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Abstract—Traffic intersections are prime locations for deploy-
ment of infrastructure sensors and edge computing nodes to
realize the vision of a smart city. It is expected that the needs
of a smart city, in regards to traffic and pedestrian traffic
systems monitored by cameras/video, can be met by using state-
of-the-art artificial-intelligence (AI) based object detectors and
trackers. A critical component in designing an effective real-time
object detection/tracking pipeline is the understanding of how
object density, i.e., the number of objects in a scene, and image-
resolution and frame rate influence the performance metrics. This
study explores the accuracy and speed metrics with the goal of
supporting pipelines that meet the precision and latency needs
of a real-time environment. We examine the impact of varying
image-resolution, frame rate and object-density on the object
detection performance metrics. The experiments on the COSMOS
testbed dataset show that varying the frame width from 416 pixels
to 832 pixels, and cropping the images to a square resolution,
result in the increase in average precision for all object classes.
Decreasing the frame rate from 15 fps to 5 fps preserves more
than 90% of the highest F1 score achieved for all object classes.
The results inform the choice of video preprocessing stages,
modifications to established Al-based object detection/tracking
methods, and suggest optimal hyper-parameter values.

Index Terms—Object Detection, Smart City, Video Resolution,
Deep Learning Models.

I. INTRODUCTION

Urban environments pose significant challenges towards re-
alization of smart city intersections, owing to the constant and
dense flow of vehicular and pedestrian traffic in constrained
spaces. Deployment of traffic/pedestrian tracking systems is
complicated by strict design requirements, exemplified by
the need to maximize detection accuracies and to achieve
close to real-time detection. Automation of smart intersections
requires the use of artificial intelligence (AI), which needs
large quantity of high quality data to train object detection and
tracking models. To that effect, either hand-crafting a robust,
fast and reliable model, or choosing an off-the-shelf neural
network architecture is only one of many decisions in design-
ing smart traffic intersection monitoring system. Video streams
from surveillance cameras which monitor traffic intersections
are the primary source of data. Hardware specifications and
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video characteristics of the cameras dictate the design and
functioning of a model. Video resolution, aspect ratio and
video frame rate, to name a few of the critical variables, are
the basic characteristics of the data, and their inherent biases
will directly influence the model performance. More abstract
characteristics such as the frequency and per-frame-density of
objects (henceforth referred to as “object density”) will also
have an effect on the speed of inference.

Traffic intersections are prime locations for deploying
smart-city sensors, communications and edge computing
nodes. The study described in this paper relies on video record-
ings of a smart city intersection which is part of the Cloud
Enhanced Open Software Defined Mobile Wireless Testbed
for City-Scale Deployment (COSMOS) [1], [2], located in
New York City (NYC) as part of the NSF PAWR program.
The study uses cameras mounted high above the COSMOS
pilot intersection at 120th Street and Amsterdam Avenue,
as seen in Fig. 1 and Fig. 2. The bird’s-eye cameras are
mounted on the 12th floor of the Mudd building at Columbia
University, therefore minimizing object occlusion (due to a
near-vertical perspective) and avoiding the issues of privacy.
The wide-angle cameras also provide a contextual view of
the entire intersection. With highly elevated positions of the
bird’s eye cameras, the performance of object detection on
small objects can be notably degraded - in an image with
1920 x 1080 resolution, the size of a pedestrian is smaller
than 30 x 30 pixels. Higher resolution video input, with aspect
ratio matched to the scene under consideration, is intuitively
expected to produce notably better object detection accuracy,
but also to significantly increase the inference time.

To explore the changes in detection performance as a
function of input resolution and aspect ratio, and to understand
the changes in inference speed with different object densities,
we conducted 3 investigations using YOLOv4 [3] as the base
object-detection model:

o The detection performance as a function of different input

resolutions and aspect ratios.

o The inference time of the deep-learning based video pro-

cessing pipeline as a function of varying object density.

o F1 score study to evaluate the quality of object detection

under various input resolutions and frame rates.



Fig. 1: Four cameras deployed at different heights on the
Mudd building at Columbia University, COSMOS pilot site -
120th St. and Amsterdam Ave, NYC.

building; Right: bird’s eye view from the 12" floor of the
Mudd building.

