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Incorporating Lindblad Decay Dynamics into Mixed Quantum-Classical Simulations
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U S A

We derive the L-MFE method to incorporate Lindblad jump operator dynamics into the mean-field Ehrenfest
(MFE) approach. We map the density matrix evolution of Lindblad dynamics onto pure state coefficients
using trajectory averages. We use simple assumptions to construct the £L-MFE method that satisfies this
exact mapping. This establishes a method that uses independent trajectories which exactly reproduces
Lindblad decay dynamics using a wavefunction description, with deterministic changes of the magnitudes
of the quantum expansion coefficients, while only adding on a stochastic phase. We further demonstrate
that when including nuclei in the Ehrenfest dynamics, the £-MFE method gives semi-quantitatively accurate
results, with the accuracy limited by the accuracy of the approximations present in the semiclassical MFE
approach. This work provides a general framework to incorporate Lindblad dynamics into semiclassical or

mixed quantum-classical simulations.

I. INTRODUCTION

Accurately and efficiently simulating the quantum dy-
namics of an open quantum system remains a chal-
lenging task in modern quantum physics and chemical
physics, due to the unfavorable exponential scaling of
the quantum problem. To resolve this challenge, mixed
quantum-classical (MQC) approaches'? have been de-
veloped by treating the crucial part of the system as the
quantum subsystem, and the other parts as classical de-
grees of freedom (DOFs). This type of approach is par-
ticularly successful for describing non-adiabatic molecu-
lar dynamics that involve electronic-nuclear interactions,
given the fact that the nuclear DOFs are in general an-
harmonic and their interactions with the electronic DOF's
are non-Markovian, thus rendering many approximate
master equations not directly applicable. One major cat-
egory of these mixed quantum-classical methods is sur-
face hopping, most notably Tully’s fewest-switches sur-
face hoping approach® and several later additions to this
method.»*% Another major category is the mean-field
Ehrenfest (MFE) approach,® or more generally, semi-
classical mapping approaches based on the Meyer-Miller
mapping formalism.”® All of these approaches explicitly
propagate the classical DOFs and captures their influ-
ence on the quantum DOFs through the parametric de-
pendence of the quantum equations of motion (EOM) on
the classical trajectories.

At the same time, the quantum subsystem, in princi-
ple, can also interact with other environmental DOFs.
Example of these interacting environmental DOF's in-
clude the interaction of the electromagnetic field with
molecules that causes spontaneous emission'®12 and far-
field electromagnetic modes that couple to a quantized
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radiation mode inside an optical cavity that causes pho-
ton leakage.'> 17 It is often desirable to implicitly cap-
ture the environmental influence on the dynamics and
avoid simulating these environmental DOFs explicitly.
Another example is the presence of high frequency vi-
brations in molecules!® 29 that are essentially Markovian
for the subsystem dynamics. These high frequency vi-
brations, however, cause difficulties for MQC simulations
due to the inadequate description of them using classical
trajectories.!®19 A number of approaches seek to phe-
nomenologically incorporate these effects of population
decay from a higher energy state to a lower energy state
through an imaginary Hamiltonian approach,!®21-26 in-
corporating ad-hoc first-order decay processes,?” 2% or a
posteriori probabilistic collapse into the ground state.?°
These approaches do not capture the full nature of the
decay dynamics as they generally do not describe the dy-
namics of the ground state at the wavefunction level, or
do not account for proper decoherence processes during
the population decay dynamics.

When a Markovian approximation of the system-
environment interaction is valid, the Lindblad master
equation®!32 offers the most general and quantum me-
chanically valid description of an open system’s quan-
tum dynamics, as it guarantees the positivity and pre-
serves the trace of the reduced density matrix.3!:3? Thus,
it is ideal to use this computationally efficient and an-
alytically simple Lindblad master equation to describe
the influence of those Markovian environmental DOFs
on the quantum subsystem, while simultaneously using
the MQC approximation to incorporate the influence of
the anharmonic, non-Markovian nuclear DOFs on the
quantum subsystem. Indeed, the density matrix hybrid
method,'® 20 which is based on this idea, has been devel-
oped recently to study non-adiabatic dynamics by com-
bining MQC methods and master equation approaches.
Still, solving the Lindblad master equation with many
states in the quantum system is computationally chal-
lenging, due to the need to propagate the density matrix



in the Liouville space.

To reduce this unfavorable scaling related to density
matrix propagation in the Liouville space, one can equiv-
alently describes dynamics as a stochastic wavefunction
in the open system’s Hilbert space that exactly repro-
duces the reduced density matrix of the open system,
thus reducing the cost of solving the same dynamics
by utilizing an ensemble of trajectories in the Hilbert
space. This is referred to as the unravelling of the master
equation.??34 It is well known that the Lindblad mater
equation can be equivalently expressed as the stochas-
tic Schrodinger equation (SSE)3 37 with jump processes
that captures the projective action of the environment on
the system, which randomly collapses the system wave-
function into a pure system state. Through the trajectory
average of a large number of realizations of the jump tra-
jectories, the SSE generates identical reduced density ma-
trix dynamics as the Lindblad master equation. The SSE
approach has also been combined with mixed quantum-
classical (MQC) approaches®® 40 to describe both Marko-
vian and non-Markovian environments. However, when
combining the SSE with MQC approaches,*® the large
fluctuations in the population of the system induces a
large change of nuclear forces, sometimes causing nu-
merical instability for the dynamics propagation.® The
Ehrenfest+R method!®!! was recently developed to sim-
ulate the electronic quantum subsystem coupled to the
classical electromagnetic field in order to accurately de-
scribe spontaneous emission processes. It effectively cap-
tures Lindblad dynamics with a deterministic change of
the magnitude of the quantum coefficients, and stochas-
tic changes of the phases. The Ehrenfest+R method,'°
however, cannot exactly reproduce the Lindblad master
equation due to a specific choice of the off-diagonal decay
rate.

In this paper, we develop a general framework for
simulating Lindblad-type dynamics with a wavefunc-
tion description. As opposed to the SSE approaches
that stochastically change both the magnitudes and
the phases of the quantum expansion coefficients, our
new method only stochastically changes the phases of
the expansion coefficients, and exactly reproduces the
jump operator dynamics of the Lindblad master equa-
tion. In particular, we give the derivation of an inde-
pendent trajectory-based method to propagate the coef-
ficients of the MFE method that fully agrees with Lind-
blad dynamics. The coefficient-propagation method de-
rived using this framework is inspired by the Ehren-
fest+R method;'0 124142 however, our approach ex-
actly recovers Lindblad dynamics whereas the Ehren-
fest+R approach does not. Additionally, we derive a
simple fix to the approximations present in the Ehren-
fest+R method and give rigorous justifications for par-
ticular algorithmic choices. Our wavefunction descrip-
tion of Lindblad dynamics can be seamlessly integrated
into mixed quantum-classical methods that simulate cou-
pled electronic-nuclear dynamics, such as the mean-field
Ehrenfest approach, and we refer to this particular ap-

proach as the L-MFE method. We have tested the accu-
racy, efficiency, and robustness of the L-MFE method
through numerical simulations. We envision that our
work will provide a general framework for future the-
oretical work into incorporating Lindblad dynamics into
more accurate semiclassical and mixed quantum-classical
approaches 843748

Il. THEORETICAL BACKGROUND

In order to clearly understand the assumptions under-
pinning the method that incorporates Lindblad dynamics
into MFE, and to give a framework for deriving similar
methods for other semiclassical approaches, we discuss
the theoretical background of the Lindblad master equa-
tion, the MFE approach, and their combination in the
density matrix form.

The total Hamiltonian of a system plus its environment
can be written as

gT:_HS®jE+jS®-HE+H17 (1)

where fIS is the system Hamiltonian, fs is the iden-
tity in the system Hilbert space Hs, Hg is the environ-
ment Hamiltonian, Zg ig the identity in the environment
Hilbert space Hg, and Hj is the interaction Hamiltonian
between the system and the environment. Note that the
partitioning of the system and environment is not unique.
Any part of the total system that we do not want to ex-
plicitly simulate!? or is difficult to simulate can be treated
as the environment.'®

The time evolution of the density matrix pr describ-
ing a quantum state of the entire system plus the envi-
ronment is governed by the following quantum Liouville
equation

dpr (5
=Lrlpr]=—= [H D ] , 2
i T[] 3 T; PT (2)
where L[] is the Liouvillian superoperator that acts
on operators and [,-] is the commutator between two
operators.

When the quantum system of interest interacts with
a large environment, the dynamics of the composite sys-
tem and environment is generally too complicated and
computationally expensive to keep track of in full detail.
Instead, the dynamics of the system alone can be tracked
using the reduced density matrix pg (associated with Hg
in Eq. 1) defined as follows

ps(t) = Trg [pr(t)], (3)

where Trg [pr(t)] = >, (ig|p7(t)|ig) is the partial trace
over the Hilbert space of the environment with basis
{lir)}-

For a closed quantum system (isolated system) with no

entanglement or interaction with the environment (fII =
0 in Eq. 1), the total density matrix can be factorized as



pr = ps ® pg and the quantum Liouville equation for the
reduced density matrix of the system is expressed as

dp i [A

5 — 2 [ hs, s (4)
Likewise, the reduced density matrix of the environment
pr for a closed quantum system also satisfies its own
quantum Liouville equation as dpg/dt = — 1 [Hg, px].

When there are explicit system-environment interac-
tions (H1 # 0), however, the dynamics of the reduced
density matrix of the system pg(¢) can no longer be de-
scribed by the unitary evolution of Eq. 4. An exact calcu-
lation of ps(t) could be performed using Eq. 3 if pr(¢) is
fully known, but this is generally infeasible to obtain due
to the large number of environmental DOFs. Approxi-
mations of the environment and system-environment in-
teractions can be made to calculate pg(t) under certain
conditions.

In situations where there are many system DOFs, fur-
ther approximations must be made to calculate pg(t). A
common approach when there are several nuclear DOFs
present in a molecular system is to separate the system
into a classical subsystem and a quantum subsystem.
The corresponding system Hamiltonian Hg in this case
is

Hs =1q® Hc + Hq ® Zc + Hqc, (5)

where the quantum subsystem belonging to the Hilbert
space Hq, with Hamiltonian Hq and identity Zq, and
the classical subsystem (typically nuclear DOF) belong-
ing to the Hilbert space Hc, with Hamiltonian Hc and
identity Zc, interact through Hqc. In reactive molecu-
lar systems, the Hamiltonian I—flc is usually anharmonic
and cannot easily be directly considered as Hg. When
possible, the system dynamics of Eq. 5 can be evaluated
fully quantum mechanically; however, when the classical
subsystem is too large, the semiclassical approximation
can be made. Under the semiclassical approximation,
the classical subsystem evolves using classical mechan-
ics while the quantum subsystem evolves using quantum
mechanics.

For molecular quantum dynamics, we consider the
model system Hamiltonian that contains diabatic elec-
tronic states {|¢,)} (defining the quantum subsystem
Hilbert space Hq) and nuclear DOFs R (defining the
classical subsystem Hilbert space H¢) with the following
form

Hs =TIq® Tr + 10 ® Up(R) + Y cas|ta) (W] @ Tc
a,b

+ Z |wa><wb‘ ® Vab(R), (6)

a,b

where Tg is the kinetic energy of the nuclear DOFs,
Up(R) is the state independent potential, e,, =

(1ha|Hq|1s) is a matrix element of the diabatic quantum

3

subsystem Hamiltonian, and Vy,(R) = (4| Hoc|¢s) is a
state dependent potential. Thus, in this model, we have

He = Tr + Up(R), (7a)

Ho = eapltba) (W, (7b)
a,b

Hoc =Y [tha) (16| ® Van(R). (7¢)
a,b

Note that the theoretical approach described here is not
limited to diabatic states. Additionally, the quantum
subspace may include photonic degrees of freedom, as is
the case for systems with polaritons.

The reduced density matrix of the quantum subsystem
can be formally evaluated as

p(t) = Trelps ()], (8)

where the trace is performed over the classical nuclear
DOFs R (or whatever the classical DOFs happen to
be). When the mixed quantum-classical approximation is
used,! the nuclear coordinates evolve classically and the
quantum subsystem evolves using the time-dependent
Schrodinger equation governed by Hq + Hgc(R). In
this case, since only states in the quantum subspace are
evolved using quantum mechanics, p(t) can be compu-
tationally evaluated without performing a trace on the
much larger system Hilbert space which greatly improves
computational efficiency.

A. Lindblad Jump Operator Dynamics

The Lindblad master equation3'3249-53 ig the most
general Markovian description of a system density matrix
ps(t) interacting with the environment. It forms a dy-
namical semigroup of reduced density matrices that are
trace-preserving (norm-preserving) and completely pos-
itive for population. The Lindblad master equation is
expressed as

% = —% [ﬁsyﬁs} + ;Fk (ﬁkﬁsiL - % {I:Zﬁknﬁs}>
=Ly lps]+ DLy, [ps], (9)
k

where Ly, is a Lindblad jump operator that imparts the
impact of the environment onto the system with interac-
tion strength I'y, (with a unit of rate or inverse time) and
{A, B} = AB+ BA represents the anti-commutator. The
superoperator L [-] is the part of the Liouvillian that de-
scribes the Hermitian dynamics of the system governed
by Hg defined as

i

Lylps] = N [ﬁs,ﬁs} ; (10)

and L; [] is the part of the Liouvillian that describes
the non-Hermitian Lindbladian dynamics associated with



jump operator Ly
~ F AT 1 7 T ~

governed by the approximations of Hg and H; during the
derivation of the Lindblad master equation.?! The sum
> x £, [ps] is sometimes referred to as the “dissipator”.
The Lindblad master equation provides a dynamical map
for pg that forms a dynamical semigroup with generator
Ly + >, L; . The Lindblad master equation in Eq. 9
can also be derived through the full quantum dynamics of
Hrt by assuming weak system-environment interactions,
the Born-Markov approximation, and the secular approx-
imation.

