




an alternative approach which achieves privacy preservation

and provides a much larger surveillance area per camera.

D. Group Detection

Due to the inherent social nature of human behavior,

interactions typically happen between small subsets of peo-

ple referred to as groups [34]. Hall proposed the proxemic

theory which defined distances between two people with

different intimacy levels in the North American culture [35].

Many researchers investigated measurement metrics for group

identification [34], [36]±[38]. Crowd understanding, or crowd

analysis, is a topic closely related to group detection [39], [40].

Previous group detection/analysis approaches are unsuitable

for our use case, which motivated us to design a new method.

III. DESCRIPTION OF THE B-SDA SYSTEM

A. Data Pre-Processing

The use of highly elevated cameras results in small and

potentially blurry pedestrians. Videos with various lighting and

weather conditions additionally impact the accuracy of object

detection and tracking. To tackle these, we apply data pre-

processing methods - Weighted-Mask Background Subtraction

(WMBS) and Video Calibration (VC). WMBS constructs the

background image from videos acquired by static cameras,

computed as the mean of all N frames [41]. The background

image with a weighted parameter α is subtracted from the

original frames, to calculate the enhanced image

Fb(I
(t)
r ) = I(t)r −

α

N

N∑

k=1

I(k)r , (1)

where I
(t)
b = Fb(I

(t)
r ) represents the output image, I

(t)
r is t-th

frame in the original video, and α is the weight coefficient.

VC transforms bird’s-eye view videos into calibrated bird’s-

eye videos perpendicular to the ground. It maps a trapezoidally

distorted traffic intersection scene into a rectangular one with

a uniform scale. Calibration is achieved by calculating the

homography matrix Mca that maps I
(t)
b in image coordinates

to Fc(I
(t)
b ) in real world coordinates. Center cropping is the

final stage in calibration, which removes unnecessary parts of

the original image to increase the per-pixel size of features.

The cropped image I(t) is the input for procedures that follow.

B. Detection and Tracking

Object detection provides object localization and classifica-

tion information to a Multiple Object Tracking (MOT) algo-

rithm in a tracking-by-detection scheme. The detector provides

m(t) proposed bounding boxes D(t) = {d
(t)
1 , d

(t)
2 , ..., d

(t)

m(t)}

from I(t), and d
(t)
j = (dclass

(t)
j , bbox

(t)
j , conf

(t)
j ) records the

class, location and confidence score of the j-th predicted box.

Once the MOT algorithm receives D(t), an identity as-

sociation is performed to get the tracking state S(t) =

{s
(t)
1 , s

(t)
2 , ..., s

(t)

m(t)} for all m(t) objects in the t-th frame.

s
(t)
j = (class

(t)
j , roi

(t)
j , id

(t)
j ) denotes the state of the j-th

object in the t-th frame, class
(t)
j is the class of that object,

roi
(t)
j is the location of that object, and id

(t)
j indicates the

unique ID for that object.

C. Social distancing analysis

The social distancing analysis system continually receives

the tracking information S(t) for each frame. The system keeps

updating the tracking state S and extracts useful information

to create the state history T = {T (1), T (2), ..., T (t)}.

The estimation of real-world distances between objects is

simplified by the bird’s-eye video calibration. The distance

of six feet in our videos is represented by approximately 35

pixels based on our ground measurement.

Next we create an Euclidean distance matrix for all objects

in T (t) to find potential social distancing violation pairs L(t) =

{(bid
(t)
11 , bid

(t)
12 ), ..., (bid

(t)
p1 , bid

(t)
p2 )}, where {bid

(t)
n1 , bid

(t)
n2} de-

notes the n-th violation object ID pairs of all p pairs.

To avoid over-counting the number of violations, we design

a cascade-condition filter to validate if a social distancing

violation pair is (incorrectly) indicated. The assumption is that

people belonging to the same ºsafe social groupº are going to

maintain the proxemic relationship while crossing the traffic

intersection. The proxemic relationship can be captured by

pedestrian trajectory information, which can be decomposed

into three components: velocity similarity, trajectory similarity

[42] and proxemic stability. The trajectory similarity is mea-

sured by the Euclidean distance between two pedestrians at

the same temporal location, as shown in (2). The first order

derivative of a trajectory can be used as the velocity estimator

sim(a, b) =

∑
i∈Xa

⋂
Xb

∥(a, b)∥2

|Xa

⋂
Xb|

. (2)

The estimation of object velocity depends heavily on the

correct localization of bounding boxes. Caused by imperfec-

tions of the object detection algorithm, oscillations in localiza-

tion could seriously disturb the estimation of object velocities.

To remedy this, we calculate velocities with exponentially

weighted averages where velocities are recalculated based

on weighted previous and current velocities. To compare

the velocity similarity, both magnitude and direction need

to be evaluated. We use cosine distance (Dcos) to measure

the similarity in vector direction. In order to combine the

magnitude similarity with the cosine distance measure, it needs

to be scaled. We use the magnitude similarity (DMag) in (3)

which is inspired by the formula discussed by Rima et al. [36].

DMag =
| ∥ v1 ∥ − ∥ v2 ∥ |

max (∥ v1 ∥, ∥ v2 ∥)
(3)

The overall velocity distance D(v1, v2) with weight param-

eter γ is described in (4). The ratio between the standard

deviation of distance and the trajectory similarity between

two violation candidates captures the stability of the prox-

emic relationship fstab. The function Trajectory Compare is

the ºORº condition filter between trajectory similarity and

trajectory stability, which aims to be suitable for different

group scenarios in a traffic intersection.