An example of an application that can take advantage of the
results in this paper is the investigation of social distancing
behavior of pedestrians during pandemics (e.g., [4]).

II. RELATED WORK

This section provides a review of the existing research in
object detection involving multiple input resolution models,
the impact of the density of objects in video frames, and other
relevant video analytics research.

Speed/Accuracy Trade-offs: Huang et al. explored
speed/accuracy trade-off for “real-time” object detectors [5],
focusing on Faster R-CNN, R-FCN, and SSD systems.
YOLOv4, which has a significant edge in inference speed,
was not evaluated.

Multiple Input Resolutions: Peng et al. explored varying
model performance metrics due to decreasing input resolution
as a result of down-sampling [6]. The authors found that the
best balance between detection accuracy, detection speed, and
file size (upon image compression) was at § times downsam-
pling, and that file compression does not necessarily have an
adverse effect on the overall accuracy. These conclusions do
not generalize to unavoidable problems related to small object
detection.

Density of Objects: In busy urban environments, the density
(number) of objects in a scene is highly variable, and is
a function of the time of the day and the type of object
(pedestrian or vehicle). This variability results in the imbalance
problems as defined by Oksuz et al. [7]. Class imbalance is

the most commonly encountered problem in object detection,
where disparity in the numbers of input bounding boxes
pertaining to different classes occurs. Scale imbalance arises
when objects present in different scales along with different
number of examples for each respective scale. This imbalance
imposes a limitation on how effectively the model learns to
identify examples of each class when their relative scale varies
throughout the data. While the implications of class and scale
imbalance are easily experienced through training, the degree
of impact on inference time are of particular interest in our
analysis. Similar explorations utilizing CUDA profiling are not
found in recent literature.

Video Analytics for Object Detection: Video analytics are
often combined with classical digital image processing meth-
ods as well as new deep learning based techniques. In order to
achieve comparable performances while reducing the cost of
resources, the choice of video configuration (e.g., resolution
and frame rate) should be set up properly. Configurations that
meet the accuracy threshold can often vary by many orders
of magnitude in their resource demands [5]. For example, the
higher the resolution, the more pixels are involved in the rep-
resentation of individual objects, and the need for computation
scales up in neural network models. The best configuration can
also vary over time. Many video analytics systems choose their
overall optimal configurations by conducting profiling at the
beginning of a video, while Chameleon system [8] keeps up
with the intrinsic dynamics in videos by periodically profiling
to find an optimal resource-accuracy trade-off. Chameleon
leverages domain-specific insights on the temporal and spatial
correlations of these configurations to realize its frequent
changes. This work inspired us to evaluate our object detectors
at different video settings. Due to potential communication
bandwidth restriction in city deployments, the results of our
study can be used for model selection and configuration
optimization in the traffic intersection applications.

III. METHODOLOGY

This section describes the methodology undertaken for
multiple resolution, object density, and video analytics studies.
We discuss the custom COSMOS smart-intersection dataset,
and the modified YOLOv4 object detector used to classify
vehicles and pedestrians in the intersection.

A. System Architecture

Testbed: The study has been performed using video record-
ings captured by the 12th floor bird’s-eye cameras (Fig. 1)
integrated into the pilot node of the COSMOS testbed [1],
located at the intersection of Amsterdam Avenue and 120th
street in Manhattan, NYC. The beyond-5G COSMOS testbed
integrates (i) low-latency high-bandwidth wireless technolo-
gies such as millimeter-wave (mmWave) [9]; (ii) optical x-haul
communications [10]; (iii) Al-enabled edge cloud computing
servers; and (iv) sensors such as cameras [11].

Data Acquisition: Highly elevated cameras under considera-
tion in this study are used with the goal of privacy preservation,
which would be compromised by cameras located at lower



floors that can be used to recognize pedestrian faces and
vehicle licence plates. Bird’s eye cameras also reduce the
problem of object occlusions while providing a wide-angle
contextual view into the whole intersection, as shown in
Fig. 2. The videos are recorded in 1920 x 1080 resolution
at 15 frames per second and processed into a calibrated video
with a 90 degree vertical bird’s-eye view. Whereas privacy
preservation is guaranteed, the small size of objects is a
serious challenge for object detection algorithms which have to
provide sufficient detection accuracy for safety-critical traffic
applications.