In this work, we consider only a single decay chan-
nel characterized by the jump operator Lg in the sys-
tem Hilbert space Hs (which the system Hamiltonian
Hs = He + HQ + HQC belongs to), and interaction
strength T'. This leads to the Lindblad master equation
as follows

s — 2 [hsps] +1 (Ls,ésL; -3 {L;Ls,ﬁs})

(12)
One of the most commonly used jump operators corre-
sponds to a transition from one state to another state in
the quantum subsystem. For example, for a transition
from state |¢1) of the quantum subsystem to state |¢p)
of the quantum subsystem with interaction strength I,
the system Lindblad jump operator is

Ls = o) (1| @ Ic = L @ I, (13)

and the jump operator L only acts on the quantum DOFs
in the subspace Hqg. The above jump operator corre-
sponds to a transition in the quantum subspace Hq with
no impact on the classical (such as nuclear) subspace Hc.
We can represent this jump operator Lg as well as the
system Hamiltonian Hg in a convenient basis [1q) ®|x.),
where [¢),) is the diabatic basis for the quantum sub-
system and |x,) is the discrete variable representation
(DVR) basis for the classical subsystem.

B. Mean-Field Ehrenfest Approach

The mean-field Ehrenfest (MFE) approach is a semi-
classical, mixed quantum-classical dynamics approach
that simultaneously evolves a quantum subsystem and
a classical subsystem. Multiple classical trajectories are
evolved such that their distribution through time can
be tracked to estimate e.g. the time evolution of the
probability density of the wavefunction that the classical
subsystem is approximating. For the electronic-nuclear
dynamics of molecules, the electrons (or electrons and
photons) are treated quantum mechanically while the nu-
clei are treated classically such that the distribution of
the classical nuclear trajectories estimates the probability

density of the nuclear wavefunction through time. The
trajectory average of the electronic wavefunction is used
to compute quantum estimators such as the elements of
the electronic density matrix.

The MFE approach treats the electronic-nuclear dy-
namics such that each nuclear trajectory has a corre-
sponding electronic wavefunction assigned to it. The
nuclear coordinates parameterize the electronic Hamil-
tonian which evolves the electronic wavefunction at each
time step, while the coefficients of the electronic wave-
function generate a mean-field potential that exerts a
classical force on the corresponding nuclear trajectory at
each time step. .

For the Hamiltonian Hg (Eq. 5), the time dependent
quantum state vector in the diabatic representation is
expressed as

|We(t) ang (t)[%a), (14)

where {|1,)} is a diabatic basis (not R-dependent), and
{ca,e} are expansion coefficients associated with the &y
nuclear trajectory Re(t). Note that the label of £ in-
side |W¢(t)) indicates its dependence on trajectory Re(t).
The trajectory-dependent equation of motion of the co-
efficient is

d .
%Ca,f = _% Z (Vab (Ré) + Eab) *Cpg, (15)
b

where Vo (Re) = (Va|Hge (Re) 1) is a matrix element
of the quantum-classical interaction Hamiltonian param-
eterized by the nuclear coordinates R¢(t), and eq4p is a
matrix element of Hg. The nuclear force in the diabatic
representation is expressed as

Ff - — Z Ca,EvRVab(Rf)C;ga (16)
a,b

and the nuclear coordinates evolve according to classical
equations of motion with the above force. More details on
the derivation and implementation of the MFE approach
can be found in the literature.6->4-57

The MFE approach can also be equivalently written
down in terms of the reduced density matrix of the quan-
tum subsystem (Eq. 8) as follows

d . 7 [~ N R
7= 7 [HQ + HQC(Rs),Pé] ) (17)

where p¢ is the reduced density matrix operator in the
quantum subspace (defined in Eq. 8) associated with the
&n independent nuclear trajectory Re(t). More explic-
itly, the MFE reduced density matrix EOM and nuclear
force are

d

gpab,g h Z ( ac R§ + Eac)pcb 3 (18)

~ Pace(Ver(Re) +2a) ).
— Zpab,vaVab(R§)~ (19)

a,b



The estimator of the reduced density matrix elements
Pab(t) = (Ya|p(t)|1hy) can be evaluated through averaging
the Ehrenfest trajectories as follows

N
par(t) = 3 D paelt), (20)
£=1

where N is the total number of trajectories used in the
MQC description.

C. Ehrenfest Approach Combined with Lindblad Dynamics

When the nuclear DOFs R are treated as classical
DOF's under the mixed quantum-classical approximation
(through independent trajectories R(t) instead of basis
{Ix»)}), the Lindblad master equation can still be used
to describe the evolution of the quantum subsystem of p
under the MFE approximation as follows

dp (A - . .

L=+ |Ho+ Hoo®). | + £ 17, (1)
where the motion of R is governed by the specific mixed
quantum-classical approximation (governed by the mean-
field force in Eq. 19 for MFE), and the Lindblad super-
operator L; [-] applied in the quantum subspace Hq is
expressed as follows

L;[p=T- <£ﬁﬂ - % {ﬁi,p}) . (22)

Eq. 21 can be viewed as taking the mixed quantum-
classical approximation on —%[HS,/SS] in Eq. 12 then
tracing out the classical DOFs R. Eq. 21 can be viewed
as a special case of the recently developed density matrix
hybrid method!® 2% that combines MQC methods and
master equation approaches, where the master equation
is chosen to be Lindblad dynamics.

The single jump operator that we consider in this paper
is the one that causes transitions from state |1) to state
|0) (of the quantum subsystem Hq) as

L = [go) (| = [0)(1], (23)

where the corresponding system jump operator Lg (in the
system Hilbert space Hg) is expressed in Eq. 13. The cor-
responding superoperator that describes the Lindbladian
jump dynamics (based on Eq. 22) acting on the reduced
density matrix of the quantum subsystem is then

Tp11 —%pm 0 0
—5p10 —I;Pll —Lpiz —5pis ...
L= 0 —zp 0 0 (24)

0 —5p1 O 0

From Eq. 24, it can be seen that the jump operator
L = |0)(1] causes the population of state |1) to decay

with a rate of T, state |0) to gain the population lost
by state |1}, and state |1) to decohere from every other
state with a rate of g This is an important feature of
the Lindblad dynamics.

To better understand the dynamical picture, it is con-
venient to look at the superoperator acting on the re-
duced density matrix of only states |0) and |1) as follows

r. [Poo P01] _ |:FP11
i -
P10 P11

—Ep(n
2 . 25
—Lp10 —Fpn] (25)

In this simplified picture, considering state |1) to be
the excited state and state |0) to be the ground state,
the jump operator L = |0)(1] causes the excited state to
decay to the ground state and both excited and ground
states to decohere from each other. When Hq = Hgc =
0 and no other jump operators have non-zero interaction
strength, the time evolution of the reduced density ma-
trix (in Eq. 25) can be analytically expressed as

GLrt |Poo por| _ |poo + (1—e") p11 e T2py
P10 P11 e T2 e Tto |-

(26)
From Eq. 26, it can be seen that the jump operator
L = |0)(1] causes exponential decay of the excited state
to the ground state with a rate of I" and exponential decay
of the excited-ground coherence with a rate of I'/2. This
dynamical picture approximately corresponds to many
physical phenomena such as spontaneous emission'%!
and photonic cavity loss when a single decay channel
dominates.!415

Expressing the MFE approach in the density matrix
form!®20 (Eq. 17) allows for Lindblad dynamics to be
implemented in a straightforward manner. This involves
performing MFE dynamics in the Liouville space where
each element |, ){(1)p| is now treated as a basis vector.
Eqg. 19 and Eq. 21 describe the nuclear force and equation
of motion of the density matrix elements, respectively.
However, this density matrix formalism of MFE requires
K? density matrix elements to be dynamically updated
for a dimension K of the original quantum subsystem
Hilbert space Hq, with a formal scaling in the range of
N -K3 to N -K* in terms of computational cost,?? where
N is the number of trajectories used to perform the MFE
part of the Liouvillian in Eq. 21. The coefficient formal-
ism MFE (Eq. 14), on the other hand, only requires K
coeflicients to be dynamically updated, with a formal cost
of N - K2. Due to the numerically favorable scaling of a
wavefunction based approach, together with the consid-
eration that the trajectory average is required anyway in
performing the MQC dynamics governed by Eq. 15, we
choose to incorporate Lindblad dynamics into the regu-
lar coefficient-based approach of MFE. This requires a
formulation of Lindblad dynamics in a coefficient-based
formalism, which is derived in the next section.



Il. THEORETICAL APPROACH

A. Independent Trajectory-Based Solution of Lindblad
Dynamics in the Hilbert Space

Consider the following short time propagation, from ¢
to t + dt, of the reduced density operator p (Eq. 8) of a
K > 2 level system evolving under the dynamics of the
quantum subsystem Hamiltonian H = Hq+Hqc(R) and
a single non-zero Lindblad jump operator L = |0)(1|. For
a small dt, the time evolution can be approximated as

e“ [p(1)] ~

such that the jump operator evolution is applied sepa-
rately from the Hamiltonian evolution.

The dynamics of the reduced density matrix elements
in the subspace of {|0),|1)}, governed by the jump oper-
ator L (as described in Eq. 26), are expressed as follows

pt +dt) = efadtetLd (1)), (27)

pri(t+dt) = e " piy(t), (28a)
poo(t + dt) = poo(t) + (1 — ™) p11(2), (28b)
po1(t +dt) = e T/ 2p0, (1), (28¢)
pro(t+dt) = e "2 pyo(2). (28d)

Further, for the coherences that involve states |j) ¢
{]0),|1)} due to the influence of the jump operator L,
the following equations hold

pin(t+dt) = e T2, (1), (20a)
prj(t +dt) = e T2, (1), (20D)
polt +dt) = pjolt), (29¢)
poj (t + dt) = poy(0), (20)

due to the matrix elements of Eq. 24 that involve
states {|j)}. The equation of motion for the coefficients
{cac(t)} governed by the evolution of Hq + Hqc (or
e£a in Eq. 27) can be computed based on the simple
MFE approach in Eq. 15. The rest of the derivation will
be focused on updating the coefficients to match these
jump operator dynamics, separate from any Hamiltonian
dynamics (as Eq. 27 allows us to do).

In order to achieve the same Lindblad dynamics from
a mixed quantum-classical method such as MFE, the co-
efficients ¢; and ¢q (and {c;}) must be evolved in a way
such that their time evolution corresponds to equations
28a through 29d. The density matrix elements of equa-
tions 28a through 29d cannot, however, be directly re-
placed with the usual products of the coefficients ¢; and
¢o (and {c¢;}). This is because this density matrix, in gen-
eral, represents a mixed quantum state due to the fact
that Lindblad dynamics describe an interaction with an
external environment. The density matrix of a mixed
quantum state cannot, in general, be represented by the
density matrix of a single pure state as cglthg) + ¢1]1)1).
Thus, alternative approaches must be used to perform

the time evolution of ¢; and ¢y with a combined result
that satisfies Eq. 28a through Eq. 29d.

To this end, we take advantage of the existing multi-
ple independent trajectories that are already present in
mixed quantum-classical or semiclassical methods. We
propose to evolve multiple independent trajectories and
use the trajectory average of the electronic coefficients
of these trajectories to compute the reduced density ma-
trix elements at each time step, with the estimator of the
reduced density matrix elements evaluated as

N

1
pa(t) = Y pavelt

(=1

an&: be t (30)

where ¢, ¢ and ¢, ¢ are the coefficients of states |a) and
|b), respectively, for trajectory Re(t).

In addition, we introduce random variation of the time
evolved coefficients as

Ca g (t + dt) = Ta,g * Cak (t) = ei9a,g * Xa,¢ * Ca,¢ (t)v (31)

where {7, ¢} are random complex variables with a cer-
tain probability distribution yet to be determined, such
that the expectation value of the estimator of the time
evolved reduced density matrix elements will exactly cor-
respond to Egs. 28a-29d. Further, {6, ¢} are the phases
and {xa,¢} are the magnitudes of the complex variables.

Thus, the estimator of the time evolved reduced den-
sity matrix elements is

ang (t+dt)c
Z%g Caf

To determine the detailed properties of the random vari-
ables {14}, we calculate the expectation value of func-
tions of these random variables over their probability dis-
tribution P(n), such that a given function f(n) has the
following expectation value

m) = [ )P () in, (33)

pap(t + dt) se(t+adt)

Mpe Coe(t).  (32)

where P (n) is the joint probability distribution of all
random variables 7.