D(v1, v2) = γ ·Dcos + (1− γ) ·DMag (4)



TABLE I
ANNOTATION STATISTICS

Dataset Number of Frames Number of Objects

B-SDA train 7.4k 49.7k
B-SDA test 8.1k 203.2k

TABLE II
RECORDING SCHEDULE AND CORRESPONDING STATISTICS DURING THE

PANDEMIC

Recording Schedule Number of Frames

09:00-09:05 137.7k
14:00-14:05 140.4k
17:30-17:35 148.5k
22:00-22:05 143.1k

If the velocity similarity between two objects lies within

a threshold, the objects are evaluated by the trajectory com-

parison. If all comparisons pass the test, the two objects are

declared to belong to the same group, and removed from the

social distancing violation list L(t). After these modifications,

the list can be used to provide an index to collect the statistics.

IV. EXPERIMENTS

A. Data Acquisition

The training dataset is composed from two resources: (i)

Public dataset Visdrone2019 [43], and (ii) Traffic intersection

videos recorded in New York City, and annotated by our group

(B-SDA dataset). The videos were recorded by the Hikvision

(DS-2CD5585G0-IZHS) camera at the rate of 15 frames per

second with 1920× 1080 resolution. The annotation statistics

are shown in Table I. For inference purposes, the videos were

recorded multiple times per day from June 2020 to Febuary

2021 (during the pandemic and before broad availability of

vaccines), with the recording schedule and corresponding

statistics shown in Table II.

B. Experimental Setup

To reach the detection accuracy appropriate for the proposed

social distancing analysis system, we altered the feature map

topology in YOLOv4 to adopt a shallower feature map and

to detect small pedestrians. The anchor sizes were determined

based on the clustering results of the B-SDA dataset. In the

training process of YOLOv4, the customized YOLOv4 started

with the backbone pre-trained on the Imagenet dataset [44].

Next, it was trained with (a) VisDrone2019 dataset [43] in

832×832 resolution for 6,000 epochs, followed by (b) B-SDA

dataset for another 6,000 epochs. We used a batch size of 64
and the learning rate of 10−3 with a weight decay of 5×10−4.

For tracking, we use the SORT algorithm [20] for real-time

processing without sacrificing much in accuracy. In the group

validation algorithm, we use Dcos, DMag and D(v1, v2) to

check the velocity similarity. Parameters γ and λ are set to

0.1 and 1 respectively. The threshold for velocity similarity

is set to 0.21. For similarity measurement for trajectories, we

use (2) and fstab. The social distance threshold for (2) is

equal to 35. The trajectory stability threshold for fstab is set

TABLE III
GROUP VALIDATION PERFORMANCE

Traj. Comp. Vel. Comp. Precision Recall F1

0.92 0.57 0.66
✓ 0.90 0.99 0.92

✓ ✓ 0.86 0.96 0.88

TABLE IV
QUANTITATIVE COMPARISON ON THE B-SDA DATASET

WMBS CC AP mIoU Precision Recall

44.9 71.7 74.2 49.9
✓ 55.1 69.8 70.9 62.9

✓ 58.0 68.75 84.1 62.8
✓ ✓ 63.0 68.77 73.3 73.0

to 0.25. The computational setup comprises of the operating

system Ubuntu 18.04 running on a cluster of 8 vCPUs, 30GB

RAM, and one Tesla P100 GPU.

C. Verification of the Group Validation Algorithm

We evaluate the effectiveness of our algorithm for validation

of pedestrian groups. We annotate groups of pedestrians with

bounding boxes that cover all pedestrians within a same

group, for 10, 000 video frames. In each group bounding box,

pedestrians who are within the social distancing threshold (35

pixels) are the true positives in the group validation evaluation.

We use precision, recall and F1 score for the evaluation.

Table III shows that our algorithm can capture accurate

grouping information, and filter out violation pairs in the

same group (Traj. Comp. denotes Trajectory Compare and Vel.

Comp. denotes Velocity Compare). We observe that Trajectory

Comparison brings significant improvement to the Recall and

to the F1 score, whereas Velocity Comparison is harmful to the

performance. We postulate that velocity estimation introduces

large amount of noise even when equipped with the exponen-

tially weighted average. Therefore, we remove the function

Velocity Estimation, and use only the function Trajectory

Comparison for further analysis of social distancing.

V. RESULTS

A. Detection and Tracking for Bird’s-Eye View Videos

Precise object detection and tracking are essential to our

social distancing system. Table IV shows how data pre-

processing methods affect our customized YOLOv4 model.

We select Weighted-Mask Background Subtraction (WMBS)

and Center Cropping (CC). For safety-critical traffic surveil-

lance, recall is more important than precision. The MOT

accuracy is evaluated by the CLEAR metrics [45], where

MOTA is the key evaluation score. The tracking performance

is evaluated on the B-SDA test dataset. The detection is

generated by YOLOv4 with WMBS and Center Cropping.

For the YOLOv4-SORT pipeline, we obtain MOTA = 47.65%,

MOTP = 71.4%, MT = 60.9%, and ML = 5.8%. The pipeline

provides accurate object locations and identity and the group

validation provides reliable social distancing analysis.





results correlate well with anticipated and visually observed

pedestrian behavior, most dramatically represented by the fact

that social distancing violations are estimated to be much less

frequent during the pandemic (15.6%) when compared to pre-

pandemic (31.4%). The proposed technique can be used as an

epidemiological tool for managing respiratory pandemics.
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