells are composed of a mixture of
cell types that can share latent factors; whereas previous
methods usually assume a single cell cluster. SIMPLEs it-
eratively cluster the cells, identify correlated gene modules
and latent factors, and impute dropout values within each
cluster utilizing the expressions of other correlated genes.
Although these latent factors are shared among cell types
in SIMPLEs, they are allowed to have different levels of
variation in different cell types. The latent factor models in
ZINB-WaVE and ZIFA are equivalent to SIMPLEs when

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/4/lqaa077/5912574 by guest on 05 August 2022



16 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4

Figure 7. Gene expression values based on the mouse embryos dataset (A) without imputations, and (B) with imputations produced by SIMPLE. Each
row is a marker gene and each column is a cell ordered cell types. The purple to yellow color indicates the z-score range (centered and scaled by gene).
The color bar above the heatmap shows the clustering result by each gene expression matrix. The order of the genes is the same in these heatmaps, but the
cells within each cell type are ordered by the clusters obtained using each data matrix. Differentially expressed genes for each of the eight cell types were
identified by Wilcoxon rank-sum test using imputed data. For clarity, we show the top 50 marker genes for each cell type ranked by the P-values.

Figure 8. t-SNE based data visualization of both the original unimputed data and the imputed data by SIMPLE with different parameters. Each dot
represents a cell and colors indicate different cell types. (A) The visualization of imputed data by SIMPLE using different combinations of K = 5, 10, 15,
20 andM = 1, 2, 8, 12, 22. (B) The visualization of the original unimputed data.
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Figure 9. Analysis of the latent factors 3 and 9 discovered by SIMPLE for T-cell family in six organs. (A) The boxplots show the distributions of factors 3
and 9 in six organs. (B) The dot-plots show the gene expression patterns of the top 10 genes across six organs in the original unimputed and imputed data.
These genes have largest coefficients in the corresponding gene module.

assuming the number of cell clusters is one. Assuming one
broad cell type, the learned latent factors usually represent
various cell types, and the associated genemodules are often
composed of cell-type markers. However, when combined
with cell clustering, SIMPLEs can not only model differen-
tial gene expression among cell types but also the correla-
tion between genes within each cell type. In this way, SIM-
PLEs is more flexible to model gene expression patterns be-
tween and within cell types, and better preserve gene mod-
ules and cell cluster variations, compared to previous zero-
inflated latent factor models.
Integrating with the corresponding bulk RNA-seq data,

SIMPLE-B can give an improved estimate of dropout rates,
which influences strongly how much the data should be im-
puted. It is shown in simulations that SIMPLE-B combin-
ing bulk RNA-seq has significant advantages over SIM-
PLE in recovering the dropout values (e.g. Table 1). Only
one very recent method, SCRABBLE, can incorporate
bulk RNA-seq information for imputation. Compared with
SIMPLE-B, SCRABBLE is less optimal in estimating gene-
gene correlation and in cell clustering when high dropout
rates are present. SCRABBLE also underestimates the vari-
ability of gene expressions in single cell, as shown in our
analysis of the hESC dataset.
Most existing imputation methods only consider a sin-

gle imputation, whereas SIMPLEs can output multiple im-
putations, which can be used to assess clustering stability
and reliability (Figure 6B). To the best of our knowledge,
only SAVER can output the variance of each imputed value,
but it does not reflect the joint variability of multiple genes’
expressions. Furthermore, SIMPLEs can identify activated
gene modules with a high variability in one or more cell
types, which can be used to identify subtypes of cells or gene
modules that are associated with the attributes of the sam-
ples.
Our analyses of the first two real datasets illustrate that

latent gene modules discovered by SIMPLEs can be used
to further classify subtypes of human DECs and stages of

blastocyst in mouse embryos respectively. Moreover, in the
hESC time course data, we showed that our imputed val-
ues for marker genes followed the developmental stages of
each cell and can be used to discover candidate regulators
that are important to the developmental process. Finally,
the analysis of a large-scale dataset on mouse immune cells
from multiple organs demonstrates the scalability and ro-
bustness of SIMPLEs. We also identified several gene mod-
ules that varied in expression inT cells frommultiple organs,
including key genes that regulate T-cell development.
SIMPLEs is designed for non-UMI based single-cell se-