Performing the above expectation value on Eq. 32, we
have

N
1
(pap(t + dt)) = <ﬁ 3 gt +dt)ce(t + dt)>. (34)
e=1
Under the converging limit where the number of trajec-
tories tends to infinity, the estimator of the time evolved
reduced density matrix elements equals its expectation
value as follows

lim pop(t 4 dt) = lim {(pap(t + dt)). (35)
N—o00 N—00



Thus, we propose to relate the estimator pqp(t + dt)
in Eq. 34 and the estimator p,(t) in Eq. 30 through
Lindblad dynamics (Egs. 28a-29d), such that

(pab(t + dt)) = L% [p(t)]ab, (36)

where e“2%[5(t)] generates the Lindblad jump dynamics
found in Egs. 28a-29d.

To this end, we establish the following equations to
govern the time evolution of the coefficients

N

N
1 _ 1
(F 2 lerelt+anf) = 4T3 fere®F, (372)
£=1

£=1

1 & )

(5 leoelt +dnl?) (37b)
£=1
1 N
NZICO& e 1) Zlcls ;

£=1
1 N
(D coelt+dt)ei (¢ +at) ) (37¢)

o
I
—

N
1
—Idt/2 *
el N;C&s(t)ﬁ,g(f%

which match Eqs. 28a-28d. For states |j) ¢ {|0),|1)}, we
propose that

N
1
<N 3 cjelt +dt)er ot + dt)> (38a)
£=1
1 N
TR LD ciet)ere®),
=1
1 N N
<NZCJ5 L+ dt)che(t+ db) ) = Z
e=1 5:
(38D)

which match Egs. 29a-29d. For simplicity, we assume
that the coefficients {c;¢} for |j) ¢ {|0),|1)} are not
changed by the Lindbladian time evolution, such that

cje(t+dt) = cje(t), (39)

and all of the decoherence dynamics in Eqgs. 29a-29¢ will
be governed by the changes in ¢ ¢ and cg¢. Ultimately,
Eq. 39 only makes the choice that no arbitrary global
phase is added to all coefficients since any other modi-
fication to the c;¢ coefficients, besides adding a global
phase, would incorrectly alter some of the reduced den-
sity matrix elements involving the {|j)} states.

The time evolved coefficients ¢ ¢ (t+dt) and cg ¢ (t+dt),
based on Eq. 31, can be written as a product of the initial
coefficient times a complex number

cre(t+dt) = e e xy eor ¢ (t),
co,e(t+ dt) = €< xq ecoe(t),

(40a)
(40b)

X1, >0
Xo,e =0

where 6, ¢ and 6 ¢ are (potentially random) phases and
X1, and xo,¢ are (potentially random) magnitudes. For
the special case that ¢;¢(t) = 0 and ¢ ¢(t + dt) # 0,
[ € {0,1}, the magnitude x;¢ can be written as some
finite magnitude divided by ¢;¢(t) such that ¢;¢(t + dt)
is non-zero and well defined.

When I'dt = 0, the density matrices do not change
from one time step to another. Accordingly, when I'dt =
0, the coefficients of the trajectories ¢; ¢ and cg ¢ should
not change. Thus, we add a constraint to the coefficient
evolution as follows

191 N3 —
FllltIgo ehexy e =1, (41a)
lim e eyg e = 1. (41b)

I'dt—0

While there are several possible choices for construct-
ing ¢1,¢(t +dt) and co ¢(t + dt) that agree with Eqgs. 37a-
41b, it is important to consider how these choices affect
the Hamiltonian dynamics (evolved by e“a) that oc-
cur in conjunction with the Lindblad dynamics. Certain
choices of ¢1 ¢ (t+dt) and cg ¢ (t+dt) may cause the Hamil-
tonian dynamics to diverge from the results of the exact
Liouvillian dynamics, for example, when they do not con-
serve the trace of the density matrix within a trajectory.
To avoid this, we add on an additional constraint to the
coefficient evolution that

leve(t+dt) 2+l e (t+ D] = ler.e(t)P+lcoc(t), (42)
such that the trace of the density matrix of each trajec-
tory is conserved. Eq. 42 can be rearranged and com-
bined with Eq. 40a, resulting in the following equation

|co.¢(t + dt)|?
eog®) + (1= x2¢) lere(®)
co.c (2 |
(43)

= o (®)?

which can be further expressed as

co,e(t +dt)

coe®P + (1= ¢) leve®l?
oD
= e%co (1) Xoe- (44)

= ¢'os coe(t)

From Eq. 44, it is now clear that the square root in the
first line is the expression for xg ¢

leoc®)P + (1= X3 ) leve(®)?

lcoe(t)]?

To determine the values of the rest of unknown vari-
ables in Eq. 40a and Eq. 40b, we relate them to the right

X0, = (45)



hand sides of Eqs. 37a-37c. To begin, the left hand side
of Eq. 37a can be rewritten as

< Z|Cl§ (t + dt)| >7

due to the linearity of the expectation value (see Eq. 33).
Taking the expectation value of Eq. 40a yields

(lere(+d)?) = (xi¢) lere®)*. (47)
Plugging the above expression into the right hand side of

Eq. 46 and relating this to the right hand side of Eq. 37a,
we have

Z X1§ |e1,¢(t)
3

To simplify the analysis, we use the following sufficient
assumption that

N

> (levelt +anf), (46)
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N

Z th'cl 5 2. (48)

3

() =e ™, (49)

such that Eq. 48 (and thus Eq. 37a) is satisfied. A similar
analysis of the left hand side of Eq. 37b yields

N
< Z‘Cogt+dt >7 3" (Jeoe(t + dt)[?)
i e
Z lco e + (1= (X3 ¢)) lere(®))
e
N
¥ 2 leog(0)
:

where from the first line to the second line of the above
equation, we used Eq. 43, and from the second line to the
third line, we used Eq. 49. Note that the above equation
automatically guarantees the requirement in Eq. 37b.

The left hand side of Eq. 37c¢ can similarly be written
as

N

2 lene®)F, (50)

3

e—f‘dt)

N
(% D coclt +di)ei e(t +dn)) (51)
3

N
1
:NZ<CO€ (t+dt)c; ¢(t+dt)),
3

where the expectation value can be written as

<co,g(t +dt)e ot + dt)> (52)
= coe(t)eq g(t)

X <ei9€X1,§

|co,e(1)[> + (1 - X?,g) |01,§(t)|2>

|co,e(£)[?

where 0¢ = 0 ¢ — 01,¢, and we have used the expression
of xo0,¢ in Eq. 45. The above expectation value can be
related to the right hand side of Eq. 37c as

1 N
& 2 coeei ) (53)
3

X <6i05X1,5
1 N

= 3 2 coc)eilt)e
3

We make the assumption that

¢ t2+(1— 2)c t)|?
<€i9£X1,£ |co,e(t)] XT¢ ) lere(t)] >_ ¢~Tdt/2.

|co.e ()2

such that Eq. 53 (and thus Eq. 37c) is satisfied.

Although we began with the choice that the coefficients
of states |1) and |0) will each gain random phases (see
Eq. 40a-40b), the above analysis (up until Eq. 54) in-
dicates that only the relative phase 0 = 6p¢ — 01¢ is
relevant to correctly describe the decoherence between
the two states. Equations 49 and 54 govern how the (po-
tentially random) variables f¢ and x1,¢ must be selected
in order to obey equations 37a through 42. To avoid
considering joint probability distributions of dependent
random variables, we make the assumption that

P (0c; x1,6) = P (0e) - P (x1,6) » (55)

such that 6 and x1¢ are independent variables for dis-
tribution P(n). Thus, Eq. 54 can be written as

<ei0€> A X1 |CO’§(t)|2 i <1 B X%{) |0175(t)|2
N lco.¢(£)[?

= ¢ Ta/2, (56)

lco.e(t)I?

—Tdt/2

|mmm{hﬁgmww>

(54)

To further simplify the analysis by reducing the number
of random variables, we make the assumption that

= X1,¢ (57)

such that x1 ¢ is a constant. Combining the above equa-

<X1,§>

tion with Eq. 49 yields <X%’£> = xig, which means that

X1 = e—th/Q. (58)

This expression of x1¢ can be plugged into Eq. 56 to
find

lco.¢(1)]

< 195> 2'
VIcog O + (1 = Tty er (1)

(59)




The right hand side of Eq. 59 is purely real and is al-
ways within the range 0 to 1 for I'dt > 0. Thus, there
exist distributions of ¢ that satisfy the above equation
because the expectation value of €% can have a magni-
tude within the range 0 to 1. To reduce large jumps in
these phase variables, we assume that

1
P (95) = m, —Aeg < 95 < A@g, (60)

such that the probability distribution of the random
phase 0¢ follows a uniform distribution of width 2A0;
centered around 0. The expectation value <ei95> can thus
be calculated based on the definition in Eq. 33, and com-
bined with Eq. 59 to find

sin (Aog)
N

_ ot o

Vicoe®F + (1 - eIty e, ¢ (1)

This means that choosing Af according to Eq. 61 as
the bounds of the uniform probability distribution of 6
will satisfy the expectation value relations in all previous
equations. Since Eq. 61 is a transcendental equation, no
general closed form exists for the solutions to Afs. To
find Af¢, a numerical interpolation function of the first
positive solution of sin(z) = ax can be pre-computed for
the values 0 < a < 1 and then used during the simulation.

Up to this point, the only unspecified variables are
the individual phases 0y ¢ and 61 ¢. To determine these
variables, Eq. 38a and Eq. 38b can be used. Using the
conditions outlined in Eq. 39 and Eq. 58, the left hand
side of Eq. 38a can be rewritten as

N
(3 D eselt +dt)ei elt +dn) (62)
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N
1 i _ *
N ché(t) (e7e)e th/2cl,§(t)v
3
which can be related to the right hand side of Eq. 38a as

N

1 L _ .

NE cie(t) (7 e e T2 (1) (63)
¢

N
1 — *
=N Y (e "2 (1)
¢

The sufficient assumption to make the above equation
(hence Eq. 38a) valid is to require

(e7re) = 1. (64)

Since <e‘i91’5> can only be equal to 1 if every possible
instance of e~¥1¢ is 1, it follows that

O16=0, 0:=00¢—01¢c=00g, (65)

such that only cg ¢ obtains a random phase governed by
the distribution in Eq. 61, and ¢; ¢ does not. More specif-
ically, Eq. 59 becomes

coct) o
VieoeOF + (1= 7o) e (1)

<eii90,§> _

This means that using the information of how state |1)
decoheres with other states |j) ¢ {]|0),|1)} allows us to
determine how the random phase 6 should be parti-
tioned among 0y ¢ and 6, ¢. Eq. 64 suggests that there is
no need to add additional random phase to coefficients
c1,¢(t) if one wants to correctly describe the decoherence
dynamics between state |1) and |j) (for j # 0,1) gov-
erned by Lindblad dynamics (Eq. 24). The information
in Eq. 63 was omitted when developing the Ehrenfest+R
method. Nevertheless, the same choice was empirically
discovered through the use of numerical simulations of
Ehrenfest+R.10:11

Using a similar analysis of the above procedure for
the left-hand side of Eq. 38b, together with Eq. 45 and
Eqg. 66, it follows that

N
<% D et +di)cg ¢ (t + dt)> (67)
3
1 Y .
= = D el et (7Y xoe)
3

1 N
= 5 2 e (1)
13
" |co,e(t)]
Vieo.eOF + (1= eT) ey ¢ 1)

oo + (1= ) e o)

[coe(1)]

1 N
= > cie(t)cye(t), (68)
€

which guarantees the right hand side of Eq. 38b, thus the
choice of 01 ¢ and 6y ¢ in Eq. 65 satisfies both equations
38a and 38b.

B. Summary of the £-MFE Method

To summarize, we propose to incorporate Lindblad dy-
namics by adjusting the quantum expansion coefficients



as follows

T(dt) - c1e(t) = c1e(t + dt)

’f(dt) co,e(t) = coe(t+dt)
= eifs il \/|00,§(t)|2 + (1 —e7T) Jer ¢ (2)]2,

(69Db)

T(dt) - cje(t) = cje(t +dt) = cje(t) (for j #0,1),
(69c¢)

= "M Peie(t),  (69a)

where 7 (dt) is a formal transition operator that propa-
gates the coefficients as designed, e’¥¢ = ¢ e(t)/]coe(t )\
is the phase factor of ¢g ¢(t), and the random phase 6 is
sampled based on a uniform distribution P (¢¢) expressed
as

—Afe <0 < Abe, (70)

with the width A6, determined from the following tran-
scendental equation

sin (Afg)

A fieoe(®)

Thus, we explicitly use the trajectory average to converge
to the expectation value defined in Eq. 33. This is one of
the main theoretical results of the paper. Note that when
co¢(t) = 0 and ¢ ¢(t) # 0, the random angle 6; added to
the ground state is sampled from —7 to m due to Eq. 71
which completely randomizes the phase of the ground
state, which renders the undetermined phase factor el
irrelevant.