Data Preprocessing: To get true “bird’s eye” videos that
are perpendicular to the ground, video calibration is applied.
It transforms the distorted traffic intersection scene into a
rectangle with a uniform size. This is achieved by calculating
the homography matrix which maps the coordinates of raw
videos into the real-world coordinates. Image cropping is
implemented in the next step - the removal of irrelevant im-
age parts increases the per-pixel size of information-carrying
features, and improves the detection performance.

Object Detection: YOLOv4 [3] is a state-of-the-art one-
stage object detector, which simultaneously resolves region
proposals and executes the classification. To improve the
detection of pedestrians and vehicles, we customized YOLOv4
in the following ways: (i) we extracted shallower feature maps
with small receptive fields to detect pedestrians of small sizes;
(i) we implemented anchor box re-clustering to select proper
scale factors of anchor boxes during the training; and (iii) we
applied transfer learning using the following relevant datasets:
ImageNet dataset [12], VisDrone2019 dataset [13], and our
COSMOS traffic dataset.

B. Varying Input Resolution

Video resolution is an important parameter to consider when
trying to optimize the performance of the object detection
model. A significant problem that presents itself, both during
training and inference, is the inability of the model to detect
pedestrians with a precision as good as the precision achieved
in the detection of vehicles. The intuitive explanation is that
pedestrians are much smaller than vehicles, especially when
considering that bird’s-eye videos are taken from very high
elevation. By using larger input resolutions, the size of the
pedestrians can be up-scaled in absolute pixel size, leading to
better results in the detection.

The backbone of the YOLOv4 architecture takes square
images as input to the model, and therefore YOLO model
contains a built-in preprocessing block to scale arbitrary image
inputs to a resolution whose width and height is a multiple of
32. Given that the cameras used in our experiments record
in 1920 x 1080 native resolution, this study seeks to find
the optimal preprocessing to down-sample and crop the input
video frames while maximizing the average precision among
the vehicle and pedestrian class. The dataset of COSMOS
intersection videos was processed and partitioned into : (i) the
original dataset of 1920 x 1080 videos with 16 : 9 aspect ratio
(16 : 9 native frames); and (ii) cropped 832 x 832 dataset

TABLE I: Models for Input Resolution Study

Model ID Dataset Width | Height
al 1920 x 1080 832 480
a2 1920 x 1080 608 352
a3 1920 x 1080 416 256
bl 1920 x 1080 832 832
b2 1920 x 1080 608 608
b3 1920 x 1080 416 416
cl 832 x 832 832 832
c2 832 x 832 608 608
c3 832 x 832 416 416

Fig. 3: (a) Preprocessed 16 : 9 native frame; (b) 16 : 9 frame
squared by zero-padding; (c) Square-cropped frame of the
relevant part of traffic intersection only

(square-cropped frames) which focuses on the center of the
intersection. From these two datasets, we are able to specify
the desired resolution as a parameter in the YOLOv4 model
for resizing.

The study experiments with three models for each resolution
of each unique cropping that can be done from both datasets,
as summarized in Table I. The three considered frame widths
for the input frames are 832,608, and 416 pixels. The first
three models are created from the original 1920 x 1080 frames
without any preprocessing. The second set of three models
uses a downsampled version of the original 1920 x 1080 frames
keeping the original aspect ratio while applying zero padding
to generate the square frames. The last set of three models
uses the input frames which were downsampled directly from
the 832 x 832 dataset, which is the cropped dataset generated
by preprocessing the original 16 : 9 frames without any
(excess) information other than the activity within the traffic
intersection. The illustration of the three types of frames is
presented in Fig. 3.

