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Abstract—Traffic intersections are prime locations for deploy-
ment of infrastructure sensors and edge computing nodes to
realize the vision of a smart city. It is expected that the needs
of a smart city, in regards to traffic and pedestrian traffic
systems monitored by cameras/video, can be met by using state-
of-the-art artificial-intelligence (AI) based object detectors and
trackers. A critical component in designing an effective real-time
object detection/tracking pipeline is the understanding of how
object density, i.e., the number of objects in a scene, and image-
resolution and frame rate influence the performance metrics. This
study explores the accuracy and speed metrics with the goal of
supporting pipelines that meet the precision and latency needs
of a real-time environment. We examine the impact of varying
image-resolution, frame rate and object-density on the object
detection performance metrics. The experiments on the COSMOS
testbed dataset show that varying the frame width from 416 pixels
to 832 pixels, and cropping the images to a square resolution,
result in the increase in average precision for all object classes.
Decreasing the frame rate from 15 fps to 5 fps preserves more
than 90% of the highest F1 score achieved for all object classes.
The results inform the choice of video preprocessing stages,
modifications to established AI-based object detection/tracking
methods, and suggest optimal hyper-parameter values.

Index Terms—Object Detection, Smart City, Video Resolution,
Deep Learning Models.

I. INTRODUCTION

Urban environments pose significant challenges towards re-

alization of smart city intersections, owing to the constant and

dense flow of vehicular and pedestrian traffic in constrained

spaces. Deployment of traffic/pedestrian tracking systems is

complicated by strict design requirements, exemplified by

the need to maximize detection accuracies and to achieve

close to real-time detection. Automation of smart intersections

requires the use of artificial intelligence (AI), which needs

large quantity of high quality data to train object detection and

tracking models. To that effect, either hand-crafting a robust,

fast and reliable model, or choosing an off-the-shelf neural

network architecture is only one of many decisions in design-

ing smart traffic intersection monitoring system. Video streams

from surveillance cameras which monitor traffic intersections

are the primary source of data. Hardware specifications and
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video characteristics of the cameras dictate the design and

functioning of a model. Video resolution, aspect ratio and

video frame rate, to name a few of the critical variables, are

the basic characteristics of the data, and their inherent biases

will directly influence the model performance. More abstract

characteristics such as the frequency and per-frame-density of

objects (henceforth referred to as “object density”) will also

have an effect on the speed of inference.

Traffic intersections are prime locations for deploying

smart-city sensors, communications and edge computing

nodes. The study described in this paper relies on video record-

ings of a smart city intersection which is part of the Cloud

Enhanced Open Software Defined Mobile Wireless Testbed

for City-Scale Deployment (COSMOS) [1], [2], located in

New York City (NYC) as part of the NSF PAWR program.

The study uses cameras mounted high above the COSMOS

pilot intersection at 120th Street and Amsterdam Avenue,

as seen in Fig. 1 and Fig. 2. The bird’s-eye cameras are

mounted on the 12th floor of the Mudd building at Columbia

University, therefore minimizing object occlusion (due to a

near-vertical perspective) and avoiding the issues of privacy.

The wide-angle cameras also provide a contextual view of

the entire intersection. With highly elevated positions of the

bird’s eye cameras, the performance of object detection on

small objects can be notably degraded - in an image with

1920 × 1080 resolution, the size of a pedestrian is smaller

than 30×30 pixels. Higher resolution video input, with aspect

ratio matched to the scene under consideration, is intuitively

expected to produce notably better object detection accuracy,

but also to significantly increase the inference time.

To explore the changes in detection performance as a

function of input resolution and aspect ratio, and to understand

the changes in inference speed with different object densities,

we conducted 3 investigations using YOLOv4 [3] as the base

object-detection model:

• The detection performance as a function of different input

resolutions and aspect ratios.

• The inference time of the deep-learning based video pro-

cessing pipeline as a function of varying object density.

• F1 score study to evaluate the quality of object detection

under various input resolutions and frame rates.







TABLE II: Sum of Objects Over All Frames in Videos

Camera/Video Total Number of Objects

GoPro 1 26786
GoPro 2 21311
GoPro 3 19628
GoPro 4 19002

Hikvision 1 13935
GoPro 5 11999

Hikvision 2 8755
Hikvision 3 8688
Hikvision 4 6354
Hikvision 5 4452

from and use to infer vehicles and pedestrians. Unlike for

multiple resolution studies, the effect of scale and class im-

balance in object detection on the inference time and hardware

resource use is not intuitively obvious.