These effective Lindblad updates of the electronic coef-
ficients described in Eqgs. 69a-69¢ can be combined with
the Ehrenfest part of the electronic coefficients update
described in Eq. 15 and Eq. 16 to describe the mixed
quantum-classical dynamics subject to a Lindblad type
decay. We refer to this approach as the £L-MFE method
for the remainder of the paper. The coefficient propaga-
tion of the L-MFE method can be expressed as

c(t), (72)

where ¢(t) is the vector of the quantum coefficients, 7~
describes the coefficients update due to the jump opera-
tor using Eqs. 69a-69c¢, and e~ # (Hat+Hac)dt degeribes the
unitary evolution of the coefficients due the MFE dynam-
ics described in Eq. 15. Note that Hoc(R) depends on
the nuclear DOFs R, where R(t) evolves based on the
force in Eq. 16. Here, we use a symmetrical Trotter de-
composition in Eq. 72 to reduce error due to a finite time
step dt, and we put the Ehrenfest propagation in the mid-
dle because it is computational expensive (which scales
as ~ K?2) compared to the Lindblad decay part (denoted
by ’f') which only requires the update of two coefficients
c1,¢(t) and co¢(2).

|co(1)]

(1= e T ey ¢ (1)

(71)

c(t+dt) = T(dt/2) e~ HatHac)dt (gt /9).
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The L-MFE algorithm outlined in Eq. 72 will, in
principle, generate different results compared to Eq. 21
where the Lindblad dynamics are propagated determin-
istically in the Liouville space. This is because the L-
MFE method adds random phases to state |0) (for the
L = |0)(1| jump operator) through 7 (see Eq. 69b) for
each individual trajectory. Further, these random phases
in ¢g ¢(t) will also influence the magnitude of populations
through coupling term Vj; (R¢)+¢€01. Thus, L-MFE adds
different phases onto pg1 ¢ (as well as on pig¢) and gen-
erates different populations pgg ¢ and pi11¢ for each in-
dividual trajectory. The L; [p] term in Eq. 21, on the
other hand, causes determmzstzc changes for the den-
sity matrix elements of all trajectories. Thus, the ran-
dom phases in L-MFE will influence the nuclear forces
in Eq. 19 and these different nuclear forces for each
trajectory further influences the nuclear motion for R,
and eventually back influence the electronic dynamics
through e~ #(HatHoc®)dl i Eq. 72. Future research
will focus on investigating the difference between Eq. 21
and Eq. 72. Nevertheless, numerical results obtained for
the model systems (Eqs. 76a-76h and Eq. 77) produce
visually identical results using either Eq. 21 or Eq. 72.

C. Comparison with Other Stochastic Wavefunction
Approaches

We want to emphasize the connections and differ-
ences between the current £-MFE method and previ-
ous approaches that try to accomplish Lindblad dynam-
ics through stochastic wavefunction approaches, such
as Monte Carlo wave-function methods®*3740 and the
Ehrenfest+R approach.!0-12:41,42

The Monte Carlo wavefunction method3®3% expresses
the stochastic time evolution of the system’s wavefunc-
tion as follows34:58

ﬁcﬂws (t)) - dt (73)

VTiLy,
(O)|TR L) Ly |s ()

dls(t)) = —+
+Z (

where Hog = Hg —% Yk zhfkﬁzﬁk is the effective Hamil-
tonian that captures the time evolution governed by Hg
and the — ), I‘k%{fg[zk,ﬁs} term that describes the
population decays in Eq. 9. Further, the second term
on the right hand side of Eq. 73 effectively captures
the Y, I‘kﬁkﬁsﬁz term in Eq. 9, with dV; = 0,1 and
(dNy) = Ty (bs (t)| L Li.J4ps ())2dt. This term performs a
Poisson jump process that captures the projective action
of the environment on the system that randomly collapses
the system wavefunction into a pure system eigenstate.
The trajectory average of Eq. 73 with a large number of
realizations (jump trajectories) generates results identi-
cal to pg(t) described by the Lindblad master equation
in Eq. 9. The equivalence of these two descriptions can

- 1) [¥s(8)) - NG,



be viewed as the correspondence between the stochastic
quantum state diffusion equation (Eq. 73) and the deter-
ministic Wigner Fokker-Planck equation (which can be
written in the Lindblad master equation form of Eq. 9).59

The £L-MFE method, on the other hand, does not col-
lapse trajectories onto a single system state, which avoids
large changes in the magnitudes of the coefficients. Fur-
ther, the change in magnitude of the coefficients is deter-
ministic, whereas the magnitude of the coefficients in the
Monte Carlo wavefunction method is stochastic. Further,
the phases of the coefficients in £L-MFE only slightly vary
between time steps with no large jumps. When explicitly
considering Hc + Hqc, the stochastic Schrodinger equa-
tion approach can encounter numerical instabilities*® due
to large changes of the electronic coefficients, whereas the
L-MFE approach provides a stable numerical integration
of the equation of motion due to the small changes of
phase in the coefficients. The £L-MFE approach, in addi-
tion, can be easily combined with any mixed quantum-
classical or semiclassical approach.

The Ehrenfest+R method!? was originally developed
to simulate the electronic quantum subsystem coupled
to the classical electromagnetic field in order to accu-
rately describes spontaneous emission processes. It ef-
fectively captures Lindblad dynamics with a determinis-
tic change of the magnitude of the quantum coefficients,
and stochastic changes of the phases. While the £L-MFE
method is similar to (and largely inspired by) the Ehren-
fest+R method, there is a key difference between Ehren-
fest+R and L£-MFE in the off-diagonal reduced density
matrix element decay procedure. To facilitate the the-
oretical comparison, we briefly summarize the Ehren-
fest+R method!'® in Appendix A.

The Ehrenfest+R approach was derived under the con-
dition that I' < £, where I' is the decay rate of the jump
operator L and F is the energy difference between state
|0) and |1) (see Appendix A). This condition is thus the
regime where the Ehrenfest+R, approach can be applied
with guaranteed accuracy. The £L-MFE method, on the
other hand, does not have any restrictions on the param-
eter regimes where it is applicable.

The “+R decay” procedure (see Eq. A24 through
Eq. A28) in Ehrenfest+R was designed to correct the
decay of the diagonal density matrix elements and off-
diagonal elements independently, with the goal that the
combined Ehrenfest dynamics and +R decay dynamics
will match the Lindblad decay of the density matrix el-
ements. However, the procedure to adjust the diagonals
of the density matrix by changing the magnitudes of the
corresponding coefficients also changes the off-diagonal
density matrix elements, causing unintended deviations
in the dynamics. The off-diagonal relaxation decay rate
in Ehrenfest+R, which is proposed to be (see Eq. 53 in
Ref. 10)

=g (1= leogP +lenc®P), ()

does not account for this effect, thus the corresponding
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dynamics do not fully capture those of Egs. 28a through
29d.

To properly account for this effect, the «r rate in
Ehrenfest+R should be modified to be

I
TR = 5 (1= Jeo,e ) + leve(t)])

(|Co_’§(t + dt)CLg(t + dt)|)
|coe(t)ere(t)]

for |co¢(t)c1,e(t)] # 0. The detailed derivation of this ex-
pression is provided in Appendix B. The £-MFE method
already accounts for the effect that modifying the mag-
nitudes of the coefficients has on the off-diagonals of the
density matrix, as shown in Eq. 59. This is another main
theoretical result of the current paper.

Additionally, in the Ehrenfest+R approach, it was
numerically found that adding random phase only to
coe(t + dt) gave the most accurate results;'! however,
these choices lacked a rigorous theoretical reason for why
this should be the case and it was speculated that this
is because spontaneous emission from states |1) to |0)
should not affect the coherence of state |1) with other
states {|j)}. In contrast, the analysis in this paper shows
that the mathematical reason for this choice of random
phase lies in the fact that the excited state |1) decoheres
with every other state of the quantum subsystem while
state |0) only decoheres with state |1), when L = |0)(1
This fact is derived from applying the Lindbladian £;

(with L = |0)(1]) to the entire reduced density matrix
of K states instead of only the reduced density matrix of
|0) and |1). While state |1) decoheres with every other
state, the decoherence with states {|j)} is entirely cap-
tured by the reduction of the magnitude of ¢1 ¢(t + dt)
by e~T?/2; thus, the phase of state |1) does not need to
provide any additional decoherence. In contrast, state
|0) does not decohere with states {|j)}, but the increase
of the magnitude of ¢g ¢(t + dt) causes an increase in co-
herence with states {|j)}. The role of the random phase
applied to state |0), aside from adjusting the coherence
with state |1}, is to add decoherence to cancel out the in-
crease in coherence with states {|j)} due to the increase
of the magnitude of ¢y ¢(t + dt).

Lastly, when ﬁQc +He=0 (no nuclear DOF's present
in the system Hamiltonian), the £-MFE approach in
Eq. 72 (or equivalently Eq. 21) provides identical results
as those obtained by solving Eq. 12, regardless of the
choice of dt (as long as it is small enough to provide a
stable integration of f%[ﬁQ,ﬁ]). This is because in the
L-MFE approach, the decay dynamics are designed to
exactly match the analytical time evolution of the re-
duced density matrix elements. Consequentially, if the
Hamiltonian is 0 and only jump operator dynamics are
present, the choice of dt for L-MFE could be arbitrarily
large and still give the correct dynamics. On the other
hand, under the same condition when Hqc+Hc = 0, the
Ehrenfest+R approach is only accurate up to first order
in dt (see Eq. A28 and Eq. BY).

1
+ —1In

il (75)




To emphasize, Eq. 75 should be used as the expres-
sion for yg when using the Ehrenfest+R method. This
will allow for the correct dissipative dynamics due to the
interaction of the electromagnetic field with matter dur-
ing spontaneous emission and, consequently, the correct
dynamics of both the quantum matter and classical elec-
tromagnetic subsystems.

IV. MODEL SYSTEMS AND COMPUTATIONAL
DETAILS

Simple Model Systems. To assess the accuracy of
the L-MFE method, a variety of models are tested and
compared with an exact calculation of the corresponding
Lindblad dynamics. All of the following simple mod-
els are associated with a single Lindblad jump operator
L = |0)(1] with interaction strength I' = 0.05 a.u. These
models are

Model 1: Ho = || 8] 1W(0)) = |1) (762)
N 1
Model 2: Hq = 38] |m(0)>=m>;§|> (76b)
Model 3: Hq = 2 ﬂ, 1w (0)) = [1) (76¢)
Model 4: Hq = g %} [ (0)) = |1) (76d)
) [0 0 A
Model 5: Ho= [0 E 0|, [®(0))=|1)  (76¢)
A0 0]
) [0 A A]
Model 6: Ho = |A E 0|, |0(0)=[1) (76
A0 0]
) 0 0 o0
Model 7: Ho = [0 0 A”|, [¥(0))=[2) (76g)
0 A" 0
) [0 A A
Model 8: Ho = |A” E' 0|, |¥(0))=][1) (76h)
A0 0

where F = 3 eV.,, A =5¢eV., E/ =1 au, A = 0.2
a.u., and A” = 3 eV. The initial conditions |¥(0)) are
also indicated accordingly. For Models 1-8, He+ ﬁQc =
0, thus Eq. 12 is identical to Eq. 21, and the £L-MFE
approach in Eq. 72 generates identical results as Eq. 21.

Molecule Coupled to a Lossy Cavity Mode. In
addition, we consider a photo-isomerization model (with-
out permanent dipole) coupled to a single optical cavity
mode. The QED Hamiltonian for the molecule-cavity
hybrid system is expressed as®”

X . 1
Hqep = Hy+hwe (a*a + 2) +hge(a+a)(6T+6). (77)

In Eq. 77, Hy is the molecular Hamiltonian described by
a diabatic model system that undergoes an isomerization
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reaction®

Hyi = Tr + Ey(R)|9)(g] + Ec(R)le){el.  (78)

Here, |a) € {|g), |e)} represents the electronic ground or
excited state, which are treated as diabatic states in this
model, R represents the reaction coordinate, and Tg =
P?/2M is the nuclear kinetic energy operator associated
with R, with nuclear mass M = 550 Da. The detailed
expression of E,(R) is provided in Appendix C. The sec-
ond term in Eq. 77 is the Hamiltonian of the quantized
photon mode inside the cavity with the frequency w., and
a' and @ are the photon creation and annihilation oper-
ators, respectively. The third term in Eq. 77 describes
the molecule-photon coupling through electric-dipole in-
teractions under the dipole gauge,%! where 67 = |e)(g]
and 6 = |g)(e| are the molecular excitonic creation and
annihilation operators, respectively, and the light-matter
interaction strength hg. is treated as a parameter in this

2
model.% The dipole self-energy 2=, which is a constant

in this case due to the constant gc,cdoes not influence the
quantum dynamics and is explicitly dropped in Eq. 77.
This model can be viewed as the molecular version of the
Quantum Rabi model.

A simplified version of the model in Eq. 77 can be
constructed by dropping the counter-rotating wave terms
proportional to afét and aé. This approximation gives
the Jaynes-Cummings model as

. . 1
Hjc = Hy + hwe (&Td + 2) + hge(a6' +a').  (79)

We further denote the polariton Hamiltonian My as fol-
lows ﬁpl = H - TR. Representing the radiation field
in its Fock state basis (the photon number state), and
the molecule in its electronic state basis, the polariton
Hamiltonian Hp; (choosing H = Hjc) is expressed as

Hy=> (EQ(R) + <n + ;) m) la, n) (o, n|  (80)

a,n
o0
+ ) Vihge(le.n = 1)(g,n| + g, n)(e,n — 1),
n=1
where |a,n) = |a) ® |n) is the electronic-photonic ba-

sis (or exciton-Fock basis, composed of photon-dressed
electronic states), with |a) € {|g),|e)}, and |n) is the
Fock state of the radiation mode, i.e., the eigenstate of
hwe. (&‘L& + %) The polariton states are the eigenstates of
Hy, defined as Hy U, (R)) = E,(R)|¥,(R)) where &,(R)
is the polariton potential and |¥,(R)) is the polariton
state.

