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Minimizing AoI with Throughput Requirements in
Multi-Path Network Communication

Qingyu Liu, Haibo Zeng, Minghua Chen

Abstract—We consider a single-unicast networking scenario
where a sender periodically sends a batch of data to a receiver
over a multi-hop network, possibly using multiple paths. We
study problems of minimizing peak/average Age-of-Information
(AoI) subject to throughput requirements based on a stylized
deterministic model in this scenario. The consideration of batch
generation and multi-path communication differentiates our AoI
study from existing ones. We first show that our AoI minimization
problems are NP-hard, but only in the weak sense, as we develop
an optimal algorithm with a pseudo-polynomial time complexity.
We then prove that minimizing AoI and minimizing maximum
delay are “roughly” equivalent, in the sense that any optimal
solution of the latter is an approximate solution of the former
with bounded optimality loss. We leverage this understanding to
design a general approximation framework for our problems. It
can build upon any α-approximation algorithm of the maximum
delay minimization problem, e.g., the algorithm in [2] with
α = 1+ ε given any user-defined ε > 0, to construct an (α+ c)-
approximate solution for minimizing AoI. Here c is a constant
depending on the throughput requirements. Furthermore, we
show that our results can be extended to the multiple-unicast
setting. Simulations over various network topologies validate the
effectiveness of our approach. Our results make a major advance
to optimizing AoI in multi-path communication, and hence can
be of broad interest to the networking research community.

Index Terms—Age-of-information, AoI minimization, multi-
path communication, time-critical network flow

I. INTRODUCTION

Age-of-Information (AoI) is a critical networking perfor-
mance metric for periodic services that require timely trans-
missions. Kaul et al. [3] measures the AoI as the time that
elapsed since the last received update was generated. In this
paper, we study AoI-minimization problems of supporting a
periodic transmission task under a single-unicast networking
scenario. Specifically, the task requires a sender to send a
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batch of data (packets) periodically to a receiver over a multi-
hop network, possibly using multiple paths. We use a stylized
deterministic model to model the network. Our objective is
to minimize peak/average AoI subject to both a minimum
and a maximum throughput requirement, by jointly optimizing
throughput and multi-path routing strategy. We assume the
amount of data in the batch is fixed, hence the throughput (the
ratio of the volume of the data batch over the task activation
period) only varies with the task activation period.

Our study is motivated by leveraging a network platform
with limited resources to support periodic transmission tasks
that are sensitive to both throughputs and end-to-end delays.
Below we provide a specific example: offloading real-time
image-processing tasks in edge computing.

Nowadays the blending of mobile/embedded devices and
image processing is taking place, where deep learning is
often involved to make devices smarter. Since deep learn-
ing is resource-heavy, while the mobile/embedded device is
resource-constrained, in general those tasks cannot be executed
locally on mobile/embedded devices timely and frequently.
The widely-adopted solution is to leverage nearby edge servers
for workload offloading. For example, Ran et al. [24] develop
an Android application of real-time object detection. If running
locally on the phone for 30 minutes, it processes images at the
rate of 5 FPS and consumes 25% battery. As a comparison, if
running remotely on a server, it processes images at the rate
of 9 FPS and consumes 15% battery.

From [24] we note that the majority (over 95%) of the total
delay of running tasks remotely is the networking delay. There-
fore, to offload image-processing tasks to an edge computing
platform for processing, time-critical offloading algorithms are
vital to efficiently and timely utilize available resources. As
the results of the offloaded tasks need to be sent to control
units for real-time actions, e.g., at the end users or the edge
computing nodes, it is important to minimize AoI.
Our Contributions. In this paper, we consider the scenario
that a sender is required to periodically send a batch of data to
a receiver over a multi-hop network, possibly using multiple
paths. As an example, in edge computing a real-time image-
processing task may require a mobile device to transmit an
image periodically to an edge server first over a one-hop
wireless network and then over a multi-hop wired network.
We study AoI-minimization problems subject to throughput
requirements based on a stylized deterministic network model.
Table I summarizes the comparison of our AoI study with
existing ones, and the details are provided in Section II. The
consideration of batch generation and multi-path communica-
tion differentiates our AoI study from existing ones. In this
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TABLE I
COMPARE OUR AOI STUDY WITH EXISTING ONES.

[3]–[10] [11] [12] [13], [14] [15]–[17] [18]–[20] [21] [22] [23] Our work
Objective of
Optimization

Minimize peak AoI 7 3 3 7 7 3 3 3 7 3
Minimize average AoI 3 7 3 3 3 3 3 3 3 3

Design Space of
Optimization

Multi-path routing strategy 7 7 7 7 7 7 7 7 7 3
Information generation rate∗ 3 3 3 3 7 7 3 3 7 3

Link scheduling policy 7 7 7 3 3 3 7 3 3 7
Queuing disciplines 7 3 3 7 7 7 7 7 3 7

Note. ∗: Under our system model, including the information generation rate in the design space is equivalent to including the throughput.

paper, we claim the following specific contributions.

B Comparing minimizing peak/average AoI with minimiz-
ing maximum delay: (i) we show that the throughput of the
AoI-minimal solution can be different from, but is always
no smaller than, that of the maximum-delay-minimal solution
(Lemma 2). This result is consistent with our observation that
AoI is a metric simultaneously considering maximum delay
and throughput; (ii) we show that the AoI of the maximum-
delay-minimal solution can be larger than the minimal AoI
(Lemma 2), but the gap is bounded (Lemma 3).

B Comparing minimizing peak AoI with minimizing av-
erage AoI: (i) we prove that the average AoI of the peak-
AoI-minimal solution can be larger than the minimal average
AoI, and vice versa, but both gaps are bounded (Lemma 4);
(ii) we show that the throughput (resp. maximum delay) of the
peak-AoI-minimal solution can be different from, but is always
no smaller than, that of the average-AoI-minimal solution
(Lemma 4). Thus, as compared to minimizing average AoI,
minimizing peak AoI may carry more flavor on throughput
and less on maximum delay.

B We observe that both minimizing peak AoI and min-
imizing average AoI are challenging, because (i) we prove
that theoretically both minimal peak AoI and minimal average
AoI are non-monotonic, non-convex, and non-concave with
throughput (Lemma 8), and (ii) we prove that both problems
are NP-hard (Lemma 5), but in the weak sense (Theorem 1), as
we design an algorithm to solve them optimally in a pseudo-
polynomial time (Section V-D).

B We leverage our understanding on comparing AoI with
maximum delay to develop an approximation framework (The-
orem 2). It can build upon any α-approximation algorithm of
the maximum delay minimization problem, e.g., the algorithm
in [2] with α = 1+ε given any user-defined ε > 0, to construct
an (α + c)-approximate solution for minimizing AoI. Here c
is a constant depending on the throughput requirements.

B We further show that our results can be extended to the
multiple-unicast setting. Specifically, our framework can also
use any existing approximation algorithm of the maximum de-
lay minimization problem to construct an approximate solution
for minimizing AoI in the multiple-unicast setting.

B To the best of our knowledge, our work presents the
first step to minimize AoI by optimizing multi-path routing.
Therefore, although we use a stylized deterministic model
to model the network, our results make a major advance
to optimizing AoI in multi-path communication. Hence, our
results can be of broad interest to the networking community.
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Link delay is 1 time slot

Solution: s streams 1 packet to (s, r), at each time 
slot 3k and 3k+1

Problem: a task requires to send 2 packets from s to 
r, at each time slot 3k (k is a non-negative integer)

Fig. 1. An illustrative example of our batch-based AoI. Sender s generates a
batch of two packets at each slot 3 · k with k to be a non-negative integer. It
sends the two packets one-by-one over link (s, r) to the receiver r; the link
transmission incurs one-slot delay. Our batch-based AoI drops only when all
packets from the same batch are received by r. Hence, as receiver r receives
all the two packets in a batch at each slot 3k + 2, the batch-based AoI at
each slot 3k + 2 drops to 2, i.e., the elapsed time since the generation of the
last received batch. The batch-based AoI at all the other slot grows linearly.

II. RELATED WORK

Since its introduction in [3], AoI has attracted active re-
search efforts in the research community (see [25] for a com-
prehensive review). One main line of research is to minimize
AoI under certain resource constraints, where the resource
ranges from bandwidth (e.g., [13]–[20], [22], [23]), to energy
(e.g. [6]–[10]), and to throughput (e.g., [3]–[5], [11]–[14],
[22]). We compare these AoI studies with our work in Table I.
In summary, we differ from them in two aspects, i.e., the
problem design space and the AoI definition.

We note that multi-path routing is a basic paradigm of
network communication. It is a natural extension of the single-
path routing when streaming a high volume of traffic while
avoid link traffic congestions. Many existing studies, e.g., [26],
[27], have shown that multi-path routing can provide better
QoS, e.g., larger throughput, than the single-path routing. To
our best knowledge, we are the first to optimize the multi-path
routing strategy to minimize AoI.

Besides, existing studies define AoI at the packet level.
Such definitions assume that AoI can be updated by receiving
any packet, which are reasonable in status update systems.
However, in our task-level study, we assume the receiver can
reconstruct information of one task period and hence update
AoI, only after it receives all the packets in a batch belonging
to that task period. By this assumption, our batch-based AoI
drops only upon successful reception of the complete batch
of data belonging to one task period. We give an illustrative
example in Figure 1, assuming slotted data transmissions.