We continued the analysis by examining if there is consis-

tent relationship between the number of objects in an input

video (object density) and the speed/computational efficiency

of the model inference. Six models were chosen from the

original nine models explored in the resolution study. These

models consist of the set of three models trained on the square

resolution frames, and the set of three models trained on the

16 : 9 native frames. The names of the videos for this study

can be seen in Table II. Half of the videos were recorded

using a GoPro camera, while the other half were recorded

with a Hikvision camera. The videos are arranged in order of

decreasing total number of objects (density) across all frames.

By doing so, the trends in the profiling metrics, such as total

session time and kernel time, can be observed as we vary the

object density in a linear fashion.

Code profiling is used to understand resource utilization of

a given program, hardware resource consumption in terms of

time and memory and, ultimately, to resolve performance bot-

tlenecks and optimize models to execute faster. Deep learning

frameworks like TensorFlow and PyTorch support profiling

either through built-in libraries, or through an external profiler

such as NVIDIA Visual Profiler (NVVP). Our YOLOV4

model is built using the CUDA/C-based Darknet framework.

Darknet framework does not have a built-in profiling tool, and

since it relies on CUDA, NVVP is used.

D. Video Analytics for Object Detection

High-quality videos are hard to obtain especially in real-

time systems due to possibly limited transmission bandwidth

and time delay caused by hardware. Therefore, examining

how the detection performance changes as the video quality

decreases is important for configuring the underlying commu-

nication systems/protocols.

To obtain videos of reduced quality, we down-sampled the

original videos to get lower resolutions and lower effective

frame rates. The lower resolution was achieved by YOLO’s

default resolution adjustment scheme. For our experiments we

included videos of resolution 416×416, 608×608 and 832×
832. The lower effective frame rates were achieved by freezing

a frame (duplicating a frame) over the span of the consecutive

frames. For purposes of illustration, let us define a video, such

that it is a tuple whose entries are defined through an indexing

multi-set. Then, the original video A can be defined as

Ai∈I , I = {1, 2, 3, 4, 5, 6, 7, ...}, (1)

where each i ∈ I is a unique entry, despite I being a multi-set.

A new video, called B, with half of the effective frame rate

as the original, would have its frames defined as

Bj∈J , J = {j2 : j ∈ I, j (mod 2) = 1}. (2)

In the given example, B would be defined as

Bj∈J , J = {1, 1, 3, 3, 5, 5, ....15, 15}. (3)

A third video C, with one third of the effective frame rate

as the original, would have its frames defined as

Ck∈K ,K = {k3 : k ∈ I, j (mod 3) = 1}. (4)

In the given example, C would be defined as

Ck∈K ,K = {1, 1, 1, 4, 4, 4, 7, 7, 7, ....13, 13}. (5)

We experimented with effective frame rates of 15, 7.5 and

5 frames per second.

The performance is evaluated in the following ways:

• We consider performance not only based on the evalua-

tion against ground truth annotations, but also against the

highest accuracy results. This allows us to monitor the

performance drop-off for low-quality videos compared to

the highest-quality videos.

• F1-score is used as the key metric as it is the harmonic

mean of precision and recall, which are both important

indicators of model performance.

IV. RESULTS

A. Resolution Study

The goal of the resolution study was to understand the

empirical impact of varying resolutions and aspect ratios on

the performance. In the study, nine different models were eval-

uated. The three resolutions for each set of aspect ratios were

832, 608, and 416. The performance measure used to evaluate

the models was the mean Average Precision (mAP) over three

classes considered in each video: pedestrians, vehicles, and

background.

As intuition might suggest, the models which were trained

on higher resolution input frames resulted in higher mAP

values compared to the other two classes. This finding is

consistent for all three types of frames, and can be seen in

Fig. 4. Considering the performance of models trained on 3

distinct types of frame cropping, it can be seen that the square-

cropped frames outperform, in mAP measure, both 16 : 9
native frames and 16 : 9 squared with zero-padding frames,

over all resolutions. Since the square-cropped frames focus

only on the activity within the intersection, there is a smaller

amount of irrelevant information being considered in the object

detection. The other two types of input frame cropping still

contain useless (and ultimately harmful) information such as









choice is to reduce the frame rate to some value above 7.5 fps,

as its impact on overall performance is limited. Further quality

reductions would be determined by the trade-off between

tracking performance and image quality preservation.

The results of the study can be used to inform the choice

of system configuration, video preprocessing parameters, and

YOLO hyper-parameters for video-based monitoring of smart

city traffic intersections.
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