The lifetime of the cavity mode is finite, due to the
coupling between the cavity mode and the far-field pho-
ton modes outside the cavity. The detailed discussions
for molecular cavity QED with cavity loss are provided in
Appendix D. Here, we use the following Lindblad jump



operator'* to model this process

> Valn —1)nl | @ L. 0 T, (81)

n=1

Ls=a®1. 01y =

where Z. = |g)(g|] + |e)(e| is the identity in the electronic
subspace and Ig is the identity operator in the nuclear
subspace. The decay rate associated with L. is denoted
as I'. Note that the jump operator in Eq. 81, in principle,
includes all possible transitions between Fock states |n+
1) and |n) (see the general form of the Lindblad theory
in Eq. 9). In a practical simulation, one can choose to
include the physically relevant decay channels. In the
model calculation presented in this paper, we will only
consider one decay channel (see Eq. 83).

In this paper, we consider this photo-isomerization
model under the Jaynes-Cummings approximation where
there is a maximum of only one excitation (the single-
excited subspace plus the ground state) because the light-
matter coupling strength fig./w. < 0.1 thus the results do
not significantly change when including states with mul-
tiple excitations. In this case, the possible Fock states
are just |n) € {|0),]1)}. Thus, the system Hamiltonian

Hg can be written as
Hs = Tr + Ey(R)|g,0)(g,0] + Ec(R)|e,0)(e,0]  (82)
+ hge(le, 0){(g, 1| + |g, 1) (e, 0]),

and the system Lindblad jump operator in this subspace
of Fock states can be written as

f’S = |ga0><g71‘®jRa (83)

with decay rate I' which is varied as a parameter.

When using £-MFE approach to simulate the dy-
namics of this molecule-cavity system, we consider the
electronic and photonic DOFs as the quantum DOFs,
where Hq = hwe|g, 1)(g, 1] +hge(le, 0)(g, 1| +1g,1){e,0]),
Hqc = E¢(R)(]g,0)(g. 0]+ g, 1){g, 1|) + Ee(R)le, 0) (e, 0],
and the nuclear DOF is treated as a classical DOF, where
Hc = Tg. The cavity frequency is w. = 1.632684 e.V.
and the coupling strength is g. = 0.136 e.V. Note that
the off-diagonal coupling terms in Hg do not involve the
ground state |g, 0); thus, the L-MFE approach in Eq. 72
generates identical results as Eq. 21. The initial condi-
tion is | (0)) = |e, 0) ®|xo0), where the |e, 0) indicates the
initial electronic-photonic state, and the nuclear wave-
function is (R|xo) = (%)1/4 e~ (Mwr/2)(R=R0)* \hich

is a Gaussian wavepacket centered around Ry = —0.7
a.u. with variance 1/2Mwpg, mass M = 550 Da, and
frequency wr = 132.4 cm~!. The temperature is set

to be T = 0 K. For the £L-MFE simulation, the corre-
sponding initial condition is ps(0) = le,0)(e,0| ® [pr],
where the Wigner density of the nuclear wavefunction

(PRl = [Px0) (Xoll = ge-tentimRo (PR /(Man) i

used to sample the initial nuclear position and momen-
tum in the £-MFE simulation.
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Computational Details. The L-MFE method is im-
plemented by using a symmetrical Trotter decomposition
in Eq. 72 to reduce time step error. The unitary dynam-
ics e~ n(HatHac)dt are propagated using the 4th order
Runge Kutta (RK4) algorithm, while the Lindblad decay
dynamics T are propagated using the coefficient mod-
ifications described in Eqgs. 69a to 71. When classical
nuclear DOF's are present, the velocity Verlet algorithm
is used to propagate the nuclear DOF's, with mean-field
force given by Eq. 16, alongside the quantum subsys-
tem. For all model calculations, the electronic time step
used is dtg = 0.05 a.u. For the photo-isomerization sys-
tem that contains nuclear DOF, the nuclear time step
was dty = 6 a.u. and the time step used in the Lind-
blad decay T was dty/4 (thus the unitary propagation
was performed 60 times in between Lindblad decay prop-
agations). A total of 24,000 trajectories were used to
ensure fully converged results, although using only 1000
trajectories already provides a mostly converged result
(as shown in Fig. 3).

The numerical results obtained from L-MFE were
benchmarked against the original Lindblad dynamics in
Eq. 21, which are referred to as “exact” results (of per-
forming Lindblad dynamics) in this paper. These numer-
ical results are obtained by using the QuTiP library%2:63
with the mesolve function, where model Hamiltonian,
Lindblad jump operator, and initial wavefunction are en-
tered as arguments to the function. Similar numerical
simulations has been recently performed to investigate
molecular cavity QED processes as well.'*1¢ For Mod-
els 1-8, Hc + Hqc = 0 (no nuclear DOF), and the only
inputs in the simulation are the matrix elements of Hg
and the decay rate I'. For the photo-isomerization cou-
pled to the cavity model, Hg is described by Eq. 82. The
matrix elements of the Hamiltonian in Eq. 82 as well as
the jump operator Lg in Eq. 83 are evaluated using the
basis {|a,n) ® |x,)}, where |x,) is the discrete variable
representation (DVR) basis for the nuclear DOF R. For
the DVR basis |x,), a total of 175 grid points are used
in the range of R € [-1.25 a.u.,1.25 a.u.].

V. RESULTS AND DISCUSSION

Fig. 1a presents the population dynamics of Model 1
(Eq. 76a), obtained from the £-MFE approach (dots)
as well as exact Lindblad dynamics (solid lines). In this
case, the only dynamics present are the Lindblad expo-
nential decay from state |1) to state |0). In Fig. la, the
diagonal populations of both states |1) and |0) exhibit the
expected exponential decay/growth at a rate of I' = 0.05,
while the coherence between the two states stays at 0.
This is expected because, in the absence of any Hamilto-
nian dynamics, the coherences between states |1) and |0)
should only monotonically decrease to 0 from the initial
time coherence pg1(0). Fig. 1b presents the population
dynamics of Model 2 (Eq. 76b), which has an initial con-
dition of a superposition of state |1) and |0). Similar
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FIG. 1. Dynamics of (a) Model 1 and (b) Model 2. The solid
lines are exact Lindblad dynamics while the dotted lines are
the £L-MFE method. The cyan lines are the population of
state |1), the dark blue lines are the population of state |0),
and the orange lines represent Re[p1o]. Panels (c)-(d) present
the same calculation as (a) and (b), but without any random
phase (by setting 6 = 0 in Eq. 69b) in the £-MFE method,
thus generating artificially large coherence.

to Model 1, only Lindblad exponential decay/growth is
present. The diagonal populations match the Lindblad
dynamics, and the coherence shows the expected I'/2 de-
cay rate from Lindblad dynamics.

We note that because fIQ = 0 in Models 1 & 2, the

L-MFE method in Eq. 72 becomes c(t + dt) = T(dt) -
c(t), where the dynamics are completely dictated by the
Lindblad decay process governed by L;. The dynamics
are insensitive to the choice of dt, which means that one
can choose an arbitrarily large dt and obtain identical
results. This is not the case for Ehrenfest+R approach,
where the “+R” dynamics will be sensitive to the choice
of dt even when Hqg = 0.

Fig. lc-d highlights the importance of the random
phases ¢ (in Eq. 69b), by intentionally ignoring them
(through setting them to be zero). This, of course, will
generate dynamics that deviate from both the L-MFE
method and Lindblad dynamics. One can see that the di-
agonal populations of states |1) and |0) still show the cor-
rect exponential decay/growth, but the coherences take
a large departure from the expected coherences because
there is no random phase present to correct the artificial
coherence that is produced when the magnitudes of the
coeflicients are changed.

Fig. 2a presents the population dynamics of Model 3
(Eq. 76¢). This model contains Hamiltonian-induced co-
herences (through the A term in Eq. 76¢) which must be
properly incorporated with the Lindblad decay dynam-
ics. In Fig. 2a, the diagonal populations match the exact

14

1 T T T T

[} i L-MFE (@ | [ (b)
§ 0.8 oo Exact
206 {1t 4
goall A 1 b :
-~ 0.2 ! R K R
c
S 0f 1 1
©
S-02 | 1t 1
s
£-04t 1 F 1

-0.6

1 T

8 o8t
3
5 0.6
':o) 0.4
-~ 0.2
c
S 0of b 1
©
>-0.2 | B R
)
£-04f 1 F 1

-0.6 L L L L L L L L

0 20 40 60 80 100 O 20 40 60 80 100

Time (a.u.) Time (a.u.)

FIG. 2. Dynamics of (a) Model 3 and (b) Model 4. The solid
lines are exact Lindblad dynamics while the dotted lines are
the £L-MFE method. The cyan lines are the population of
state |1), the dark blue lines are the population of state |0),
the darker orange lines represent Im[pio], and the lighter or-
ange lines represent Im[po1]. Panels (c¢)-(d) present the same
calculation as (a) and (b), but without any random phase (by
setting f¢ = 0 in Eq. 69b) in the L-MFE method.

Lindblad dynamics result with both correct oscillation
magnitudes and correct longtime populations. The os-
cillations of the imaginary parts (dark and light orange
lines) of the off-diagonal coherences also exactly agree
with Lindblad dynamics. Fig. 2b presents the popula-
tion dynamics of Model 4 (Eq. 76d), which contains
both electronic coupling as well as an energy level differ-
ence between the two states, which will further impact
the dynamics. Again, both the diagonal populations and
the off-diagonal coherences match the exact Lindblad dy-
namics.

Fig. 2c-d present the results when the random phases
f¢ (in Eq. 69b) are intentionally ignored by setting them
to be zero. In Fig. 2c, the longtime diagonal populations
appear correct, but the diagonal populations oscillate
with a much larger magnitude than Lindblad dynamics.
This is caused by the fact that the coherences are larger
than they should be because there is no random phase to
reduce the size of the coherences. Consequentially, the
larger magnitude of coherence causes a larger magnitude
of population oscillations. In Fig. 2d, not only are the
oscillation magnitudes of the diagonal populations too
large, but the diagonal populations converge to incorrect
longtime populations. In fact, the L-MFE method with
no random phase shows the excited state |1) with a larger
longtime population, while Lindblad dynamics show that
the ground state |0) should have the larger longtime pop-
ulation. This is again caused by the incorrect coherences
without random phase which cause a longtime shift in
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FIG. 3. Dynamics of Model 4 with different numbers of tra-
jectories. The solid lines are exact Lindblad dynamics while
the dotted lines are the £-MFE method. The numbers of tra-
jectories used are (a) 10, (b) 100, (c) 1,000, and (d) 10,000.

the diagonal populations.

Fig. 3 presents the population dynamics of Model 4
(Eq. 76d) with different numbers of trajectories to exam-
ine the convergence of the £L-MFE method. The numbers
of trajectories used in Fig. 3a-d are (a) 10, (b) 100, (c)
1,000, and (d) 10,000, respectively. For the result using
10 trajectories, the magnitudes and phases of the oscil-
lations of the £L-MFE dynamics do not match the exact
ones. However, the longtime populations of the states
are approximately correct, in contrast to the no-random-
phase case in Fig. 2d where the relative magnitude of the
longtime populations are flipped versus the exact popu-
lations. For the result using 100 trajectories, the magni-
tudes of the oscillations are almost correct while there are
some deviations at later times. For 1,000 trajectories, the
relative error of the £L-MFE dynamics versus the exact
dynamics is only a few percent, and there is little visual
difference between the £L-MFE dynamics and the exact
Lindblad dynamics. For 10,000 trajectories, the L-MFE
dynamics and exact Lindblad dynamics are nearly indis-
tinguishable. These results give a better sense of how
many trajectories are required to achieve a desired level
of accuracy using the L-MFE method.

Fig. 4a presents the population dynamics of Model
5 (Eq. 76e). This model contains the third state |2),
which is coupled to state |0). Note that in the L-MFE
algorithm, when the jump operator is L = |0)(1], state
|0) is the state that gains random phases (see Eq. 65).
Thus, the preservation of correct dynamics when random
phases interact with states {|j)} outside of the reduced
density matrix of |0) and |1) is tested. In Fig. 4a, the ex-
cited state shows exponential decay, while states |0) and
|2) oscillate together until they reach a longtime popula-
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FIG. 4. Dynamics of Models 5 (a,c) and Model 6 (b,d). The
solid lines are exact Lindblad dynamics while the dotted lines
are the £L-MFE method. Panels (a) and (b) present the diag-
onal populations, with poo(t) (dark blue), p11(¢) (cyan), and
p22(t) (magenta). Panels (¢) and (d) present the off-diagonal
coherences, with Im[p10](¢) (orange), Im[p12](t) (green), and
Im[p2o)(¢) (red).

tion of 0.5, which is predicted by Lindblad dynamics. In
Fig. 4c, the corresponding imaginary parts of coherences
Im[p10] (orange), Im[p12] (green), and Im|[pag] (red) are
presented, and all of these coherences obtained from L£-
MFE (dotted) match the Lindblad dynamics (solid lines).
In particular, the oscillation in Im[pg] is due to the pres-
ence of electronic coupling between state |0) and |2),
without further decoherence from L (see Eq. 24), sug-
gesting that the £L-MFE method can correctly describe
dynamics involving {|j)} states even in the presence of
random phases in the coefficient of state |0).