It is worth highlighting that Kadota et al. [13], [14] min-
imize AoI with throughput requirements in the single-hop
network. In this paper we minimize AoI with throughput
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requirements in the multi-hop network. However, our results
are not extensions of the results in [13], [14], as the problem
studied in [13], [14] is fundamentally different from ours:
Kadota et al. [13], [14] consider a single-hop network with
stochastic parameters involved (transmitting data over the link
only succeed with certain probability). As multiple senders
share the same link to transmit data to a common receiver,
Kadota et al. [13], [14] minimize AoI by optimizing link
scheduling policy that determines which sender will use the
link at each time. In contrast, there is no randomness in
the study presented in this paper and there is no need to
consider link scheduling across senders. In this paper, we use a
stylized deterministic model to model the multi-hop network.
We minimize AoI by optimizing multi-path routing.

It is also worth highlighting that there exist some AoI
studies considering multi-hop networks. For example, Talak
et al. [19] develop link scheduling policies for minimizing
AoI under wireless link interference constraints in a multi-hop
network. However, they only consider single-hop information
flows in a multi-hop network. The extension to multi-hop
information flows is studied in [22]. Ayan et al. [28] derive
closed form expressions for AoI in a multi-hop network. Farazi
et al. [21] derive lower bounds for the minimal AoI, and design
schedules for sources to generate information to minimize AoI
in a multi-hop network. Our work is fundamentally different
from studies in [19], [21], [22], [28], because we minimize
AoI by optimizing multi-path routing, but they minimize AoI
by optimizing link scheduling policy or information generation
rate (as illustrated in Table I).

In addition to minimizing AoI under resource constraints,
another line of AoI research has been focused on modeling,
analysis, and optimization of AoI (e.g., [29], [30]). There are
also some other branches on AoI research, such as scheduling
under AoI constraints (e.g., [31], [32]), game theory for AoI
(e.g., [33], [34]), and channel coding for AoI (e.g. [35], [36]).
Those AoI studies are less relevant to our work.

Note that our problems are challenging, further compared to
existing time-critical multi-path communication studies. Our
problems minimize AoI with throughput requirements. Thus
the task activation period (the amount of data in the batch
divided by throughput) is a decision variable. In contrast, to
our best knowledge, existing multi-path communication prob-
lems minimize maximum delay given a fixed task activation
period. Such problems include the quickest flow problem and
the min-max-delay flow problem. Here the maximum delay is
the time of sending a complete batch of data from the sender to
the receiver, and clearly that AoI is a metric jointly considering
maximum delay and task activation period.

Quickest flow problem [37], [38]. Given an amount of
data, it finds the minimum time needed to send them from a
sender to a receiver, and the corresponding multi-path routing
solution. It assumes that the task activation period is infinitely
large. It is polynomial-time solvable under our setting [37].

Min-max-delay flow problem [2], [39], [40]. Given a sender-
receiver pair and an amount of data, it finds a set of sender-
to-receiver paths such that the maximum path delay of the set
of paths is minimized while the aggregate bandwidth of the
set of paths is no smaller than the given amount of data. This

problem assumes that the task activation period is one unit of
time. It is NP-hard under our setting [2].

If D is the given amount of data, note again that for the task
activation period T , under our setting, we have T = +∞ for
the quickest flow problem, T = 1 for the min-max-delay flow
problem, but D/Ru ≤ T ≤ D/Rl for our problems where
Ru (resp. Rl) is our maximum (resp. minimum) throughput
requirement. Thus for the throughput R, we have R → 0 for
the quickest flow problem, R = D for the min-max-delay flow
problem, but 0 < Rl ≤ R ≤ Ru ≤ D for our problems.
According to Lemma 1 introduced later, given Rl = Ru,
minimizing AoI is equivalent to minimizing maximum delay.
This implies that the quickest flow problem (Rl = Ru → 0)
and the min-max-delay flow problem (Rl = Ru = D) are
special cases of our problems. However, although exact algo-
rithms for the quickest flow problem [37] and approximation
algorithms for the min-max-delay flow problem [2] have been
developed, it is still not clear how to solve our problems even
given 0 < Rl = Ru ≤ D. Moreover, according to Lemma 2,
given 0 < Rl < Ru ≤ D, minimizing AoI can differ from
minimizing maximum delay. Overall, we observe that our AoI-
minimization problems are uniquely challenging.1

In the literature there exist some other time-aware commu-
nication studies. One line is the throughput-optimal routing
policy design with delay taken into account: The celebrated
Back Pressure (BP) algorithm [41] is a routing policy to
achieve maximum throughput. But its delay can be large,
particularly for lightly loaded networks where there is not
enough “pressure” to push data. Subsequently, many refine-
ments have been proposed to improve its delay performance.
For example, Sinha and Modiano [42] develop the Universal
Max-Weight policy for achieving maximum throughput with
reduced delay. Although there exist throughput-optimal poli-
cies that are delay-aware, they do not explicitly consider delay
as a minimization objective or a constraint ( [42] can improve
delay performance because it does not allow packet cycling).
Therefore, they are not directly related to our study.

Other time-aware studies in the literature include [43]–[45].
Hou et al. [43] propose scheduling policies for a set of senders
to be feasible with respect to the delay constraint, throughput
constraint, and wireless channel reliability constraint. In [44],
Hou et al. extend their previous work and study the utility
maximization problem. Deng et al. [45] further conduct a
complete study on the similar timely wireless flow problem but
assuming a more general traffic pattern. Those studies [43]–
[45] are of little relevance to our problems, because their focus
is the wireless link scheduling policy optimization. Differently,
we focus on optimizing the multi-path routing strategy.

III. SYSTEM MODEL

A. Preliminary

We consider a multi-hop network modeled as a directed
graph G , (V,E) with |V | nodes and |E| links. We assume

1Note that although our objective is to minimize AoI, in this paper we also
solve the problem of minimizing maximum delay which has not been studied
in the literature. This is because minimizing maximum delay is a special case
of minimizing AoI in our setting (based on Lemma 1, minimizing maximum
delay is equivalent to minimizing AoI if Rl = Ru).
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slotted data transmissions. Each link e ∈ E has a bandwidth
be and a delay de. At the beginning of each time slot, each
link e can stream an amount of data that is no larger than the
bandwidth be ∈ R, be ≥ 0 (be is a non-negative real number)
to it, and this data experiences a delay of de ∈ Z+ (de is a
positive integer) slots to pass it. Besides, we assume that each
node v ∈ V can hold an arbitrary amount of data at each time
slot. For easier reference, in this paper, we use “at time t” to
refer to “at the beginning of the time slot t”. We focus on
a task that requires a periodic data transmission. Specifically,
given that the task activation period is T ∈ Z+, the task will
generate D ∈ R, D > 0 amount of data at a sender node s ∈ V
at time k·T for each k ∈ Z, k ≥ 0 (k is a non-negative integer),
and is required to transmit them to a receiver node r ∈ V \{s},
possibly using multiple paths. Because we assume no data loss
during transmission, clearly the throughput incurred by a task
activation period of T is D/T .

We aim to obtain a multi-path routing solution that is
periodically repeated to periodically send the batch of data.
We denote the set of all simple paths from s to r as
P . For a path p ∈ P , we denote the number of nodes
belonging to p as |p|. Suppose p = 〈v1, v2, ..., v|p|〉 where
{vi ∈ V, i = 1, 2, ..., |p|} are the nodes on p (v1 = s and
v|p| = r) and {ei−1 = (vi−1, vi) ∈ E, i = 2, 3, ..., |p|}
are the links belonging to p. Then we can use xp(~u) with
~u = 〈u0, u1, u2, ..., u|p|〉 to represent that we push xp(~u)
amount of data onto link (vi, vi+1) at the offset ui, i.e., push
xp(~u) amount of data of the period that starts at time k ·T onto
link (vi, vi+1) at time k · T + ui. By the definition of xp(~u),
it is clear that ui − (ui−1 + dei−1

) is the data-holding delay
at the node vi (we assume u0 = 0 and de0 = 0). Since the
data-holding delay must be non-negative, the following holds
for each i = 1, 2, · · · , |p|:

ui ∈ Z and ui − ui−1 ≥ dei−1 .

Here we also highlight that the data-holding delay shall be
upper bounded by T − 1, i.e., ui − ui−1 ≤ dei−1 + T − 1

(proved in Part A of supplementary materials). We denote ~U
as the set of all ~u’s. With the definition of xp(~u), we define
a periodically repeated solution f as the assigned amount of
data over P at the time offset ~U :2

f ,
{
xp(~u) ≥ 0 : ∀p ∈ P,∀~u ∈ ~U

}
.

We denote T (f) as the task activation period of f .
Given a solution f , based on each positive xp(~u) of f , we

can easily figure out (i) the beginning offset of pushing those
data onto the link ei ∈ p, denoted as Bp(~u, ei),

Bp(~u, ei) = ui,

and (ii) the end-to-end delay for those data to travel from s
to r, denoted as Ap(~u) 3,

Ap(~u) = Bp(~u, e|p|−1) + de|p|−1
= u|p|−1 + de|p|−1

.

2Note that for a multi-path routing solution f , we do not have node-disjoint
or link-disjoint requirements on different paths p1 ∈ P and p2 ∈ P that carry
traffic (i.e., with xp1 (~u) > 0 and xp2 (~u) > 0).