C. Object Density Study

By varying the video resolution, we seek to identify trends
from the best-performing to the worst-performing models, in
terms of the amount of raw pixels that the model can learn



TABLE II: Sum of Objects Over All Frames in Videos

Camera/Video | Total Number of Objects
GoPro_1 26786
GoPro_2 21311
GoPro_3 19628
GoPro_4 19002
Hikvision_1 13935

GoPro_5 11999
Hikvision_2 8755
Hikvision_3 8688
Hikvision_4 6354
Hikvision_5 4452

from and use to infer vehicles and pedestrians. Unlike for
multiple resolution studies, the effect of scale and class im-
balance in object detection on the inference time and hardware
resource use is not intuitively obvious.

We continued the analysis by examining if there is consis-
tent relationship between the number of objects in an input
video (object density) and the speed/computational efficiency
of the model inference. Six models were chosen from the
original nine models explored in the resolution study. These
models consist of the set of three models trained on the square
resolution frames, and the set of three models trained on the
16 : 9 native frames. The names of the videos for this study
can be seen in Table II. Half of the videos were recorded
using a GoPro camera, while the other half were recorded
with a Hikvision camera. The videos are arranged in order of
decreasing total number of objects (density) across all frames.
By doing so, the trends in the profiling metrics, such as total
session time and kernel time, can be observed as we vary the
object density in a linear fashion.

Code profiling is used to understand resource utilization of
a given program, hardware resource consumption in terms of
time and memory and, ultimately, to resolve performance bot-
tlenecks and optimize models to execute faster. Deep learning
frameworks like TensorFlow and PyTorch support profiling
either through built-in libraries, or through an external profiler
such as NVIDIA Visual Profiler (NVVP). Our YOLOV4
model is built using the CUDA/C-based Darknet framework.
Darknet framework does not have a built-in profiling tool, and
since it relies on CUDA, NVVP is used.

D. Video Analytics for Object Detection

High-quality videos are hard to obtain especially in real-
time systems due to possibly limited transmission bandwidth
and time delay caused by hardware. Therefore, examining
how the detection performance changes as the video quality
decreases is important for configuring the underlying commu-
nication systems/protocols.

To obtain videos of reduced quality, we down-sampled the
original videos to get lower resolutions and lower effective
frame rates. The lower resolution was achieved by YOLO’s
default resolution adjustment scheme. For our experiments we
included videos of resolution 416 x 416, 608 x 608 and 832 x
832. The lower effective frame rates were achieved by freezing
a frame (duplicating a frame) over the span of the consecutive
frames. For purposes of illustration, let us define a video, such

that it is a tuple whose entries are defined through an indexing
multi-set. Then, the original video A can be defined as

AiEIv-[:{172737475a6777“'}7 (l)

where each ¢ € [ is a unique entry, despite / being a multi-set.
A new video, called B, with half of the effective frame rate
as the original, would have its frames defined as

Bjes,J ={j*:j€1I,j (mod?2)=1}. 2)
In the given example, B would be defined as
Bjes,J =11,1,3,3,5,5,....15,15}. 3)

A third video C', with one third of the effective frame rate
as the original, would have its frames defined as

Crer, K ={k*: keI j (mod3)=1}. 4)

In the given example, C' would be defined as
Crer, K ={1,1,1,4,4,4,7,7,7,....13,13}. 5)

We experimented with effective frame rates of 15, 7.5 and
5 frames per second.
The performance is evaluated in the following ways:

o We consider performance not only based on the evalua-
tion against ground truth annotations, but also against the
highest accuracy results. This allows us to monitor the
performance drop-off for low-quality videos compared to
the highest-quality videos.

e Fl-score is used as the key metric as it is the harmonic
mean of precision and recall, which are both important
indicators of model performance.

IV. RESULTS
A. Resolution Study

The goal of the resolution study was to understand the
empirical impact of varying resolutions and aspect ratios on
the performance. In the study, nine different models were eval-
uated. The three resolutions for each set of aspect ratios were
832, 608, and 416. The performance measure used to evaluate
the models was the mean Average Precision (mAP) over three
classes considered in each video: pedestrians, vehicles, and
background.