quencing protocols, e.g. Smart-seq2, as the distribution of
log-normalized data can be approximated by a censored
Gaussian distribution when the total number of counts is
large. Compared to methods assuming zero-inflated nega-
tive binomial distribution as the marginal distribution of
gene expression, e.g. ZINB-WaVE, it is computationally
faster andmore robust to fit the censoredGaussian distribu-
tion than to estimate the parameters of a negative binomial
distribution. Estimating the overdispersion parameter of
negative binomial distribution is usually troublesome when
the sample size is small or the dropout rate is high. In fact,
SIMPLEs shows a modest difference in performances when
the input data is from a non-UMI based protocol versus
that from theUMI-based protocol.We evaluated SIMPLEs
on a recent single-cell benchmark dataset from a UMI-
based 10× Genomics platform (27). SIMPLEs showed bet-
ter performances than other methods on the detection of
differentially expressed genes (Supplementary Figure S20c
and d). Almost all the methods showed nearly perfect per-
formances on clustering (Supplementary Figure S20e) due
to the high quality of this dataset and the purity of the five
cell lines. SIMPLEs’ assumption on the marginal distribu-
tion of gene expression is related to the zero-inflated nor-
mal distribution in MAST (35). They used a hurdle model,
in which all of the zeros are treated the same without dis-
tinguishing dropout or biologically low expression. How-
ever, we use a censored Gaussian distribution to model the
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‘amplified’ gene expression, which can generate zeros due to
low expression levels. This prevents SIMPLEs from overly
imputation, as the zero entries because of biologically low
expression will be kept as zeros after imputation.
As shown by Jin et al. (36), in high dimensional settings

when the number of features is much more than the number
of samples, feature selection is crucial for recovering the true
clusters. Since the likelihood function of our model is non-
convex, our algorithm is also influenced by the initializa-
tion of the clustering and imputation. We found it a practi-
cally robust strategy to initialize with clusters and latent fac-
tors estimated from high quality genes. To further improve
clustering performance, it may be worthwhile to consider
more sophisticated gene selection procedure for initializa-
tion (37). We used a nested Monte Carlo EM algorithm for
the estimation, but optimizing the factor loading matrix B
in the M-step is still computationally intensive. In order to
analyze large-scale single-cell sequencing data, a stochastic
gradient descent algorithm can be employed to further re-
duce the computational time.
SIMPLEs utilizes the BIC for choosing tuning param-

eters, which appears to perform well when the number of
cells per type is large. However, when the number of cells or
the difference among cell types is small, the BIC tends to
choose fewer cell types than the truth, which is consistent
with the prevailing wisdom that the BIC tends to be more
conservative than other information criteria. Indeed, since
the number of cells in each cell type and the distance be-
tween cell types vary, the number of clusters chosen by the
information criteria, can be different frombiological knowl-
edge. On the other hand, the number of clusters chosen for
imputation should also depend on the dropout rate. If the
dropout rate is high, one requires pooling information from
more cells so as to obtain more reliable and robust imputa-
tions. As a consequence, the number of clusters should be
small, and vice versa. Thus, choosing a smaller number of
clusters than truth can be beneficial in these cases. In the
mouse immune cells dataset, we showed that the imputa-
tion results were robust to the input number of clusters. We
also showed that SIMPLEs are not sensitive to the number
of factors and the priors of loading matrix and dropout rate
in simulations.
After initial imputation and visualization, one may rerun

SIMPLEs with different M’s for clustering or apply other
clustering algorithm and visualization method to the im-
puted gene expression matrix. We only implemented a sim-
ple clustering method as we focused on imputation in this
paper, but more sophisticated clustering methods may be
necessary to improve the clustering accuracy for rare cell
types (38) and cell types with a complex hierarchy.
Our present model does not account for the uncertainty

in estimating B, which is relevant for quantifying the un-
certainty of the imputed values. B can be estimated accu-
rately when the number of cells increases, but amore careful
study of the uncertainty in estimating B with the presence
of a large amount of missing data are needed. Moreover,
SIMPLE-B relies on the fact that the cell composition in the
bulk RNA-seq is the same as that in the single cell experi-
ment, which might be violated in some cases. One possible
approach is to characterize cell type compositions in bulk
RNA-seq data by deconvolution with respect to the expres-

sion patterns of high quality genes in each cell type observed
in the single cell data (39). Finally, the relationship among
genes and cells can be much more complicated than the lin-
ear latent factors model assumed in SIMPLEs. It is of inter-
est to incorporate complex nonlinear relationships into our
model, which may enhance our understanding about the in-
teractions of cell clusters and gene functionalmodules at the
single cell level.

DATA AVAILABILITY

SIMPLEs is implemented using R. The software package
is freely available under the MIT license, and is deposited
at the GitHub repository (https://github.com/JunLiuLab/
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downloaded from Zenodo (https://doi.org/10.5281/zenodo.
3958371). The details of how the datasets are analyzed
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