3The delay of a path in our system depends on the link delay of each link
in the path, as well as on the data-holding delay of each node in the path.
These delay definitions have been used in many related works, e.g., [2], [37].

One important time-aware metric of f is the maximum
delay, denoted as M(f). It is the time difference comparing
the time when the batch of data of one period is received by
the receiver r, to the beginning time of this period when those
data is generated at the sender s waiting for transmission, i.e.,

M(f) , max
∀p∈P,∀~u∈~U : xp(~u)>0

Ap(~u).

Another important time-aware metric is the AoI, denoted
as I(f, t). AoI measures the time that elapsed since the
generation of the task period that was most recently delivered
to the receiver. Specifically, we define the AoI at time t as

I(f, t) , t− πt(f),

where πt(f) is the generation time of the task period that
was most recently delivered to r by time t, or equivalently
the starting time of the most recent task period with all its D
amount of data arriving at r no later than t, i.e.,

πt(f) , max
k∈Z,k≥0

{k · T (f) : k · T (f) +M(f) ≤ t} .

For simplicity, we assume that I(f, 0) = 1.

B. Problem Definition

In this paper, we focus on the minimization of (i) the peak
value of AoI, and (ii) the average value of AoI. We define the
peak AoI of f , denoted as Λp(f), as follows

Λp(f) , lim
τ→∞

sup{I(f, t) : t = 0, 1, · · · , τ − 1},

and define the average AoI of f , denoted as Λa(f), as

Λa(f) , lim
τ→∞

1

τ
·
τ−1∑
t=0

I(f, t).

Our problems of finding a periodically repeated solution
f to minimize AoI are subject to a minimum throughput re-
quirement, a maximum throughput requirement, and link band-
width constraints. The minimum (resp. maximum) throughput
requirement requires f to send D amount of data every
T (f) ∈ Z+ time slots, achieving a throughput no smaller than
an input Rl ∈ R (resp. no greater than an input Ru ∈ R):∑
∀p∈P

∑
∀~u∈~U

xp(~u) = D,Rl ≤ D/T (f) ≤ Ru, and T (f) ∈ Z+.

(1)
It is fair to assume D/Rl ∈ Z+ and D/Ru ∈ Z+ for the input
Rl and Ru, due to T (f) ∈ Z+.

It is understandable to optimize AoI under a minimum
throughput requirement Rl. The reason why we also consider
a maximum throughput requirement Ru is as follows: As we
assume no data loss during transmission, the throughput is
D/T . Clearly this D/T is also the rate of generating data
at the sender (i.e., sender’s sampling rate). Therefore, in our
problem Ru is equivalent to a constraint that upper bounds
sender’s sampling rate. Such a constraint is reasonable in
practice since many real-world information senders (e.g., an
IoT sensor) have limited battery, and thus cannot support a
high sampling rate. Here we also remark that for our problem,
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even when the task does not give Ru, D shall be an upper
bound on the throughput D/T since T ≥ 1.

Given a solution f , we denote the aggregate amount of data
sent to link e ∈ E at the offset i ∈ {0, 1, ..., T (f) − 1}, or
equivalently the aggregate amount of data sent to e at each
time k · T (f) + i,∀k ∈ Z, k ≥ 0, as xe(i). Note that xe(i)
may include data assigned to different path-offset pairs of one
period, and may even include data from multiple periods with
different starting times. We remark that 0 ≤ i ≤ T (f) − 1,
because xe(i + T (f)) is equal to xe(i) considering that f is
periodically repeated. The link bandwidth constraints require
xe(i) to be no greater than be, i.e., xe(i) ≤ be, for any link
e ∈ E and any offset i = 0, 1, ..., T (f)− 1. This is equivalent
to restricting that the aggregate data sent to each link e ∈ E
at each time slot shall be upper bounded by be.

It is clear that xp(~u) will contribute to xe(i) if and only if
e ∈ p and there exists a k ∈ Z, k ≥ 0 such that k · T (f) +
Bp(~u, e) = i. Therefore, our link bandwidth constraints are∑
p∈P :
e∈p

∑
k∈Z,k≥0,~u:

k·T (f)+Bp(~u,e)=i

xp(~u) ≤ be, ∀i = 0, ..., T (f)−1,∀e ∈ E.

Suppose ΛRp (resp. ΛRa ) is the minimal peak AoI (resp.
minimal average AoI) that can be achieved by any periodically
repeated solution which obtains a throughput of R, meeting
link bandwidth constraints. Now given a network G(V,E), a
sender s ∈ V , a receiver r ∈ V \{s}, throughput requirements
Rl and Ru, in this paper we are interested in the following
two AoI minimization problems:

1) Obtain an optimal throughput Rp ∈ [Rl, Ru], D/Rp ∈
Z+ that achieves the minimal peak AoI, i.e.,

Rp , arg min
Rl≤R≤Ru,D/R∈Z+

ΛRp .

and obtain the feasible periodically repeated solution
which has a throughput of Rp and a peak AoI of Λ

Rp
p .

We denote this problem of Minimizing Peak AoI as
MPA.

2) Obtain an optimal throughput Ra ∈ [Rl, Ru], D/Ra ∈
Z+ that achieves the minimal average AoI, i.e.,

Ra , arg min
Rl≤R≤Ru,D/R∈Z+

ΛRa ,

and obtain the feasible periodically repeated solution
which has a throughput of Ra and an average AoI of
ΛRa
a . We denote this problem of Minimizing Average

AoI as MAA.
As discussed in Section II, existing time-critical multi-path

communication problems minimize maximum delay, instead
of AoI. Similar to MPA and MAA, we can define (i) MR

as the minimal maximum delay with a throughput of R,
and (ii) the problem of Minimizing Maximum Delay (MMD)
as to obtain an optimal Rm ∈ [Rl, Ru], D/Rm ∈ Z+ and
its associated periodically repeated solution that achieves the
minimal maximum delay.

As presented in this section, we consider a stylized model
to analyze AoI. Our stylized model is deterministic, and hence
ignores randomnesses that exist in many real world networks

(e.g., randomnesses of packet generation, network connectiv-
ity, and packet delays). Our study focuses on theoretically
understanding the AoI for multi-path routing optimization in
a multi-hop network. This problem is important but has not
been studied, to our best knowledge. Therefore, we believe our
study is of interest to the AoI research community. We leave
it as a future direction to investigate a more practical network
communication model that takes randomness into account.

C. Remark on Our Constant Link Delay Model
In this paper we consider a constant link delay model: At

the beginning of each time slot, each link e can stream an
amount of data that is no larger than the bandwidth be to it,
and this data experiences a delay of de slots to pass it. Here
we remark that this constant delay model is practically useful.

It is well-known that the networking delay is mainly com-
posed of propagation delay, transmission delay, and queuing
delay. As discussed in [46], the constant link delay model can
take all three kinds of delays into consideration. Specifically,

1) Link propagation delay. It is the time for a signal to pass
the link, and can be computed as the ratio between the
link length and the propagation speed. Clearly it is a
constant for each e ∈ E and can be counted into de.

2) Link transmission delay. It is the time required to push
the data onto the link. In general, it is Se/be where Se is
the size of the data required to be pushed onto the link
e = (v, w) ∈ E at time t. Our constant link delay model
can consider this link transmission delay in a discretized
way: If Se ≤ be, the incurred link transmission delay
is dSe/bee = 1 and is counted into de. Otherwise if
be < Se ≤ 2be, the link bandwidth constraint restricts
that e first pushes be amount of data onto it at time t,
experiencing a transmission delay of 1 that is counted
into de. Then the remaining Se−be amount of data will
be held at the node v for one time slot, and is pushed
to e at time t+ 1, experiencing a transmission delay of
2, where 1 delay is counted into de, and the remaining
1 delay is incurred by holding the data at node v from
time t to time t + 1. Similarly, our constant link delay
model can figure out the transmission delay for arbitrary
Se : (k − 1)be < Se ≤ kbe,∀k ∈ Z+.

3) Node queuing delay. It is the time the data spends in the
routing queue of a node. When data arrives at a router
(node), it has to be processed and then transmitted. But
due to the finite service rate λv of a router v ∈ V , the
router puts the data into the queue until it can get around
to transmitting them if the data arrival rate is larger than
λv . If we want to consider the queuing delay of a router
node v, (i) we add a new node v′ to V and change all
the outgoing links of v to be the outgoing links of v′;
and (ii) we add a new link (v, v′) to E, set its bandwidth
to be λv and delay to be 1. Then the queuing delay of
the router v in the original network can be given by the
transmission delay of link (v, v′) in the updated network,
which can be taken into consideration by our constant
link delay model in a discretized way.

As illustrated above, our constant link delay model can
consider a special kind of traffic-dependent delay, i.e., Se/be
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where Se is the link traffic load, in a discretized way. It
may not model other traffic-dependent delays. To our best
knowledge, this work presents the first step to study the AoI
minimization problem of optimizing multi-path routing. The
simple constant link delay model helps us obtain a theoret-
ically complete understanding on this fundamental problem.
It is an important future direction to consider more practical
link delay models, e.g., model link delay as a convex non-
decreasing function of link traffic. Note that problem becomes
much more difficult if we model the link delay as a function of
link traffic than the current setting. As an example, to minimize
the maximum delay, it is APX-hard (hence no Polynomial-
Time Approximation Scheme, or PTAS in short, exists unless
P = NP) if the link delay is a traffic-dependent function [47],
but a PTAS exists if the link delay is a constant [2].