Fig. 4b presents the population dynamics of Model 6
(Eq. 76f), which is a more challenging 3-state Hamilto-
nian that involves multiple electronic couplings to test
the validity of the £L-MFE method. The diagonal pop-
ulations generated from L£-MFE (dotted) again match
Lindblad dynamics (solid lines). In Fig. 4d, all of the co-
herences, Im[pjo] (orange), Im[p;2] (yellow), and Im|[paq]
(red) match perfectly with Lindblad dynamics. Note
that due to the electronic couplings between states |0)
and |1), as well as between states |0) and |2), all of the
coherences in general will be non-zero at a given point
in time. Using the random phase (governed by Eq. 66)
for state |0), all of these detailed features are captured,
further demonstrating the exact equivalence between the
L-MFE method and Lindblad dynamics when no nuclear
DOFs are present.

Fig. 5 presents the population dynamics of Model 7
(Eq. 76g) to assess the importance of which state the
random phase is applied to. Fig. 5a,c present the popula-
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FIG. 5. Dynamics of Model 7 using (a,c) the £L-MFE ap-
proach and (b,d) a modified £L-MFE approach with the ran-
dom phase only applied to state |1). The solid lines are exact
Lindblad dynamics while the dotted lines are the original or
modified £-MFE approach. Panels (a) and (b) present the di-
agonal populations, with poo(t) (dark blue), poo(t) (cyan), and
p22(t) (magenta). Panels (c¢) and (d) present the off-diagonal
coherences, with Im[p10](t) (orange), Im[p12](t) (green), and
Tmp0] (£) (red).

tion and coherence dynamics, respectively, of the L-MFE
method versus exact Lindblad dynamics. The £-MFE
method applies the random phase only to state |0) and
its dynamics match the exact results. Fig. 5b,d present
the population and coherence dynamics, respectively, of
a modified £-MFE method when the random phase (6;)
is only applied to state |1) instead of state |0), such that
cre(t + dt) = eee l9/2¢; ((t). The populations dy-
namics of this modified £L-MFE method show incorrect
oscillation magnitudes, most notably that the oscillations
between states |1) and |2) are considerably smaller than
the oscillations of the exact dynamics. This corresponds
to the coherence dynamics of Im[pia] that are smaller
than the corresponding exact coherence dynamics. This
coherence inaccuracy is caused by the over-decoherence
of state |1) due to the application of the random phase
to state |1). This result highlights the importance of ap-
plying the random phase to the correct state.

Fig. 6 presents the comparison, using Model 8 (Eq.
76h), between the original Ehrenfest+R approach!®:1!
and a modified Ehrenfest+R approach using the mod-
ified v from Eq. 75 (which is equivalent to the £-MFE
method for this model). Fig. 6a,c present the popu-
lation and coherence dynamics, respectively, obtained
from Ehrenfest+R (dots), using the same algorithm as
described in Ref. 11, where a concise summary of this
approach can be found in Appendix A. The +R decay
dynamics are implemented as suggested as the original

16

—_

Eh+R (a) Eh+R’ (b)

0.8 Exact B Exact B
5 P
— I 22 ... ® . -.I o I~ 7
506 B LV DR A
a Vet \
00_04’ - ...-.c.-.'ﬁs" [ 7

D o2 % Poo
02 £ v 1 |
.f
0
0.3 T T T T
Eh+R’ (d)

0.2 r Exact b
9 0.1 - 1
5
g 0 W\/\/\/\/\
<
3-01 | imlpzo]

-0.2 r R

035720 40 &0
Time (a.u.)

80 100 0O 20 40 60 80 100

Time (a.u.)

FIG. 6. Dynamics of Model 8 using (a,c) the original Ehren-
fest+R approach (labeled as Eh+R) and (b,d) the Ehren-
fest+R approach using the modified v from Eq. 75 (labeled
as Eh+R’). The modified Ehrenfest+R dynamics (Eh+R’)
are identical to those obtained from the £-MFE method for
this model. The solid lines are exact Lindblad dynamics while
the dotted lines are the original or modified Ehrenfest+R, ap-
proach. Panels (a) and (b) present the diagonal populations,
with poo(t) (dark blue), p11(¢) (cyan), and p22(t) (magenta).
Panels (c) and (d) present the off-diagonal coherences, with
Im[p10](t) (orange), Im[p12](t) (yellow), and Im[p20](t) (red).

reference!® (through Eq. A27a and Eq. A27b) using the
original v (Eq. A22b). The parameters of Model 8 were
carefully chosen such that the excited state energy E' = 1
a.u. is significantly larger than the decay rate I' = 0.05
a.u., such that the Ehrenfest4+R method should work cor-
rectly in the regime E’ > T', while still showing interest-
ing dynamics on the timescale of the population decay
(t = 0 ~ 100 a.u.). In Fig. 6a, the Ehrenfest+R dy-
namics are qualitatively similar to the exact Lindblad
dynamics, but there are some errors in the fluctuations
of the state |1) decay as well as in the magnitudes of
the oscillations of states |0) and |2). The cause of these
deviations can be seen in Fig. 6¢c, where the magnitudes
of the coherences obtained from Ehrenfest+R are larger
than those of Lindblad dynamics, causing incorrect pop-
ulation transfer between diagonal populations. This is
because the coherence decay rate yg (Eq. A22b) in the
Ehrenfest+R algorithm is smaller than the correct decay
rate v, (Eq. B11), causing artificially large coherences
and thus a larger magnitude of population oscillation.

Fig. 6b,d present the population and coherence dynam-
ics, respectively, of Model 8 (Eq. 76h) using the modified
Ehrenfest+R approach that uses the modified 4f. This
modified Ehrenfest+R approach produces results identi-
cal to those obtained from the £-MFE method for this
model. Consequentially, in Fig. 6b, the population dy-



namics of the modified Ehrenfest+R approach are iden-
tical to the Lindblad population dynamics. The corre-
sponding coherence dynamics are provided in Fig. 6d,
which again match perfectly with the Lindblad coher-
ence dynamics. This demonstrates that it is important
to include the effect that modifying the magnitudes of
the coefficients has on the coherences between the states
(see analysis in Appendix B). We note that using the
modified vf in the Ehrenfest+R method yields the same
expectation values for the populations and coherences as
the L-MFE method as I'dt — 0, but begins to lose ac-
curacy for larger I'dt due to the use of a Poisson process
for decoherence (through Eq. A28), which is sensitive to
the choice of T'dt (Eq. BT).

Fig. 7 presents the potential energy surfaces (PESs)
and population dynamics of the photo-isomerization
model coupled to an optical cavity, with the system
Hamiltonian described in Eq. 82. Here, we explicitly con-
sider the population decay of the photonic DOF through
the jump operator L in Eq. 83, which describes the fi-
nite lifetime of the cavity mode due to its coupling to the
other non-cavity modes.

Fig. 7a presents the diabatic PESs for the |g,0) state
(dark blue), the |e,0) state (cyan), and the |g,1) state
(magenta). These states are diabatic because their elec-
tronic character does not depend on the nuclear coor-
dinate R, thus there is no derivative coupling between
these states (see Appendix C for details). Conversely,
there is a diabatic coupling between the states |e, 0) and
|g, 1) which causes coherent population transfer between
these states. Fig. 7b presents the adiabatic PESs for
the ground |g,0) state (dark blue), the lower polariton
state (middle line, labeled |LP)), and the upper polariton
state (upper line, labeled |UP)). These adiabatic states
are eigenstates of the polaritonic Hamiltonian Hy —Tg
(where Hg is given in Eq. 82) thus there is no additional
diabatic coupling between any of the states. Further,
since the electronic character of the upper and lower po-
lariton states changes as a function of the nuclear co-
ordinate R, there exists derivative coupling between the
upper and lower polariton states which allows for coher-
ent population transfer between them.%

Fig. 7c-f presents the population dynamics of diabatic
states |g,0) (dark blue), |e,0) (cyan), and |g,1) (ma-
genta). The results of exact Lindblad dynamics (solid
lines) are obtained by solving Eq. 12 using the basis
{la,n) @ |xu)}, where |a,n) = [a) @ |n), |o) € {|g),|e)}
are the diabatic electronic states and |n) are the Fock
states of the cavity mode. The £L-MFE dynamics (dot-
ted) are obtained by treating the electronic and photonic
DOFs as the quantum subsystem, with basis |a, n), and
the nuclear DOF as a classical DOF. The details of these
numerical simulations are provided in Sec. IV.

Fig. Tc presents the population dynamics with I' = 0,
i.e., with no Lindblad decay dynamics. Thus, Eq. 12
reduces to the exact dynamics of a closed system with the
Hamiltonian in Eq. 82 (which is a molecule-cavity hybrid
system), and Eq. 21 reduces to the Ehrenfest dynamics

17

V.

4} 1t 1
033_ . - 4

|9,0) 19,0)

Energy (
N

O 1 1 1 1 [ C 1 1 1 L i ]
-1.0 -05 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0
R (a.u.) R (a.u.)

—_

(c) L-MFE (d)

Population
© o o9
» [} ©
‘ ‘ ‘
]
s

o
N
T
[}

L

o
©
T

o
o
T

o
~
%

Population

I
o
T

Il .‘!u fel o, b u’\. '.. I ) s, o L
0 05 1 15 2 25 83 0 05 1 15 2 25 3
Time (p.s.) Time (p.s.)

0

FIG. 7. Potential energy surfaces (PESs) and population dy-
namics of the model isomerization reaction coupled to the
cavity. Panel (a) presents the diabatic PESs where the dark
blue line is the |g,0) PES, the cyan line is the |e,0) PES,
and the magenta line is the |g,1) PES. Panel (b) presents
the adiabatic PESs where the dark blue line is the ground
state |g,0) PES, the middle line (labeled |LP)) is the lower
polariton PES, and the upper line (labeled |UP)) is the upper
polariton PES. The colors along the adiabatic PESs represent
the diabatic character at each nuclear position. Panels (¢)-(f)
present the population dynamics where (c) uses a decay rate
of ' =0, (d) uses I' = 1 meV, (e) uses I' = 2 meV, and (f)
uses I' = 8 meV. The solid lines are exact Lindblad dynamics
while the dotted lines are the L~-MFE method. The dark blue
lines are the state |g,0) populations, the cyan lines are the
state |e,0) populations, and the magenta lines are the state
lg, 1) populations.

for the same system. The Ehrenfest dynamics provides
nearly identical results compared to the exact dynamics
in this case because the nuclei are mostly oscillating on
a single adiabatic upper polariton surface (see Fig. 7b).
Because there are no interactions between the |g, 0) state
and the other states in the model, the |g,0) state is not
populated.

In Fig. 7d, the Lindblad jump operator interaction
strength is set to be I' = 1 meV, which causes the pop-
ulation of the upper and lower polariton states to decay
to the ground state |g,0) of the molecule cavity hybrid



system. While the £L-MFE dynamics semi-quantitatively
match the exact Lindblad dynamics, there are some no-
ticeable differences in the magnitudes of oscillation of
states |e,0) and |g,1), and the ground state |g,0) does
not rise as quickly as predicted by Lindblad dynamics.
Similarly, in Fig. 7e-f, when the interaction strength is
set to be I' = 2 meV and I' = 8 meV, respectively, the
L-MFE dynamics show similar errors while still main-
taining the semi-quantitatively correct dynamics.

The discrepancy between the dynamics obtained from
the L-MFE method and the exact Lindblad dynamics
is due to the inadequacy of MFE as a mixed quantum-
classical method. This demonstrates the need to in-
corporate Lindblad dynamics into more accurate mixed
quantum-classical or semiclassical approaches that go
beyond the approximations present in the mean-field
Ehrenfest approach. Note that in recent investigations of
molecular cavity quantum electrodynamics,?®:%5 the pho-
tonic population decay is incorporated in a similar fash-
ion as described in Eq. 69a-69c. However, in these early
investigations, the random phase e*%¢ (in Eq. 69b) is not
incorporated. We have demonstrated the consequence of
missing this random phase in Fig. 1-2, where artificial
coherences are generated. Future wavefunction based in-
vestigations in molecular cavity QED should carefully de-
scribe the decay dynamics using the approach outlined in
L-MFE.

VI. CONCLUSIONS

In this work, we derived the £L-MFE method to incor-
porate Lindblad jump operator dynamics into the mean-
field Ehrenfest (MFE) approach. We took the density
matrix equations of motion for Lindblad dynamics and
mapped them onto an ensemble of pure state coefficients,
using trajectory averages and expectation values of ran-
dom variables. We then derived the £L-MFE method to
update the MFE coefficients at each time step which rig-
orously satisfies Lindblad jump operator dynamics. This
established a method that exactly reproduces Lindblad
decay dynamics using a wavefunction description, with
deterministic changes of the magnitudes of the quantum
expansion coefficients, while only adding on a stochastic
phase (on coefficients ¢g ¢(t) in Eq. 69b).