As intuition might suggest, the models which were trained
on higher resolution input frames resulted in higher mAP
values compared to the other two classes. This finding is
consistent for all three types of frames, and can be seen in
Fig. 4. Considering the performance of models trained on 3
distinct types of frame cropping, it can be seen that the square-
cropped frames outperform, in mAP measure, both 16 : 9
native frames and 16 : 9 squared with zero-padding frames,
over all resolutions. Since the square-cropped frames focus
only on the activity within the intersection, there is a smaller
amount of irrelevant information being considered in the object
detection. The other two types of input frame cropping still
contain useless (and ultimately harmful) information such as



Mean Average Precision (mAP) vs. Input Resolution

701

i‘

s

5 657

(=]

g

(=9

L, 60 1

&

g

I

€ 55 1

E —&— Squared Resolution

50 - =& 16:9 Squared Resolution
—&— 16:9 Resoclution

B08 832

Input Resolution

416

Fig. 4: Average Precision for both pedestrian and vehicle
class: (red) Square cropped frame, (blue) 16 : 9 frame
squared with zero-padding, (green) 16 : 9 native frame

the sides of streets and even irrelevant padding, as seen in
Fig. 3 (a) and (b).

Considering the average precision (AP) of each object class
separately, there is a profound improvement in performance
when using the square-cropped input frames, for vehicle and
pedestrian classes, illustrated by Figs. 5 and 6, respectively.
The important observation is that vehicle AP is notably higher
than pedestrian AP. By training the models on all three
resolutions using the square-cropping, the AP achieved for the
pedestrian class is at least 15% higher for all three resolutions,
with a maximum increase of approximately 20% for the
416 x 416 frames. The other two types of input frames, the
16 : 9 native frames and the 16 : 9 squared with zero padding
frames, serve as the baseline methods, show the improvement
which the square-cropping method has on the detection of
pedestrians, with the 16 : 9 squared with zero-padding input
frames outperforming the native 16 : 9 frames. YOLOv4 takes
input frames of a square size, meaning that there is built-in
preprocessing into the model architecture. This may explain
why there is worse performance on the native 16 : 9 frames
given that the 16 : 9 squared frames have already been resized.

Given that the mAP is higher for the square input frames,
it is also the case that the vehicle class benefited from the
square input frame preprocessing. One thing to note is the
marginal increase in precision over the input resolution. This
is to be expected because of the native size of the vehicles
when compared to the native size of pedestrians in a bird’s eye
viewpoint. An incremental increase in the size of a pedestrian
will have a more profound impact on detection compared to
the same change made on a vehicle.

B. Object Density Study

Four core metrics are used in the object density study:

1) Average Kernel Time - AKT
2) Average Total Session Time - ATST

Vehicle Average Precision vs. Input Resolution

s { ¥ \
% 4
®
c 86
=]
n
o 84 1
[
wu
B B2
g
< an -
—&~ Squared Resolution
78 =@~ 16:9 Squared Resolution
—&~ 16:9 Resalution

E08 832

Input Resolution

416

Fig. 5: Average Precision for the vehicle class: (red) Square
cropped frame, (blue) 16 : 9 frame squared with
zero-padding, (green) 16 : 9 native frame
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Fig. 6: Average Precision for the pedestrian class: (red)

Square cropped frame, (blue) 16 : 9 frame squared with
zero-padding, (green) 16 : 9 native frame

3) Average Utilisation - AU
4) Average Number of Kernel Invocations - ANKI

Three analyses were conducted in the object density study.

The first analysis involves obtaining all four metrics for each
model. Plots of the metrics as a function of input resolution
can be seen in Fig. 7, where red points denote square-cropped
resolution models, and blue points denote 16 9 native
resolution models. The analysis shows the linear relationship
between AKT, ATST, AU and the input resolution. On average,
AKT, ATST, and AU increase as a function of resolution for
all models trained on both datasets. However, ANKI does not
show a discernible trend as a function of resolution.

The second analysis is relevant to the density of objects
within the videos used for inference for our six models. The
videos filmed on GoPro cameras have a larger number of
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Fig. 7: Average kernel time, session time, utilization, and
kernel invocations for models trained on square-cropped
videos (red) and 16 : 9 native videos (blue)

total objects across all frames when compared to those of
Hikvision cameras. Due to this fact, we were able to use the
type of camera to observe how the density of objects influences
the profiling metrics. Through pairwise comparison of bars
in Fig. 8, we can determine the difference in metric values
between the two cameras for square-cropped and 16 : 9 native
frame models. The pairwise results of ATST agree with the
hypothesis of the density study; this may be due to the fact
that session time is greater for cameras recording scenes with
larger number of objects (GoPro) when compared to those
recording fewer objects (Hikvision). The pairwise results for
AU, however, show an increase in average utilization for the
camera which is recording fewer objects (Hikvision) when
compared to the camera recording more objects (GoPro).
Pairwise comparison of the results for ATST, AKT and ANKI
shows no obvious trend.