IV. COMPARE AOI WITH MAXIMUM DELAY

In this section, we compare the problem of minimizing AoI
(MPA and MAA) with that of minimizing maximum delay
(MMD) theoretically under the single-unicast setting.

Consider a network with nodes s and r, and one link (s, r).
Suppose the delay (resp. bandwidth) of the link is d (resp.
b ≥ D). Suppose Ru = D and Rl = D/Tu given a Tu ∈ Z+.
Consider one solution that streams D data to (s, r) at the
offset 0. It is clear that this solution is feasible and can have a
task activation period of T ≤ Tu. And the batch of data of the
period starting at time k ·T will be received by r at time k ·T+
d. Now consider two different task activation periods T1 and
T2 with T1 < T2 ≤ Tu. From the perspective of minimizing
maximum delay, the solution with T = T1 is equivalent to
that with T = T2, because they obtain the same maximum
delay of d. From the perspective of minimizing peak/average
AoI, in contrast, the solution with T = T1 is better than that
with T = T2, since according to Lemma 1 introduced later,
the peak AoI (resp. average AoI) of former is d+T1−1 (resp.
d+ (T1− 1)/2), which is smaller than that of latter, i.e., than
d + T2 − 1 (resp. d + (T2 − 1)/2). In fact, T1 is better than
T2 in this example, because they lead to the same delay, but
the throughput achieved by T1 (D/T1) is greater than that
achieved by T2 (D/T2).

From the above example we observe that for periodic
transmission services, AoI, instead of maximum delay, should
be optimized. This is mainly because AoI is a metric simul-
taneously considering throughput and maximum delay. In the
following, we further prove that the maximum-delay-optimal
solution can achieve a suboptimal peak/average AoI, but it
must be with bounded optimality loss compared to optimal.

Given a solution f , first we give a lemma to mathematically
relates the AoI of f to the maximum delay of f .

Lemma 1: In the single-unicast setting, for an arbitrary
periodically repeated solution f , we have the following

Λp(f) =M(f)+T (f)−1,Λa(f) =M(f)+(T (f)−1)/2.

Proof: Refer to Part B of supplementary materials.
A direct corollary is that the peak AoI (resp. average AoI) of

a feasible solution which achieves a throughput of R and has a

maximum delay ofMR is ΛRp (resp. ΛRa ). Thus to solve MPA
and MAA given Rl = Ru, we can solve the corresponding
MMD instead. However, as introduced in Section II, only
special cases of MMD with Rl = Ru, i.e., the quickest flow
problem (Rl = Ru → 0) and the min-max-delay flow problem
(Rl = Ru = D), have been studied in the literature, and it is
not clear how to solve MMD even given 0 < Rl = Ru ≤ D.
Moreover, for general settings with Rl < Ru, we observe that
both MPA and MAA can differ from MMD as follows.

Lemma 2: In the single-unicast setting, given any
instance of MPA (or MAA, MMD), suppose ~Rp (resp.
~Ra, ~Rm) is the optimal set of throughputs that minimize
peak AoI (resp. average AoI, maximum delay) of this
instance. The following must hold for this instance

min
Rp∈~Rp

Rp ≥ max
Rm∈~Rm

Rm, min
Ra∈~Ra

Ra ≥ max
Rm∈~Rm

Rm.

Further, there must exist an instance satisfying that

min
Rp∈~Rp

Rp > max
Rm∈~Rm

Rm, min
Ra∈~Ra

Ra > max
Rm∈~Rm

Rm.

Proof: Refer to Part C of supplementary materials.
In Lemma 2, ~Rp is defined as a set of throughputs, because

in certain instances there may exist multiple throughputs
obtaining the same and optimal peak AoI. Similarly, we define
~Ra and ~Rm both as sets of throughputs.

Lemma 2 suggests that (i) minimizing maximum delay can
differ from minimizing AoI, because the maximum-delay-
optimal solution can achieve suboptimal peak/average AoI.
(ii) The throughput of the maximum-delay-optimal solution
must be no greater than that of the peak-/average- AoI-optimal
solution. In the following, we further characterize near-tight
optimality losses for the suboptimal AoI achieved by the
maximum-delay-optimal solution.

Lemma 3: In the single-unicast setting, given any
instance of MPA (or MAA, MMD), suppose ~Rp (resp.
~Ra, ~Rm) is the optimal set of throughputs that minimize
peak AoI (resp. average AoI, maximum delay) of this
instance. The following must hold for this instance

ΛRm
p − ΛRp

p ≤
D

Rl
− D

Ru
,∀Rm ∈ ~Rm,∀Rp ∈ ~Rp.

ΛRm
a − ΛRa

a ≤
D

2Rl
− D

2Ru
,∀Rm ∈ ~Rm,∀Ra ∈ ~Ra.

The peak AoI gap is near-tight, in the sense that for
arbitrary D, Rl, and Ru with D > 0, D/Rl ∈ Z+, and
D/Ru ∈ Z+, there is an instance satisfying the following

ΛRm
p −ΛRp

p ≥ D

Rl
− D

Ru
− 1, ∀Rm ∈ ~Rm,∀Rp ∈ ~Rp.

The average AoI gap is near-tight, in a similar sense with
the following held

ΛRm
a −ΛRa

a ≥ D

2Rl
− D

2Ru
−1, ∀Rm ∈ ~Rm,∀Ra ∈ ~Ra.

Proof: Refer to Part D of supplementary materials.
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Overall, we observe that MPA and MAA are non-trivial
as compared to MMD: (i) AoI-optimal solution, instead of
maximum-delay-optimal one, is the time-critical solution for
periodic transmission services; (ii) AoI-optimal solution can
differ from the maximum-delay-optimal one in the general
scenario with throughput optimization involved (Rl < Ru);
(iii) even for the special scenario where the throughput of
feasible solutions is fixed (Rl = Ru), where it can be
proved that the AoI-optimal solution is also maximum-delay-
optimal, and vice versa, existing maximum delay minimization
studies have strong assumptions on the fixed throughput (either
Rl = Ru → 0 or Rl = Ru = D). It is not clear how to
minimize maximum delay with the throughput fixed arbitrarily
(0 < Rl = Ru ≤ D). In the following two sections, we
design an optimal algorithm and an approximation framework
for MPA and MAA under the single-unicast setting.

V. PROBLEM STRUCTURES OF MPA AND MAA

In this section we give a complete understanding on the
fundamental structures of our MPA and MAA under the single-
unicast setting. In particular, we first show that MPA and MAA
are two different problems theoretically, and then prove that
both of them are NP-hard in the weak sense, with a pseudo-
polynomial-time optimal algorithm developed.

A. MPA is Different from MAA

Lemma 4: In the single-unicast setting, given any
instance of MPA (or MAA), suppose ~Rp (resp. ~Ra) is
the optimal set of throughputs that minimize peak AoI
(resp. average AoI) of this instance. For this instance,

1) the following must hold

min
Rp∈~Rp

Rp ≥ max
Ra∈~Ra

Ra, min
Rp∈~Rp

MRp ≥ max
Ra∈~Ra

MRa ,

2) and we have the following for any Rp ∈ ~Rp and
any Ra ∈ ~Ra

ΛRp
a − ΛRa

a ≤
D

2Rl
− D

2Ru
,

ΛRa
p − ΛRp

p ≤
⌊
D

2Rl
− D

2Ru

⌋
.

Moreover, there must exist an instance where the follow-
ing holds

min
Rp∈~Rp

Rp > max
Ra∈~Ra

Ra, min
Rp∈~Rp

MRp > max
Ra∈~Ra

MRa .

Proof: Refer to Part E of supplementary materials.
From the lemma we learn that (i) MPA can differ from

MAA, and (ii) although both MPA and MAA minimize AoI
which jointly considers throughput and maximum delay, MPA
may carry more flavor on throughput and less on maximum
delay, compared to MAA. In the lemma, (iii) we further charac-
terize bounded optimality loss for the suboptimal average AoI
(resp. suboptimal peak AoI) achieved by the optimal solution
to MPA (resp. to MAA).

s a r

s0 s1 s2 s3 s4 s5

a0 a1 a2 a3 a4 a5

r0 r1 r2 r3 r4 r5

Construct Gexp from  G

Fig. 2. An example of constructing Gexp. Suppose d(s,a) = 2 and d(a,r) = 1
in G. And suppose MU = 5 and M = 4.

B. Both MPA and MAA are NP-Hard

Although MPA differs from MAA, we observe that both of
them are NP-hard, because (i) based on Lemma 1, MMD given
Rl = Ru = D is a special case of MPA and MAA, and (ii) as
discussed in Section II, the min-max-delay flow problem under
our setting is exactly the problem MMD given Rl = Ru = D,
which has been proven to be NP-hard by [2].

Lemma 5: Both MPA and MAA are NP-hard.

Proof: The min-max-delay flow problem which has been
proven to be NP-hard in [2] is not only a special case of MPA
but also a special case of MAA.

In the following we propose a pseudo-polynomial-time algo-
rithm which solves MPA (resp. MAA) optimally. It enumerates
all possible throughputs R ∈ [Rl, Ru], D/R ∈ Z+ to figure
out the peak-AoI-optimal Rp (resp. average-AoI-optimal Ra),
together with the optimal periodically repeated solution.