Compared to the Monte Carlo wavefunction
methods®>3%  which randomly collapse the wave-
function onto single states, the £L-MFE approach only
adds on random phases to the expansion coefficients,
providing a more stable dynamics which can be incorpo-
rated with any mixed quantum-classical, semiclassical,
or wavepacket based approaches. Compared to the
Ehrenfest+R method!'®!! the £-MFE method uses the
same procedure to decay the magnitude of the quantum
expansion coefficients, but a different choice of the
random phase distribution, such that the exact Lindblad
dynamics can be recovered, whereas Ehrenfest+R can-
not exactly recover Lindblad dynamics. The derivation
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procedure of L-MFE also does not assume any relation
between the energy gap of the two states versus the
decay rate, whereas Ehrenfest+R assumes a particular
parameter regime where the energy gap is much larger
than the decay rate. Our theoretical analysis further
provides valuable insights and mathematical justification
for the relationship between the dynamics of the reduced
density matrix and the dynamics of the ensemble of pure
states. Through these careful analyses, we discovered
an easy fix of the Ehrenfest+R method with the correct
“+R” decay rate, which can be used to fix Ehrenfest+R
dynamics to exactly reproduce Lindblad dynamics.!%!!

Throughout the theoretical development in this work,
we demonstrated the importance of including a care-
fully chosen random phase on both the coherences as
well as the diagonal populations of the dynamics. Us-
ing numerical simulations, we demonstrated that the £-
MFE method is equivalent to Lindblad dynamics for
a variety of complicated dynamical scenarios when nu-
clear DOFs are not present, including scenarios where
previous approaches (such as Ehrenfest+R!%!1) do not
match Lindblad dynamics. We further demonstrated
that when including nuclei in Ehrenfest dynamics, the £-
MFE method gives semi-quantitatively accurate results,
with the accuracy limited by the accuracy of the approx-
imations present in the semiclassical MFE approach.

This work provides a general approach for incorpo-
rating the Markovian dynamics of the Lindblad master
equation into a scalable, wavefunction-type approach, al-
lowing for the description of the dynamics of a quan-
tum subsystem interacting with an anharmonic classical
subsystem (nuclei) through a mixed quantum-classical
description, as well as a Markovian environment that
can be accurately described by Lindblad dynamics. The
current approach can readily be used in the context
of describing spontaneous emission due to light-matter
interactions,'%3% incorporating cavity leaking in polari-
ton chemistry,'416:28:65 or being combined with Ehren-
fest dynamics!®19:40:66 or a surface hopping approach? to
incorporate decoherence corrections. We envision that
the current approach provides a general framework for
future work to incorporate Lindblad dynamics into other
mixed quantum-classical or semiclassical approaches.
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Appendix A: The Ehrenfest+R Approach

The Ehrenfest+R method!? was originally developed
to simulate the electronic quantum subsystem during a
spontaneous emission process while accurately describ-
ing the feedback of the quantum dynamics onto the clas-
sical electromagnetic field. While the Lindblad master
equation was not used to derive the equations of motion
for the quantum subsystem during spontaneous emission,
the resulting equations of motion for the quantum sub-
system are mathematically identical to those of the Lind-
blad master equation for a two level uncoupled system
with a decay from an excited state to a ground state.
Thus, while the Ehrenfest+R method was not origi-
nally intended to broadly describe and simulate Lindblad
dynamics for generic quantum subsystems, the method
should be, in principle, able to do exactly this (at least
when the energy gap is much larger than the decay rate).
Additionally, Ehrenfest+R was a primary source of inspi-
ration for the £L-MFE method derived in this paper, so it
is fruitful to examine the quantum subsystem part of the
Ehrenfest+R method in order to understand its relation
to the £L-MFE method and to understand any potential
issues it has.

The Ehrenfest+R method may generally be applied
to the spontaneous emission between any two quantum
states as long as the energy gap is much larger than the
decay rate. For simplicity, a two-level system will be
considered to clearly understand the method, as was done
in the original paper!?. Consider a two-level system with
the following quantum subsystem Hamiltonian Hq and

a Lindblad jump-operator L defined as follows

O B A (A1)

where the jump operator has a decay rate I' < FE.
Throughout the discussion of the Ehrenfest+R approach,
we ignore the presence of Hoc(R) + He (see Eq. 5), al-
though it is possible to generalize it to incorporate these
terms. The Lindblad decay superoperator £; (whose
effect is given in Eq. 25) corresponding to the decay dy-
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namics can be written in the Liouwville space as follows

0o 0 0 T
o-rz 0 o

Li=1lo o -r/2 o (A2)
0 0 0 -T

where its effect on the reduced density matrix elements
Pab = (Ya|p(t)|tp) (in the Liouville space) is expressed as

P00 Tp1a
. Po1 —£P01
ﬁf“ [p(t)] - Eﬁ P10 - —3pP10 (AS)
P11 —T'p11

The overall time evolution of p, governed by Eq. 21, is

dp _

L= Ly li)+ £y [ = £17], (A4)
where the total Lindblad Liouvillian superoperator £ =

Ly + L; in the Liouville space is expressed as

0 0 0 r
_[0iE-§ 0 0

L=l o —iE—-5 0|’ (43)
0 0 0o T

which is £; (Eq. A2) plus L4 in the Liouville space.
The effect of this Liouvillian on the reduced density
matrix elements, written in the Liouville space, is

P00 FP1F1
N B — *)001
LI = L pPo1| _ (Z' 2 A6
o) = || = | oA (46)
P11 —I'pn1

The Liouvillian in Eq. A5 can be matrix-exponentiated
to determine the propagator of the density matrix during
a time step dt as

1 0 0 1 — e Tdt
0 eiEdtfl—‘dt/2 0 0

efit = 0 0 e—iEdt—Tdt/2 0 . (A7)
0 0 0 e~Tdt

d

where the above propagator e£% evolves the reduced den-

sity operator as

poo + p11(1 — e~T)

b o poyeiBdi—Tdt/2
e~ p(t)] = proe—iEdt-Tdt/2

P11 e—I‘dt

(A8)

While the dynamics described by the Lindblad Liou-
villian in Eq. A5 are identical to the quantum subsystem
dynamics that the Ehrenfest+R method aims to simu-
late, the particular implementation of the method was
developed by additionally considering the role the elec-
tromagnetic field should have in spontaneous emission.



The authors Chen et al. derive a Hamiltonian interac-
tion term (not present in Eq. Al) that represents the
electric dipole coupling between the excited and ground
states of the system. This time-dependent interaction
term H,,; is defined as follows

Hing = Q- (|0)(1[+[1){0]) = —AT" - Im[po1 ] (|0) (1] +[1){0]).

(A9)
This extra interaction term is added to the original I—AIQ
which defines the effective Ehrenfest Hamiltonian H Eh as
follows

0B (A10)

B B - Q
Hgn = Hq + Hint = [O } ;
with Q@ = —hD' - Im[po1]. The Hamiltonian in Eq. A10 is
the Hamiltonian that is used to propagate the dynamics
during the first stage of the Ehrenfest+R method (the
“Ehrenfest” stage). The time evolution of p governed by

H EnL is thus

P et [ ] = el an)
where the Liouvillian Lgy is expressed as
0 i —iQ 0

Lo = i} B0 —if) (A12)

- 0 —iE Q|7
0 —Q iQ 0

and the time evolution rate of p governed by Lgy in the
Liouville space is expressed as

2" - Il’n[po]_]2
iEpo1 + 4 - ITm[po1](p11 — poo)
—iEp10 — il'Im[po1](p11 — poo)
—2T" - Im[po1]?

Len [p(t)] = (A13)

Under the condition that I' < F, the oscillations of
the phase of the off-diagonal density matrix elements due
to E are much faster than the decay dynamics. This
condition is thus the regime where the Ehrenfest+R ap-
proach can be applied with guaranteed accuracy. Un-
der this condition, one can approximate the coherence
as po1 ~ |po1|e*Ft, thus Im[po1]? ~ |po1|? sin®(Et), which
can be used to get an approximate expression of Eq. A13.

For the purposes of analysis, it is convenient to average
out the insignificant effects that the E-dependent phase
oscillations have on the decay rates present in Eq. A13.
Note that in the actual Ehrenfest+R simulation, Lgn
(Eq. A13) is explicitly used. Thus, following Chen et
al.!%, we define a moving average

. 1 t+71
A=— / dt’ A(t),
t

T

(A14)

for a timescale 7 such that 2n/E < 7 < 1/T". The result
of performing this moving average will subsequently be
called the “time average” of the quantity, although it is
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important to understand that only the effects that the E-
dependent rapid oscillations have on the decay rates have
been averaged out while any remaining time dependence
is still present in the “time averaged” quantity.

By using Im[pg1]? ~ |po1|* sin®(Et) and sin®(Et) = 1,
the time average of Eq. A13 is expressed

r- \/’01|2
iEpo1 — T - po1(poo — p11)/2
—iEpio — T - pro(poo — p11)/2
=T |po|?

Lonlp(D)] = (A15)

To more clearly understand the dynamics of Eq. A15,
it is helpful to determine the effective time averaged Li-
ouvillian Lg, that, when applied to the reduced density
matrix, yields the same results as Eq. A15 such that

Len[p(t)] = Len[p(t)]-

Using the above definition in Eq. A16, one can obtain
the effective Liouvillian Lg;, as follows

(A16)

0 0 0 Fn

— JoiE-7m 0 0

Len=1o 0 " iE-mm o |0 AT
0 0 0 —Fm

where the time averaged diagonal decay rate kg and the
time averaged off-diagonal decay rate g, are expressed
as

(A18)
(A19)

ken =T - |po1)?/p11,
Fen = I (poo — p11)/2.

The time averaged dynamics in Eq. A15 can thus be
expressed as

kEnp11
(iE = Vgn)por
(—iE —Ygn)p1o
—kgnp11

Len [p(t)] = (A20)

The dynamics governed by Lgn (Eq. A17) do not
match the Lindblad dynamics governed by £ (Eq. A5)
since the decay rates kg, and g, from Eqgs. A18 and
A19 are not constant and depend on the density matrix
elements, among other reasons. This is not surprising
because it is impossible to recover open system Lindblad
dynamics through the deterministic dynamics of a Hamil-
tonian (Eq. A10). Thus, an additional relaxation propa-
gation (the “+R” stage of the dynamics) is introduced,'°
which is designed to correct both the diagonals and off-
diagonals of the reduced density matrix elements in the
{]0),]1)} subspace. This additional decay process (the
+R dynamics) is governed by Lg through

krp11

Lr[pm) = | IV

—krp11

(A21)



where the diagonal decay rate kr and off-diagonal decay
rate yr are expressed as

kr = 2L (1 — |po1|?/p11) Im [6i¢P01/|Po1|]2,

r
TR = 5(1 — poo + p11)-

(A22a)
(A22b)

The random phase ¢ € [—m, 7] is sampled at the be-
ginning of each trajectory and is keep constant through-
out the evolution of that trajectory. The purpose of this
phase, in the original context of the Ehrenfest+R devel-
opment, is to add randomness to the energy of the clas-
sical electromagnetic field that couples to the molecules
since the Ehrenfest+R method increases the energy of
the classical electromagnetic field proportional to kg at
each time step due to energy conservation. While this is a
necessary feature to accurately describe the classical elec-
tromagnetic field, it only affects the quantum dynamics
by increasing the variance between the trajectories.

This decay rate kr can be time averaged to yield kg
as

kr =T(1 = |po1?/p11). (A23)

The effect of the effective time averaged Liouvillian £r

can thus be expressed as

krp11
—YRPOL
—IRP10
—krp11

(A24)

The purpose of constructing the decay rates kg and vg
as they are in Eqs. A23 and A22b is to satisfy

I'= EEh + ER, (A25a)
r _
5 = VEn + R, (A25b)

which consequentially means that the propagation
through both stages of dynamics (Ehrenfest and +R)
matches Lindblad dynamics such that

L[p(t)] = Len [p(1)] + Lr [p(1)],

where L [p(t)], Len[p(t)], and Lg [p(t)] are defined in
Eq. A6, Eq. A20, and Eq. A24, respectively.

The dynamics associated with the relaxation compo-
nent Lg [p(t)] in Eq. A24 cannot be captured through
deterministic dynamics. This is because the off-diagonals
must be decohered independent of the diagonals, which
requires the use of a random phase that cannot appear in
a deterministic method governed solely by a Hamiltonian.
Instead of using a modified Hamiltonian in the relaxation
stage of the Ehrenfest+R method, the electronic expan-
sion coefficients {c; ¢} of state ¢ and trajectory & at each
time step are directly modified to attempt to achieve the

(A26)
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correct Lindblad dynamics. These coefficient modifica-
tions for states |0) and |1) can be summarized as

cr(t 4 dt) = ¢, (t)e Frdt/2] (A27a)
|co(t)[> + |1 ()]? (1 — e~ Fndt)
co(t + dt) = e'®c ,
|co(t)[?
(A27b)

with kg expressed in Eq. A22a. Here, the coeflicients
c1(t 4 dt) and co(t + dt) are for a particular trajectory &
(same as we defined in Eq. 30), and to make our following
notation concise, we drop the label £ in these coefficients.
Further, e!® is a random phase factor that enforces de-
phasing with the rate of 4g (Eq. A22b). The random
phase ® € [—m, 7] is governed by the following distribu-
tion

P(P) = (A28)

=+, RN < ygrdt
where P (@) is the probability distribution of the random
phase @, §(®) is the Dirac delta distribution, and RN
is a random number in the range of RN € [0,1]. The
‘+R” relaxation stage of the Ehrenfest+R approach is
summarized in Eq. A27a, Eq. A27b, and Eq. A28. This
provides an effective Poisson process for incorporating de-
coherence. Generalizing this approach to multiple state
has been proposed and tested as well'!, where the coef-
ficients {c; ¢} for |7) ¢ {|0),|1)} are not changed by the
Lindbladian time evolution, such that

Cj@(f + dt) = Cj,g(t).