The final analysis considers each video used for inference
individually, and categorizes them by the total number of
objects found in all frames of the video. Plots were generated
for both square-cropped and 16 : 9 native frame models for
ATST, AKT and AU in Fig. 9. ANKI was disregarded due
to the lack of an obvious trend from the second analysis. In
terms of trends for each metric, we see that ATST decreases as
the total number of objects decreases. AKT, the kernel time,
remains relatively unchanged over the total number of objects,
except with some odd behavior for the 416 x 416 model with
16 : 9 native frame inputs. Once again, AU proves to be a
point of contention, since it increases as the number of objects
decrease.
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Fig. 8: Session time, kernel time, and utilization for each
video (by its total number of frames) for models trained on
(green and red) 16 : 9 native, and (blue and orange)
square-cropped frame datasets
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column) datasets

C. Impact of Resolution and Frame Rate on F1 Score

We use different combinations of input video resolutions
and frame rates to evaluate the model. After running the



inference, F1 scores are calculated based on the ground truth
annotations. We show the results in Fig. 10 for three different
resolutions and three sampling frame rates. As expected, the
F1 score decreases with reduction in resolution as well as
frame rates. We note that there is a dramatic performance drop
for pedestrians when resolution decreases from 832 x 832 to
608 x 608, while lower frame rates have smaller impact on
the decreasing F1 score. This is reasonable since the objects
(pedestrians and vehicles) in this traffic scenario (12th floor
COSMOS dataset) are relatively small compared to other
public traffic datasets, due to the elevation of camera. Lower
resolution leads to higher loss of visual information which
represents features of objects, whereas lower frame rates keep
most of the information as objects move at a slow pace from
the vantage point of the bird’s eye camera. The impact of
the resolution change onto F1 scores for vehicles is limited
below 5%, while the accuracy increase from 5 fps to 7.5 fps
looks more notable. Cars still preserve a reasonable size in
the calibrated birds’ eye view so that most of their features
remain even in low-resolution videos such as 416 x 416 and
608 x 608.

The evaluation results in Fig. 10 show how F1 scores change
when unfavorable communication conditions occur compared
to the optimal performance. They inform how one should
adjust the settings of video streams to minimize the decrease in
model performance as much as possible, based on the current
communication conditions such as bandwidth, delay, and jitter.

V. CONCLUSION

We presented several studies investigating the quality of
detection of pedestrians and vehicles from videos acquired
at a smart city traffic intersection, using modified YOLOv4
object detection architecture. We examined how the variation
in image-resolution and object-density influence the mean
average precision, average precision, average kernel execution
time, average total session time, average utilisation, and aver-
age number of kernel invocations. YOLOv4 was used as the
object detector due to its state-of-the-art performance, and the
ability to modify the model to suit specific datasets. The videos
were acquired from multiple bird’s eye cameras located at the
COSMOS smart-city intersection in NYC, and preprocessed to
ensure maximal feature extraction and detection performance.

By varying the cropping method applied to the original
videos and the input resolution used to train each model,
we aimed to improve the limited accuracy in detection of
pedestrians within the videos (as a consequence of their small
size when viewed from a bird’s eye camera). By varying
the frame width from 416 pixels to 832 pixels, we observe
the conclusive increase in average precision of the pedestrian
class, as well as in the mean average precision among all
classes, for all cropping methods used. The best results are
observed for the square-cropped dataset, which focuses on the
activity within the center of the intersection while cropping
out the inactive portions of video frames.

Pedestrian F1 Score vs. Resolution & Frame Rate
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Fig. 10: F1 scores as function of frame rate and resolution,
for pedestrians, vehicles and average for both classes,
respectively.