C. Pseudo-Polynomial Time Algorithm for Obtaining MR

Given a throughput R with D/R ∈ Z+, first we design a
pseudo-polynomial-time algorithm which leverages a binary-
search based scheme, together with an expanded network,
to figure out the minimal maximum delay MR and the
corresponding solution. According to Lemma 1, the minimal
peak AoI ΛRp and the minimal average AoI ΛRa can be achieved
by the same solution.

Construct an expanded network. We construct an ex-
panded network Gexp(Vexp, Eexp), from the input G(V,E)
following Algorithm 1. Given an integer MU that is an upper
bound of MR, first we expand each node v ∈ V to nodes
vi, i = 0, ...,MU (the loop in line 5). By this expansion, node
vi represents the node v at time k ·T + i from the perspective
of the period starting at time k · T , where T = D/R.
Second we expand each link e = (v, w) ∈ E to links
(vi, wi+de), i = 0, ...,MU − de (the loop in line 7). By this
expansion, the link (vi, wi+de) represents that certain amount
of data can be streamed to the link (v, w) at time k · T + i
from the perspective of the period starting at time k ·T , where
T = D/R. Third, we add links (vi, vi+1), i = 0, ...,MU − 1
(the loop in line 9) for each v ∈ V , because we allow each
node to hold data at each time slot.

Obtain MR using binary search. Given an arbitrary
integer M with M ≤ MU , we observe that the problem of
whether there exists a feasible periodically repeated solution
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Algorithm 1 Construct Gexp from G

1: input: G = (V,E), MU

2: output: Gexp = (Vexp, Eexp)
3: procedure
4: Vexp = Eexp = NULL
5: for v ∈ V and i = 0, 1, ...,MU do
6: Push node vi into Vexp

7: for e = (v, w) ∈ E and i = 0, 1, ...,MU − de do
8: Push link (vi, wi+de) into Eexp

9: for v ∈ V and i = 0, 1, ...,MU − 1 do
10: Push link (vi, vi+1) into Eexp

11: return Gexp = (Vexp, Eexp)

f in G, with T (f) = D/R andM(f) ≤M , can be solved by
solving a network flow problem that is casted by the following
linear program in Gexp:

max
∑

e′∈Out(s0)

xe′ (2a)

s.t.
∑

e′∈Out(s0)

xe′ =
∑

e′∈In(rM )

xe′ , (2b)

∑
e′∈Out(v)

xe′ =
∑

e′∈In(v)

xe′ ,∀v ∈ Vexp\{s0, rM}, (2c)

∑
e′∈e(i)

xe′ ≤ be,∀e ∈ E,∀i = 0, ..., D/R− 1, (2d)

vars. xe′ ≥ 0, ∀e′ ∈ Eexp. (2e)

Here In(v) (resp. Out(v)) is the set of incoming (resp. outgo-
ing) links of v ∈ Vexp in Gexp. Suppose e = (v, w) ∈ E, then
e(i) is the set of expanded links {(vkT+i, wkT+i+de),∀k ∈ Z}
that belong to Eexp, where T = D/R. Note that data assigned
to e(i) must aggregately respect bandwidth constraint of be,
considering that the aggregate data assigned to e(i) is exactly
equal to xe(i) that is introduced in Section III-B. This is
because the difference of starting times of links belonging
to e(i) are multiples of the task activation period D/R.
The objective (2a) maximizes the amount of data sent from
the sender of each period. Constraint (2b) restricts those
data arrive at the receiver no later than M time slots as
compared to the starting time of the period. Constraints (2c)
are flow conservation constraints, and constraints (2d) are link
bandwidth constraints.

Lemma 6: In the single-unicast setting, given any
instance of MPA (or MAA, MMD), suppose R is an arbi-
trary throughput satisfying R ∈ [Rl, Ru] and D/R ∈ Z+.
Let us assume M to be an arbitrary integer. Then the
problem of whether there exists a feasible periodically
repeated solution f with T (f) = D/R and M(f) ≤M
is feasible if and only if the value of the optimal solution
to the linear program (2) is no smaller than D.

Proof: Refer to Part F of supplementary materials.
To obtain MR, Lemma 6 suggests that we can use binary

search to obtain the minimal integer M∗ ∈ [0,MU ], under

which the linear program (2) outputs a feasible flow with a
value no smaller than D, and it is clear that this M∗ shall be
MR (see Algorithm 2). Note that to construct Gexp, we need
a MU ≥MR. We remark that MU must exist, e.g., we can set
MU = |V |·(dmax+D/Rl) with dmax = maxe∈E de, since for
any path p ∈ P and any offset ~u ∈ ~U that corresponds to p,
the following holds for any periodically repeated solution: (i)
|V |·dmax is an upper bound of the aggregate delay experienced
by passing all the links that belong to p, since p is simple, and
(ii) |V |D/Rl is an upper bound of the aggregate data-holding
delay at all the nodes that belong to p, due to our lemma given
in Part A of supplementary materials.

Algorithm 2 Obtain MR and the corresponding solution
1: input: G = (V,E), R, D, MU , s, r
2: output: f , M
3: procedure
4: f = ft = NULL, M = +∞, LB = 0, UB = MU

5: Obtain Gexp by Algorithm 1 with (G,MU )
6: while LB ≤ UB do
7: M = d(LB + UB)/2e
8: ft is the solution by solving the linear program (2)

with input (Gexp, R,D,M, s, r)
9: if the objective of ft is no smaller than D then

10: f = ft, M = M , UB = M − 1
11: else
12: LB = M + 1

13: return f , M

Lemma 7: Suppose L is the input size of the instance
of linear program (2), then the time complexity of Algo-
rithm 2 is O(|E|3M3

UL logMU ).

Proof: Refer to Part G of supplementary materials.
Lemma 7 shows Algorithm 2 has a pseudo-polynomial time

complexity: Algorithm 2 relies on solving a maximum flow
problem in Gexp (Line 8), which is known to be solvable in
a time polynomial with the size of Gexp.4 Hence Algorithm 2
has a time complexity polynomial with the size of Gexp. The
size of Gexp is pseudo-polynomial with problem inputs: (i)
considering MU ≤ |V | · (dmax + D/Rl), the complexity is
polynomial with the numeric value of dmax and D/Rl, but
(ii) it is exponential with the bit length of dmax and D/Rl.

D. Use Algorithm 2 to Solve MPA and MAA Optimally

Lemma 8: Both ΛRp and ΛRa are non-monotonic, non-
convex, and non-concave with R theoretically.

Proof: Refer to Part H of supplementary materials.
Lemma 8 suggests that to solve MPA (resp. MAA) opti-

mally, we need to enumerate ΛRp (resp. ΛRa ) for all R ∈

4It is clear that the size of the linear program (2) is polynomial with the
size of the graph Gexp. The optimal solution of the program is a flow defined
on links. After a flow decomposition [48], then we can get a flow defined
on paths. Note that the time complexity of flow decomposition is polynomial
with the size of the graph Gexp [48].
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[Rl, Ru], D/R ∈ Z+, and obtain the optimal one that achieves
minimal peak AoI (resp. minimal average AoI). It is clear that
we can use Algorithm 2 to achieve ΛRp and ΛRa . Therefore,
we suggest to solve MPA (resp. MAA) optimally using Algo-
rithm 2 by enumerating all possible throughputs.

By Lemma 7, Algorithm 2 has a pseudo-polynomial time
complexity to obtain ΛRp and ΛRa . Now considering that the
number of the enumerated throughputs is D/Rl −D/Ru + 1
which is pseudo-polynomial with D/Rl, using Algorithm 2
to solve MPA and MAA optimally by enumeration has a
pseudo-polynomial time complexity, too. Overall, we have the
following theorem for MPA and MAA.

Theorem 1: In the single-unicast setting, both MPA and
MAA are NP-hard in the weak sense.

Proof: A direct result of Lemma 5 and Algorithm 2.

VI. AN APPROXIMATION FRAMEWORK

As discussed in Section IV, the peak/average AoI of the
solution minimizing maximum delay is within a bounded gap
as compared to optimal. Thus it is natural to use approximate
solutions to the problem of minimizing maximum delay as
approximate solutions to our problems of minimizing AoI.
However, this idea is non-trivial, considering that as discussed
in Section II, existing maximum delay minimization prob-
lems (i.e., the quickest flow problem and the min-max-delay
flow problem) are just special cases of the maximum-delay-
minimization counterpart of our AoI minimization problems.
This is because they assume a fixed task activation period,
which is quite different from our problems that assume the
task activation period to be decision variables. In this section
under the single-unicast setting, we overcome the challenge,
and propose a framework that can adapt any polynomial-time
approximation algorithm of the min-max-delay flow problem
to solve MPA and MAA approximately in a polynomial time.

A. MMD1: Maximum-Delay-Based Counterpart of AoI-Aware
Problems MPA and MAA

We denote a feasible instance of MPA (resp. MAA) char-
acterized by (G, s, r, Rl, Ru, D) as MPA(Rl, Ru, D) (resp.
MAA(Rl, Ru, D)). We denote the min-max-delay flow prob-
lem instance as MMD1(R), which is defined by the same G,
s, r, but with a throughput requirement of R.