What has not yet been determined from this analysis,
however, is whether the proposed relaxation method in
Eq. A27a, Eq. A27b, and Eq. A28 corresponds to the
effective time averaged Liouvillian in Eq. A24 or not. As
will be shown in the next section, the proposed relaxation
stage does not correspond to this Liouvillian, and the vr
decay rate must be modified in order to satisfy Eq. A26.

(A29)

Appendix B: Fixing the Ehrenfest+R Approach

To understand how these coefficient modifications in
Eq. A27a and Eq. A27b affect the overall dynamics, it is
best to work backwards to determine the effective Liou-
villian £g that generated these relaxation dynamics, and
figure out whether Eq. A26 is satisfied. The modified co-
efficients can be written in the density matrix form using
the outer product as

{ZT g i Zﬁﬂ [c5(t +dt), ci(t+dt)]
leo(t + dt)|?
co(t + dt)ci(t +dt
- CTEt + dtgcfl; (t+ dt; (B1)
c1(t+ dt)[?



Due to the presence of a random phase, the expectation
value of Eq. B1 is what the trajectory-averaged density
matrix will converge towards and will be treated as the
result of operating the effective Liouvillian L onto the
density matrix, which can be written as

< (§f|CO(;t;— d(tt)|2>dt)>

b (e ~ |A{eo(t +dt)ei(t +

e [p(t)] = <C(1)(t+dt)c(’l§(t+dt)>
(Jer(t + dt)[?)

o) + ler(®)]? (1
. c c —e~kRrdt
Co<t)C>f(t) <e“1>> e_det/Q\/l o2+ 1(t)‘2(1 R )

(B2)

. 6—det)

leo (8)]

|00(t)‘2+|01(t)‘2(1_6—det)
leo(8)]?

er (D) (1) (e71%) e‘“RdtW

OR

where we have explicitly used the expressions in
Eq. A27a- A27b to write down these coefficients. The
superoperator e“*% can be determined from Eq. B2 by
identifying the coefficients |co(t)|?, co(t)ci(t), c1(t)c(t),
and |c; (¢)|? on the left-hand side as the density matrix el-
ements poo, Po1, P10, and pi1, respectively, and consider-
ing the terms that these density matrix elements multiply
with as the rates that come from e“®%. This superoper-
ator can thus be identified as

10 0 1—e Fndt
0 0 0
€LRdt = 0 g 6* 0 ) (Bg)
000 e~ krdt
. C c —e—krdt
with 8 = <61<1>>6de:5/2\/| o (t)|2+] ‘16(3[‘)](21 R ,). Tak-

Lrdt

ing the matrix logarithm of e yields the Liouvillian

LR as
00 0 kg
02 o 0
L= dt « . B4
R O 0 lndf 0 ( )
0 0 0 —kg

The kg rate in the right hand column of Eq. B4 can be
approximated by the time averaged kr to express the
effective time averaged Liouvillian LR as

0 kr

_ Ing

Ln=|" @ 0 (B5)
00 = 0
0 0 0 —kgr

Eq. B5 is the effective Liouvillian that describes the dy-
namics due to the coefficient modifications in Eqs. A27a
and A27b. The total Ehrenfest+R dynamics can thus
be described by the sum of the Liouvillians Lgy and Lg,
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which is
Len+ Lr =
0 0 0 kEn + kR
0 iE — g, + 22 0 0
0 0 —iE— g, + 2 0
0 0 0 —FkEn — kR
(B6)

If the Ehrenfest+R method has been successful, this sum
in Eq. B6 should be equivalent to the Lindblad Liouvil-
lian in Eq. A5. The kgn + kr and —kgy — kr elements
in the right-hand column of Eq. B6 match the elements
inside the Lindblad Liouvillian £ (Eq. A5), T' and —T,
respectively, due to Eq. A22a. The elements in the mid-
dle two columns of Eq. B6 require closer inspection. The
expectation value inside of 8 can be evaluated as

<eﬂ¢> =1 — ygdt = e " (B7)
such that the expectation value will be treated as an
approximation of the exponential function in order to
extract yr outside of the logarithm. This approxima-
tion is present due to the choice of a Poisson rate pro-
cess in determining the distribution of the random phase
in Eq. A28 which results in the decoherence being a
first order approximation of an exponential decay. Thus,
the chosen distribution for the random phase ® requires
yrdt < 1 for accuracy. Treating the expectation value as
the exponential decay in Eq. B7, the leftmost non-zero
element of Eq. B6 can be evaluated as

In 3
iE— '7Eh+7"“7’E VEn —

1 —kgrdt/2 |co(t
tat (

r
Ty

o—kndt/2 | lo(t)

where Eq. A22b has be used to substitute I'/2 in for
Fen + 7r. Comparing the effective Liouvillian in Eq. B6
and the actual Lindblad Liouvillian in Eq. A5, the terms
kgn + kg = I’ match. However, the term iE — g, + %
in Eq. B6 fails to match the term ¢E — g in Eq. A5,
by the difference of the extra last term in Eq. B8. The
presence of this extraneous term is due to the modifica-
tion of the magnitudes of the coefficients in Eqs. A27a
and A27b. The expression inside of the logarithm in
Eq. B8 is the ratio of the modified coefficient magnitudes
to the original coefficient magnitudes. These magnitude
modifications change the coherence between the ground
and excited states (as well as all other states in larger
dimensional systems) thus their impact must be taken

)PP + e () (1 — e~Fndt)
|co(2)[?

@+ lea @) (1 — e~ Fndt)
lco(B)[? ’
(B8)



into consideration in the off-diagonal decay procedure in
order to match Lindblad dynamics.

To redeem the Ehrenfest+R approach, one can modify
the decay rate v, to absorb this additional term (the
last term in Eq. B8), such that the following equality is
explicitly enforced

— =~iE— = (B9)

in addition to I' = kgn + kr, thus actually enforcing
Len + Lr = L. The modified decay rate v is thus
defined as

’YﬁZ’YR

L iz, [l + e (P (1= P
it co()P? |

(B10)

which can be more conveniently expressed purely in
terms of coefficients as

=5 (L= o +lea(t)P)

|co(t + dt)ct(t + dt)|
dtl( o (bt (D)] )

where the expression inside the logarithm in Eq. B10 has
been replaced by the ratio of the magnitudes of the mod-
ified coefficients to the original coefficients (when explic-
itly using Eq. A27a and Eq. A27b). Eq. B11 is the correct
modification regardless of whether a linear approxima-
tion of the exponential function is used when modifying
the magnitudes of the coefficients (as has been done in
most applications of the Ehrenfest+R method). This is
validated numerically in Fig. 5 where panels a and c are
the results of the Ehrenfest+R method with the original
~vr (and a linearization of the exponential when calcu-
lating the modified coefficient magnitudes) while panels
b and d are the results when replacing g with 7§ from
Eq. B11.

As opposed to the Ehrenfest+R method, the L-MFE
method generates the identical Liouvillian £; (Eq. A2)
associated with the quantum jump operator L. This can
be verified by using the procedure outlined in Eq. Bl-
Eq. B2

(B11)

(|eo(t + dt)|?)
(co(t + dt)ct(t + dt))

eCL [p(t)] = (c1(t + dt)ci(t + dt)) (B12)
{lex(t + dt)[2)
ICO( 2+ (1= e ") ey (1)
co(t)ci(t) th/2\/|co<t \2+||cclo<€t ‘21 )

- 21 ¢ e—Tdt
cl(t)co(t)< —10> —I‘dt/2\/| o(t)] +||é(](§2)\‘2(1 )
|cl(t)‘2€—1“dt
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Using the explicit expression of <eii9> (see Eq. 59) inside
Eq. B12, we can express the effective Liouvillian as

1 0 0 1 — e Tdt
) 0 e Tat/2 g 0
eﬁLdt = 0 0 edet/Q 0 (Blg)
0 0 0 e~ Tdt

Taking the matrix logarithm of the above e“i% indeed
yields the Lindblad jump Liouvillian £; in Eq. A2. One
can also generalize the above argument for the many
states situation as described in Eq. 24.

Appendix C: Molecular Hamiltonian of the Isomerization
Model System

In this section, we provide detailed expressions for the
model matter Hamiltonian used in this study. The molec-
ular Hamiltonian Hy is described by a model system that
undergoes an isomerization reaction®%-67

Hyi = Tr + E4(R)|g){g] + Ee(R)[e)(el. (C1)

Here, |a) € {|g), |e)} represents the electronic ground or
excited states, R represents the nuclear reaction coordi-
nate, and TR is the nuclear kinetic energy operator. The
electronic potentials Ey(R) and E.(R) are modeled with

the following expressions
\/Dz (vi(R) — Uz(R))2

¢ D3 + W) - v4<R>>2

where v;(R) = Ai + B;(R — R;)?, and the rest of the
parameters (in a.u.) are tabulated below

1]0.049244 0.183747 -0.75 0.073499
210.010657 0.183747 0.85 0.514490
3

0.428129 0.183747 -1.15 -
410.373005 0.146997 1.25 -

EQ(R>: ( +v2

( +U4

E.(R) =

Note that the derivative coupling (g|V g|e) is not included
in the model system. With this assumption, both the |g)
and |e) states effectively become diabatic states. Numer-
ical simulations that do consider these derivative cou-
plings can be found in the Supporting Information of
Ref. 60.

Appendix D: Molecular Cavity QED with Cavity Losses

The lifetime of the cavity mode is finite, due to the cou-
pling between the cavity mode and the far-field photon
modes outside the cavity described by the environmental
Hamiltonian

N Ay 1
Hg = Z he (bbr + i)a (D1)
k



where I;L and by, are the raising and lowering operators,
respectively, for far-field mode k. The interactions be-
tween the cavity mode and the far-field modes can be
described by the following Gardiner-Collett interaction
Hamiltonian® " (denote as the system-environment in-
teractions in Eq. 1) as

H=(a"+a)® Z hgk(l;L + br),
%

(D2)

where the coupling strength between the cavity mode
and the k¢, environmental mode is gi, characterized by
a spectral density,'>"! and we have ignored Z. and Zg
in Hy. This Hamiltonian can be rigorously derived from
QED first principles, and has been used to investigate
polariton quantum dynamics in a dissipative cavity.'*™

Using the molecule-cavity hybrid Hamiltonian Hqgp
in Eq. 77 as Hg and the jump operator'* Lg in Eq. 81
to describe cavity losses, one can rewrite Eq. 12 (without
explicitly showing 7. and fR) as follows

dps i

dt  h
where the term —%{de, ﬁs} causes population decay as
well as decoherence among states, whereas the apgal
term (refilling term) makes the population reappear in
the new state that the decay leads to. An equivalent way
to write the Lindblad master equation is

(s, ps) + T (apsa® — g{ata,ps}),  (D3)

dp T/~ . IS “a A
w52 (HeffpS - PSHJH) + Tapsal, (D4)
dt h
where the effective Hamiltonian is
. N A’
Heﬁ == HS - 717& & (D5)

The same expression has been used in the development
of the stochastic Schrodinger equation®® 37 (see Eq. 73)
that is equivalent to Lindblad dynamics. Thus, when
completely ignoring the refiling term T'apsal, one can
approximate Lindblad dynamics as the time dependent
Schrodinger equation (TDSE) with the complex Hamil-
tonian ﬁeg, which has been used in several recent works
on molecular cavity QED.'%2172% In the situations where
the refilling term is negligible, the dynamics can equiva-
lently be described by using the Schrodinger equation of
a wave function evolving with the effective Hamiltonian.
However, for the applications considered in the current
work in Fig. 7, one cannot ignore the T'apsal term as we
do care about the population refilling in the |g,0) state,
as well as the proper decoherence among these states.
Note that despite the common usage of the Lindblad
jump operator Lg = 4 ® Z, ® Zr (Eq. 81) for describ-
ing cavity losses,™ this jump operator is actually derived
by considering the simpler system Hamiltonian Hs =
hw, (de + %) ® I, ® ITr without explicit consideration
for the matter Hamiltonian or molecule-cavity interac-
tions in Hqep. Thus, Eq. D3 should be viewed as a phe-
nomenological equation, and the rigorous Lindblad mas-
ter equation for cavity QED should be derived starting
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from the total Hamiltonian?%73 ﬂT = E[QED + ﬁE + ﬁl,

where Hg and H; are expressed in Eq. D1 and Eq. D2,
respectively. The details of the microscopic derivation of
the Lindblad master equation for the Jaynes-Cumming
model with cavity losses, as well as for comparison with
Eq. D3, can be found in Ref. 72.
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