‘We gained insight into the computational complexity of each
of the nine models by profiling the inferences performed on ten
test videos. By selecting videos which have the same length
but a variable total number of objects across all frames, we
explored the impact of the object density on the inference
time, and other metrics generated by profiling. The results
indicate that the session time decreases as the total number
of objects decreases, which is to be expected. The kernel time
remains relatively unchanged over the total number of objects,
except for the outlier behavior for 416 x 256 resolution. The
behavior of the utilization metric is a point of contention since
it increases as the number of objects decreases.

According to the F1 score analysis, the best performance is
achieved with the highest resolution and frame rate settings.
In our case, that is 832 x 832 pixels and 15 frames per second.
When the network conditions worsen, the video stream’s first



choice is to reduce the frame rate to some value above 7.5 fps,
as its impact on overall performance is limited. Further quality
reductions would be determined by the trade-off between
tracking performance and image quality preservation.

The results of the study can be used to inform the choice
of system configuration, video preprocessing parameters, and
YOLO hyper-parameters for video-based monitoring of smart
city traffic intersections.

ACKNOWLEDGMENT

The authors thank Ujwal Dinesha, Emily Bailey, and
Mahshid Ghasemi. The team is grateful for the support of
Columbia School of Engineering, Columbia Data Sciences
Institute, and Rutgers/WINLAB.

REFERENCES

[1] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Ma-
heshwari, P. Skrimponis, and C. Gutterman, “Challenge: COSMOS:
A city-scale programmable testbed for experimentation with advanced
wireless,” in Proc. ACM MobiCom’20, 2020.

[2] “Cloud enhanced open software defined mobile wireless testbed for city-
scale deployment (COSMOS).” https://cosmos-lab.org/, 2021.

[3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Op-
timal Speed and Accuracy of Object Detection,” arXiv e-prints,
p. arXiv:2004.10934, Apr. 2020.

[4] M. Ghasemi, Z. Kostic, G. Zussman, and J. Ghaderi, “Auto-sda: Auto-
mated video-based social distancing analyzer,” in 3rd ACM Workshop
on Hot Topics in Video Analytics and Intelligent Edges (HotEdgeVideo
2021), pp. 7-12, Oct 2021.

[5] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al., “Speed/accuracy trade-offs
for modern convolutional object detectors,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7310-7311,
2017.

[6] C. Peng, K. Zhao, A. Wiliem, T. Zhang, P. Hobson, A. Jennings, and
B. C. Lovell, “To what extent does downsampling, compression, and
data scarcity impact renal image analysis?,” CoRR, vol. abs/1909.09945,
2019.

[71 K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance problems
in object detection: A review,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 43, pp. 3388-3415, Oct 2021.

[8] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc. ACM
SIGCOMM’18, Aug 2018.

[9] X. Gu, A. Paidimarri, B. Sadhu, C. Baks, S. Lukashov, M. Yeck,
Y. Kwark, T. Chen, G. Zussman, I. Seskar, and A. Valdes-Garcia,
“Development of a compact 28-GHz software-defined phased array for
a city-scale wireless research testbed,” in Proc. IEEE IMS’21, 2021.

[10] J. Yu, C. Gutterman, A. Minakhmetov, M. Sherman, T. Chen, S. Zhu,
G. Zussman, I. Seskar, and D. Kilper, “Dual use SDN controller for
management and experimentation in a field deployed testbed,” in Proc.
IEEE/OSA OFC’20, T3J.3, 2020.

[11] S. Yang, E. Bailey, Z. Yang, J. Ostrometzky, G. Zussman, I. Seskar, and
Z. Kostic, “Cosmos smart intersection: Edge compute and communica-
tions for bird’s eye object tracking,” in Proc. 4th International Workshop
on Smart Edge Computing and Networking (SmartEdge’20), 2020.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” arXiv
e-prints, p. arXiv:1409.0575, Sept. 2014.

[13] P. Zhu, L. Wen, D. Du, X. Bian, Q. Hu, and H. Ling, “Vision Meets
Drones: Past, Present and Future,” arXiv e-prints, p. arXiv:2001.06303,
Jan. 2020.