For any feasible periodically repeated solution f to MPA
and MAA achieving a throughput of R, it should send D
amount of data from s to G every D/R slots, meeting link
bandwidth constraints. According to the definition of the min-
max-delay flow problem (refer to [2]), for any feasible solution
f to the min-max-delay flow problem achieving a throughput
of R, it should send R amount of data from s to G at each
slot, meeting link bandwidth constraints. Because it is clear
that this f can send D amount of data from s to G every D/R
slots, meeting link bandwidth constraints, f is a special case
of f . Furthermore, we have the following lemma comparing
the min-max-delay flow problem with MPA and MAA.

Lemma 9: In the single-unicast setting, given any
MPA(Rl, Ru, D) (resp. MAA(Rl, Ru, D)), suppose R ∈
[Rl, Ru], D/R ∈ Z+ is an arbitrary feasible throughput
for it. Then MMD1(R) must be feasible. Moreover, sup-
pose f(R) is an arbitrary feasible solution to MMD1(R),
it holds that f(R) must be a feasible periodically repeated
solution to MPA(Rl, Ru, D) (resp. MAA(Rl, Ru, D))
with the following

M(f(R)) = M̂(f(R)) +D/R− 1,

where M̂(f) is the maximum delay of f with MMD1(R).

Proof: Refer to Part I of supplementary materials.
Lemma 9 suggests that any feasible solution to the min-

max-delay flow problem achieving a throughput of R is a
feasible periodically repeated solution to MPA and MAA also
achieving a throughput of R. But we remark that even for the
optimal solution to the min-max-delay flow problem, its peak
AoI (resp. average AoI) can be strictly greater than the minimal
peak AoI (resp. minimal average AoI) with a throughput of R,
i.e., than ΛRp (resp. ΛRa ). This is because a solution to the min-
max-delay flow problem always sends R amount of data from
s to G at each slot, which is a special case of feasible solutions
to MPA and MAA: MPA and MAA allow various amount of
data to be sent to G at each slot, as long as a total of D
amount of data can be sent every D/R slots.

B. Solve MPA and MAA Approximately by Solving MMD1

Lemma 9 suggests that we can use the solution to the
min-max-delay flow problem as a solution to our MPA (resp.
MAA). As it is easy to prove that if MMD1(R1) is feasible,
MMD1(R2) must be feasible given any 0 < R2 ≤ R1

(see the proof to the following theorem), a direct result
of Lemma 9 is that Rl must be a feasible throughput for
MPA(Rl, Ru, D) (resp. MAA(Rl, Ru, D)). Therefore, it is
clear that solving MMD1(Rl) must output a feasible so-
lution to MPA(Rl, Ru, D) (resp. MAA(Rl, Ru, D)). In the
following theorem, we further prove that any approximate
solution to MMD1(Rl) must be an approximate solution to
MPA(Rl, Ru, D) (resp. MAA(Rl, Ru, D)). For easier refer-
ence, we denote an arbitrary α-approximation algorithm of
the min-max-delay flow problem as ALG-MMD1(α).

Theorem 2: In the single-unicast setting, given any
MPA(Rl, Ru, D) and MAA(Rl, Ru, D) where D/Rl ∈
Z+, D/Ru ∈ Z+, suppose we use ALG-MMD1(α)
to solve the corresponding MMD1(Rl). Then it must
give an α-approximate solution fα(Rl) to MMD1(Rl).
Moreover, fα(Rl) must be a feasible periodically repeated
solution to MPA(Rl, Ru, D) and MAA(Rl, Ru, D), with
an approximation ratio of (α+c) where c is defined below

c =

{
2 ·Ru/Rl, for MPA(Rl, Ru, D),

3 ·Ru/Rl, for MAA(Rl, Ru, D).
(3)

Proof: Refer to Part J of supplementary materials.
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Theorem 2 shows that for any α-approximation algorithm
of the min-max-delay flow problem, we can directly use it to
solve MPA and MAA approximately instead, with approxima-
tion ratios determined by α, Rl, and Ru. Theorem 2 also shows
that this approximation framework for MPA and MAA has the
same time complexity as the used algorithm for the min-max-
delay flow problem. Note that polynomial time approximation
algorithms for the min-max-delay flow problem exist in the
literature, e.g., Misra et al. [2] have designed a (1 + ε)-
approximation algorithm with a polynomial time complexity,
where ε can be an arbitrary user-defined positive number.

VII. EXTENSION TO MULTIPLE-UNICAST SETTING

A. Multiple-Unicast Problem Definition

To extend our results from the single-unicast scenario to the
multiple-unicast scenario, we first generalize definitions given
in Sections III-A and III-B to the multiple-unicast setting.

Under the multiple-unicast setting, we assume there are K
users, where each user sends a batch of data periodically
from a sender to a receiver. In particular, for each user
i ∈ {1, 2, ...,K}, given that its batch generation period is
Ti (Ti ∈ Z+) and batch generation offset is oi (oi ∈ Z, oi ∈
[0, Ti−1]), there will be Di (Di ∈ R) amount of data generated
at a sender si ∈ V at time k · Ti + oi for each k ∈ Z, k ≥ 0,
and this batch of data is required to be sent to a receiver
ri ∈ V \{si}, possibly using multiple paths. We denote ~〈s, r〉
as {〈si, ri〉, i = 1, ...,K}, and denote ~D as {Di, i = 1, ...,K}.

We aim to obtain a multiple-unicast periodically repeated
solution f , {fi, i = 1, 2, ...,K}, where each fi is a single-
unicast periodically repeated solution that is defined in our
Section III-A and sends the batch of data of user i periodically
from si to ri. Based on the same definitions in Sections III-A
and III-B, we can define the maximum delay, peak AoI, and
average AoI of each fi, respectively.

Under the multiple-unicast setting, let us denote T (fi) as
the batch generation period of fi, and O(fi) as the batch gen-
eration offset of fi. The minimum (resp. maximum) through-
put requirement requires each fi to send Di amount of data
every T (fi) ∈ Z+ slots, achieving a throughput no smaller
than an input Rli ∈ R (resp. no greater than an input Rui ∈ R).
The link bandwidth constraints require that the aggregate
amount of data sent to each link e ∈ E cannot be greater than
its bandwidth be at each slot. For each fi, we denote its amount
of data sent to e ∈ E at the offset j ∈ {0, 1, ..., T (fi)−1}, or
its amount of data sent to e at each time k · T (fi) +O(fi) + j
equivalently, as xe(fi, j). Now suppose T (f) is a common
multiple of {T (f1), T (f2), ..., T (fK)}, i.e., suppose T (f) =
mi · T (fi),mi ∈ Z+ for each i ∈ {1, 2, ...,K}, the link
bandwidth constraints are

K∑
i=1

xe(fi, ni,j) ≤ be, ∀j = 0, 1, ..., T (f)− 1,∀e ∈ E,

where ni,j is defined as

ni,j =

{
j%T (fi)−O(fi), if j%T (fi) ≥ O(fi),

j%T (fi) + T (fi)−O(fi), otherwise.

Under the multiple-unicast setting, our AoI minimization
problems find a periodically repeated solution f either to mini-
mize the weighted summation of peak AoI (i.e., min

∑K
i=1 wi ·

Λp(fi)), or to minimize the weighted summation of average
AoI (i.e., min

∑K
i=1 wi ·Λa(fi)), subject to throughput require-

ments and link bandwidth constraints. Here wi ≥ 0 is a weight
imposed on the achieved AoI of the user i.

In Section VI, we designed an approximation framework for
minimizing AoI in the single-unicast setting. In the following
we generalize it to the multiple-unicast setting.

B. MMD1: Maximum-Delay-Based Counterpart of AoI-Aware
Problems MPA and MAA

Denote MMD1(~R) as the maximum-delay-based counter-
part of MPA and MAA in the multiple-unicast setting: Given
K users each of which is associated with a sender-receiver
pair 〈si, ri〉 and a throughput requirement Ri, MMD1(~R) finds
a set of paths from si to ri for each user i, such that the
aggregate allocated bandwidth of the set of paths is equal to Ri
for each user i, the weighted summation of maximum delays of
all users is minimized, and the link bandwidth constraints are
satisfied. Notice that MMD1(~R) is NP-hard, with polynomial-
time approximation algorithms proposed in [49].

Comparing MMD1 with our MPA (resp. MAA), we observe
that given a throughput vector ~R = {Ri, i = 1, 2, ...,K} with
Rli ≤ Ri ≤ Rui ,∀i = 1, 2, ...,K, ~R is feasible to MMD1 if
and only if it is feasible to MPA (resp. MAA). This observation
is based on a similar analysis discussed in Section VI.

Let us denote a feasible instance of MPA (resp. MAA)
characterized by (G, ~〈s, r〉, ~Rl, ~Ru, ~D) as MPA(~Rl, ~Ru, ~D)
(resp. MAA(~Rl, ~Ru, ~D)). We have the following lemma.

Lemma 10: In the multiple-unicast setting, given any
instance of MPA(~Rl, ~Ru, ~D) (resp. MAA(~Rl, ~Ru, ~D)),
suppose the throughput vector ~R = {Ri, i = 1, 2, ...,K}
which satisfies the following

Rli ≤ Ri ≤ Rui and Di/Ri ∈ Z+, ∀i = 1, 2, ...,K,

is feasible to this instance. Then MMD1(~R) must be fea-
sible. Moreover, suppose f(~R) = {f1(R1), ..., fK(RK)} is
an arbitrary feasible solution to MMD1(~R), it holds that
f(~R) must be a feasible periodically repeated solution
to MPA(~Rl, ~Ru, ~D) (resp. MAA(~Rl, ~Ru, ~D)) with the
following

M(fi(Ri)) = M̂(fi(Ri))+Di/Ri−1, ∀i = 1, 2, ...,K.

M̂(fi) is the maximum delay of fi with MMD1(~R).

Proof: Refer to Part K of supplementary materials.
Lemma 10 generalizes our Lemma 9 from the single-unicast

setting to the multiple-unicast setting. Lemma 10 suggests that
any feasible solution f(~R) to MMD1(~R) is a feasible periodi-
cally repeated solution to the corresponding MPA(~Rl, ~Ru, ~D)
(resp. MAA(~Rl, ~Ru, ~D)), achieving a throughput of ~R.
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C. Solve MPA and MAA Approximately by Solving MMD1
Given any ~R1 = {R1

i , i = 1, 2, ...,K} and ~R2 = {R2
i , i =

1, 2, ...,K} with R2
i ≤ R1

i ,∀i = 1, 2, ...,K, it is easy to prove
that if MMD1(~R1) is feasible, MMD1(~R2) must be feasible.
Thus ~Rl must be a feasible throughput for MPA(~Rl, ~Ru, ~D)
(resp. MAA(~Rl, ~Ru, ~D)) according to Lemma 10. Hence we
propose to solve MMD1(~Rl) in order to provide approximate
solutions to our MPA(~Rl, ~Ru, ~D) (resp. MAA(~Rl, ~Ru, ~D)).

Theorem 3: In the multiple-unicast setting, given any
instance of MPA(~Rl, ~Ru, ~D) and MAA(~Rl, ~Ru, ~D) where
Di/R

l
i ∈ Z+ and Di/R

u
i ∈ Z+ for each i =

1, 2, ...,K, then MMD1(~Rl) must be feasible. Moreover,
if fα(~Rl) is an α-approximate solution to MMD1(~Rl),
it must be a feasible periodically repeated solution to
MPA(~Rl, ~Ru, ~D) and MAA(~Rl, ~Ru, ~D), with an approx-
imation ratio of (α+ c), where c is defined as

c =

2 ·
∑K

i=1 wi·Di/R
l
i∑K

i=1 wi·Di/Ru
i

, for MPA(~Rl, ~Ru, ~D),

3 ·
∑K

i=1 wi·Di/R
l
i∑K

i=1 wi·Di/Ru
i

, for MAA(~Rl, ~Ru, ~D).

Proof: Refer to Part L of supplementary materials.
Theorem 3 suggests that we can use any α-approximation

algorithm of MMD1 to solve our MPA and MAA approx-
imately instead, with a time complexity same as that of
the used approximation algorithm, providing an approxima-
tion ratio that is a constant depending on α and inputs
{wi, Di, R

l
i, R

u
i , i = 1, 2, ...,K}.

D. Our Framework Can Solve Other AoI-Aware Problems

MPA and MAA minimize weighted summation of AoIs.
Another representative AoI-aware minimization objective is

min max
i=1,2,...,K

(Λp(fi)) , or min max
i=1,2,...,K

(Λa(fi)) ,

which minimizes worst peak/average AoI of individual users.
Following the same proof to Lemma 10 and Theorem 3,
it is easy to prove that the problem of minimizing worst
peak/average AoI subject to user throughput requirements
and link bandwidth constraints can be solved approximately
by our proposed approximation framework, too. Overall, the
design of our framework suggests a new avenue for developing
approximation algorithms for minimizing AoI in the field of
multi-path network communication.

VIII. PERFORMANCE EVALUATION

We evaluate the empirical performance of our proposed
approaches in the single-unicast setting5, by simulating (i)
two typical network topologies shown in Figure 3, and (ii)

5In this paper we do not simulate the multiple-unicast setting due to the
following two concerns: (i) In the multiple-unicast setting we only have one
approximation framework for optimizing AoI. There is no other algorithms
for comparison. (ii) Our approximation framework uses existing algorithms
of MMD1 to minimize AoI. To our best knowledge, only [49] solves MMD1
in the multiple-unicast setting in the literature. However, its performance is
not satisfying, as it only supports part of the throughput requirement. We
leave it as an important future direction of developing efficient algorithms for
minimizing AoI in the multiple-unicast setting.

a1,1 a1,2a1

a3

a2

Complete Graph Grid Graph

a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4
a6

a4

a5

Fig. 3. Two simulated network topologies.

(a) An instance with D = D1. (b) An instance with D = D2.
Fig. 4. Results of two representative instances on the complete graph.

nine random network topologies generated by well-known
random graph generation models. All networks are modeled
as undirected graphs, where each undirected link is treated
as two directed links that operate independently. Each link
delay is randomly generated from {1, 2, 3, 4, 5}, and each link
bandwidth is randomly generated from {10, 20, 30, 40, 50}.
Given a network, we consider two different D with D1 = 5·D
and D2 = 10 · D, where D is the maximum amount of
data that can be streamed from sender to receiver with a unit
task activation period. Note that this D is also the maximum
throughput that can be achieved in each simulation, based on
Lemma 9. Thus 5 (resp. 10) is the minimal possible task
activation period for simulations with D = D1 (resp. with
D = D2). In each simulation, we consider ten different
task activation periods (thus ten different throughputs), where
T (f) ∈ {5, 6, ..., 14} (resp. T (f) ∈ {10, 11, ..., 19}) for
simulations with D = D1 (resp. with D = D2). The
ALG-MMD1(α) used by our approximation framework is the
(1 + ε)-approximation algorithm from [2] and we set ε = 1.
Our test environment is an Intel Core i5 (2.40 GHz) processor
with 8 GB memory. All the experiments are implemented in
C++ and linear programs are solved using CPLEX [50].

A. Simulations on Typical Networks

The two typical network topologies simulated are (i) a
complete graph with 6 nodes and 15 undirected links, and
(ii) a grid graph with 16 nodes and 24 undirected links.
The complete graph topology represents a fully-connected and
thus ideal network structure, while the grid graph topology
represents a distributed network structure. In Figure 3, for the
complete network, we assume the sender to be a1 and the
receiver to be a6, and for the grid network, we assume the
sender to be a1,1 and the receiver to be a4,4.
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(a) An instance with D = D1. (b) An instance with D = D2.
Fig. 5. Results of two representative instances on the grid graph.

First, for the complete network, we give the simulated AoI
results of one representative instance with D = D1 (resp.
D = D2) in Figure 4(a) (resp. Figure 4(b)). Similarly, for
the grid network, we give the simulated AoI results of one
representative instance with D = R1 (resp. D = R2) in
Figure 5(a) (resp. Figure 5(b)). In all the figures, for each task
activation period T ∈ [Tl, Tu] (Tl = D/Ru and Tu = D/Rl),
Λp(AP) (resp. Λa(AP)) is the peak AoI (resp. average AoI) of
the solution of ALG-MMD1(2) with a throughput requirement
of R = D/T , while Λp(OPT) (resp. Λa(OPT)) is exactly the
ΛRp (resp. ΛRa ) with R = D/T , which is the peak AoI (resp.
average AoI) of the solution given by our Algorithm 2. For
the MPA (resp. MAA), note that the peak AoI (resp. average
AoI) of the solution given by our approximation framework is
the Λp(AP) (resp. Λa(AP)) corresponding to the largest task
activation period, i.e., with T = Tu, while the peak AoI (resp.
average AoI) of the solution given by our pseudo-polynomial-
time optimal algorithm is the minimal peak AoI (resp. minimal
average AoI) in the figure.

From Figures 4 and 5, empirically we observe that (i)
ALG-MMD1(2) outputs non-optimal peak AoI (resp. non-
optimal average AoI) for any T ∈ (Tl, Tu], as compared to
ΛRp (resp. ΛRa ) with R = D/T ; (ii) Lemma 8 is verified
by Figure 4(a), i.e., both the peak AoI and the average
AoI are non-monotonic, non-convex, and non-concave with
throughput; (iii) Lemma 4 is verified by Figure 4(a), where
the task activation period of 6 (thus the throughput of D1/6)
achieving the optimal peak AoI is different from that of 8
(resp. that of D1/8) achieving the optimal average AoI.

Considering that we generate link bandwidths and delays
randomly, next, we simulate 100 instances of the complete
network with D = D2 (resp. 100 instances of the grid network
with D = D1), and present the AoI results in average in
Figure 6(a) (resp. Figure 6(b)). (i) Empirically, we observe
that ΛRp and ΛRa are “almost” increasing with throughput R.
(ii) Empirically, we observe that our optimal algorithm obtains
a 3.8% peak AoI reduction (resp. 3.2% average AoI reduc-
tion) as compared to our approximation framework, when
the number of possible throughputs (thus the range of task
activation period) of an instance of MPA (resp. MAA) increases
by 1. However, (iii) given a specific throughput, the average
running time of ALG-MMD1(2) (resp. of Algorithm 2) is
0.06s (resp. 0.10s). Therefore for an instance of MPA and
MAA, the running time of our approximation framework is a
constant 0.06s (directly run ALG-MMD1(2) with the smallest
throughput requirement), while that of our optimal algorithm

(a) Complete graph with D = D2. (b) Grid graph with D = D1.
Fig. 6. Results in average of 200 instances on the typical graphs.

(a) Instances with D = D1. (b) Instances with D = D2.

Fig. 7. Results in average of random graphs that are generated by SNAP [51].

increases by 0.10s when the number of possible throughputs
increases by 1 (enumerate AoIs achieved by all possible
throughputs to figure out the optimal).

B. Simulations on Random Networks

We also use SNAP [51] to randomly generate nine network
topologies, where three of them follow Erdos-Renyi model,
another three of them follow Watts-Strogatz model, and the
remaining three of them follow Copying model. For the model-
related parameters, we set n = 20 which is the number of
nodes and m = 50 which is the number of (undirected) links.
Besides, we use default values both of the degree parameter
k = 3 and of the degree-exponent parameter p = 0.1.
Definitions of those graph generation models and associated
parameters are given by [51].

For each of the nine topologies, we run 100 simulation in-
stances respectively with D = D1 and with D = D2. For each
instance, the sender and the receiver are randomly selected.
The simulated AoI results on random networks (Figure 7) is
very similar to that on typical networks (Figure 6). When the
range of task activation period of an instance increases by
1, (i) our optimal algorithm obtains a 4.3% peak AoI reduc-
tion (resp. 4.0% average AoI reduction) as compared to our
approximation framework; (ii) our approximation framework
has a constant running time of 0.06s, while the running time
of our optimal algorithm increases by 0.11s.

C. Simulations when the Network is not Deterministic

In this paper we consider a deterministic network model.
However, for real-world networks, there may exist random-
nesses (e.g., link delay may change with time). In the end of
this section, we use simulations to give some insights on how
our approach performs in a network that is not deterministic.
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(a) Comparison between the AoI of
f∗ in Gr and the AoI of f∗ in G.

(b) Gap between the AoI of f∗ in Gr

and the optimal AoI in Gr .

Fig. 8. We consider 1 network G and 100 different networks Gr’s. de = 3
for each link e in G; while de is randomly generated from {1, 2, 3, 4, 5} for
each link e in each Gr . f∗ is the AoI-optimal solution in G. We illustrate
the AoI performance of f∗ in these 100 different Gr’s.

Let us consider the grid network in Figure 3, D = 5 · D,
and T (f) ∈ {5, 6, ..., 14}. We first find the optimal solution
f∗ that minimizes AoI using our Algorithm 2 in a grid
network G(V,E) where de = 3 and ce = 30 for each
e ∈ E.6 Then we estimate the AoI performance of f∗ in
a grid network Gr(Vr, Er) where de is randomly generated
from {1, 2, 3, 4, 5} and ce = 30 for each e ∈ Er. We simulate
100 different Gr’s. For each of the 100 Gr’s, in Figure 8(a) we
give the AoI of f∗, and in Figure 8(b) we give the difference
between the AoI of f∗ and the optimal (minimal) AoI.7

If there exists randomness for link delay, (i) from Figure 8(a)
we observe that the AoI of f∗ can be very different, which
is expected. In average, the peak AoI of f∗ is 28; (ii) from
Figure 8(b) we observe the AoI of f∗ is no longer optimal in
most instances, with the average optimality gap to be 8. This
gap is relatively small as compared to the AoI of f∗.

In this subsection we only simulate the setting when link
delay can change. Clearly the performance of our approach
will deteriorate when more randomnesses exist in the network,
e.g., when link bandwidth can change. We leave it as a future
direction to minimize AoI based on a more practical network
communication model that takes randomness into account.

IX. CONCLUSION

We consider a single-unicast networking scenario where a
sender periodically sends a batch of data to a receiver over a
multi-hop network using multiple paths. We study problems of
minimizing peak/average AoI based on a stylized deterministic
network model, by jointly optimizing (i) the throughput subject
to throughput requirements, and (ii) the multi-path routing
strategy. First we show that our problems are NP-hard but
only in the weak sense, as we develop a pseudo-polynomial-
time optimal algorithm. Next, we show that minimizing AoI
is “largely” equivalent to minimizing maximum delay, as any
optimal solution of the latter is an approximate solution to
the former, with bounded optimality loss. We leverage this
understanding to design a framework to adapt any polynomial-
time α-approximation algorithm of the maximum delay min-

6In this setting the peak-AoI-minimal solution is the same as the average-
AoI-minimal solution.

7In Figure 8(a), we do not give Λa(f∗), because Λp(f∗)− Λa(f∗) is a
constant 2 in this setting. In Figure 8(b), we do not give Λa(f∗)−Λa(OPT),
because it is the same as Λp(f∗)− Λp(OPT).

imization problem to solve our AoI minimization problems
in a polynomial time, with an approximation ratio of α + c.
Here c is a constant depending on the throughput requirements.
Furthermore, we show that our proposed polynomial-time
approximation framework can be generalized to the multiple-
unicast setting with strong theoretical performance guarantee.
We conduct simulations over various network topologies to
empirically validate the effectiveness of our approach.

REFERENCES

[1] Q. Liu, H. Zeng, and M. Chen, “Minimizing age-of-information with
throughput requirements in multi-path network communication,” in Proc.
ACM Int’l Sym. Mobile Ad Hoc Networking and Computing, 2019.

[2] S. Misra, G. Xue, and D. Yang, “Polynomial time approximations for
multi-path routing with bandwidth and delay constraints,” in Proc. IEEE
Int’l Conf. Computer Communications, 2009.

[3] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. IEEE Communications
Society Conf. Sensor, Mesh and Ad Hoc Communications and Networks,
2011.

[4] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE Int’l Conf. Computer Communications,
2012.

[5] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Information
Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[6] B. T. Bacinoglu and E. Uysal-Biyikoglu, “Scheduling status updates to
minimize age of information with an energy harvesting sensor,” in Proc.
IEEE Int’l Sym. Information Theory, 2017.

[7] Z. Zhou, C. Fu, C. J. Xue, and S. Han, “Transmit or discard: Optimizing
data freshness in networked embedded systems with energy harvesting
sources,” in Proc. Design Automation Conf., 2019.

[8] S. Feng and J. Yang, “Minimizing age of information for an energy
harvesting source with updating failures,” in Proc. IEEE Int’l Sym.
Information Theory, 2018.

[9] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimal transmission
for energy harvesting sensors with finite batteries: Online policies,” IEEE
Trans. Information Theory, vol. 66, no. 1, pp. 534–556, 2019.

[10] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE Int’l Sym. Information Theory, 2015.

[11] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE Int’l Sym. Information Theory,
2015.

[12] R. Talak, S. Karaman, and E. Modiano, “Can determinacy minimize age
of information?” arXiv preprint arXiv:1810.04371, 2018.

[13] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in Proc. IEEE Int’l
Conf. Computer Communications, 2018.

[14] ——, “Scheduling algorithms for optimizing age of information in
wireless networks with throughput constraints,” IEEE/ACM Trans. Net-
working, vol. 27, no. 4, pp. 1359–1372, 2019.

[15] Y.-P. Hsu, “Age of information: Whittle index for scheduling stochastic
arrivals,” in Proc. IEEE Int’l Sym. Information Theory, 2018.

[16] C. Li, S. Li, and Y. T. Hou, “A general model for minimizing age
of information at network edge,” in Proc. IEEE Int’l Conf. Computer
Communications, 2019.

[17] C. Li, Y. Huang, Y. Chen, B. Jalaian, Y. T. Hou, and W. Lou, “Kronos: A
5G scheduler for AoI minimization under dynamic channel conditions,”
in Proc. IEEE Int’l Conf. Distributed Computing Systems, 2019.

[18] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal
sampling and transmission scheduling in multi-source systems,” in Proc.
ACM Int’l Sym. Mobile Ad Hoc Networking and Computing, 2019.

[19] R. Talak, S. Karaman, and E. Modiano, “Minimizing age-of-information
in multi-hop wireless networks,” in Proc. IEEE Allerton Conf. Commu-
nication, Control, and Computing, 2017.

[20] R. Talak, I. Kadota, S. Karaman, and E. Modiano, “Scheduling policies
for age minimization in wireless networks with unknown channel state,”
in Proc. IEEE Int’l Sym. Information Theory, 2018.

[21] S. Farazi, A. G. Klein, and D. R. Brown, “Fundamental bounds on the
age of information in multi-hop global status update networks,” Journal
of Communications and Networks, vol. 21, no. 3, pp. 268–279, 2019.



14

[22] R. Talak, S. Karaman, and E. Modiano, “Optimizing information fresh-
ness in wireless networks under general interference constraints,” in
Proc. ACM Int’l Sym. Mobile Ad Hoc Networking and Computing, 2018.

[23] I. Kadota and E. Modiano, “Minimizing the age of information in
wireless networks with stochastic arrivals,” in Proc. of ACM Int’l Sym.
Mobile Ad Hoc Networking and Computing, 2019.

[24] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to
mobile devices via offloading,” in ACM Workshop Virtual Reality and
Augmented Reality Network, 2017.

[25] Y. Sun, “A collection of recent papers on the age of information,” 2019,
available at http://webhome.auburn.edu/∼yzs0078/.

[26] J. Wang, L. Li, S. H. Low, and J. C. Doyle, “Cross-layer optimization
in tcp/ip networks,” IEEE/ACM Trans. Networking, vol. 13, no. 3, pp.
582–595, 2005.

[27] M. Wang, C. W. Tan, W. Xu, and A. Tang, “Cost of not splitting in
routing: Characterization and estimation,” IEEE/ACM Trans. Network-
ing, vol. 19, no. 6, pp. 1849–1859, 2011.
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